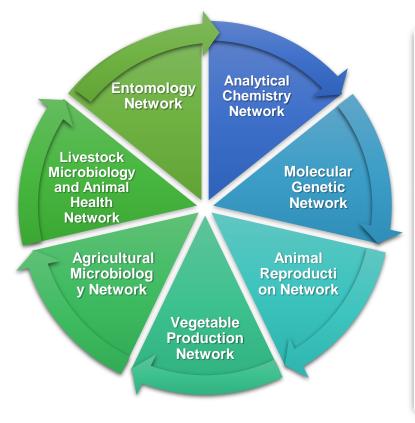
Hydrogel Capsules as Carriers for Growth-Promoting Bacteria Consortia in Bovine Compost Enrichment for enhancing Avena (Avena sativa) yields

Martha Chaparro¹, Jonathan Mendoza², Daniel Torres², German Estrada², Martha Gómez¹, Sergio Pardo-Díaz², Daniel F. Rojas-Tapias², **Mauricio Cruz^{1*}**

1. Bioproducts Department, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 vía Bogotá a Mosquera, Mosquera, Colombia

2. Agricultural Microbiology Laboratory, Tibaitatá Research Center, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 vía Bogotá a Mosquera, Mosquera, Colombia

GRO5/



Research and Services: Laboratory network

Cutting-edge laboratories

Bioproducts Department

Biofertilizers Pilot Plant

Biopesticides Pilot Plant

Animal Health

Viral propagation

Fermentation facilities Harvesting Drying

Definition and Bio-inputs approach

AGROSAV/A3

Product that is used for integrated pest management purposes or to improve the productivity of crops and soil, based on free-living microorganisms, viruses, naturally-occurring products or biochomical products.

Antibiotics, toxins, genetically modified organisms (GMOs)

Bioinsecticides and biofungicides

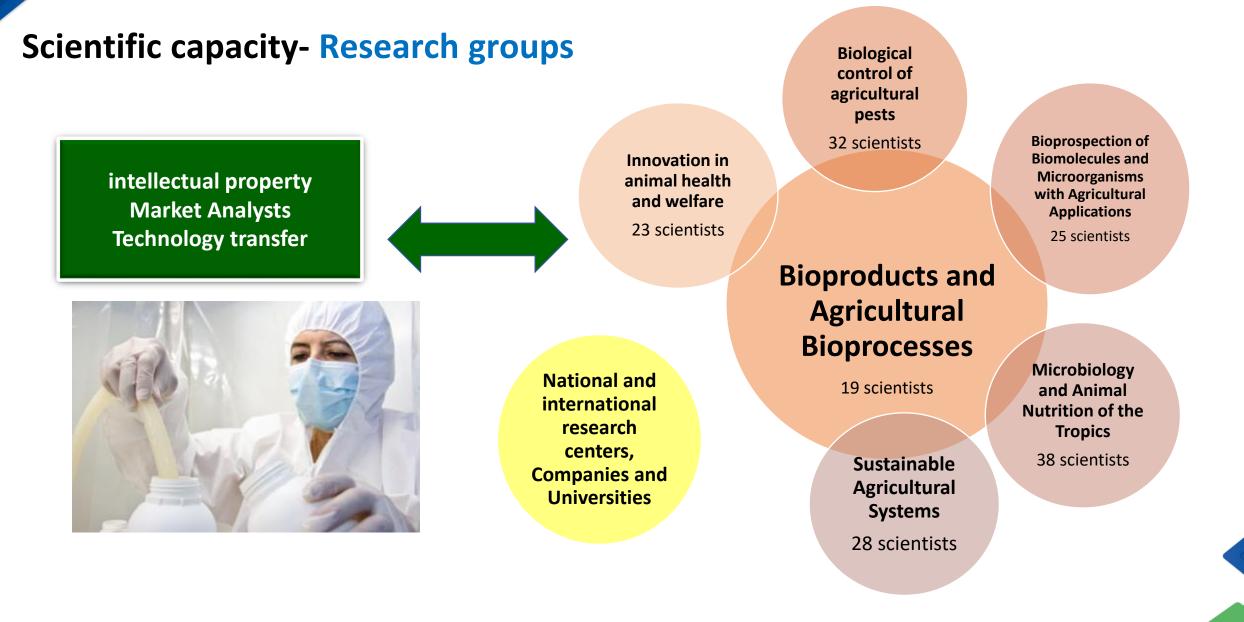
- Bacteria
- Fungi
- Viruses
- > Yeast

Biofertilizers/Biostimulants

- > N-fixing (bacteria)
- P-solubilizing , K-solubilizing
- Plant Growth Promoting MOs

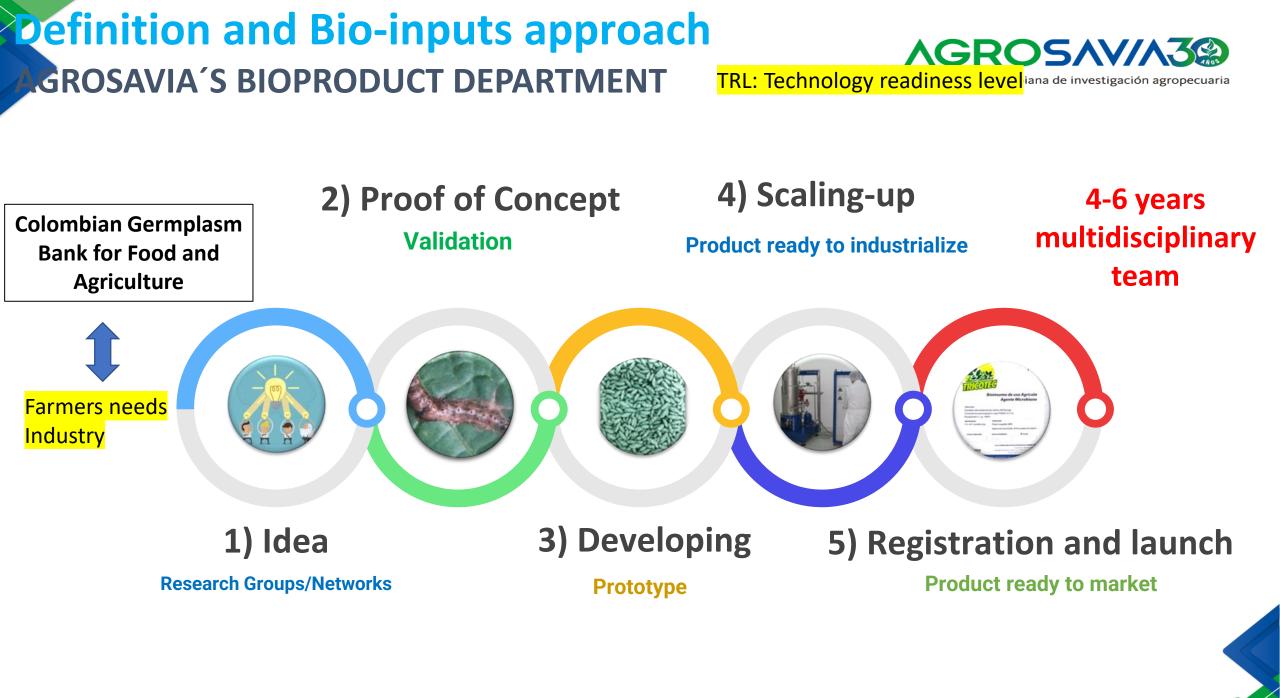
Bio-remediators (Cd, As y Pb)

ANIMAL HEALTH ADDITIVES



Eubiotics

- Prebiotics
- Probiotics
- Plant Extracts
- > Oils


Definition and Bio-inputs approach ACPOSAVA3@ >100 scientists NETWORKING agropecuaria

Definition and Bio-inputs approach

AGROSAV/A32

(Philip Kotler & Gary Armstrong, 2012)

Bio-input developing: Idea

Innovation networks

minor species

nts

Roots and tubers

Agro-industrial

aromatics

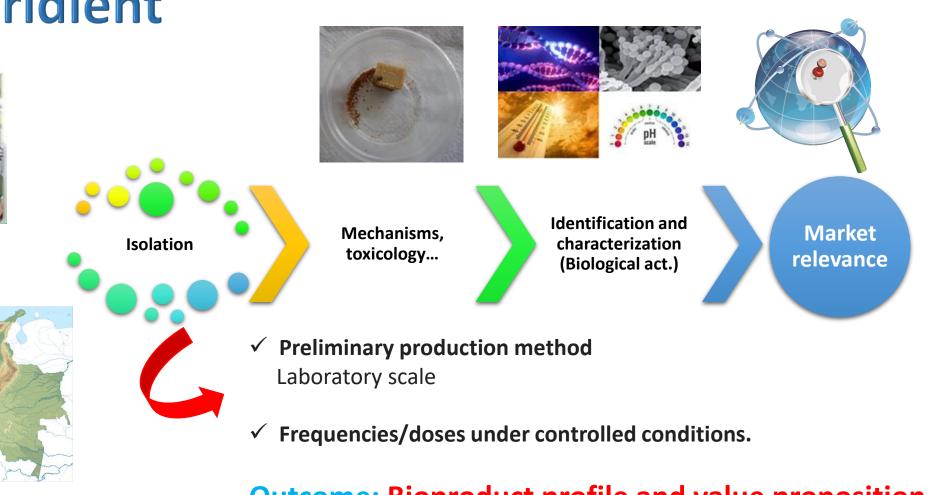
Fruit trees

Meet the demands of the territories and **generate a relevant technological offer (TO)** that responds to the demands of the producer.

Research centers or industry

Outcome

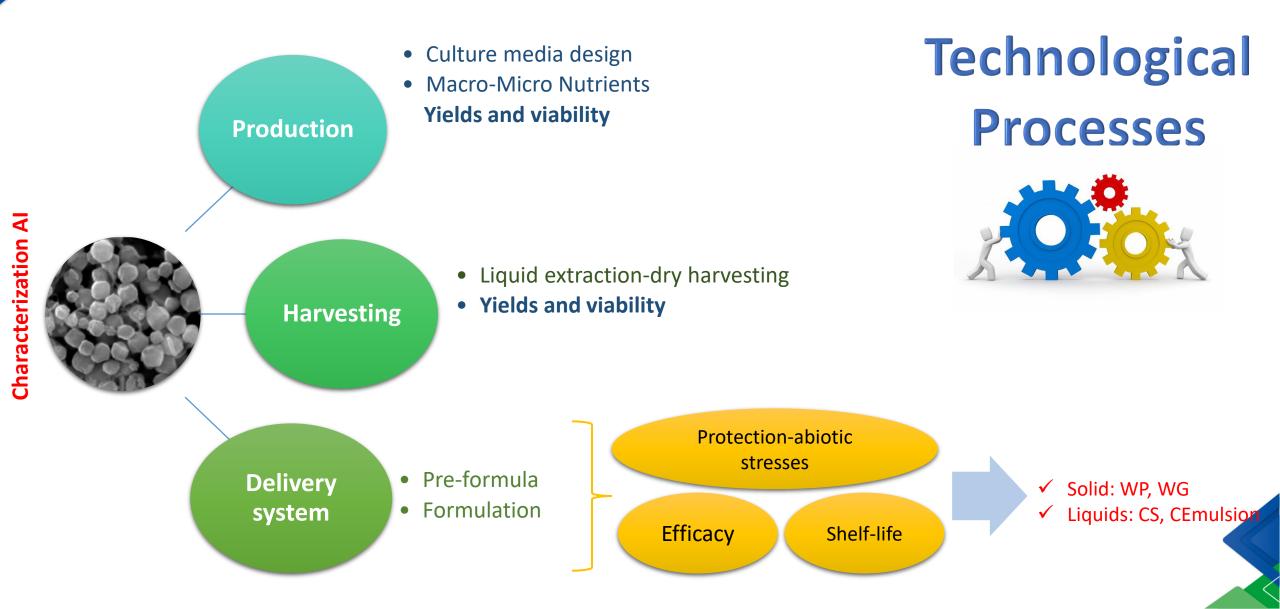
Idea that can lead to a bioproduct


Bio-input developing: Proof of Concept Active Ingridient

Germplasm banks

high diversity microorganisms

Access permits to genetic resources


Outcome: Bioproduct profile and value proposition

AGROSAV

Corporación colombiana de investigación agropecuaria

Bio-input developing: Development

Bio-input developing: Development

Biological processes

Frequencies

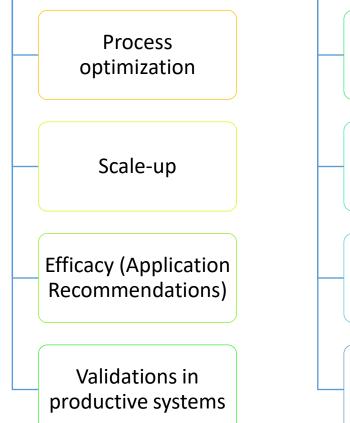
Eficacy controlled conditions

Agrochemical compatibility

Effect on beneficial organisms

Marketing processes

✓ Value elements
 ✓ Target segments
 ✓ Market potential
 ✓ Production cost and application


Outcome: Product prototype and value equation

Bio-input developing: Scaling-up

Validation of the value equation

Financial models
business strategies

Value demonstration

Production and application costs

Bio-input developing: Registration-Transfer AGROSAV/A3

Corporación colombiana de investigación agropecuaria

Efficacy tests in productive regions

Registration

Commercial production Outcome: Product on

Shelf-life, toxicology, trademark, labeling

the market

Bio-inputs Innovation

insumos

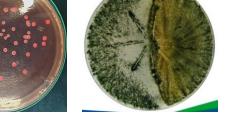
01

Active Ingridient Consortia (Bacteria, Mycorrhizae)

04

05

Production Co-cultivation, Semi-SSF and Submerged fermentation


> Delivery System Nano film coating, Capsules


Applications Small Farmers

Customer

Technical assistant

AGROSAV/A32

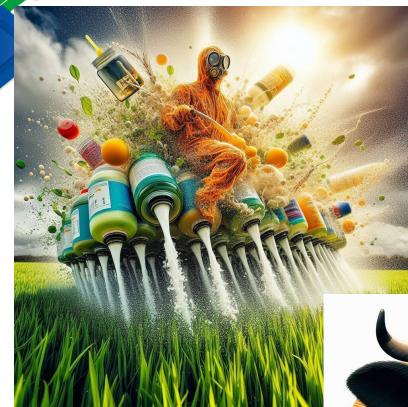
< 1% of research articles on (PGPBs) have been related to formulation

Herrmann and Lesueur (2013)

Hydrogel Capsules as Carriers for Growth-Promoting Bacteria

Mauricio Cruz Barrera PhD

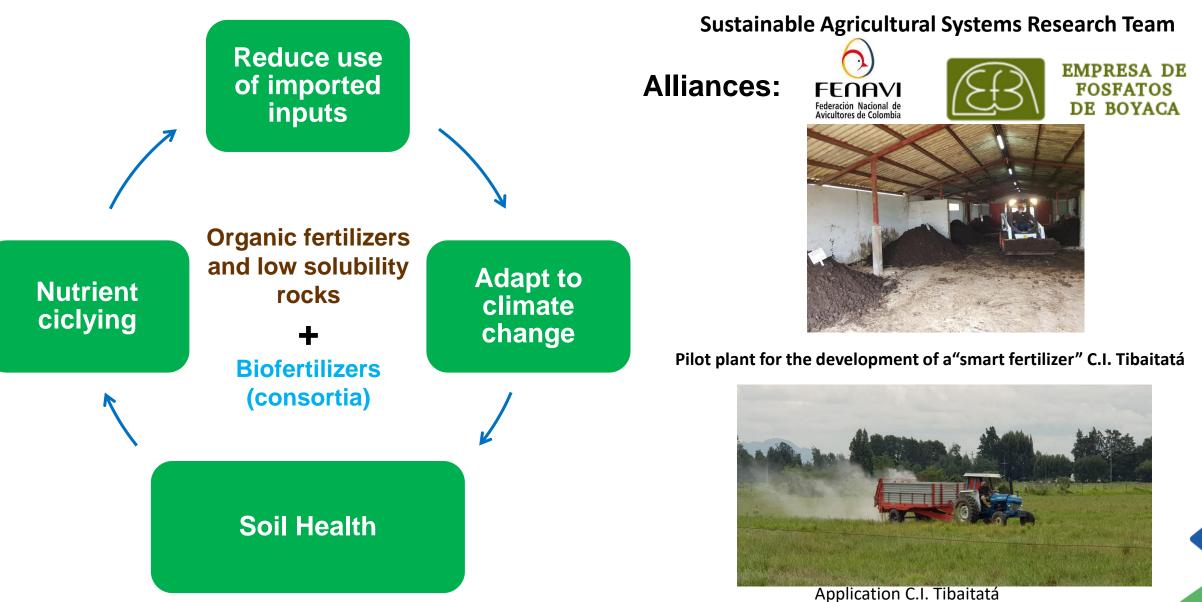
fcruz@agrosavia.co https://orcid.org/0000-0002-9208-7902


1. Bioproducts Department, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 vía Bogotá a Mosquera, Mosquera, Colombia

Traditio et Innovatio

- Colombian agricultural sector (3,8 % PIB), livestock (80 %), agriculture (20%).
- **31 million hectares** dedicated to pastures and forage.
- Colombia importing 75% of agrochemicals.
- Price >200 %

AGROSAVIA and KolFaci (ID: 1001556)



(MADR, 2018; UPRA, 20,19; Wu et al., 2020; Bonilla et al, 2013) https://www.tierragro.com/collections/nutrimon https://www.larepublica.co/especiales/crisis-en-ucrania/de-los-fertilizantes-usados-en-el-agro-colombiano-42-provienen-de-rusia-y-ucrania-3310266

Organo-Mineral Fertilizer

Selected Plant Growth-Promoting Bacteria (PGPBs)

Herbaspirillum sp. AP21

Endophytic

Increases leaf biomass by 44.8% in Red clover Alleviates water deficit (co-inoculation) in Ryegrass

Azospirillum brasilense D7

Endophytic Alleviates water deficit (12%)

Increases leaf biomass (30%) (co-inoculation) in Ryegrass

Rhizobium leguminosarium T88

- Rhizobacteria
- Promotion of plant growth in Red Clover (30.46%)
- Ryegrass (20.31%), P-solubilizing

Gram – Negative No spore-forming

(Cortes, 2020; Santos, 2020). https://agroactivocol.com/wp-content/uploads/2020/08/trebol-rojo_8844524b_1280x720.jpg ORIGINAL RESEARCH

published: 01 October 202 doi: 10.3389/fsufs.2021.71527

Endophytic PGPB Improves Plant Growth and Quality, and Modulates the Bacterial Community of an Intercropping System

Sergio Pardo-Díaz¹, Felipe Romero-Perdomo¹, Jonathan Mendoza-Labrador¹ Diego Delgadillo-Duran¹, Edwin Castro-Rincon², Antonio M. M. Silva³, Daniel F. Rojas-Tapias¹, Elke J. B. N. Cardoso³ and German A. Estrada-Bonilla³

- **Ryegrass**—red clover intercropping system
- Herbaspirillum sp. AP21 and Azospirillum brasilense D7
- N fertilizer rates (50, 75, 100%)
- 16S rRNA metataxonomics.
- PERMANOVA
- PGPB alters the bacterial diversity regardless N

Pr(>F)

Inoculation 0.0461 N fertilizer rate 0.2519

- Actinomycetales (28.8%), Rhizobiales (13.5%), Burkholderiales (12.7%)
- AP21, D7, and AP21 + D7 fertilized with 50% and 75% N cluster with the positive control treatment fertilized with 100% N. Positively associated with crude protein, shoot N content, and shoot dry weight increments

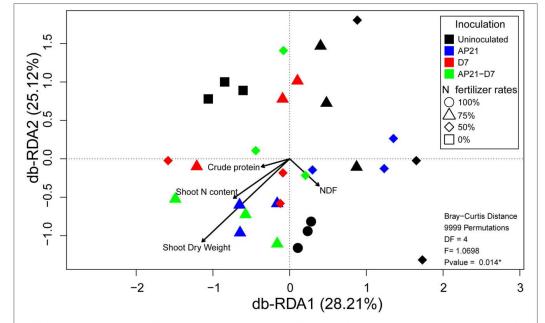
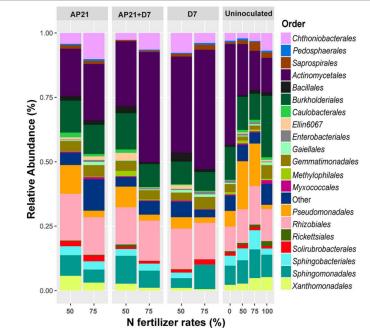
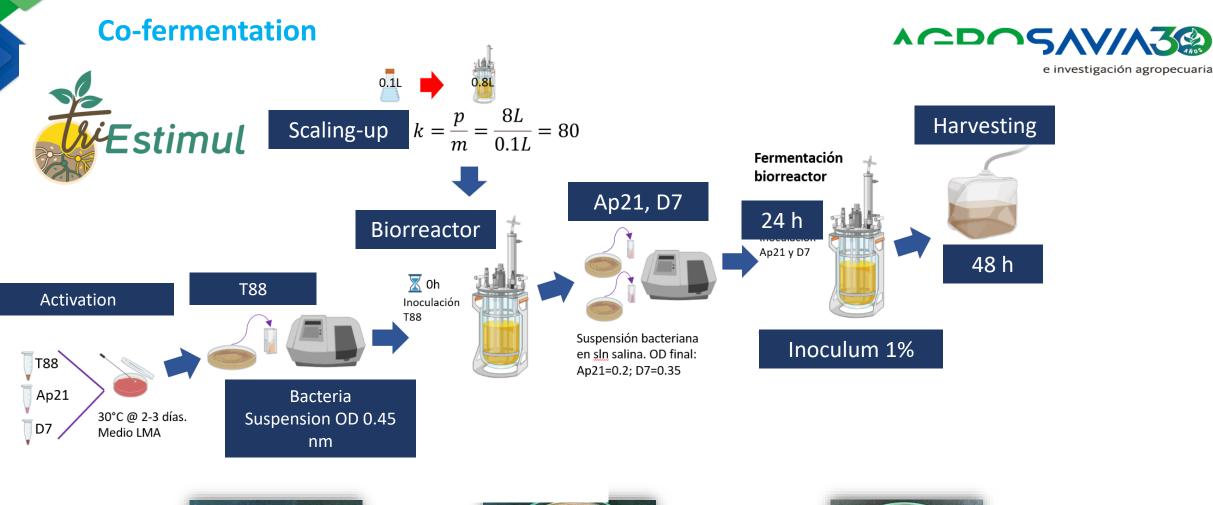
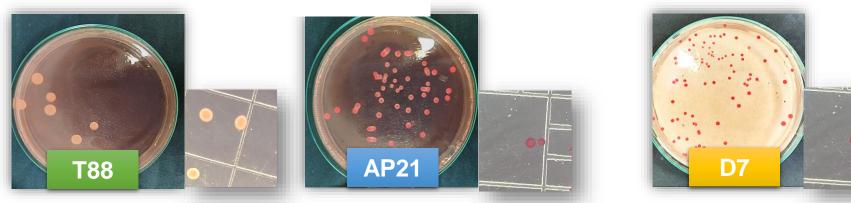
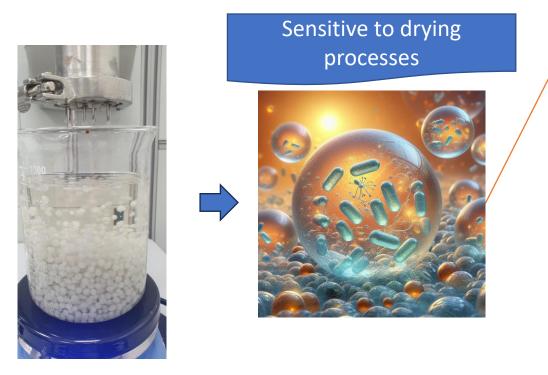
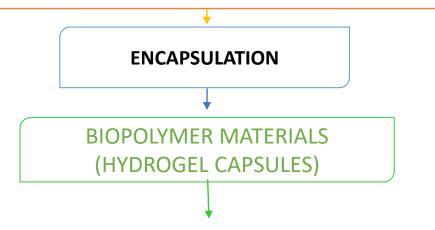





FIGURE 4 | Distance-based redundancy analysis (db-RDA) plot illustrating the bacterial community structure of the rhizosphere in relation to plant parameters. The db-RDA was significant (p < 0.05)

Relative abundance of bacterial orders the rhizosphere for inoculation with PGPB (Ap21, D7) under different rates of nitrogen fertilization


Applied Microbiology and Biotechnology (2023) 107:6671–6682 https://doi.org/10.1007/s00253-023-12699-7

ENVIRONMENTAL BIOTECHNOLOGY


AGROSAV/A3220 Corporación colombiana de investigación agropecuaria

Hydrogel capsules as new approach for increasing drying survival of plant biostimulant gram-negative consortium

Martha Chaparro-Rodríguez^{1,2} · German Estrada-Bonilla³ · Jaiver Rosas-Pérez² · Martha Gómez-Álvarez¹ · Mauricio Cruz-Barrera¹

Dry formulations promote transportation, product shelf life, and prevent contamination

 Increasing tolerance (biotic and abiotic factors) Protection against the drying process

IONIC GELATION

II. Improving shelf life in storage

METHODS

Preparation of formulation prototypes

> **P1 =** Ps01 **P2 =** Ps10 **P3 =** Gr01

Formulation –	Prototypes (%p/p)			
excipients	P1	P2	Р3	
Ps13	4	4	4	
Sp30	5	5	5	
Ps17	5	5	5	
Ps16	0,1	0,1	0,1	
Ps01	1	-	-	
Ps10	-	1	-	
Gr01	-	-	1	

Microbiological characterization

• Determination of the concentration of the active ingredient of each strain D7, AP21, and T88 (CFU/g)

• Determination of contaminant content (CFU/g)

 Preliminary accelerated stability of the active ingredient in capsule prototypes (CFU/capsule)

Time: 0, 15, 30, 60, 90 days. **Temperature**: 6,18 y 28±2ºC

Completely randomized design with a factorial arrangement adjusted for repeated measures over time (SAS Enterprise Guide 8.3)

AGROSAV/A3 Corporación colombiana de investigación agropecuaria Physicochemical characterization Particle size (mm) Ι. Sphericity factor Π. Moisture content (%) III. IV. a_w V. SEM

METHODS

Biological features Greenhouse

- Avena assay, completely randomized experimental design
 - 3 repetitions per treatment
- Experimental unit: 2 kg pot with one Altoandina Avena sativa

plant Fertilized with Hoagland nutrient solution

REATMENT DESCRIPTION		
T1	Control 1 (Hoagland completo 100%)	
T2	Control 2 (compost + Hoagland 100%)	
T 3	Control 3 (compost +Hoagland 50%)	
Τ4	Cell-Broth (compost +Hoagland 50%)	
T5	P1 (Ps01) + PGPB (compost +Hoagland 50%)	
T 6	P2 (Ps10) + PGPB (compost +Hoagland 50%)	
T 7	P3 (Gr01) + PGPB(compost +Hoagland 50%)	
T 8	Carrier P1 (Ps01) (compost +Hoagland 50%)	
T9	Carrier P2 (Ps10) (compost +Hoagland 50%)	
T10	Carrier P3 (Gr01) (compost +Hoagland 50%)	

45 days after planting (tillering stage)

Total dry biomass and nutritional parameters using NIRS (Near-Infrared Spectroscopy)

Nutritional parameter yield

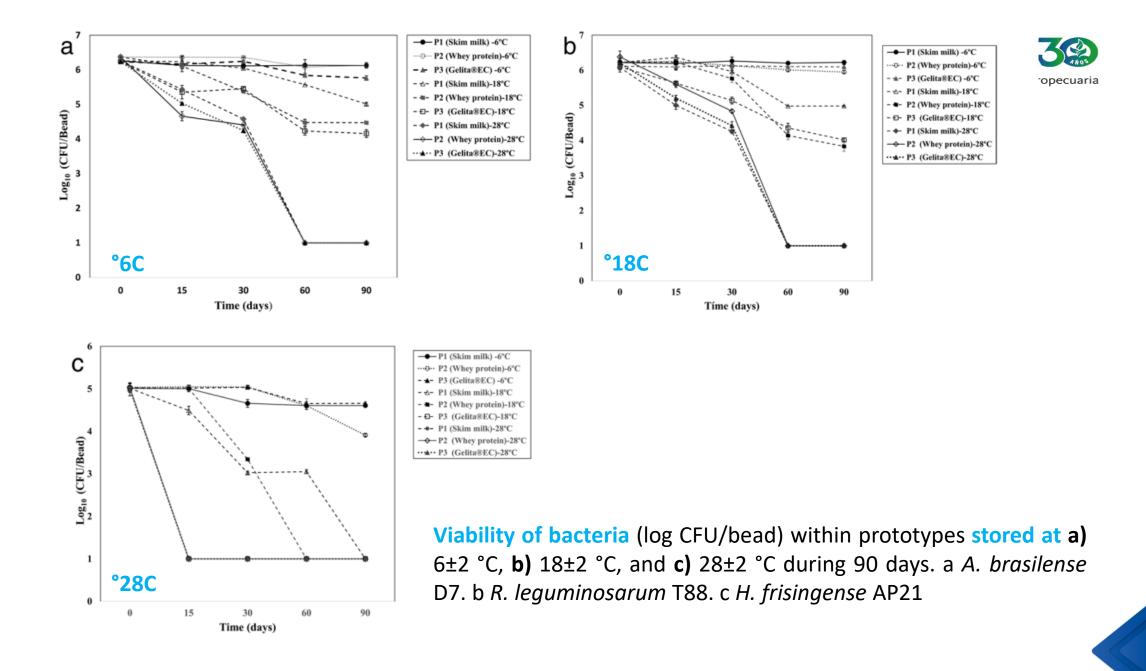
Crude protein (Kg/ha) Phosphorus (Kg/ha) Potassium (Kg/ha) Nitrogen (Kg/ha)

En SAS Enterprise Guide 8.3: "Sequential analysis, Dunnett test p <0.05". En Statgraphics Centurion versión XVI: "Análisis secuencial, prueba de Duncan p <0,05".

(Galvani & Gaertnert, 2006)

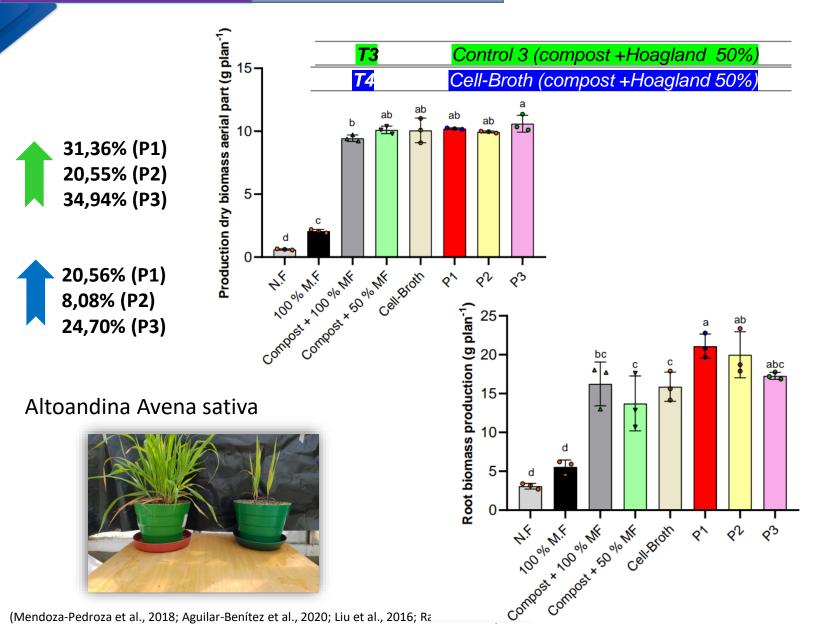
Corporación colombiana de investigación agropecuaria

Microbiological characterization of the three formulation prototypes.


Strain /Prototype (CFU/g)	P1 (Ps01)	P2 (Ps10)	P3(Gr01)
Strain D7	3.74 x 10 ⁸	4.74 x 10 ⁸	3.48 x 10 ⁸
Strain T88	3.46 x 10 ⁸	3.66 x 10 ⁸	2.54 x 10 ⁸
Strain AP21	2.07 x 10 ⁷	2.20 x 10 ⁷	2.14 x 10 ⁷
Total (CFU/g)	7.41 x 10⁸	8.62 x 10 ⁸	6.24 x 10 ⁸
Contaminats (CFU/g)	1.73 x 10 ⁵	1.33 x 10 ⁵	1.60 x 10 ⁵

Physicochemical characterization of the three formulation prototypes.

Prototipo /Parámetro	P1 (Ps01)	P2 (Ps10)	P3(Gr01)
Moist (%)	3,11 <u>±</u> 0,09	3,23 <u>±</u> 0,15	2,26 <u>±</u> 0,20
Water activity (a _w)	0,62 <u>±</u> 0,01	0,61 <u>±</u> 0,005	0,62 <u>±</u> 0,01
Particle size (mm)	2,55 <u>+</u> 0,28	2,30 <u>±</u> 0,26	2,43 <u>±</u> 0,24
Spherecity	0,010 <u>±</u> 0,28	0,002 <u>±</u> 0,26	0,005 <u>±</u> 0,24

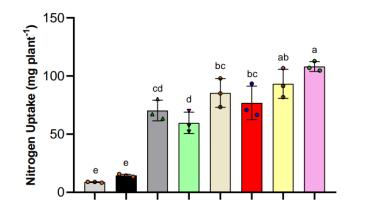


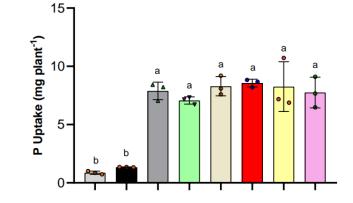
(Icontec, 2008; ICA, 2021; Benintende, 2010; Reetha et al., 2014; Kurtmann et al., 2009; Cruz, 2019; Cruz Barrera et al., 2020; Mendoza-Labrador et al., 2021; Lais et al., 2017; Amorij et al., 2008; Chan et al., 2009; Wu et al., 2011, 2012)

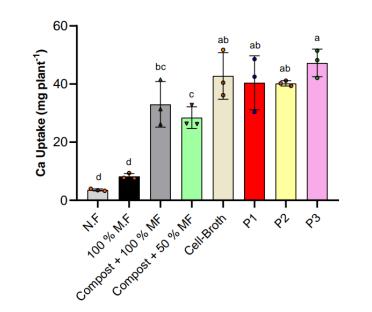
Fig. 1. Root biomass of Altoandina Avena sativa A. Control (T1) B. Control (T3). C. Bacterial suspension (T4) D. P1 (T5) E. P2 (T6) F. P3 (T7)

Fig. 2. Aerial biomass of Altoandina Avena sativa A. Control (T1) B. Control (T3). C. Bacterial suspension (T4) D. P1 (T5) E. P2 (T6) F. P3 (T7)

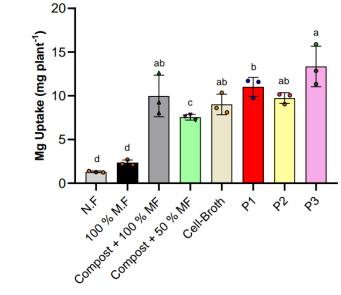
RESULTS

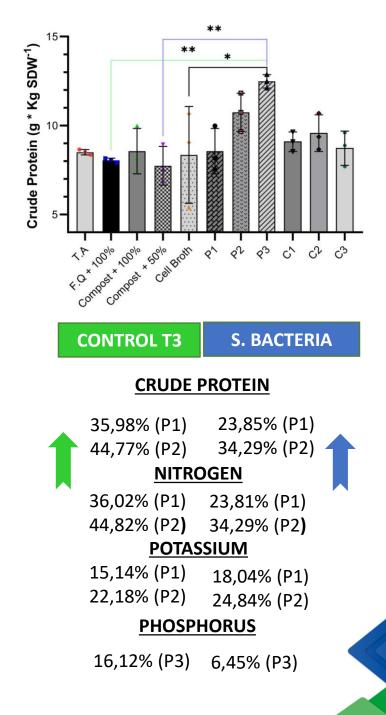

a).


PLANT NUTRIENTS


b).

d).


NIRS analysis with the three formulation prototypes P1 (Ps01), P2 (Ps10), and P3 (Gr01) using Altoandina Avena sativa as plant material. HC: Full Hoagland, HM: Half Hoagland (n=3)



Treatmens

Treatmens

CONCLUSIONS

- Three prototypes enrich the compost, increasing the dry biomass and nutritional parameters in the plants by 31.36% with P1, 20.55% with P2, and 34.94%
- The mixture of bovine compost and PGPB encapsulates could help reduce chemical fertilization by up to 50%.
- The nutrient content showcased significant increments, with upticks of **32.44% in Ca, 4.34%** in **P, and 36.48%** in **Mg.**

- Explore Ps01-like substances to increase AP21 resistance to drying and stability.
- Conduct stability studies with **commercial packaging** and scaled batches.
- Biological activity of capsule formulations without the presence of compost (forages and other crops).
- Determine the capacity/kinetics of PGPB release from hydrogel capsules in soil systems.
- Field studies, chemical fertilizers (Salamanca, Spain)

VNiVERSiDAD DSALAMANCA

PROYECTO TRICOECHO

Co-aplicación de formulados de *Trichoderma* con Fertilizantes NPK en cultivo de Trigo

Figura 1. Representación esquemática del proceso de formulación de cepas de Trichoderma mediante la técnica de plato granulador

Cápsulas

Cápsulas de Th137

Figura 2. Formación de cápsulas de las de cepas de *Trichoderma* USAL Th140 y Th137 mediante la técnica de gelificación iónica

Outlook, The road Ahead

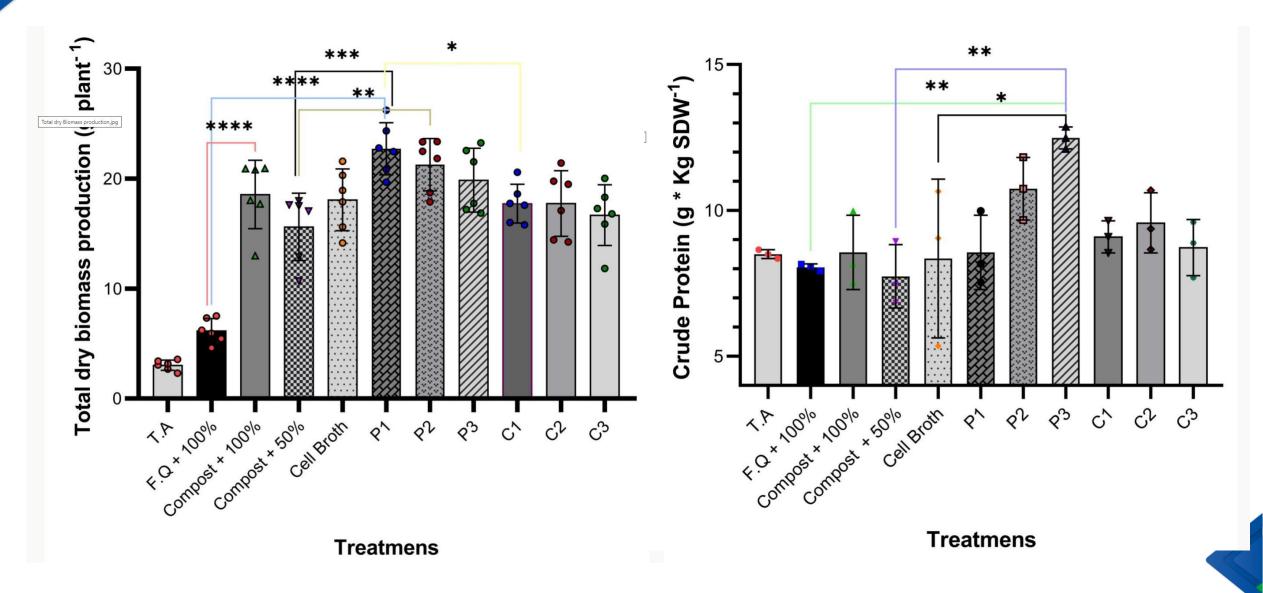
- ✓ Novel cost-effective high-efficiency bioproducts will encourage their adoption and widespread use.
- ✓ There are still great limitations in the industrial production of high-tech bioproducts at the national level.
- ✓ Strategic alliances with leading actors must therefore continue to address the current and upcoming challenges in agriculture and climate change
- ✓ Multi-microorganism consortia vs single-strain
- ✓ **Bio-inputs** remain underutilized for a sustain agriculture
- ✓ Eeasily available for small farmers-Training
- ✓ Bio-inputs could recover soil microbiome-soil regeneration

GROS

Corporación colombiana de investigación agropecuaria

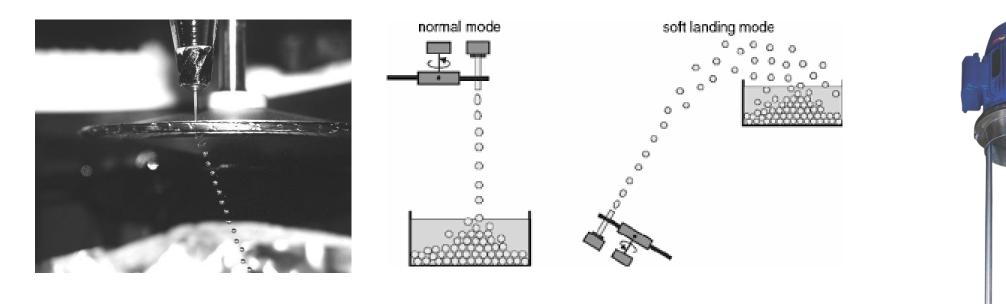
"AGROSAVIA is growing with the farmers and to the farmers"

THANK YOU iii



BIOPRODUCTS DEPARTMENT AT AGROSAVIA, COLOMBIA

Carriers


AGROSAV/A3220 Corporación colombiana de investigación agropecuaria

Corporación colombiana de investigación agropecuaria

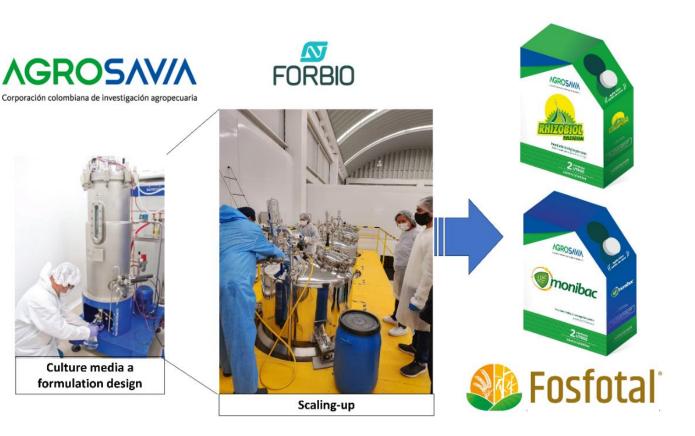
JetCutter (200 kg/hour)

Efficient and transferable for scaling up

Upcoming Bio-inputs

Biopesticide based on Rhodotorula glutinis for the control of Penicillium expansum, Botrytis cinerea and Colletotrichum gloesporoides, in postharvest stages (flowers and fruits)

Growth promoter based on the bacteria *Bacillus velezensis* for nursery or seedbed stages, for vegetables and fruit trees


Biofertilizer for Cd immobilization and K solubilization for cocoa crops based on two bacteria: Pseudomonas sp. and *Bacillus* sp.

Biocontrol of ruminant gastrointestinal nematodes based on the nematophagous fungus Duddingtonia flagrans: Targeted indirect control BIOCLAM

Bio-inputs portfolio AGROSAVIA

Accelerating bioproduct scaling-up and registration

Green Growth Institute CONVOCATORIA Mecanismo de Aceleración de Proyectos de Bioeconomía

#MAPBIO

JK PACT

opecuaria

Financial aid: Inter-governmental organizations

AGROS

scaling-up and for efficacy tests

Production initially agreed	Hectares to impact 2022	Maximum capacity that the ally could generate (FORBIO)	Hectares to impact with the maximum capacity
4.000 L/año	2.666 ha/año	144.000 L/año	96.000 ha/año

Scaling-up of biofertilizers at commercial level

