
Frequency-Analysis 

Potential Energy Surface of AuI3 

 

The PES of AuI3 displays different types of stationary points: minima, transition states 
(NIMAG = 1) and a saddle points 2nd order (NIMAG = 2). Each point can be unequivocally 
be characterized by a frequency analysis. 

 

Frequency-analysis deals 

• characterization of stationäry points 
• normal coordinate analysis (assignment of vibrations, intensity) 
• comparison with experimental data 

  



Theory 

 

The Born-Oppenheimer-approximation results in an electronic Schrödinger-Gleichung and an 

equation which describes the movement of nuclei. 

 

Schrödinger-equation Born-Oppenheimer-approximation 

HΨ = EΨ   HelΨel = EelΨel  and  
HnucΘnuc = EnucΘnuc 

  

 



 

Calculation of the Harmonic Vibrational Frequencies 

  

Once a stationary point has been found on the Born-Oppenheimer hypersurface, this point has 

to be characterized as minimum, transition state or saddle point of nth order. In practice, this 

characterization is done by a frequency analysis. 

            To describe the individual energetic states of a molecule, different approximations are 

introduced. Firstly, there is the already-mentioned Born-Oppenheimer approach, which allows 

the separation of the electron motion from the motion of the nuclei. Secondly, translation of 

the nuclei is separated out by applying internal coordinates. The interaction between rotation 

and vibration is also neglected at the beginning and both problems are considered separately, 

using the model of the harmonic oscillator for the vibration and the rigid rotator for the 

rotation. From these models, spectroscopic constants are derived which can be used within the 

applied model. 

            To solve the above-mentioned problem, the motion of nuclei has to be investigated in 

detail. The equation for the nuclear motion can be written within the Born Oppenheimer 

picture (with space-fixed Cartesian coordinates, R j, j = 1, 2, 3 for 
R R R R R Rx y z1 2 3= = =, , ): 
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Of special interest is the behavior of the nuclear configuration close to a stationary point. For 

this reason, the potential, U, which describes the molecule, will be expanded in a Taylor series 

around the equilibrium structure (stationary point) Req
eq

M
eq= ( , ..., )R R1 : 



  

U U
U

R
R R

U
R R

R R R R

M
eq

M
eq M

j R R
j j

eq

j

M

M

j k R R
j j

eq
k k

eq

j k

M

eq

eq

( ,..., ) ( ,..., )
( ,..., )

( )

( ,..., )
( )( ) ...

,,

R R R R
R R

R R

1 1
1

1

3

1

2
1

1

3

1

1
2

= +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ −

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ − − +

===

===

∑∑

∑∑

∂
∂

∂
∂ ∂

α
α α

α

α β
α α β β

α β
 

  

Within the harmonic approximation, the Taylor series is truncated after the quadratic term. 

Moreover, at a stationary point the gradient (first derivatives) becomes zero: 
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By introducing a coordinate transformation, the solution of the motion of the nuclei can be 

simplified. Starting with space-fixed Cartesian coordinates, mass-weighted Cartesian 

coordinates can be introduced. For each atom (nucleus), the equilibrium structure is 

described by the vector Req
eq

M
eq= ( , ..., )R R1 . Around this equilibrium position, all atoms 

are vibrating and these small displacements can be expressed by the 
( )R Rj j

eq
α α−

. The motion 

of the atoms using mass-weighted coordinates can be expressed as: 

  

X m R Rj j j
eq

3 3α α α α+ − = −: ( )
 with α = 1, ..., M; j = 1, 2, 3. 

  

Substituting the Cartesian coordinates by mass-weighted coordinates in the Schrödinger 

equation for the motion of the nuclei within the harmonic approximation leads to: 
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with the mass-weighted force constant matrix, U = (ujk): 
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and 

E E Uvib eq
M
eq= − ( ,..., )R R1 . 

            The mass-weighted force constant, U = (ujk), is a real, symmetric matrix and can be 

diagonalized by a transformation matrix, M,:* 

  

MT UM = diag(λ1...λ3M) 

  

By this transformation, the mass-weighted coordinates are also transformed and are now 

called normal coordinates (modes). They are defined as follows: 
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By means of the normal coordinates, Qj , the displacements corresponding to the harmonic 

vibrations (normal modes) can be illustrated graphically. 

            The eigenvalues, λ j, of the mass-weighted-force-constant matrix are directly 

correlated with the harmonic vibrations, fj, which again correspond to the normal 

coordinates, Qj:  

f j
j

=
λ

π2 . 

Hence, F M= −3 5 6( ) genuine frequencies (F = vibrational degrees of freedom) are obtained.  

            The normal modes, Q j, describe the motion of the atoms while vibrating with 

frequency, f j. During a normal vibration, all nuclei move in phase, which means that each 

frequency (normal mode) can be excited independently from the others. 

            The eigenvalues, λ j, or the frequencies, f j, are used to characterize stationary points 

on a F-dimensional Born-Oppenheimer-energy surface. 

   

F  positive frequencies  

  

⇒ local minimum 

  

⇒ stable molecule 

  

n  imaginary frequencies 

    (n = 1,2, ..., F-1) 

  

⇒ saddle point  

     nth order 

  

⇒ transition state  

  

F  imaginary frequencies 

  

  

⇒  local maximum 

  

⇒ no molecular 

     interpretation 

 Often in literature, a transition structure for a chemical reaction is a stationary point on an 

energy surface that is a local minimum along one and only one direction while being a local 

maximum in all other orthogonal directions. This unique direction is termed the transition 

vector and is the eigenvector associated with the negative eigenvalue of the force constant 



matrix. In general, the orientation of the transition vector is not known a priori, and hence 

must be determined in the course of a transition structure optimization. 

            To summarize: Once a stationary point has been identified on the PES  with the 

necessary condition: 
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that stationary point must be characterized via its force constant matrix, where a (local or 

global) minimum must fulfill the condition: 
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            In an ab initio calculation, the force constants are either numerically or analytically 

  

∆ ∆
∆ ∆

( )U
x x

U
x xi j i j

≅
∂
∂ ∂

2

 

  

determined. The mass weighted force constants matrix is then generated, transformed and the 

normal coordinates and frequencies (wave numbers) determined. Using the normal modes and 

eigenvalues of the mass weighted force constant matrix, the Hamiltonian is given by: 
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The Hamiltonian, H
vib

, describes a system of F decoupled harmonic vibrations, so that the 

vibrational energy is given by the sum over all vibrational energy contributions (with υ j as 

the vibrational quantum number): 
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    (with υ j = 0, 1, 2 ...). 

  

            If the absolute values of the frequencies are of interest, e.g. in order to compare with 

the experiment, then a scaling factor (0.9 to 1.0) must be introduced, as the harmonic 

approximation gives frequencies which are up to 10% too large. This is due to 

anharmonicities. Furthermore, the calculated wave number depends on the method (HF, MPn, 

CI ...) applied, so that absolute values have to be considered very carefully, especially if no 

experimental data is available for comparison. 

  

However, considering one specific normal mode, we should always remember that in a 

molecule all atoms will move, so that assignments such as stretching mode, deformation mode 

etc. are approximations! The best way of assignment is to use the symmetry according to 

group theory, or a graphical representation of the considered normal mode. 

------------------------- 

* The transformation matrix, M, is generated by (3M) linear, independent, orthonormal, real eigenvectors, v, of 

U which are written as column vectors for an orthogonal matrix. Thus, λ1...λ3M  are the eigenvalues of U. If e.g. 

the potential U
( )R Rj j

eq
α α−

 is known, the normal coordinates can be determined as follows: 



                1. Determination of the force constant matrix 

                2. Transformation into mass-weighted force constant matrix 

                3. Determination of the eigenvalues and eigenvectors: 

                                               
U U E U Ejk j jv v v 0= → − = → − =λ λ λdet ( )0  

                4. Construction of the orthogonal transformation matrix, M, from the eigenvectors 

                5. Calculation of the normal coordinates 

Since translation and rotation were not separately considered in this approach, there are 5(6) 

eigenvalues which are zero, corresponding to 3 translational and 2(3) rotational degrees of 

freedom . 

 

 



Example: triatomic molecule 
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