Microbial mediated plant salt stress mitigation

MicroFunction Workshop

21th June 2024, Rostock, Germany

Mohamed Ramadan Abdelfadil

Leibniz Institute of Vegetable and Ornamental Crops (IGZ)

Leibniz-Zentrum für **Agrarlandschaftsforschung** (ZALF) e.V.

Microbes are skilled in dealing with fluctuating environmental conditions

They persisted under harsh and changing conditions for billion years.

Salinity stress poses a serious challenge

Impact of salts on plant growth

Food and Agriculture Organization (FAO)

Over 833 million hectares of soils worldwide are already saltaffected Represent nearly 10% of the world's land surface

Naturally salt tolerant plants in our planet

Halophytes have evolved various adaptive salt-tolerance mechanisms to thrive in high-salinity environments. Plant-microbe co-evolution

with their microbiota.

Plant cooperate with their microbes to alleviate stressors ('cry for help')

Influence of salinity on bacterial microbiome assembly of halophytes

and crops

Main objectives

- 1- Untangle the microbiome structure between two halophyte groups and non-halophytes.
- 2- Identify marker taxa of high salinity adapted plants using three different approaches.

40 plants 15 microbiome studies

Schematic overview of an experimental analysis workflow

Microbiome structure between high-halophytes, low-halophytes, and non-halophytes.

High-halophyte plants exhibit 80% unique taxa. The most shared taxa are between low halophytes and non-halophytes 18%.

A clear pattern in diversity and overall microbiome composition for highhalophytes

Identify marker taxa of high-halophytes using three different approaches

Key hub taxa

high salinity halophytes

Validate the potential of the SynCom and the whole rhizosphere microbiome of a plant of high Overlap between the halophytes.

three approaches

SynCom construction

Whole Microbiome Transplantation (WMT)

Workflow of the experiment

Hypothesis

1- Microbiome applications enhance growth and
adaptation of salt-sensitive and raise the salinity
tolerance threshold of tolerant tomatoes.

2- WMT and SynCom enhances colonization by halophytic communities in response to salinity.

Plant growth parameters

4 Treatments 3 Salinity concentrations

-WMT inoculum: (2)

-Syn inoculum : (1)

- -0 mM NaCl
- -300 mM NaCl
- -Untreated control: (1) -500 mM NaCl

Chlorophyll content

S300 S500 S300 S500 S0 S0 ap а 1.00 -30 b bc 20-1.5 ab ab 20 þ 0.75 -15-Shoot_dry_weigh (g) Shoot_dry_weigh (g) 20 -15 zus/6r10. hg/cm² zm2,0-10 -0.5 -0.25 -5-5-0. 0.00 0.0 M2 M2 CL M2 Syn M2 Syn CL M1 Syn CL Μ1 M2 Syn CL M1 Syn CL M1 M2 Syn M1 CL M1

Shoot dry weight

6-

Shoot_dry_weight (g)

Alterations in microbiome composition

Applications enhances colonization by halophytic

communities in response to salinity.

Selective taxa enrichment in tomato with SynCom

Selective taxa enrichment in tomato with SynCom

Take Home Messages

- Halophytes represent a repository of robust microbes that possess beneficial traits for other sensitive plants.

- In silico identification of shared patterns associated with plants with similar environmental conditions help to design effective SynComs.

- Microbiome-based applications such as WMT and Sync capable of rapidly improving the adaptation and resilience of non-halophytic plants to salt stress.

Leibniz-Zentrum für **Agrarlandschaftsforschung** (ZALF) e.V.

Thank you for your attention

NICOLAUS COPERNICUS UNIVERSITY IN TORUŃ

