Population Analysis

A frequent object of quantum chemicd dudies, is the determination of the eectronic
configuration and net charge associated with each atom in a polyaomic molecule.
Information concerning aomic charge didributions is important in rendering a chemica
interpretation of the wave function, leading to a meaningful interpretetion and an ability to
draw analogies between different chemical phenomena.

From ab initio computations, a set of delocdized molecular orbitds is obtained. Many
properties can be explaned more vividly within the picture of locdized (bond) orbitas.
Moreover, chemids ae interested in chemicd propeties, which ae in the quantum
mechanica sense non-observables, such as partid charges, bond orders, etc. The caculaion
of these properties poses the problem of how the calculated eectron densty should be
"digtributed within amolecule’.

Natural Population Analysis (NPA)

Natural bond orbital (NBO) andlyss originated as a technique for studying hybridization,
covalent and non-covalent effects in polyaomic wave functions® NBO andlysis is based on
a method for optimaly transforming a given wave function into localized form, corresponding
to the one-center ("lone pairs') and two-center ("bonds') elements of the chemist’s
Lewis structure picture. In NBO andyss, the input atomic orbitd bass set is transformed,
via naturd aomic orbitds and hybrids into naturd bond orbitds (See literature for more
details of the localization procedure.):?

input basisset ® NAOs® NHOs® NBOs® NLMOs.

These bond orbitals (NBOs) correspond to the widely-used Lewis picture, in which two-
center bonds and lone pairs are locdized (It is aso possible to bcalize three-center bonds if
required). The NBO for a localized s bond j pg between the atoms A and B is formed from

directed orthogond hybrids ha and hg(naturd hybrid orbitals):



j AB =Caha tcghp,

and the NHOs in turn are composed from a set of effective-shell atomic orbitds (NAOs),

optimized for the chosen wave function.

The orthogona localized NBOs are maximally occupied (which can be less than 2).
The energeticdly favored Lewis representation and non-covalent (Non-Lewis) effects can be
numerically determined. The total energiesare given by :

E = E(Lewis) + E(Non-Lewis)
where the non-covalent contributions are typically much lessthan 1% of the E(Lewis):
E(Non-Lewis) < 1% E(Lewis).

Therefore, the filled | og-NBOs of the "naturd Lewis Structure' are well suited to describe
the covdent effects within a molecule. The generation of bond orbitas dso leads to orbitas
tha ae unoccupied and that may be used to describe noncovdent effects (eg.

hyperconjugation). The most important orbitals of these are the antibonds | ;B :

%
j og =Caha - cghg.

The antibonding NBOs mugt not be confused with virtua MOs of the HF-SCF theory. The
vitud MOs ae drictly unoccupied and thus play no role in the wave function or any
observable property, whereas antibonds generally exhibit non-zero occupancies, and their

contributions lead to a definite energy reduction and change the form of the wave function
The partly occupied orbitds (] ;B) lead to differences from the ided Lewis-picture
and thus, to a smdl non-covdent correction in the modd of locdized covdent bonds. As

pointed out before, the corrections to the Lewis-type picture ae usudly so smdl as to be well
approximated by sSmple, second order perturbative expressons. By this perturbation
approach, the donor-acceptor interaction involving a filled orbita j (donor) and an unfilled



antibonding orbital j * (acceptor) can be quantitatively described (See Figure 6.1), the energy

lowering is given by:
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Perturbative donor-acceptor interaction, involving a filled orbitd j and an unfilled orbitd j *,

leading to an energy reduction in the resulting occupied orbitdl.

These non-covaent donor-acceptor interactions (delocdization effects) should not be
confused with  HOMO-LUMO interactions, nor should they be confused with "ionic
resonance’ since the quantity of charge, e, transferred, 10 3g, is much less than required for
formation of an ion par. If electron density from a bonding orbital, or a lone pair, is
donated into an antibonding orbital, it is referred to intramolecular donor-acceptor
interaction (also hyperconjugation, anomeric effect etc. ).

The role of antibonds can be seen by generating locaized molecular orbitals (LM O)
from NBOs (bonding and antibonding) which, in turn, are occupied by exactly two electrons:

I AB =jag +li ot -

Here the small contributions of the antibonds represent the delocalization of the bonding
orbital, j pog, from an idedlized, grictly-localized Lewis-structure, over antibonding orbitals
due to non-covaent, hyperconjungetive interactions. Thus, the locaized MOs offer a direct
description of delocdization.

Note: It may be confusng to some readers that the orthogond hybrid orbitds, h and
he, are used to describe the bonding between the atoms A and B, because the overlap integral
of orthogond functions is zero. However, here it can be argued tha the energy lowering, DE,
due to the interaction of h and ks, can only come from an integrd expresson that includes a

physical energy operator, V, not just an overlap integral, Sag:

Sae = Ohahgdt =0

DE ~ O haVhgdt



V, in turn, comes from separating the Hamiltonian, H, into intra- and interatomic terms:
H=HY+V

Applying perturbation theory means that the interatomic energy reduction, DE, should be
evauated with the eigenfunctions (ha, he) of the unperturbed Hermitian, H®, and since HO® is
Hermitian, these eigenfunctions are necessarily orthogond:

HO = HA(O) + HB(O)
It is therefore fortunate that the operator V is sandwiched between ha, hs, Since otherwise the
"interaction” is zero (as should be expected, since ha, hg ae, by definition, egenfunctions of

the non-interacting H'®, and hence best-possible, in the absence of a perturbation).
The "miracle" isthat the physca metrix dement:

O ha V hedt

can often be well estimated by an overlap integra:

0 ha’ he' dt
of non-orthogona hybrids:

OhVhedt = k ¢ ha' he'’ dt (Mulliken approximation)
Thissmpleideadlows usto "visudize' physcd interactionsin terms of "overlagp srength”,
providing an useful learning-tool for describing bonding in overlgp terms.

(Note: It would be apity if thislearning-tool were lost in the NBO framework, but fortunately
it is not; the pre-NHO overlaps

0 ha' he’ dt

generdly give an accurate visud guide as to what the physica matrix dement

O haVheat



will be when cdculated in dl its gory detall.)

Comparison between NPA and Mulliken- Population

Analyses

The orthogond NAOs ({ff‘},nuclearindexa =1...M) provide the bass for an improved

"naturd population andyss', which corrects many of the deficiencies of the wdl-known
Mulliken population andlysis®* The natura population, g, of orbitd, f2, on aom a, is

samply the diagona dengty matrix dement in the NAO basis

The one-particle density operator G, which depends on the two orbitd variables 1 and 1° is
given by:

GU® = N (L,2,...N) Y (16,2,...N) dxy...dxy -

These populations, q°, atomdically stisfy the Pauli principle (O£ 7 £2) and give aomic

populations, g , when summing over al q:
=49,
i
The tota number of dectrons N® isthen given by:

a
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From these population values, the charge transfer, partia charges etc. can be derived.
Comparing NPA with the Mulliken population anadysis (MPA), it can be shown:



Mulliken populations can have negative values, which do not posses any physical
meaning;

Mulliken populations are unduly sensitive to basis sets;

Mulliken populations seem to give an unreasonable physical picture of charge

distribution in compounds having significant ionic character.

The NPA is a true dternative to conventiond MPA (which uses a non-orthogona
basis). The population in NPA represent the occupancy of the AOs. As the AOs ae
orthogond, al populations are dways podtive, and the sum gives exactly the totd number of
electrons. Moreover, the NPA seems to exhibit improved numerica dability and gives a
better description of the dectron didribution in compounds of high ionic character (no
overestimation of the covdent character of a bond), such as those containing metds. Also, the
basis st dependency is much smaller than for the MPA.



Bond Ordersin the NBO-Program

NLMO Bond order (after Reed and Schleyer)

This type of bond order determination, introduced by Reed and Schleyer,®® is based on the
shared occupancies and hybrid overlaps of NAOs, which make up the NLMO. The LMOs can
be andyzed by expressing the LMOs in terms of the bads st of natura atomic orbitas
(NAOs) (A = number of basis functions):
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As the NAO bass is orthogond, the normdization holds. For closed shell HF wave functions,
each LMO is doubly occupied. The number of eectrons, nja, "assgned’ to aom A within a
LMO i is obtained by summing over the squares of the coefficients from the NAOs on atom
A:

2 2
Nja :ZaCij.
iTA

Now, the number of covdently-shared electron pairs between atoms A and B is given by the
minimum of njs and nig, yielding the bond index for the i LMO biag:

biag = min(nia ,Nig).

It is necessay to didinguish between bonding and antibonding interactions, this is
done by examining the Sgn of the overlap integrd, Siag, between the hybrid orbitas on atom
A and B within the LMO:

Siag = <hiLAMo ‘hiLBMO>

with



The "nontorthogond NAOs' (NONAO) differ from the NAOs through the omisson of
the NAO interatomic steps. Use of the NAOs, instead of the NONAOs would lead to zero
overlap integras, because the NAOs ae orthogonal to each other. However to distinguish
between bonding and antibonding interaction, the sign is required (the value is not of interest).
The 9gn of the overlgp yields the following bond index:

b?&AB =N (Sjag) M (Nja ,Nig ).

The bond order index, bfAB, vaies linearly with the number of eectrons covdently shared

between a pair of atoms (A and B) and linearly with the polarity of the bond. In the LMO
bass s, the dendty matrix is diagona, so the sum of the bond order indices over dl M

occupied LMOsyiddsthe total bond order:

M

Q | #
BOAB = a biAB .

i=1

The total valency (sum of the total bond orders) of atom A is then found by summing over dl

aoms.

(o}
Va = @ BOpg-
B1A

Within this procedure, LMOs found in the NPA/NBO andyss were applied. Similar results
would be obtained from LM Os derived from other methods.



Bond index for an apolar and an ionic two-electron bond

a) apolar two-electron bond
For an gpolar two-€lectron bond between two centers, A and B, we can write:

njp =210 and njg =1.0,

thusthe minimumis. biag = 1.0.

b) ionic two-electron bond

In case of anionic bond (A” B™), we can write:

Nia = 2 and Nip = 0 with biAB =0.

The bond index, bjag = 0.5, corresponds to a 50% covaent and 50% ionic bond
(nja =15and njg =0.5).




Calculated NLM O bond ordersof iodine azide

Atom N1 N2 N3 I

N1 0.00 2.39 -0.27 -0.06
N2 2.39 0.00 112 0.03
N3 -0.27 112 0.00 0.67
14 -0.06 0.03 0.67 0.00

Sum of the NLMO bond orders (vaency):
N1: 2.07; N2 354; N3: 152, 14: 0.63

Best L ewis-picture according to NBO
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