

Traditio et Innovatio

Aktivierung kleiner stickstoffhaltiger Moleküle durch Lewis-Säuren

Kumulative Dissertation

zur

Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Rostock

vorgelegt von Fabian Reiß, geb. am 17.06.1983 in Goslar Rostock, 17.06.2014

Die vorliegende Arbeit wurde am Lehrstuhl für Anorganische und Elementorganische Chemie der Universität Rostock von Oktober 2011 bis Juni 2014 unter der Betreuung von Professor Dr. Axel Schulz angefertigt.

- 1. Gutachter: Prof. Dr. Axel Schulz
- 2. Gutachter: Prof. Dr. Uwe Rosenthal

Tag des öffentlichen Promotionskolloqium 28.10.2014

Erklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbständig angefertigt und ohne fremde Hilfe verfasst habe. Dazu habe ich keine außer den von mir angegebenen Hilfsmitteln und Quellen verwendet. Die aus den benutzten Werken inhaltlich und wörtlich entnommenen Stellen sind als solche kenntlich gemacht.

Rostock, den 17.06.2014

Fabian Reiß

Zusammenfassung

In der vorliegenden Dissertation werden die Ergebnisse über die Aktivierung von stickstoffhaltigen kleinen Molekülen durch Lewis-Säuren präsentiert. Eine Serie neuartiger anorganischer Lewis-Säure-Base-Addukte des (Me₃Si)₂NNC sowie einfacher Diazene konnte hierbei auf klassischem Wege synthetisiert werden. Dabei wurde erstmals eine Super-Lewis-Säure katalysierte Diazomethan/Aminoisonitril-Isomerisierung sowie die anschließende CC-Knüpfung und [3+2]-Cycloaddition aufgeklärt, die zu einem neuartigen Pyrazol-Derivat, dem formalen Trimer des (Me₃Si)₂NNC führte. Die Aktivierung silvlierter Diazene durch B(C₆F₅)₃ führte über eine trans/cis/iso-Isomerisierung zu dem ersten isolierbaren iso-Diazen. Die silvlierten B(C₆F₅)₃-Diazen-Addukte zeigten Aminonitren-Reaktivität die zur Insertion der NN-Einheit in eine BC-Bindung führte. Es wurde gezeigt, dass sich die persilylierten Basen Me₃SiNNSiMe₃ und (Me₃Si)₃N nicht direkt silvlieren lassen. Diese Experimente führten sowohl zur Entwicklung einer neuartigen Zwei-Elektronen-Oxidation von Hydrazin-Derivaten, die erstmals die Synthese eines homoleptischen Diazenium-Salzes erlaubte, als auch zur Aufklärung einer Super-Lewis-Säure katalysierten Alkyl/Wasserstoff-Austauschreaktion an Silanen. Diese Arbeit zeigt neben dem Einblick in das enorme Synthesepotential moderner siliciumbasierter Super-Lewis-Säuren einen direkten Vergleich zu den Reaktionen klassischer oder sterisch anspruchsvoller Lewis-Säuren.

Summary

This thesis reports on results about the activation of small nitrogen containing molecules by Lewis acids. A series of new inorganic Lewis acid base adducts of $(Me_3Si)_2NNC$ as well as simple diazenes could be synthesized by classical methods. Thereby, a super Lewis acid catalyzed diazomethane/aminoisonitrile isomerization followed by CC coupling and [3+2] cycloaddition was discovered for the first time which resulted in a novel pyrazole derivative, the formal trimer of $(Me_3Si)_2NNC$. The activation of silylated diazenes by $B(C_6F_5)_3$ led by *trans/cis/iso*-isomerization to the first isolable *iso*-diazene. The silylated $B(C_6F_5)_3$ diazene adducts showed aminonitrene reactivity which led to an insertion of the NN unit into the BC bond. It was shown that the persilylated bases $Me_3SiNNSiMe_3$ and $(Me_3Si)_3N$ could not be direct silylated. These experiments led both to the development of a novel two electron oxidation of hydrazine derivatives, to the first synthesis of a homoleptic diazonium salt, and to the elucidation of a super Lewis acid catalyzed alkyl/hydrogen exchange at silanes. This work gives an insight into the vast syntheticpotential of modern silicon based super Lewis acids as well as a direct comparision to the classical or sterically encumbered Lewis acids.

Danksagungen

Mein ganz besonderer Dank gebührt Prof. Dr. Axel Schulz für die inspirierenden Lehrveranstaltungen, der Grundstein meiner Studien im Bereich der Anorganischen Chemie, die ich bei ihm besuchen durfte. Des Weiteren bin ich ihm zu großem Dank verpflichtet für das Bereitstellen eines interessanten Themas, das in mich gesetzte Vertrauen, die Bereitstellung eines Laborarbeitsplatzes sowie für das stete Interesse an den erzielten Ergebnissen und nicht zuletzt für die freundliche Aufnahme in den Arbeitskreis.

Weiterer besonderer Dank gebührt Dr. Alexander Villinger für die großartige Ausbildung und Betreuung im Bereich spezieller präparativer Arbeitstechniken, die ungezählten lehrreichen wissenschaftlichen Diskussionen sowie der akribischen Lösung von etlichen Strukturdaten.

Bei M. Sc. René Labbow bedanke ich mich für die gute zusammen Arbeit in dem Silylium-Projekt sowie für die zerstreuenden Kaffepausen.

Für die außerordentlich freundliche und produktive Arbeitsatmosphäre bedanke ich mich bei Dr. Ronald Wustrack, Dipl.-Chem. Christian Hering, M. Sc. Jonas Bresin, M. Sc. Alexander Hinz, B. Sc. Max Thomas, B. Sc. Kati Rosenstengel, B. Sc. Julia Rothe.

Mein Dank geht auch an alle weiteren Mitarbeiter des Arbeitskreises Schulz für die gute Zusammenarbeit und die freundliche Aufnahme.

Außerdem danke ich der analytischen Abteilung des IfCh und des LIKAT's für die gute und problemlose Zusammenarbeit sowie der Abteilung der Physikalischen Chemie für die Bereitstellung des Raman-Geräts. Besonderer Dank gilt hier Dr. Dirk Michalik für die Einarbeitung in die NMR-Spektroskopie sowie Frau Brigitte Goronzi für das Vermessen unzähliger NMR-Spektren.

Für die stete Unterstützung und das in mich gesetzte Vertrauen danke ich ganz besonders meiner Familie, ohne die dies Studium nicht möglich gewesen wäre.

Mein herzlichster Dank geht an Melanie und Moritz für die großartige Unterstützung während der Promotion und für die vielen schönen Stunden als Familie fernab der Chemie.

Herzlichen Dank !

meinem Sohn

Inhaltsverzeichnis

Abkürzungsverzeichnisiii					
V	om	SI	-System abweichende Einheiten	iv	
1	1	Zie	lsetzung	.1	
2	1	Ric	harigar Kanntnisstand	2	
4	21	D 13	I ewis-saure Medien	2	
	2.1		Lewis-Säure-Base-Addukte	5	
	2.2		Lewis-Säure katalysierte Reaktionen	. 9	
3]	Dis	skussion der Ergebnisse	11	
	3.1		Synthese von Lewis-Säure-Base-Addukten	11	
		3.1.	1 Synthese von Pseudochalkogen-Addukten	12	
		3.1.	.2 Synthese eines homoleptischen Diazenium-Kations	13	
		3.1.	.3 Synthese von Diazen-Addukten.	14	
		3.1.	.4 Synthese eines persilylierten Ammonium-Kations	16	
	3.2	,	Strukturanalyse der Lewis-Säure-Base-Addukte	16	
		3.2.	.1 Strukturanalysen der Lewis-Basen	18	
		3.2.	2 Strukturanalyse der Aminoisonitril-Addukte	19	
		3.2.	3 Strukturanalyse der Diazen-Addukte	20	
		3.2.	.4 Struktur des persilylierten Ammonium-Kations	22	
	3.3		Allgemeine Eigenschaften der Addukte	23	
	3.4	ļ	Folgereaktionen aktivierter Lewis-Basen	26	
		3.4.	.1 Trimerisation von Bis(silyl)diazomethan und Bis(silyl)aminoisonitril	26	
		3.4.	2 Nitren-Reaktivität von silylierten Diazen B(C ₆ F ₅) ₃ -Addukten	28	
		3.4.	3 Katalysierte Alkyl-Austauschreaktionen an Silanen	30	
4]	Lit	eraturverzeichniss	33	
5]	Pul	blikationen	38	
	5.1		Catalytic Trimerization of Bis-silylated Diazomethane	39	
	5.2		Isolation of a Labile Homoleptic Diazenium Cation.	53	
	5.3		Synthesis, Structure and Reactivity of Diazene Adducts – Isolation of the First iso-Diazene		
	sta	bili	zed as Borane Adduct	59	
	5.4	Ļ	Synthesis of the First Persilylated Ammonium Ion [(Me ₃ Si) ₃ NSi(H)Me ₂] ⁺ By Silylium		
	Ca	taly	/sed Alkyl/Hydrogen Redistribution	71	

6	Aı	Anhang		
	6.1	Abbildungsverzeichnis	. 77	
	6.2	Tabellenverzeichnis	. 78	
	6.3	Schemataverzeichnis	. 78	

Abkürzungsverzeichnis

AO	Atomorbital	Mes	2,4,6-Trimethylphenyl
A 11-		M*	2,4,6-Tri- <i>tert</i> -butylphenyl =
AIK	Акулдгирре	Mes*	Supermesityl
Ar	Arylgruppe	МО	Molekülorbital
ATR	Attenuated Total Reflection (abgeschwächte Totalreflexion)	MS	Massenspektrometrie
cf.	vergleiche (lat. confer)	NBO	Natural Bond Analysis
δ	Chemische Verschiebung (NMR)	NMR	Nuclear Magnetic Resonance (Kernspinresonanzspektroskopie)
DFT	Dichtefunktionaltheorie	0	ortho (Substitution)
DSC	Differential Scanning Calometry (Dynamische Differenzkalorimetrie)	ORTEP	Oak Ridge Thermal Ellipsoid Plot
et al.	und andere (lat. et alii/aliae)	р	para (Substitution)
номо	Highest Occupied Molecular Orbital	Pemp	2,3,4,5,6-Pentamethylphenyl
Нур	Tris(trimethylsilyl)silan = Hypersilyl	Pn	Pniktogen
INEPT	Insensitive Nuclei Enhanced by Polarizaition Transfer	ррт	parts per million
in situ	am Ort (lat.)	RT	Raumtemperatur
IR	Infrarotspektroskopie	8	strong (IR), Singulett (NMR)
J	Kopplungskonstante	Ter	2,6-Dimesitylphenyl = Terphenyl
kov	Kovalenz	theor	theoretisch
LS	Lewis-Säure	Тірр	2,4,6-Triisopropylphenyl
LB	Lewis-Base	Trityl	Triphenylmethyl
LUMO	Lowest Unoccupied Molecular Orbital	TMSA	Trimethylsilyl Affinitäten
LP	<i>lone pair</i> Nichtbindendes Elektronenpaar	ĩ	Wellenzahl in cm ⁻¹
m	<i>medium</i> (IR), <i>meta</i> (Substitution), Multiplett (NMR)	vdW	van der Waals
$Q_{ m CT}$	<i>total charge transfer</i> Gesammtladungstransfer	WCA	Weakly coordinating anion schwach koordinierendes Anion
		Xylol	2,6-Dimethylphenyl

Vom SI-System abweichende Einheiten

In dieser Arbeit werden die im Internationalen Einheitensystem (SI) gültigen Maßeinheiten verwendet. Alle davon abweichenden Einheiten und deren Umrechnung in SI-Einheiten sind im Folgenden aufgeführt.

Größe	Symbol	Bezeichnung	Umrechnung in SI- Einheit	
Frequenz	MHz Hz	Megahertz Hertz	$1 \text{ MHz} = 10^{6} \text{ s}^{-1}$ 1 Hz = 1 s ⁻¹	
Länge	Å	Ångström	$1 \text{ Å} = 10^{-10} \text{ m}$	
Leistung	mW	Milliwatt	$1 \text{ mW} = 10^{-3} \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-3}$	
Temperatur	°C	Grad Celsius	$x^{\circ}C = (x + 273.15) K$	
Volumen	mL	Milliliter	$1 \text{ mL} = 1 \text{ cm}^3 = 10^{-6} \text{ m}^3$	
Wärmemenge	kJ kcal	Kilojoule Kilokalorien	$1 \text{ kJ} = 10^3 \text{ m}^2 \cdot \text{ kg} \cdot \text{ s}^{-2}$ 1 kcal = 4.1858 kJ	
Wellenzahl	cm^{-1}	reziproke Zentimeter	$1 \text{ cm}^{-1} = 100 \text{ m}^{-1}$	
Zeit	h	Stunde	1 h = 3600 s	
	min	Minute	$1 \min = 60 \mathrm{s}$	

1 Zielsetzung

Im Rahmen dieser Arbeit sollte eine Reihe potentieller Lewis-basischer kleiner Moleküle durch den Einsatz von ausgewählten Lewis-Säuren in ihre Lewis-Säure-Base-Addukte überführt werden. Die erhaltenen Adduktspezies sollten hinsichtlich ihrer strukturellen, chemischen und physikalischen Eigenschaften untersucht werden. Im besonderen Interesse lag die Aktivierung der Lewis-Basen, die zu neuartigen und ungewöhnlichen Verbindungen führen sollte. Als zu untersuchende Lewis-basische Systeme wurden stickstoffhaltige Verbindungen des Typs R_3N , R_2N_2 und R_2N_2C gewählt, wobei das Hauptaugenmerk auf den Substituenten $R = Me_3Si$ gelegt werden sollte. Zur Aktivierung der Lewis-Basen sollte in erster Linie das hochreaktive, formale Trimethylsilylium-Kation " $[Me_3Si]^+$ " seinen Einsatz finden, da es in Kombination mit den gewählten Lewis-Basen einen Zugang zu faszinierenden homoleptisch koordinierten Kationen bieten könnte. Des Weiteren sollte die klassische Lewis-Säure GaCl₃ sowie das sterisch anspruchsvolle B(C_6F_5)₃ zum Einsatz kommen, um einen Vergleich der erhaltenen Produkte in Abhängigkeit der Lewis-Säure zu ermöglichen.

Die Untersuchung der Struktur sowie des chemischen und physikalischen Verhaltens der Verbindungen sollte durch schwingungsspektroskopische Methoden (UV/VIS-, IR-, Raman-Spektroskopie) und multinukleare Kernresonanzspektroskopie (¹¹B-, ¹³C-, ¹⁹F-, ¹H-, ¹⁵N- und ²⁹Si-NMR) in Lösung zum einen, zum anderen mit Hilfe der Röntgendiffraktometrie an geeigneten Einkristallen erfolgen. In Kombination mit quantenmechanischen *ab-initio-* und DFT-Rechnungen sollten die Bindungsverhältnisse der synthetisierten Verbindungen aufgeklärt und charakterisiert werden. Dadurch sollte sowohl der Zusammenhang zwischen Struktur und chemischer Bindung als auch die Ladungsverteilung und Reaktivität erklärt werden.

2 Bisheriger Kenntnisstand

2.1 Lewis-saure Medien

Im Jahre 1923 wurden drei grundlegenden Arbeiten zum Verständnis chemischer Reaktionen verfasst. In der Arbeit "Valence and Structure of Atoms and Molecules" von Lewis^[1] wird nicht nur das heutzutage allgemein etablierte Konzept der nach ihm benannten Symbolschreibweise für chemische Verbindungen "Lewis-Formeln" beschrieben, sondern auch eine zu dieser Zeit neuartige Säure-Base Definition. Nach Lewis werden Elektronenpaardonoren als Lewis-Basen (LB) und Elektronenpaarakzeptoren als Lewis-Säuren (LS) klassifiziert, der Oktettregel folgend bilden sich durch deren Interaktion stabile Addukte aus (Abbildung 1).

Abbildung 1. Allgemeines Konzept der Säure-Base-Theorie nach Lewis.

Zur gleichen Zeit publizierten Brønsted und Lowry unabhängig voneinander ihre redundanten auf Protonen-Donor-Akzeptor beruhenden Säure-Base-Theorien.^[2,3] Das Konzept von Lewis kann auch auf Brønsted-Lowry-Systeme angewandt werden und ist somit umfassender. Es wurde von Pearson 1963 um die Theorie der harten und weichen Lewis-Säuren und Basen (HSAB) erweitert.^[4,5] Demnach sind harte Systeme kleine schlecht polarisierbare und weiche gut polarisierbare Atome/Moleküle, deren Addukt-Bindungen in den Paaren hart-hart und weich-weich besondere Stabilität aufweisen. Nach heutigem Verständnis sind Lewis-Säuren Atome oder Moleküle, deren niedrigstes unbesetztes Molekül Orbital (LUMO, LS-MO) in der Lage ist, mit einem besetzten Molekülorbital ähnlicher Energie einer Lewis-Base (HOMO, LB-MO), zu kombinieren (Abbildung 2). Als Donor-Orbitale können zum Beispiel nichtbindenden Elektronenpaare (LP) oder aromatische Molekülorbitale (π -MO) fungieren. Bei der Kombination wird ein neuer Satz an Molekülorbitalen gebildet (Ψ, Ψ^*) die die Addukt-Bindung beschreiben.

Abbildung 2. Vereinfachtes Energiediagramm einer Addukt-Bindung.

Als klassische Lewis-Säuren können neutrale halogenierte Elektronenmangel-Verbindungen der 3. Hauptgruppe des Typs AX₃ angesehen werden (A = B, Al, Ga; X = F, Cl; Abbildung 1). Dem HSAB-Konzept folgend sollte das Bortrifluorid BF3 die "härteste" Lewis-Säure dieser Vertreter darstellen, jedoch konnte sowohl experimentell als auch auf der Grundlage quantenchemischer Rechnungen gezeigt werden, dass die Säurestärke der Borate bzw. die Bindungsdissoziationsenergien ihrer Addukte keinem monokausalem Trend folgen, vielmehr stellte sie sich als Überlagerung mehrerer Effekte heraus.^[6,7] Erst 2010 identifizierten Yáñez et al. anhand einer quantenchemischen Analyse der einfachen Adduktspezies X-BH_{3-n} F_n und X-BH_{3-n}Cl_n mit den Lewis-Basen X = N₂, HCN, LiCN, H₂CNH, NF₃, NH₃ und n = 0-3 die drei wesentlichen Einflussgrößen auf die Bindungsenergien der BN-Addukte: i) Das Herabsetzen der Elektronen-Akzeptanz des Bors durch intramolekulare π -Donation der Halogene. ii) Ein Anstieg der Elektronen-Akzeptanz des Bors durch Deformation. iii) Einen großen Anstieg der Deformationsenergie mit zunehmender Halogenierung.^[8] Die Arbeit von Yáñez zeigt deutlich die Unabdingbarkeit moderner ab-initio und DFT-Methoden für ein tiefgreifendes Verständnis selbst einfacher Addukt-Systeme. Sogar Alkyl substituierte Derivate der klassischen Lewis-Säuren besitzen noch stark sauren Charakter und stabilisieren sich wie die AX₃ Systeme, durch intermolekulare Donor-Acceptor-Bindungen, über verbrückende Halogenatome wie in (Abbildung 3) an den Beispielen [MeGaCl₂]₂ (links) und MeGaCl₂GaCl₃ (rechts) dargestellt ist.^[9]

Abbildung 3. Stabilisierung klassischer Lewis-Säuren über Halogenbrücken.

Neben den lang bekannten konventionellen Lewis-Säuren haben sich in jüngster Zeit die auf trivalenten Silicium-Kationen (Silylium-Ionen) basierenden Systeme als Super-Lewis-saure Medien etabliert. In Analogie zu den Super-Brønsted-Lowry-Säuren wie HFSO₃/SbF₅ oder H[CHB₁₁F₁₁]^[10,11] sind Lewis-Supersäuren um ein Vielfaches stärker als die stärkste konventionelle Lewis-Säure SbF₅.^[12] Bereits 1963 modifizierten Corey und West^[13] die aus der Organischen Chemie bekannte Lewis-Säure assistierte Bartlett-Schneider-Condon^[14] Wasserstoff/Halogen Austauschreaktion und nutzen sie erstmals in der Silicium Chemie (Schema 1). Diese Reaktion zeigte die höhere Lewis-Acidität der formal entstehenden Silylium-Kation "[Ph₃Si]⁺" im Vergleich zum BBr₃ auf, da diese vom eingesetzten Anion [BBr₄]⁻ ein Bromid abstrahierten und sich unmittelbar das Ph₃SiBr bildete.

$$[Ph_3C][BBr_4] + Ph_3SiH \longrightarrow Ph_3CH + BBr_3 + Ph_3SiBr_3$$

Schema 1. Modifizierte Wasserstoff/Halogen Austauschreaktion nach Corey und West.

Erst dreißig Jahre später setzten Lambert *et al.*^[15] in der von Corey beschriebenen Methode das schwachkoordinierenden Anion $[B(C_6F_5)_4]^-$ ein, dies führte zur allgemein gültigen Hydrid-Transferreaktion von Silanen auf Tritylium-Kationen (Schema 2). Bereits Lambert *et al.* zeigten, dass diese modifizierte Bartlett-Schneider-Condon Reaktion einen breiten Zugang zu einer Reihe neuartiger siliciumbasierter Super-Lewis-saurer Systeme bietet.

 $[Ph_{3}C][B(C_{6}F_{5})_{4}] + R_{3}SiH \longrightarrow [R_{3}Si \cdot X][B(C_{6}F_{5})_{4}] + Ph_{3}CH$

Schema 2. Allgemeine Synthese von Silylium-Supersäuren nach Lambert *et al.* (R = Me,Et, i-Pr, Me_3Si ; $X = Solvens = R_3SiH$ oder Benzol).

Die extreme Acidität der Silylium-Ionen $[R_3Si]^+$ ist ihrem Elektronen-Sextett und einem leeren 3p Valenzorbital am Silicium geschuldet. Dies führt unweigerlich zur Adduktbildung sogar mit sehr schwachen Lewis-Basen (z.B. Toluol,^[15–17] Me₃Si–H)^[18,19] oder zu kurzen Kation-Anionen-Kontakten selbst mit den schwach koordinierenden Carborat-Anionen (z.B. $[CHB_{11}H_5Br_6]^{-,[20]}$ $[CHB_{11}F_{11}]^{-}$).^[21] Erst 2002 gelang es Reed und Lambert das erste "nackte" Silylium-Kation im Salz $[(Mes)_3Si][CHB_{11}Me_5Br_6] \cdot C_6H_6$ zu isolieren und vollständig zu charakterisieren.^[22] 2011 veröffentlichten Müller *et al.* eine neuartige, auf einem Austauschprozess basierende Syntheseroute, die einen leichten Zugang zu einer Reihe sterisch überfrachteter solvatfreier Silylium-Salze $[Ar_3Si][B(C_6F_5)_4]$ (Ar = Mes; Xylyl, Tipp, Pemp) bietet (Schema 3).^[23] Aufbauend auf den Arbeiten von Manners *et al.*^[24] gelang es 2009 Oestreich *et al.*^[25] das erste solvensfreie Ferrocen-stabilisierte Silylium-Ion zu isolieren.

$$3 \operatorname{Ar}_{2}(\operatorname{Me})\operatorname{SiH} + 2 [\operatorname{Ph}_{3}C][B(C_{6}F_{5})_{4}] \longrightarrow 2 [\operatorname{Ar}_{3}\operatorname{Si}][B(C_{6}F_{5})_{4}] + \operatorname{Me}_{3}\operatorname{SiH} + 2 \operatorname{Ph}_{3}CH$$

Schema 3. Neuartige Synthese von sterisch überfrachteten Silylium-Salzen nach Müller *et al.*^[23] Als sterisch gehinderte Lewis-Säuren können Systeme des Typs $RB(C_6F_5)_2$ (R = H, Aryl, C_6F_5) aufgefasst werden, deren Kombination mit sterisch gehinderten Lewis-Basen wie Phosphinen oder Aminen zum Ausbilden neuartiger "frustrierter Lewis-Paare" (FLPs) führt. Das Konzept der FLPs wurde in den Arbeitsgruppen Stephan und Erker entwickelt und führte zu einer Reihe ungewöhnlicher Reaktionen.^[26–29] Diese Arbeiten zeigen die besondere Rolle des B(C_6F_5)₃ in der Aktivierung kleiner Moleküle.

2.2 Lewis-Säure-Base-Addukte

In der Arbeitsgruppe Schulz konnte über neuartige [3+2]-Cycloadditionen eine Reihe Lewis-Säure stabilisierter binärer, fünfgliedriger Pniktogen-Ringsysteme isoliert und charakterisiert werden. So konnten erstmals Tetrazaphosphole des Typs $RN_4P \cdot GaCl_3 (R = Mes^{[30]}, Ter)^{[31]}$ und Triazadiphosphole $RN_3P_2 \cdot GaCl_3$ (R = N(SiMe_3)₂,^[32] Mes*)^[33] sowie das homologe Tetrazarsol Mes*AsN₄ · GaCl₃^[34,35] hergestellt werden. Dabei konnte ein Konzept entwickelt werden, bei dem versteckte Dipolarophile in Form silvlierter Aminodichlorpniktane des Typs $RN(SiMe_3)ECl_2$ (E = P, As; R = Mes*, Ter, N(SiMe_3)_2) über eine GaCl_3-assistierte Me_3SiCl_3-assistierte Me_3SiCl_3-assiste Me_3SiC Eliminierung *in situ* in hoch labile $[R-N=E]^+$ Spezies überführt werden. Diese reagieren in Gegenwart von 1,3-Dipolen wie Me₃SiN₃ zu den Galliumtrichlorid-Addukten der Tetrazazapniktole (Schema oben). Dabei 4 zeigte sich, dass das silvlierte Hydrazinodichlorphosphan (Me₃Si)₂NN(SiMe₃)PCl₂ sowohl als verstecktes Dipolarophil als auch als versteckter 1,3-Dipol reagieren kann, wobei die Reaktion zu dem Triazadiphosphol $(Me_3Si)_2NN_3P_2 \cdot GaCl_3$ führte (Schema 4 unten).^[36]

Schema 4. Lewis-Säure-assistierte [3+2]-Cycloadditionen unter Verwendung versteckter Dipolarophile und 1,3-Dipole bilden Addukt stabilisierte Azapniktole. (LS = $GaCl_3$; E =P, As; R = Mes*, Ter, N(SiMe_3)₂).

Die Substitution von GaCl₃ durch B(C₆F₅)₃ führte in derselben Reaktion zu dem unerwarteten Pentafluorophenyl substituierten cyclo-Diphosphadiazan-Derivat $[C_6F_5P(\mu-N(SiMe_3) NB(C_6F_5)_2)]_2$ (Schema 5).^[37] Vergleichbare C₆F₅-Gruppenwanderungen waren bis zu diesem Zeitpunkt nur aus der Übergangsmetallchemie bekannt.^[38] Wie Rosenthal *et al.*^[39] zeigen konnten führen diese Reaktionen zur "Vergiftung" der in der Olefin-Polymerisation eingesetzten Katalysatoren. Die von Schulz *et al.* beschriebene Reaktion kann als erste übergangsmetallfreie Bor-Kohlenstoff-Aktivierung und formale Insertion eines NNP-Fragmentes in die BC-Bindung angesehen werden.

In weiteren Arbeiten der Schulz-Gruppe an hypersilylyliertem Aminodichlorophosphan $(Hyp)N(SiMe_3)PCl_2^{[40]}$ sowie silylierten Aminodichlorarsanen des Typs RAsCl_2 $(R = (Me_3Si)_2NN(SiMe_3),^{[41]}$ $(Me_3Si)_2N$, TerN $(SiMe_3)^{[36]}$) wurden Galliumtrichlorid-assistierte Chlor/Methyl-Austausch-Reaktionen beobachtet. Über einen ähnlichen Cl/Me-Austauschprozess, gefolgt von einer Kondensationsreaktion ließ sich ausgehend vom Bis(trimethylsilyl)schwefeldiimid Galliumtrichlorid Addukt Me_3SiNSNSiMe_3 · GaCl_3 ein ungewöhnlicher sechsgliedriger Oxadisilathiadiazin-Ring isolieren(Schema 6).^[42]

Schema 6. Chlor/Methyl Austausch am Me₃SiNSNSiMe₃ · GaCl₃ gefolgt von Bildung des isolierten Oxadisilathiadiazin-Ring nach Schulz *et. al.*^[42]

Bereits 1964 beschrieben Massey und Parks erstmals die Synthese von B(C₆F₅)₃, die ersten LB · B(C₆F₅)₃-Addukte (LB = H₃N, (CH₃)₃N, H₅C₅N, Ph₃P) sowie die ersten [X][B(C₆F₅)₄] (X = Li⁺, K⁺, Et₄N⁺) Salze.^[43] Seither wurde eine Vielzahl organischer stickstoffhaltiger Addukte mit Aminen, Iminen, Nitrilen aber auch mit heterocyclischen Triazinen, Pyrazolen und Imidazolen isoliert.^[44,45] Über ein von Bochmann *et al.* begründetes, auf RCN · B(C₆F₅)₃ Addukt-Bindungen beruhendes Konzept, wurde Zugang zu einer Reihe neuartiger schwach koordinierender Anionen des Typs $[Z{B(C₆F₅)₃]_n]^{x-} (Z = CN, Ni(CN)₄,^[46] NH₂;^[47] N(CN)₂, C(CN)₃, B(CN)₄;^[48]$ *n*= 2, 3, 4;*x*= 1, 2) erhalten. Weder in den Addukt-Anionen noch in den von Erker*et al.* $isolierten Isonitril- und Nitril-Boran-Addukten^[49] ist ein einfacher Trend in den Änderungen der CN-Bindungslängen durch die Addukt-Bindung zu erkennen. Jedoch zeigen sich die Schwingungsbanden der CN-Dreifachbindungen generell um bis zu <math>\Delta \tilde{\nu}_{CN} = 170 \text{ cm}^{-1}$ zu höheren Wellenzahlen verschoben.

Im Vergleich zu den Addukten der neutralen Lewis-Säuren GaCl₃ und B(C₆F₅)₃ bilden die Super-Lewis-sauren Silylium-Kationen mit Lewis Basen Salze aus. Die entstehenden Salze können nur durch den Einsatz schwach koordinierender Anionen^[50] stabilisiert werden, wobei sich das Tetrakis(pentafluorphenyl)borat, [B(C₆F₅)₄]⁻, und die halogenierten Carborate [CHB₁₁H_nX_{11-n}]⁻ (X = F, Cl, Br; n = 0, 5)^[20,51] etabliert haben. Im Gegensatz zu den überfrachteten Arylsilylium-Kationen können die Alkylsilylium-Ionen nur als Addukt-Spezies isoliert werden (z.B. [Alk₃Si · Toluol]⁺,^[15–17] [Me₃Si–H–SiMe₃]⁺)^[18,19] die als potentielle Silylierungsreagenzien dienen. Das kleinste Alkylsilylium-Kation das Trimethylsilylium-Ion [Me₃Si]⁺ ähnelt in seiner Chemie dem H⁺ und wird daher auch als großes Proton bezeichnet.^[52] In Analogie zu den Protonen-Affinitäten^[53] wurde im Arbeitskreis Schulz das Konzept der Trimethylsilyl Affinitäten (TMSA) entwickelt, die als Enthalpie-Änderung der Dissoziation eines Lewis-Säure-Base-Adduktes definiert wird (Schema 7).^[52]

 $[LB-SiMe_3]^+_{(g)} \longrightarrow LB_{(g)} + [Me_3Si]^+_{(g)} \Delta H_{298}$

Schema 7. Definition der Trimethylsilyl-Affinität.

Im Einklang mit diesem Konzept ließen sich Lewis-Basen mit einem größeren TMSA-Wert als Me₃SiH oder Benzol in ihre Trimethylsilylium-Addukte überführen. Von besonderem akademischen Interesse sind hierbei homoleptische Onium-Ionen von denen bisher die Bissilvlierten Halonium- und Pseudohalonium-Kationen $[Me_3Si-X-SiMe_3]^+$ (X = F, Cl, Br, I;^[52] CN. OCN. SCN. NNN).^[54] isoliert und vollständig charakterisiert werden konnten. Von Olah et al.^[55,56] wurden die persilvlierten Chalkogonium-Ionen $[(Me_3Si)_3O]^+$ und $[(Me_3Si)_3S]^+$ in situ generiert und über NMR-Spektroskopie nachgewiesen. Als erste persilylierte Pniktogonium-Kationen wurden das Phosphonium $[(Me_3Si)_4P]^+$ und Arsonium $[(Me_3Si)_4As]^+$ von Driess et al.^[57] isoliert und vollständig charakterisiert. Die beschriebenen Onium-Ionen konnten $[B(C_6F_5)_4]$ -Salze durch Kombination der Super-Lewis-Säuren als $[Me_3Si \cdot Solvens][B(C_6F_5)_4]$ mit den Persilvlierten Gruppe 15-17 Verbindungen in geeigneten Lösungsmitteln erhalten werden (Schema 8).

 $[Me_3Si \cdot X][B(C_6F_5)_4] + (Me_3Si)_nE \longrightarrow [(Me_3Si)_{n+1}E][B(C_6F_5)_4] + X$

Schema 8. Allgemeine Synthese von homoleptischen Onium-Kationen (n = 1: E = F, Cl, Br, I, CN, OCN, SCN, NNN, wobei X = Me₃SiH; n = 2: E = O, S, mit X = Me₃SiH; n = 3: E = P, As mit X = Benzol).

In einer umfassenden Studie über Addukte des Trimethylsilylium-Kations mit einer Reihe aromatischer Lösungsmittel [Me₃Si · Aromat][B(C₆F₅)₄] (Aromat = Benzol, Ethylbenzol, *n*-Propylbenzol, *iso*-Propylbenzol, *o*-Xylol, *m*-Xylol, *p*-Xylol, 1,2,3-Trimethylbenzol, 1,2,4-Trimethylbenzol, 1,3,5-Trimethylbenzol)^[17] wurde die *para*-Position, in Bezug auf den Substituenten am Aromaten, als bevorzugte Position für die in allen Addukten beobachtete Wheland-Komplex artige η^1 Koordination identifiziert. Es wurde gezeigt, dass diese Addukte in Lösung sehr labil sind, was zu einer durch Fluoridabstraktion initiierten Zersetzung der Salze in hochreaktives "C₆F₄" führt. Dies konnte anhand einer Abfangreaktion mit CS₂ aufgeklärt werden, bei der ein neuartiges S-heterocyclisches Carben-Boran-Addukt isoliert wurde (Schema 9).^[17]

$$2 [Me_{3}Si-H-SiMe_{3}][B(C_{6}F_{5})_{4}] \xrightarrow{+ CS_{2}} \overline{-2 Me_{3}SiH} F \xrightarrow{F} \overline{B(C_{6}F_{5})_{3}} + [Me_{3}Si-F-SiMe_{3}][B(C_{6}F_{5})_{4}]$$

Schema 9. Aufklärung des Zerfalls von labilen Trimethylsilylium-Verbindungen über die Abfangreaktion mit CS_2 nach Schulz *et al.*^[17]

Diese Arbeiten zeigen eindrucksvoll, dass Lewis-Säuren kleine Moleküle in ungewöhnlichen Reaktionen aktivieren und dabei instabile Systeme gleichermaßen stabilisieren können.

2.3 Lewis-Säure katalysierte Reaktionen

Die Entdeckung der Lewis-Säure katalysierten Alkylierung und Acylierung von Friedel und Craft^[58] im Jahre 1877 führte zu einer sprunghaften Entwicklung in der organischen Synthese. So konnten bis heute vielfältige Synthesemethoden zur CC- und CX-Knüpfung unter Verwendung klassischer Lewis-saurer Systeme entwickelt werden. Dabei sind im Besonderen Acylierungen, Glycosidierungen, SS-Spaltungen, Cyclotrimerisierungen von Ketonen, Allylierungen von Aldehyden, Mukaiyama Aldol Reaktionen, Diels-Alder Cycloadditionen sowie die Baeyer-Villiger-Oxidation zu nennen.^[59–61] Durch die Kombination von chiralen Verbindungen mit klassischen Lewis-Säuren konnten katalysierte, asymmetrische Reaktionen entwickelt werden.^[62]

Auf den ersten Blick scheint es verwunderlich, dass trotz dieser vielfältigen Syntheserouten der klassischen Lewis-Säuren die Super-Lewis-Säuren bisher noch keinen breiten Einzug in dieses Gebiet gehalten haben. Aufgrund ihrer extremen Säurestärke sind außergewöhnliche und neuartige Synthesen zu erwarten. Jedoch führt in vielen Fällen eine größere Lewis-Acidität zu einer erhöhten Hydrolyseempfindlichkeit, so dass die Lewis-Säuren durch sterisch anspruchsvolle Substituenten oder schwachkoordinierende Anionen kinetisch stabilisiert werden müssen.^[63] Dennoch gelang es 2005 Ozerov *et al.*^[64] die erste Silylium-Kationen katalysierte Hydrodefluorierung von Aliphatischen CF-Bindungen mit Hilfe des [Et₃Si–H–SiEt₃][B(C₆F₅)₄]-Salzes zu entwickeln, die von Müller *et al.*^[65] auf Naphthyl verbrückte [(C₁₀H₆)Si₂(H)Me₄][B(C₆F₅)₄]-Salze als Katalysatoren übertragen wurde (Schema 10, rechts).

Die Hydrodefluorierung konnte von Douvris und Ozerov durch den Einsatz der stabileren Carboratsalze [Et₃Si–H–SiEt₃][CHB₁₁H_nX_{11-n}] (X = Cl, Br; n = 0, 5) optimiert werden.^[66] Diese Reaktionen werden durch die CF-Spaltung, die die hohe SiF-Bindungsenergie als Triebkraft nutzt, eingeleitet, wobei die Silylium-Kationen als Katalysator dienen und die Silane R₃SiH als stöchiometrische Reduktionsäquivalente verbraucht werden (Schema 10, links). Des weitern konnten bereits C_{aryl}–C_{aryl}- und C_{alkyl}–C_{aryl}-Kupplungsreaktionen beobachtet werden (Schema 10, rechts).^[67,68]

$$[R_{3}Si]^{+"} \qquad [R_{3}Si]^{+"}$$

$$+ R_{3}SiH \qquad + R_{3}SiH$$

$$+ R'H$$

$$R - R' + H_{2} \qquad - R_{3}SiF \qquad - R_{3}SiF$$

Schema 10. Silylium katalysierte CC-Kupplung (links) und Hydrodefluorierung (rechts).

Ebenfalls zu den Silylium katalysierten CC-Kupplungreaktionen können die von Sawamura et al.^[69] durchgeführten Diels-Alder- und Mukaiyama-Aldol-Reaktionen gezählt werden. Die von Oestreich et al.^[25] in analogen Diels-Alder Reaktionen eingesetzten Ferrocensubstituierten [t-BuFcMeSi][B(C₆F₅)₄]-Salze katalysierten die Reaktion sogar bei -78 °C und weisen damit wesentlich als höhere Aktivitäten das "Lambert's Salz" $[Et_3Si \cdot Toluol][B(C_6F_5)_4]$ auf. Es wurden mit beiden Katalysator-Systemen selektiv die *endo*-Diastereoisomere in sehr guten Ausbeuten erhalten. Zusätzlich zeigt das chirale Ferrocenstabilisierte Silvlium-Kation eine hohe Regioselektivität und kann sogar halogenierte Butadiene aktivieren (Schema 11).^[70]

Die Entwicklung des FLP-Konzeptes rücken selbst die von Massey beschriebenen $B(C_6F_5)_3$ -Addukte in ein neues Licht und verleiht ihnen in der übergangsmetallfreien Katalyse zunehmendes Interesse. So konnte gezeigt werden, dass die Kombination von R₃P (R = *t*-Bu, $C_6H_2Me_3$) und $B(C_6F_5)_3$ aufgrund ihrer sterischen Überfrachtung nicht zu den erwarteten Addukten führt. Diese Mischungen sind in der Lage, Wasserstoff bei Raumtemperatur heterolytisch zu spalten und bilden Salze des Typs $[R_3PH][HB(C_6F_5)_3]$ aus. Diese können als katalytisch aktive Spezies Imine, Amine, Enamine und Silylenolether unter stöchiometrischem Bedarf an Wasserstoff hydrieren.^[26,29,71]

3 Diskussion der Ergebnisse

3.1 Synthese von Lewis-Säure-Base-Addukten

Das Kapitel 3.1 Synthese ist in dieser Arbeit in vier Themenbereiche gegliedert. Es behandelt ausgewählte Besonderheiten und Beobachtungen der Synthese die thematisch mit den untersuchten Lewis-Basen verknüpft sind. Die im Rahmen dieser Arbeit untersuchten (1),^[72] (Me₃Si)₂NNC (2),^[73] (Me₃Si)₂CNN Me₃SiNCNSiMe₃ Lewis-Basen (3), Me₃SiNNSiMe₃ (4),^[74] Me₃SiNNPh (5),^[75] PhNNPh (6) sowie (Me₃Si)₃N (7)^[76] konnten durch modifizierte, literaturbekannte Synthesemethoden hergestellt werden oder sind im Falle von 6 und 3 kommerziell erhältlich. Die für diese Studie eingesetzten Lewis-Säuren [Me₃Si-H-SiMe₃][B(C₆F₅)₄] (8), ^[16,19,52] [Me₃Si][CHB₁₁H₅Br₆] (9), ^[77] [Me₃Si][CHB₁₁H₅Cl₆] (10)^[78] sowie $[Ph_3C][B(C_6F_5)_4]$ (11),^[52] $B(C_6F_5)_3$ (12)^[52] und GaCl₃ (13) sind ebenfalls über literaturbekannte Methoden zugänglich bzw. im Fall von GaCl₃ käuflich zu erwerben. Als allgemeine Synthesemethodik kann die Kombination der gewünschten Lewis-Base mit einer Lewis-Säure in einem geeigneten Lösungsmittel angesehen werden. Hierbei ist darauf zu achten, dass die Lösungsmittel im Idealfall sowohl die Lewis-Säure als auch die Lewis-Base bei der gegebenen Temperatur gut lösen und nicht mit diesen reagieren. Die Säuren $[Ph_3C][B(C_6F_5)_4]$, $B(C_6F_5)_3$ sowie GaCl₃ zeigen in Dichlormethan bei üblichen Synthesetemperaturen von -80 °C bis maximal +70 °C gute Lösungseigenschaften und weisen nur langsame Zersetzung auf. Im drastischen Gegensatz hierzu zersetzen sich die Super-Lewis-sauren Silvlium-Kationen unmittelbar in Dichlormethan-Lösungen und können nur in sehr schwach Lewis-basischen Lösungsmitteln wie Benzol, Toluol und 1,2-Dichlorbenzol gehandhabt werden. Jedoch sind die entstehenden Addukt-Salze mit dem [B(C₆F₅)₄]⁻Anion auch in diesen Lösungsmitteln nur bedingt stabil.^[17] Im Gegensatz hierzu weisen die erheblich stabileren Carborat-Salze [Me₃Si][CHB₁₁H_nX_{11-n}] (X = Cl, Br; n = 0, 5) nur geringe Löslichkeit in Benzol und Toluol auf, was zu einer niedrigeren Reaktivität dieser Verbindungen führt.

3.1.1 Synthese von Pseudochalkogen-Addukten.

Im ersten Themenbereich sollten Addukte von Bis(trimethylsilyl)diazomethan (Me₃Si)₂CNN (1), Bis(trimethylsilyl)aminoisonitril (Me₃Si)₂NNC (2) und Bis(trimethylsilyl)carbodiimid Me₃SiNCNSiMe₃ (3) synthetisiert und charakterisiert werden. Zunächst wurden die flüssigen Lewis-Basen 1, 2 und 3 als Lösungsmittel und Reaktand mit $[Me_3Si-H-SiMe_3][B(C_6F_5)_4]$ bei Raumtemperatur zur Reaktion gebracht. Dabei fiel auf, dass sich sowohl bei dem Diazomethan als auch beim Aminoisonitril die zuvor schwachgelblichen Lösungen tiefrot färbten und zu einem zähen Öl abreagierten. Im Gegensatz hierzu bildete sich mit Carbodiimid lediglich eine farblose Suspension, aus der nach Entfernen des Überstandes und Umkristallisation aus Toluol das farblose $[(Me_3Si)_2NCNSiMe_3][B(C_6F_5)_4]$ (14) erhalten werden konnte (Abbildung 7, rechts). Zur besseren Handhabung wurden weitere Reaktionen von 1 und 2 mit den Silvlium-Salzen in *n*-Pentan Lösung bei -78 °C durchgeführt. Jedoch schien auch bei tiefer Temperatur eine komplexe Reaktion abzulaufen, nach zwölf Stunden Reaktionszeit war in der dunkelroten Reaktionslösung ein heller Bodensatz zu erkennen. Nach Filtration und Umkristallisation konnten diese Bodensätze in beiden Fällen als [(Me₃Si)₂NNCSiMe₃][B(C₆F₅)₄] (**15**[Boran]) identifiziert werden (Schema 12, Abbildung 7, links).

Schema 12. Synthese von $[(Me_3Si)_2NNCSiMe_3][WCA]$ Salzen in stöchiometrisch geführten Reaktionen $[[WCA]^- = [B(C_6F_5)_4]^-, [CHB_{11}H_5Br_6]^-).$

Aus dem dunkelroten Überstand konnte ein unerwartetes silvliertes 4-Diazenvl-3hydrazinylpyrazol (16) isoliert werden, welches als Trimer des Diazomethans bzw. Aminoisonitrils aufgefasst werden kann. In einer ausführlichen Studie konnte diese Reaktion näher untersucht und spezifiziert werden (siehe Kapitel 3.4.1; Seite 26). Des Weiteren ist es gelungen, in analoger Weise das [(Me₃Si)₂NNCSiMe₃][CHB₁₁H₅Br₆] (**15**[CB]) Salz zu neutrale $(Me_3Si)_2NNCB(C_6F_5)_3$ (17) Boran Addukt, isolieren. Das sowie das $[(Me_3Si)_2NNCCPh_3][B(C_6F_5)_4]$ (18) Salz konnten bei stöchiometrisch geführten Reaktionen aus Dichlormethan erhalten werden.

3.1.2 Synthese eines homoleptischen Diazenium-Kations

Im zweiten Themengebiet sollte eine Synthese für das homoleptische $[(Me_3Si)_2NNSiMe_3]^+$. Diazenium-Kation entwickelt werden. Als geeignete Persilylierte Spezies wurde das Me₃SiNNSiMe₃ (**4**) mit seinem berechneten TMSA-Wert von 57.1 kcal/mol (*cf.* 30.4 Toluol; 71.7 kcal/mol Me₃SiNCNSiMe₃) identifiziert und nach der von Wiberg *et al.*^[74] ausgearbeiteten Synthese hergestellt. Da sich die Diazen-Spezies **4** oberhalb von -30 °C zersetzt, mussten die Reaktionen unterhalb dieser Temperatur geführt werden. In einer Serie von Experimenten wurde mithilfe verschiedener Silylierungsreagenzien und Syntheserouten die direkte Silylierung zum Diazenium-Salz untersucht (Schema 13). Dabei stellte sich sowohl der Einsatz von klassischen Lewis-Säuren (Schema 13; Route A) als auch von Silbersalzen schwach koordinierender Anionen (Schema 13; Route B) in Kombination mit Trimethylsilylhalogeniden als erfolglos heraus. Es konnten lediglich Zersetzungsprodukte isoliert und identifiziert werden. In weiteren Experimenten wurden Super-Lewis-saure Systeme als formale [Me₃Si]⁺-Überträger eingesetzt. Diese zeigten sogar bei sehr tiefen Temperaturen von -78 °C enorme Reaktivitäten, die jedoch in allen Fällen zu farblosen Zersetzungsprodukten führten (Schema 13; Route C).

Schema 13. Fehlgeschlagene direkte Silylierungen des Bis(trimethylsilyl)diazens (A: [WCA] = [GaCl₄], [SbF₆]; B: [WCA] = [GaCl₄], [SbF₆], [B(C₆F₅)₄], [AsF₆]; C: [B(C₆F₅)₄], [CHB₁₁H₅X₆], X = Br, Cl).

Da eine direkte Silylierung des Diazenes nicht möglich schien, wurde im Rahmen dieser Arbeit eine neuartige Syntheseroute entwickelt, die zu dem sehr labilen homoleptischen

[(Me₃Si)₂NNSiMe₃]⁺-Tris(trimethylsilyl)diazenium Kation führen sollte. Hierbei wurden als Edukte die Hydrazinoverbindungen $Hg[(N(SiMe_3)N(SiMe_3)_2]_2]$ und [Bi{(N(SiMe₃)N(SiMe₃)₂}₂][GaCl₄] gewählt, da sie bereits das gewünschte Hydrazinyl-Strukturmotiv aufweisen. Ausgehend tiefblauen von einer Lösung des Dihydrazinobismutsalzes [Bi{(N(SiMe₃)N(SiMe₃)₂}₂][GaCl₄] in Dichlormethan ließ sich tatsächlich mit Hilfe von GaCl3 und den Oxidationsmitteln Cl2 oder SOCl2 das gewünschte Diazenium-Salz in schlechten Ausbeuten isolieren (Schema 14, oben). Die geringen Ausbeuten sind den hohen Reaktivitäten und der damit verbundenen erschwerten Handhabung der Oxidationsmittel geschuldet. Wird jedoch eine auf -80 °C gekühlte farblose Dichlormethan-Lösung des Quecksilber(II)-dihydrazids Hg[(N(SiMe₃)N(SiMe₃)₂]₂ mit zwei äquivalenten Ag[GaCl₄] versetzt und auf -40 °C erwärmt, so scheidet sich ein schwarzes Amalgam ab und das tiefblaue [(Me₃Si)₂NNSiMe₃][GaCl₄] (19) Salz, welches bei -80 °C auskristallisiert, bildet sich in nahezu quantitativen Ausbeuten. Diese neuartige Reaktion kann als eine Zwei-Elektronen-Oxidation des [(Me₃Si)₂NNSiMe₃]⁻ zum Diazenium-Kation $[(Me_3Si)_2NNSiMe_3]^+$ aufgefasst werden (Schema 14, unten; Abbildung 8, links).

Schema 14. Synthesen des homoleptischen Diazenium-Salzes über Oxidation von Hydrazinoverbindungen.

3.1.3 Synthese von Diazen-Addukten.

Im dritten Themengebiet wurde eine systematische Studie über das Reaktionsverhalten der Diazen-Spezies Me₃SiNNSiMe₃ (**4**), Me₃SiNNPh (**5**) sowie PhNNPh (**6**) gegenüber den Lewis-Säuren [Me₃Si-H-SiMe₃][B(C₆F₅)₄], GaCl₃ und B(C₆F₅)₃ durchgeführt. Dabei bildeten auch die Verbindungen **5** und **6** mit den Silylierungsreagenzien [Me₃Si-H-SiMe₃][B(C₆F₅)₄]

und $[Me_3Si \cdot Toluol][B(C_6F_5)_4]$ keine definierten Produkte. Im Gegensatz hierzu führten die Reaktionen der neutralen Lewis-Säuren **12** und **13** in Dichlormethan-Lösungen mit den gewählten Diazenen zu definierten Verbindungen. Dabei wurden die Diazene in einer auf – 80 °C gekühlten CH₂Cl₂ Lösung vorgelegt und die gelösten Lewis-Säuren hinzugetropft. Die Addukt-Bildung konnte unmittelbar durch eine signifikante Farbveränderung beobachtet werden. Die erhaltenen Lösungen wurden nachgerührt, auf Temperaturen oberhalb von – 50 °C erwärmt und auf ein minimales Lösungsmittelvolumen eingeengt. Nach erneutem Abkühlen der gesättigten Lösungen konnten die Addukt-Spezies in kristalliner Form in moderaten Ausbeuten isoliert werden (Tabelle 1).

Tabelle 1. Zusammenfassung der isolierten Diazen-Addukte.

Lewis-Base	Lewis-Säure	Addukt	Ausbeute
trans-Me ₃ SiNNSiMe ₃	GaCl ₃	trans-Me ₃ SiNNSiMe ₃ · GaCl ₃ (20)	80 %
trans-Me ₃ SiNNPh	GaCl ₃	trans-PhNNSiMe ₃ · GaCl ₃ (21)	40 %
trans-PhNNPh	GaCl ₃	<i>trans</i> -PhNNPh \cdot GaCl ₃ (22)	52 %
trans-Me ₃ SiNNSiMe ₃	$B(C_{6}F_{5})_{3}$	cis-Me ₃ SiNNSiMe ₃ · B(C ₆ F ₅) ₃ (23)	32 %
trans-Me ₃ SiNNPh	$B(C_{6}F_{5})_{3}$	<i>iso</i> -Me ₃ Si(Ph)NN \cdot B(C ₆ F ₅) ₃ (24)	30 %
trans-PhNNPh	$B(C_{6}F_{5})_{3}$	cis -PhNNPh \cdot B(C ₆ F ₅) ₃ (25)	23 %

Lediglich das Diphenyldiazen reagierte unter diesen Bedingungen nicht mit dem sterisch anspruchsvollen $B(C_6F_5)_3$. Erst bei Raumtemperatur und in Gegenward von Tageslicht ließ sich eine sehr langsame Reaktion anhand von ¹⁹F{¹H}-NMR Spektren beobachten. Jedoch konnte durch den Einsatz von energiereicher ultravioletter Strahlung eine selektive *trans/cis*-Isomerie ausgelöst werden. Dies führte innerhalb von drei Stunden zu dem Boran Addukt *cis*-PhNNPh · B(C₆F₅)₃ (**25**), dass isoliert und vollständig charakterisiert werden konnte (Abbildung 4).

Abbildung 4. Synthese von **25**; ¹⁹F{¹H}-NMR Spektren nach 3 h Reaktionszeit (unten), 16 Tagen (mitte) und 3 h Photoaktivierung (oben) mit einer UV-Lampe (366 nm/ 245 nm). Mit Punkt markierte Spezies ist das Edukt ($B(C_6F_5)_3$), der Stern markiert das Produkt **25**.

3.1.4 Synthese eines persilylierten Ammonium-Kations

Als letzter Themenabschnitt sollte das Lewis-basische (Me₃Si)₃N (7) in das homoleptische [(Me₃Si)₄N]⁺-Kation überführt werden. Jedoch führten auch hier eine Reihe von "[Me₃Si]⁺"-Überträgern Experimenten mit formalen $[Me_3Si \cdot Toluol][B(C_6F_5)_4]$ [Me₃Si][CHB₁₁H₅Br₆] sowie [Me₃Si][CHB₁₁H₅Cl₆] nicht zu dem gewünschten Produkt. Diese Erkenntnis ist im Einklang mit den Beobachtungen von Driess,^[57] der analoge Experimente bereits durchgeführt hatte. Da sich das Salz $[Me_3Si \cdot Toluol][B(C_6F_5)_4]$ während des Trocknens bereits teilweise zersetzt, wurde nach einer Synthesemethode gesucht, mit der sich diese entstehenden Verunreinigungen vermeiden lassen. Zu diesem Zweck wurde [Me₃Si-H-SiMe₃][B(C₆F₅)₄]-Salz in Toluol dispergiert, wobei die dabei auftretende Gasentwicklung dem Entweichen des bei Raumtemperatur gasförmigen Trimethylsilans zugeschrieben werden kann. Ein vollständiges Entfernen des Silans sollte über ein mehrfaches Entgasen erreicht werden. Das so *in situ* präparierte farblose $[Me_3Si \cdot Toluol][B(C_6F_5)_4]$ wurde mit dem (Me₃Si)₃N vereint und bis zum Ausbilden eines Zweiphasen-Gemisches auf 70 °C erwärmt. Das langsame Abkühlen auf -40 °C führte überraschenderweise zur Kristallisation des persilvlierten Ammonium-Salzes $[(Me_3Si)_3NSi(H)Me_2][B(C_6F_5)_4]$ (26). Dieses Produkt kann als Lewis-Säure-Addukt eines Dimethylsilylium-Kations mit dem Tris(trimethylsilyl)amin aufgefasst werden (Abbildung 9). Im Rahmen einer grundlegenden Untersuchung der Edukte und ihrer Synthese konnte ein bisher versteckt ablaufender durch Silylium-Kationen katalysierter Umverteilungsprozess an Alkylsilanen als Ursache für den Verlust der Methylgruppe aufgedeckt werden (siehe Abschnitt 3.4.3).

3.2 Strukturanalyse der Lewis-Säure-Base-Addukte

Alle im vorherigen Abschnitt beschriebenen Addukt-Spezies konnten anhand von geeigneten Einkristallen einer Strukturanalyse unter zogen werden. Auf deren Grundlage lassen sich weitreichende Struktur-Eigenschafts-Beziehungen erkennen und ein allgemeines Verständnis über inter- und intramolekulare Wechselwirkungen im Festkörper erlangen. Für einen direkten Vergleich der Bindungssituationen werden in der Regel literaturbekannte Referenzverbindungen oder berechnete, allgemeinere Summen der Kovalenz bzw. Van-der-Waals-Radien herangezogen. In dieser Arbeit wurden die Kovalenzradien (Tabelle 2) für einen Vergleich der Grundlegenden Arbeit von Pekka Pyykkö entnommen.^[79] Zusätzlich

wurden alle in dieser Arbeit diskutierten Verbindungen einer quantenmechanischen Analyse unterzogen um ein näheres Verständnis der Bindungssituationen und Ladungsverteilungen zu erlangen. Die Berechnungen wurden, wie in den Publikationen angegeben, in *Gaussian 03/09* mit den DFT-Methoden b3lyp und pbe1pbe in Kombination mit den Basissätzen 6-31G(d,p), aug-cc-pVDZ und aug-cc-pwVDZ durchgeführt.^[80–87]

Х	$\sum r_{kov}(N-X)$	$\sum r_{kov}(N=X)$	∑r _{kov} (N≡X)
N	1.42	1.20	1.08
С	1.46	1.27	1.14
В	1.56	1.38	1.27
Si	1.87	1.67	1.56
Ga	1.95	1.77	1.75

Tabelle 2. Summe der NX-Kovalenzradien nach P. Pyykkö.^[79]

Der Einfluss der Adduktbildung auf die Struktur der Lewis-Base sowie wesentliche Unterschiede ausgewählter Spezies soll im Folgenden zusammenfassend diskutiert werden. In Abbildung 5 sind die Verknüpfungen der in dieser Arbeit diskutierten Verbindungen veranschaulicht.

Abbildung 5. Verknüpfungsschemata der Aminoisonitril- und Diazen-Addukte (R^1 , $R^2 = Me_3Si$ in Aminoisonitrilen, **4**, **20**, **23 19**; $R^1 = Me_3Si$, $R^2 = Ph$ in **5**, **21**, **24**; R^1 , $R^2 = Ph$ in **6**, **22**, **25**).

Die wesentlichen Strukturparameter der eingesetzten Lewis-Basen und deren isolierten Addukt-Spezies sind in Tabelle 3 zusammengetragen. Es zeigt sich deutlich, dass sich alle dreifachkoordinierten Stickstoff-Atome in einer planaren Koordinations-Umgebung (Σ <N> = 360-358°) befinden, was auf eine Hyperkonjugation des nichtbindenden Elektronen-Paares des zweifachkoordinierten Stickstoffes in die parallelen NSi und SiC σ *-Orbitale, beziehungsweise im Falle der Phenyl-Diazene auf eine Konjugation mit dem π -Elektronensystem der Phenyl-Substituenten, zurückzuführen ist (Tabelle 3).

Verbindung	N–N	D–A	R ¹ –N	\mathbf{R}^2 –N	$\alpha^{[a]}$	∑ <n></n>
$(Me_3Si)_2CNN^{[b.c]}(1)$	1.135(2)	-	1.855(2)	1.852(2)	130.5(2)	359.9
$(Me_3Si)_2NNC(2)$	1.366(2)	-	1.777(2)	1.774(2)	131.5(2)	359.6
$Me_3SiNCNSiMe_3^{[d]}$ (3)	-	-	1.777(2)	1.777(2)	-	-
$trans-Me_3SiNNSiMe_3^{[e]}$ (4)	1.227(2)	-	1.807(3)	1.807(3)	-	-
$trans-Me_3SiNNPh^{[f]}(5)$	1.238(2)	-	1.804(1)	1.447(2)	-	-
trans-PhNNPh ^[g] (6)	1.249(4)	-	1.431(4)	1.431(4)	-	-
$(Me_3Si)_3N^{[h]}(7)$	-	-	1.755(3)	1.755(3)	120	360
$[(Me_3Si)_2NCNSiMe_3][B(C_6F_5)_4]$ (14)	-	1.795(2)	1.835(2)	1.838(2)	128.9(2)	360.0
$[(Me_3Si)_2NNCSiMe_3][B(C_6F_5)_4]$	1 309(2)	1 897(2)	1.818(2)	1 816(2)	1313(2)	360.0
(15[Boran])	1.505(2)	1.097(2)	1.010(2)	1.010(2)	151.5(2)	500.0
$[(Me_3Si)_2NNCSiMe_3][CHB_{11}H_5Br_6]$	1.309(3)	1.901(3)	1.816(3)	1.809(3)	129.4(2)	360.0
(15[CB])			· · · · · · · · · · · · · · · · · · ·	<pre></pre>	()	
$[(Me_3Si)_2NNCCPh_3][B(C_6F_5)_4]$ (18)	1.334(4)	1.480(4)	1.823(3)	1.818(3)	132.6(2)	357.8
$(Me_3Si)_2NNCB(C_6F_5)_3$ (17)	1.331(2)	1.617(2)	1.805(1)	1.805(1)	133.4(2)	359.8
trans-Me ₃ SiNNSiMe ₃ ·GaCl ₃ (20)	1.243(2)	2.036(2)	1.884(2)	1.826(2)	121.5(2)	360.0
trans-PhNNSiMe ₃ ·GaCl ₃ (21)	1.249(2)	2.042(2)	1.885(2)	1.413(3)	122.8(2)	358.2
trans-PhNNPh·GaCl ₃ (22)	1.254(4)	2.064(3)	1.460(4)	1.414(4)	115.8(2)	358.6
cis-Me ₃ SiNNSiMe ₃ ·B(C ₆ F ₅) ₃ (23)	1.242(2)	1.643(2)	1.885(2)	1.801(2)	125.6(2)	359.1
$iso-Me_3Si(Ph)NN\cdot B(C_6F_5)_3$ (24)	1.243(2)	1.591(2)	1.888(2)	1.461(2)	121.0(2)	360.0
cis-PhNNPh·B(C ₆ F ₅) ₃ (25)	1.263(4)	1.657(5)	1.465(5)	1.414(4)	119.5(3)	359.7
$[(Me_3Si)_2NNSiMe_3][GaCl_4] (19)$	1.254(2)	1.894(2)	1.899(2)	1.829(2)	124.1(2)	359.9
$[(Me_3Si)_3NSi(H)Me_2][B(C_6F_5)_4]^{[i]}$ (26)	-	1.870(2)	1.889(2)	1.899(2)	-	330.5

Tabelle 3. Ausgewählte Strukturparameter der Lewis-Basen und ihrer isolierten Addukt-Spezies. Bindungslängen in Å, Bindungswinkel in °.

^[a] Bei Pseudochalkogenen und deren Addukten gilt $R = Me_3Si$, $Y = SiMe_3$; Bei Diazen-Addukten Y = LS, $R = Me_3Si$ oder Ph, ^[b] R^1 -C, R^2 -C und Si-C-Si angegeben, ^[c] Strukturdaten des ersten Moleküls in der asymmetrischen Einheit, ^[d] Entnommen aus Referenz ^[78], ^[e] Nur Strukturdaten des Teiles A mit größter Besetzung des fehlgeordneten Moleküls sind aufgeführt, ^[f] wie in [e] wobei gilt $R^1 = SiMe_3$, $R^2 = Ph$, ^[g] Entnommen aus Referenz ^[79], ^[h] Gas-Phasen-Struktur entnommen aus Referenz ^[80], ^[i] Hier ist Dimethylsilylium als Lewis-Säure angegeben.

3.2.1 Strukturanalysen der Lewis-Basen

Es finden sich im (Me₃Si)₂CNN ein sehr kurzer NN-Abstand mit 1.135(2) Å und eine wesentlich längere CN-Bindung mit 1.312(2) Å. Eine gegenteilige Bindungssituation findet sich im (Me₃Si)₂NNC wieder, bei dem der NN Abstand mit 1.366(2) Å im Bereich einer polarisierten Einfachbindung liegt und der sehr kurze CN-Abstand von 1.152(2) Å auf einen deutlichen Dreifach-Bindungscharakter hinweist. Anhand der Strukturlösungen der Silyl-Diazen-Spezies konnte nachgewiesen werden, dass auch die Derivate Me₃SiNNSiMe₃ und Me₃SiNNPh einer Positionsfehlordnung entlang der R–N=N–R⁺ Bindung unterliegen (Abbildung 6). Diese wurde erstmals 1997 von Ogawa *et al.*^[88] an dem Diphenyldiazen berücksichtigt, diese Fehlordnung wurde in der 1974 von Bärnighausen und Veith publizierten Struktur des Me₃SiNNSiMe₃ nicht bedacht, welches zu einem jahrzehntelang kontrovers diskutierten kurzen NN-Abstand von 1.171(7) Å führte.^[89]

Abbildung 6. Darstellung der Positionsfehlordnung in den Silyl-substituierten-Diazenen.

Die drei Diazen-Spezies zeichnen sich mit NN-Bindungslängen zwischen 1.249(4) in PhNNPh und 1.227(2) Å in Me₃SiNNSiMe₃ durch einen deutlichen Doppelbindungscharakter aus und liegen in ihrem Grundzustand als *trans*-Diazen-Spezies vor. Es ist auffällig, dass sich mit zunehmender Silylierung der NN-Abstand verkürzt, dies ist im Einklang mit einer NBO-Analyse die einen deutlichen Ladungszuwachs in der NN-Einheit aufzeigt (*cf.* PhNNPh: q(N1) + q(N2) = -0.394, Me₃SiNNPh: -0.757, Me₃SiNNSiMe₃: -1.106 e).

3.2.2 Strukturanalyse der Aminoisonitril-Addukte

In allen Bis(trimethysilyl)aminoisonitril-Addukten bleibt die Zentrale NNC-Einheit mit Winkeln zwischen $179.3(1)^{\circ}$ in $[(Me_3Si)_2NNCSiMe_3][B(C_6F_5)_4]$ und $177.7(1)^{\circ}$ in (Me₃Si)₂NNCB(C₆F₅)₃ nahezu linear und unverändert durch die Adduktbildung (cf. 177.7(2)° in (Me₃Si)₂NNC). Es lässt sich deutlich erkennen, dass die Bindungen zu den Me₃Si-Substituenten in den Addukten im Vergleich zur freien Lewis-Base aufgeweitet werden (cf. 0.046 Å $[(Me_3Si)_2NNCCPh_3][B(C_6F_5)_4]$ maximal in und minimal 0.031 Å in (Me₃Si)₂NNCB(C₆F₅)₃) dies lässt sich mit dem Ladungstransfer aus der Zentralen NNC-Gruppe auf die Lewis-Säure erklären. Die NN-Bindungen sind mit 1.309(2) Å in $[(Me_3Si)_2NNCSiMe_3][B(C_6F_5)_4]$ und 1.334(4) Å in $[(Me_3Si)_2NNCCPh_3][B(C_6F_5)_4]$ im Vergleich zur freien Lewis-Base mit 1.366(2) Å in (Me₃Si)₂NNC leicht verkürzt, und liegen zwischen einer NN-Einfachund Doppelbindung, was auf partiellen einen Doppelbindungscharakter und eine Polarisation der Bindung hinweist.

Abbildung 7. ORTEP Darstellung der Pseudochalkogonium-Kationenstrukturen von **15** (links) und **14** (rechts). Die thermischen Ellipsoide entsprechen 50% Aufenthaltswahrscheinlichkeit bei 173 K.

Die sehr kurzen CN-Bindungslängen mit 1.143(2) Å in **15[Boran]**, 1.147(4) Å in **15[CB]**, 1.145(2) Å in **17** und 1.145(4) in **18** sprechen unmissverständlich für eine Dreifachbindung, die durch die Adduktbildung im Vergleich zum Aminoisonitril nur minimal verkürzt wird. (*cf*. 1.152(2) in (Me₃Si)₂NNC). Diese Beobachtungen weisen auf einen nahezu nichtbindenden Charakter des freien Elektronenpaares am Kohlenstoffzentrum hin, welches in die Addukt-Bindung involviert ist. Auf dieser Grundlage lassen sich die beschriebenen Addukte am besten durch die Lewis-Formel [(Me₃Si)₂N $-N^+\equiv C-LS^-$] beschreiben. Beim Vergleich der beiden Kationen-Strukturen der Salze **15[Boran]** und **15[CB]** ist auffällig, dass diese im Rahmen der dreifachen Standardabweichung identisch sind. Dies bestätigt die schwach koordinierenden Eigenschaften der [B(C₆F₅)₄]⁻- und [CHB₁₁H₅Br₆]⁻-Anionen, die keine strukturbestimmenden Wechselwirkungen mit dem Kation eingehen.

3.2.3 Strukturanalyse der Diazen-Addukte

Die Strukturanalysen der Diazene zeigen deutlich, dass die Diazen-Einheit im Falle der Galliumtrichlorid-Addukte in ihrer *trans*-Konfiguration erhalten bleibt. Im deutlichen Gegensatz hierzu konnten die Addukte des sterisch anspruchsvollen Tris(pentafluorphenyl)borans nur als *cis*-Me₃SiNNSiMe₃ · B(C₆F₅)₃, *cis*-PhNNPh · B(C₆F₅)₃ sowie *iso*-Me₃Si(Ph)NN · B(C₆F₅)₃ (Abbildung 8, rechts) isoliert werden. Diese ungewöhnliche Isomerisierung und ihre daraus folgende Reaktivität der Silyl-Diazen-Addukte wurde auf der Grundlage quantenchemischer Berechnungen und experimenteller Arbeiten näher untersucht. (Siehe Abschnitt 3.4.2, Seite 28).

Wie den Strukturdaten unmissverständlich zu entnehmen ist, enthalten alle Diazen-Addukt-Spezies ein nahezu planares N₂R¹R²E-Gerüst (R^{1,2} = Ph, Me₃Si; E = Ga, B, Si) mit der größten Abweichung von 22.5° im *trans*-PhNNPh · GaCl₃ und der kleinsten Abweichung von 4.67° im [(Me₃Si)₂NNSiMe₃]⁺. Des Weiteren ist auffällig, dass die R¹-N-Bindungen am dreifachkoordinierten Stickstoff im Vergleich zu den freien Lewis-Basen aufgeweitet wird (*cf.* maximal 0.09 Å in [(Me₃Si)₂NNSiMe₃][GaCl₄] und minimal 0.03 Å in *trans*-PhNNPh · GaCl₃). Dies lässt sich sowohl mit dem Ladungstransfer der zentralen NN-Gruppe auf die Lewis-Säure sowie dem sterischen Anspruch des zusätzlichen Substituenten erklären. Im Gegensatz hierzu verkürzt sich die R²-N-Bindung am zweifachkoordinierten Stickstoff der Phenyl-substituierten Diazen-Addukte um bis zu 0.03 Å im *trans*-PhNNSiMe₃ · GaCl₃. Als Ursache kann die nach NBO-Analysen um 5 kcal/mol begünstigte Delokalisation von π -Elektronen des Phenyl-Substituenten in das konjugierte π *_{NN}-Orbital der NN-Einheit der Addukte angesehen werden. (Tabelle 3).

Als charakteristisches Merkmal bleibt die Stickstoff-Stickstoff-Bindung, die sowohl in allen neutralen Diazen-Addukten (z.B. 1.242(2) Å für cis-Me₃SiNNSiMe₃ · B(C₆F₅)₃) sowie im Diazenium-Kation mit 1.254(2) Å am besten als Doppelbindung beschrieben werden kann (Tabelle 3). Die NN-Bindung der Addukte wird im Vergleich zu ihren trans-Diazenen nur geringfügig aufgeweitet (cf. 0.016 Å in trans-Me₃SiNNSiMe₃ · GaCl₃ und 0.005 Å in iso-Me₃Si(Ph)NN \cdot B(C₆F₅)₃). Dies weist, im Einklang mit NBO-Analysen, auf einen nahezu nichtbindenden Charakter des freien Elektronenpaares am Stickstoffzentrum hin, welches in die Addukt-Bindung involviert ist. Die Stickstoff-Gallium-Donor-Acceptor-Bindungen liegen mit 2.036(2) in 20, 2.042(2) in 21 und 2.064(3) Å in 22 in dem erwarteten Bereich für ein Gallium-Stickstoff-Addukt^[90] und sind im Einklang mit vergleichbaren Verbindungen (cf. 1.965(2) Å in Me₃SiNSNSiMe₃ \cdot GaCl₃)^[42] In dieser Reihe lässt sich erkennen, dass sich mit zunehmender Silylierung am Diazen sowohl die NN- als auch die NGa-Bindung verkürzt. Betrachtet man die Donor-Acceptor-Bindungen der Boran-Addukte, fällt deutlich auf, dass das *iso*-Diazen-Addukt mit 1.591(2) Å verglichen mit 1.657(5) Å in *cis*-PhNNPh \cdot B(C₆F₅)₃ und 1.643(2) Å in *cis*-Me₃SiNNSiMe₃ · B(C₆F₅)₃ eine wesentlich kürzere Bindung aufweist (cf. 1.616(3) Å in MeCN \cdot B(C₆F₅)_{3.}^[49]). Dies kann der geringeren sterischen Hinderung am *iso*-Diazen zugeschrieben werden und führt zu einem größeren Ladungstransfer vom Diazen auf die Lewis-Säure (Q_{CT} : 0.354 in *cis*-PhNNPh · B(C₆F₅)₃, 0.353 in cis-Me₃SiNNSiMe₃ \cdot B(C₆F₅)₃ und 0.426 *e* in *iso*-Me₃Si(Ph)NN \cdot B(C₆F₅)₃).

Abbildung 8. ORTEP-Darstellung von **19** (links) und **24** (rechts). Die thermischen Ellipsoide entsprechen 50% Aufenthaltswahrscheinlichkeit bei 173 K.

Betrachtet man die Bindungssituation im Diazenium-Salz [(Me₃Si)₂NNSiMe₃][GaCl₄] (Abbildung 8, links), so kann dieses formal als das *trans*-Bis(trimethylsilyl)diazen-Addukt des Trimetylsilylium-Kations aufgefasst werden. Es liegen weder besonders kurze Anionen-Kationen-Abstände noch bemerkenswerte Anionen-Anionen-Kontakte vor. Trotz seiner Sonderstellung bezüglich der Synthese und seiner positiven Ladung reiht es sich in die Diazen-Addukte ein und zeigt keine wesentlichen strukturellen Ausreißer.

3.2.4 Struktur des persilylierten Ammonium-Kations

Das Salz des persilylierten Ammonium-Kations $[(Me_3Si)_3NSi(H)Me_2][B(C_6F_5)_4]$ zeigt ebenfalls weder bemerkenswerte Anionen-Kationen- noch Anionen-Anionen-Kontakte. Die beobachtete Struktur des Kations enthält, wie erwartet, ein nahezu tetraedrischkoordiniertes Stickstoffatom mit SiNSi-Winkeln zwischen 106.32(2)° und 112.27(2)° (Abbildung 9). Im Vergleich zu den von Driess publizierten Stukturen des Phosphoniums und Arsoniums fällt auf, dass die Abweichungen vom idealen Tetraederwinkel 109.4° in der Reihe N > P > As abnehmen (*cf.* SiPSi 107.30(7)° - 111.06(7)° in $[(Me_3Si)_4P]^+$, SiAsSi 108.8(1)° - 110.0(1)° in $[(Me_3Si)_4As]^+$). Dies kann den in gleicher Weise wachsenden kovalenten Pniktogen-Silicium-Bindungen zugeschrieben werden, was zu einer geringeren sterischen Spannung dieser Systeme und dem annähern an die ideale Tetraederkoordination führt. Die NSi-Bindungen von **26** (NSi1 1.889(2), NSi2 1.899(2), NSi3 1.891(2), NSi4 1.870(2) Å) sind in guter Übereinstimmung mit denen im persilylierten Diazenium-Kation $[(Me_3Si)_2NN(SiMe_3)]^+$ (*cf.* 1.829(1), 1.894(1), 1.899(1) Å). Im Vergleich mit der literaturbekannten Gasphasen-Struktur des (Me_3Si)_3N,^[91] in dem der Stickstoff in einer planaren Umgebung mit drei gleich langen NSi-Abständen von 1.755(3) Å zu finden ist, weiten sich die NSi-Bindungen um bis zu 0.144 Å durch die Adduktbildung auf. Bemerkenswert ist, dass die NSi4 Bindung der Dimethylsilygruppe als Folge des geringeren Raumanspruches signifikant kürzer ist als die der Trimethylsilyl-Gruppen.

Abbildung 9. ORTEP-Darstellung der Kationenstruktur von **26**. Die thermischen Ellipsoide entsprechen 50% Aufenthaltswahrscheinlichkeit bei 173 K.

3.3 Allgemeine Eigenschaften der Addukte

Alle Verbindungen können in größeren Mengen dargestellt werden und lassen sich für einen längeren Zeitraum lagern, vorausgesetzt sie werden unter einer Argon-Schutzgas-Atmosphäre, gekühlt und unter Lichtausschluss aufbewahrt. Alle Verbindungen weisen gute bis mäßige Löslichkeit und Stabilität in Toluol auf. Im Gegensatz hierzu, zersetzen sich die persilylierten Verbindungen [(Me₃Si)₂NNSiMe₃][GaCl₄] und [(Me₃Si)₃NSi(H)Me₂][B(C₆F₅)₄] augenblicklich in Dichlormethan Lösungen bei Raumtemperatur, selbst die neutralen Addukte wie z.B. *trans*-PhNNPh · GaCl₃ zeigen sich nicht über einen längeren Zeitraum tolerant gegenüber diesen Bedingungen. In kristalliner Substanz zeigen sich die isolierten Donor-Acceptor-Verbindungen, mit Ausnahme der Verbindungen **19**, **20** und **21**, mit ihren Zersetzungspunkten oberhalb von 100 °C erstaunlich thermisch stabil (Tabelle 4). Bemerkenswert hierbei ist, dass der Austausch des $[B(C_6F_5)_4]^-$ -Anions gegen das $[CHB_{11}H_5Br_6]^-$ -Anion in den Pseudochalkogonium Salzen [(Me₃Si)₂NNCSiMe₃]⁺ einen um 97 °C höheren Zersetzungspunkt induziert. Daraus lässt sich schließen, dass in den vorliegenden Salzen die thermische Stabilität des Anions einen maßgeblichen Einfluss auf deren Zersetzungstemperaturen besitzt. Beim Vergleich der GaCl₃-Addukte mit ihren verwandten B(C₆F₅)₃-Addukten fällt auf, dass die sterisch anspruchsvolle Lewis-Säure B(C₆F₅)₃ die Addukt-Spezies kinetisch stabilisiert was zu höheren Zersetzungstemperaturen führt. Die Verbindungen trans-Me₃SiNNSiMe₃ · GaCl₃, trans-PhNNSiMe₃ · GaCl₃ und [(Me₃Si)₂NNSiMe₃][GaCl₄] sind sehr labil und zersetzen sich bereits bei Temperaturen unterhalb von -20 °C und konnten aus diesem Grund nur auf Basis aufwendiger sowie Tieftemperatur-Einkristalldiffraktometrie NMRund Raman-Spektroskopie charakterisiert werden. Es liegt der Schluss nahe, dass die direkte Nachbarschaft einer GaCl Bindung zu einer NSi Bindung das Abspalten von N₂ und Me₃SiCl aus diesen Verbindungen begünstigt. Hinzu kommt wie bereits 1970 von N. Wiberg beschrieben, dass die Trimethylsilyl-Substituenten zu einer Erhöhung der n_N (HOMO) und Erniedrigung der π^*_{NN} (LUMO) Energien führen, was sowohl die bathochrome Verschiebung der Diazen-Absorptions-Banden als auch eine höhere Reaktivität nach sich zieht.^[92] Es lässt sich eindrucksvoll erkennen, dass durch die Adduktbildung der Diazene die Energiedifferenz zwischen dem HOMO und LUMO wieder aufgeweitet wird, was zu einer hypsochromen Farbänderung führt (*cf.* Me₃SiNNSiMe₃ hellblau \rightarrow [(Me₃Si)₂NNSiMe₃][GaCl₄] dunkelblau; Me₃SiNNPh dunkelblau \rightarrow *trans*-PhNNSiMe₃ · GaCl₃ orange; Tabelle 4).

Verbindung	T _{Zers} / °C	Farbe	¹¹ B-NMR/ ppm	IR/Raman (ṽ _{NN})/ cm ⁻¹
$[(Me_3Si)_2NCNSiMe_3][B(C_6F_5)_4]$ (14)	106	farblos	-16.6	-
$[(Me_3Si)_2NNCSiMe_3][B(C_6F_5)_4] (15[Boran])$	109	farblos	-16.6	1081
$[(Me_3Si)_2NNCSiMe_3][CHB_{11}H_5Br_6] (15[CB])$	206	farblos	-20.2 (d, 5 BH) -9.8 (s, 5 BBr) -1.7 (s, 1 BBr)	1113/1053
$[(Me_3Si)_2NNCCPh_3][B(C_6F_5)_4]$ (18)	136	gelb	-16.6	1084/1033
$(Me_3Si)_2NNCB(C_6F_5)_3$ (17)	124	farblos	-20.3	1095/1029
trans-Me ₃ SiNNSiMe ₃ ·GaCl ₃ (20)	-20	blau	-	1568
trans-PhNNSiMe ₃ ·GaCl ₃ (21)	-20	orange	-	1479
trans-PhNNPh·GaCl ₃ (22)	108	orange	-	1463
cis-Me ₃ SiNNSiMe ₃ ·B(C ₆ F ₅) ₃ (23)	127	blau	0.8	1593
$iso-Me_3Si(Ph)NN\cdot B(C_6F_5)_3$ (24)	104	orange	-4.4	1556
cis-PhNNPh·B(C ₆ F ₅) ₃ (25)	168	orange	-0.2	1516
$[(Me_3Si)_2NNSiMe_3][GaCl_4] (19)$	-30	blau	-	1570
$[(Me_3Si)_3NSi(H)Me_2][B(C_6F_5)_4]$ (26)	152	farblos	-17.0	-

Tabelle 4. Zusammenfassung ausgewählter Eigenschaften der isolierten Addukte.

Im Vergleich zu den für ihre Farbigkeit berühmten Diazenen (Azoverbindungen) zeichnen sich die isolierten Aminoisonitril-Addukte nicht durch eine besondere Farbgebung aus. Dies ist im Einklang mit den beobachteten langen NN-Bindungen sowie den Infrarot-Schwingungs-Banden die im Bereich von 1029 und 1113 cm⁻¹ zu finden sind und für eine NN-Einfachbindung sprechen (*cf.* $\tilde{v}_{NN} = 1031$, 1120 cm⁻¹ in (Me₃Si)₂NNC). Im Gegensatz hierzu zeigen alle Raman-Spektren der Diazen-Spezies signifikante Banden im Bereich zwischen 1463 und 1593 cm⁻¹, die den Schwingungen einer NN-Doppelbindung zuzuordnen sind (*cf.* $\tilde{v}_{NN} = 1555$ cm⁻¹ in Me₃SiNNSiMe₃ und $\tilde{v}_{NN} = 1491$ cm⁻¹ in PhNNPh). Gestützt durch eine quantenchemische Analyse der Schwingungsdaten konnte gezeigt werden, dass die Adduktbildung keinen einheitlichen Einfluss auf die NN-Schwingungen hat, was darauf zurückzuführen ist, dass das in die Addukt-Bindung involvierte Elektronenpaar einen hohen nichtbindenden Charakter besitzt. Im Rahmen dieser Analyse wurde zudem deutlich, dass die Konfiguration der Substituenten an den Diazenen einen größeren Einfluss auf die Lage der NN-Banden besitzt als das Ausbilden der Donor-Acceptor-Bindung (*cf.* 1667 in *cis*-Me₃SiNNSiMe₃, 1592 in *trans*-Me₃SiNNSiMe₃, 1464 cm⁻¹ in *iso*-(Me₃Si)₂NN).

Die ¹¹B-NMR Spektroskopie ist eine geeignete Methode um zwischen dreifach- und vierfachkoordinierten Bor-Atomen zu unterscheiden.^[48] So findet sich in den Salzen des $[B(C_6F_5)_4]^-$ eine Resonanz bei $\delta[^{11}B] = -16.8\pm 2$ ppm die charakteristisch für das Tetrakis(pentafluorophenyl)borat Anion ist, auch das $[CHB_{11}H_5Br_6]^-$ lässt sich anhand der drei charakteristischen Signale ($\delta[^{11}B] = -20.2$, -9.8 und -1.7) eindeutig identifizieren. Als nützliches Hilfsmittel während der Synthese dient die ¹¹B-NMR Spektroskopie, da während der Adduktbildung die Resonanz der freien Lewis-Säure B(C₆F₅)₃ (*cf.* $\delta[^{11}B] = 59.1$ ppm in CD₂Cl₂) stark hochfeld verschoben wird und sich so der Reaktionsverlauf gut beobachten lässt (Tabelle 4). Dieser Shift der $\delta[^{11}B]$ Verschiebungen der neutralen B(C₆F₅)₃-Addukte zeigt eine direkte Proportionalität zu dem Ladungstransfer der Lewis-Base, so findet sich das (Me₃Si)₂NNCB(C₆F₅)₃ mit dem größten Q_{CT} von 0.576 am stärksten hochfeld verschoben bei $\delta[^{11}B] = -20.3$ ppm wieder.

3.4 Folgereaktionen aktivierter Lewis-Basen

Da die Aktivierung der Lewis-Basen durch Adduktbildung ein wesentlicher Bestandteil dieser Arbeit war, soll im folgenden Abschnitt auf die näher untersuchten Folgereaktionen eingegangen werden.

3.4.1 Trimerisation von Bis(silyl)diazomethan und Bis(silyl)aminoisonitril

Wie bereits im Abschnitt 3.1.1 beschrieben wurde, konnte kein direktes Silylium-Addukt des Bis(trimethylsily)diazomethans [(Me₃Si)₂CNNSiMe₃]⁺ isoliert werden, statt dessen wird ausschließlich das isomere Bis(trimethylsily)aminoisonitril Addukt [(Me₃Si)₂NNCSiMe₃]⁺ nach Umkristallisation isoliert. In einer grundlegenden Arbeit von Seyfert wurde gezeigt, dass sich reines (Me₃Si)₂CNN in Gegenwart von katalytischen Mengen Cu²⁺ zu dem isomeren Me₃SiNCNSiMe₃ Umlagert, jedoch wurde keine Isomerisierung zum Aminoisonitril unter diesen Bedingungen beobachtet.^[72] Das aktivierte [(Me₃Si)₂NNCSiMe₃]⁺ katalysiert in Gegenwart eines Überschusses an **1** oder **2** eine bemerkenswerte Trimerisation zum Pyrazolderivat **16** (Schema 15).

Schema 15. Trimerization von 1 zum Pytrazolderivat (16).

Bei einer tiefgreifenden Studie konnte gezeigt werden, dass die Trimerisation von 2 durch eine Reihe von Super-Lewis-Säuren als Pre-Katalysatoren in guten bis mäßigen Umsätzen katalysiert wird. Bemerkenswert ist hierbei, dass sowohl die klassische Lewis-Säure GaCl₃ als auch das Silbersalz Ag[CHB₁₁H₅Br₆] diesen Prozess nicht begünstigen (Tabelle 5).

Pre-Katalysator	mol% cat.	Umsatz	Zeit / min	TON ^[a]
$[Me_3Si-H-SiMe_3][B(C_6F_5)_4]$	1.0	0.92	1080	92
$[Me_3Si][CHB_{11}H_5Br_5]$	2.0	0.90	180	45
$[(Et_2O)_2H][B(C_6F_5)_4]$	1.2	0.84	30	72
$[Me_3SiOEt_2][B(C_6F_5)]$	1.3	0.74	30	59
$B(C_{6}F_{5})_{3}$	1.9	0.84	14400	45
$[Ph_{3}C][B(C_{6}F_{5})_{4}]$	0.9	0.89	240	100
GaCl ₃ ^[b]	4.9	0.00	780	0
$Ag[CHB_{11}H_5Br_5]^{[b]}$	1.3	0.00	780	0
$[(Me_3Si)_2NCNSiMe_3][B(C_6F_5)_4]$	1.0	0.70	30	71

Tabelle 5. Als Pre-Katalysatoren der Trimerisation identifizierte Lewis-Säuren.

[a] TON = n(NNC) x Umsatz/n(Pre-Katalysator). [b] = Nur Zersetzung zu unidentifizierten Produkten beobachtet.

Um ein besseres Verständnis der zugrundeliegenden, sowohl thermodynamischen, als auch kinetischen Isomerisierungs- und Trimerizationsprozesse zu erlangen, wurde eine Reihe quantenchemischer Analysen durchgeführt. Im Einklang mit Experimenten von Seyfert, der **1** für mehrere Tage bei 151 °C unter Rückfluss kochte,^[72] zeigen die Berechnungen, dass eine intrinsische Isomerisierung von **1** zu **2** mit einer Aktivierungsbarriere von 56 kcal/mol unwahrscheinlich bleibt. Zwar sinkt diese Aktivierungsbarriere unter Berücksichtigung eines cyclischen [(Me₃Si)₂CNNSiMe₃]⁺-Intermediates auf 41 kcal/mol ab, jedoch scheint die Annahme eines bimolekularen Isomerisierungs-Prozesses mit Barrieren niedriger als 10 kcal/mol am wahrscheinlichsten (Schema 16).

Diese formale 1,3-Me₃Si-Gruppenwanderung entlang der CNN-Einheit bestätigt die Analogie der Trimethylsilylium-Kationen zu den Protonen, die für ihre Austauschreaktionen bekannt sind.^[93-95] Bereits 1967 konnten West *et al.*^[96] zeigen, dass sich in Gegenwart von

katalytischen Mengen Li⁺, welches ebenfalls als Lewis-Säure angesehen werden kann, sowohl [Me₃Si]⁺ als auch H⁺ entlang der NN-Gruppe verschieden substituierter Hydrazine wandern. Nach retrosynthetischer Betrachtung (Abbildung 10) folgt dem Isomerisierungs-Prozess formal i) eine CC-Kupplung vor einer [3+2]-Cycloaddition; ii) eine CC-Kupplung vor einer [4+1]-Cycloaddition; oder iii) eine CN-Kupplung vor einer [4+1]-Cycloaddition.

Abbildung 10. Retrosynthetische Betrachtung der möglichen Cycloadditionen zur Bildung des Trimers.

Durch ein abschießendes Silvlgruppen-Rearrangement wird schlussendlich das ungewöhnliche Pyrazol 16 in einer Eintopfsynthese erhalten. In der Summe zeigt sich die Reaktion von Bis(trimethylsilyl)diazomethan zu seinem Trimer in der Gasphase mit -67/-35 kcal/mol sowohl exotherm als auch exergonisch. Die entlang des Trimerisationsprozesses isolierten, katalytisch aktiven Salze $[(Me_3Si)_2NNCSiMe_3][B(C_6F_5)_4],$ $[(Me_3Si)_2NNCSiMe_3][CHB_{11}H_5Br_6]$ und $[(Me_3Si)_2NCNSiMe_3][B(C_6F_5)_4]$ können als erste Vertreter der homoleptischen Pseudochalkogonium-Kationen eingestuft werden. Des Weiteren ist die Gesamtsynthese zu 16 als erste gekoppelte Super-Lewis-Säure katalysierte Heteroatom-Kupplung und Cycloadditions-Reaktion anzusehen.

3.4.2 Nitren-Reaktivität von silylierten Diazen B(C₆F₅)₃-Addukten

Bei der Analytik der silylierten Diazen-Addukte des $B(C_6F_5)_3$ viel auf, dass diese Vertreter eine Sonderrolle unter den Diazen-Adduktspezies einnehmen. Es ist bemerkenswert, dass sich ausgehend von den *trans*-Diazenen ohne Einsatz von harter UV-Stahlung, wie sie bei *cis*-PhNNPh · $B(C_6F_5)_3$ benötigt wird, die isomeren *cis*-Me₃SiNNSiMe₃ · $B(C_6F_5)_3$ und *iso*-Me₃Si(Ph)NN · $B(C_6F_5)_3$ isolieren lassen (Abbildung 11; A und B).

Abbildung 11. Isomerisierung an silylierten Diazen $B(C_6F_5)_3$ -Addukten (R = SiMe₃ oder Ph).

Da diese Isomerisierung nur im Falle der sterisch anspruchvollen Lewis-Säure $B(C_6F_5)_3$ auftritt, kann dies formal auf den "Frust" des in Lösung vorliegenden Lewis-Säure-Base-Paares zurückgeführt werden, der durch Isomerisierung der Diazene abgebaut werden kann. Die quantenchemischen Rechnungen zeigten deutlich, dass lediglich in den Boran-Addukten die trans/cis/iso-Isomerisierung mit einem Energiegewinn von -8 kcal/mol für cis-PhNNPh \cdot B(C₆F₅)₃, -3 kcal/mol für *iso*-Me₃Si(Ph)NN \cdot B(C₆F₅)₃ bzw. geringem Energieverlust von 3 kcal/mol für cis-Me₃SiNNSiMe₃ · B(C₆F₅)₃ einhergeht. Die bei Raumtemperatur aufgenommenen ¹H- und ¹¹B-NMR-Spektren der silvlsubstituierten Derivate sehr breite Signale auf. Außerdem ließen sich im Fall von isoweisen Me₃Si(Ph)NN \cdot B(C₆F₅)₃ keine ²⁹Si- und ¹³C-NMR Signale für die Me₃Si-Gruppen erkennen. Diese Beobachtungen ließen auf eine intramolekulare Folgereaktion dieser Addukte schließen. Dies veranlasste eine nähere Untersuchung der thermodynamischen Endprodukte. Dazu wurden 23 und 24 in CH₂Cl₂ gelöst und für 3 Stunden bei 75 °C gelagert. In den ¹H-, ¹¹B-, ²⁹Si-, ¹³C- und ¹⁹F-NMR Spektren dieser Lösungen war eindeutig nur eine neue Hauptspezies zu erkennen. Diese konnten durch Röntgenstrukturanalyse zweifelsfrei als Hydrazinoboran-Spezies $(Me_3Si)_2NN(C_6F_5)B(C_6F_5)_2$ (27) und $Me_3Si(Ph)NN(C_6F_5)B(C_6F_5)_2$ (28) identifiziert werden (Abbildung 12).

Abbildung 12. ORTEP-Darstellung der Molekülstrukturen von **28** (links) und **27** (rechts) im Kristall. Die thermischen Ellipsoide entsprechen 50% Aufenthaltswahrscheinlichkeit bei 173 K.

Diese einheitliche Folgereaktion der Diazen-Addukte lässt den Schluss zu, dass sich das cis- $Me_3SiNNSiMe_3 \cdot B(C_6F_5)_3$ ebenfalls in das *iso*- $(Me_3Si)_2NN \cdot B(C_6F_5)_3$ als intermediare Spezies umformt. Zwar beobachteten Wiberg et al. bereits bei Reaktionen von Bis(trimethylsilyl)diazen mit Metallocenen analoge 1,2-Trimethylsily-Gruppenwanderungen jedoch besitzen die isolierten Verbindungen $Cp_2MN_2(SiMe_3)_2$ (M = V, Ti) und $[Cp_2MN_2(SiMe_3)_2]_2$ (M = Cr, Mn) MN-Doppel- und NN-Einfachbindungen und weisen damit keinen iso-Diazen-Charakter mehr auf.^[97-99] Als einzige bekannte Arbeiten zur Isolation von reaktiven iso-Diazenen sind die in situ UV/IR-Spektroskopischen Studien von Dervan et al. zu nennen, der die kinetisch stabilisierten N-(2,2,6,6-Tetramethylpiperidyl)nitrene bezüglich ihrer Dimerisation zu den Tetrazenen, R2N-N=N-NR2 untersucht hat.^[100] Die iso-Diazen-Spezies besitzen zu einem geringen Anteil einen Aminonitren Charakter, der in dem Fall der beschriebenen Boran-Addukte nicht zu einer Dimerisierung führt aber für die beobachtete Insertion der NN-Einheit in die BC-Bindung verantwortlich ist. Vergleichbare Insertionsreaktionen wurden an einer R-N⁻-N⁺=P-Einheit (Schema 5)^[37] sowie von Erker *et* al.^[101] als Arylborylierung an einer R-C=C-Spezies beschrieben. Dieses Beispiel repräsentiert die erste detaillierte Studie der Lewis-Säure-Aktivierung von silvlierten Diazenen die über eine trans/cis/iso-Isomerisierung zu einer intramolekularen Bildung von Hydrazinoboranen führt. Im Rahmen dieser Arbeit konnte das erste iso-Diazen als B(C₆F₅)₃-Addukt stabilisiert und vollständig charakterisiert werden.

3.4.3 Katalysierte Alkyl-Austauschreaktionen an Silanen

Die unerwartete Synthese des Ammonium-Salzes $[(Me_3Si)_3NSi(H)Me_2][B(C_6F_5)_4]$ führte zu einer grundlegenden Untersuchung der eingesetzten Edukte $(Me_3Si)_3N$, $[Me_3Si-H-SiMe_3][B(C_6F_5)_4]$ sowie $[Me_3Si \cdot Toluol][B(C_6F_5)_4]$. In diesem Zusammenhang wurde, das bei der Synthese von $[Me_3Si-H-SiMe_3][B(C_6F_5)_4]$ in reinem Me_3SiH nach Lambert *et al.*^[15] erhaltene, überschüssige Silan mittels NMR- und Raman-Spektroskopie analysiert. Den Spektren war eindeutig zu entnehmen, dass ein komplexes Gemisch verschiedener Silane während der Synthese von $[Me_3Si-H-SiMe_3][B(C_6F_5)_4]$ entstanden sein musste (Abbildung 13).

Abbildung 13. ¹H-NMR-Spektrum (links), Raman-Spektum (rechts) der Silanmischung aus Me₄Si, Me₃SiH und Me₂SiH₂ (rot gemessenes Spektrum, blau berechnetes Spektum).

Dieses Silangemisch ließ sich sowohl anhand von Referenzspektren, die bereits 1964 von Schmidbaur aufgenommen wurden,^[102] als auch über quantenmechanisch simulierte Raman-Schwingungsspektren eindeutig als ein Gemisch aus Me₄Si, Me₃SiH, Me₂SiH₂ und MeSiH₃ identifizieren. Diese zunächst überraschende Umverteilung der Substituenten des Silans ähnelt der von Müller et al.^[23] publizierten Synthese sterisch überfrachteter Arylsilylium-Kationen (Schema 3). In jüngster Zeit beschrieben Oestreich et al.^[103] einen analogen Substituenten-Austausch an Ferrocen-stabilisierten Silylium-Kationen, jedoch wurden in diesen Beispielen keine katalytischen Reaktionen in der Bulk-Phase beschrieben. Eine katalysierte Umverteilung von Me2EtSiH zu den Silanen Et2MeSiH, Me2EtSiH, Me3SiH und Et₃SiH wurde unter Einwirkung des Übergansgmetall-Komplexes $Et_3Si(H)_2Ir(\mu$ -SiEt₂)₂Ir(H)₂SiEt₃ von Brookhart et al.^[104] beschrieben. In einer weiterführenden Studie konnte gezeigt werden, dass die beobachtete katalytische Umverteilung sich auch auf das Et₃SiH übertragen lässt, was zu einer Mischung aus Et₄Si, Et₃SiH und Et₂SiH₂ führt. Es lässt sich ableiten, dass ein allgemeingültiger Silvlium-Kationen katalysierter Substituenten-Austausch-Prozess aufgedeckt wurde (Abbildung 14).

Abbildung 14. Allgemeine Darstellung des katalytischen Alkylgruppenaustausches (R = Me,Et).

Dieser Prozess führt zur formalen Bildung von Dimethylsilylium-Kationen, die sowohl aus thermodynamischer als auch kinetischer Sicht bevorzugt ein Lewis-Säure-Base-Addukt mit dem $(Me_3Si)_3N$ ausbilden und klärt somit den Reaktionspfad zu dem ersten persilylierten Ammonium-Salz $[(Me_3Si)_3NSi(H)Me_2][B(C_6F_5)_4]$ auf. Dieses Beispiel zeigt deutlich das enorme Potential der Trialkysilylium-Kationen zur Aktivierung selbst sehr schwach Lewisbasischer Systeme wie den Silanen auf.

4 Literaturverzeichniss

- [1] G. N. Lewis, *Valence and the Structure of Atoms and Molecules*, Chemical Catalog Company, New York, **1923**.
- [2] J. N. Brönsted, Recl. des Trav. Chim. des Pays-Bas 1923, 42, 718–728.
- [3] T. M. Lowry, *Chem. Ind.* **1923**, *42*, 43–47.
- [4] R. G. Pearson, J. Am. Chem. Soc. 1963, 85, 3533–3539.
- [5] R. G. Pearson, Coord. Chem. Rev. 1990, 100, 403–425.
- [6] V. Jonas, G. Frenking, M. T. Reetz, J. Am. Chem. Soc. 1994, 116, 8741–8753.
- [7] F. Bessac, G. Frenking, Inorg. Chem. 2003, 42, 7990–7994.
- [8] I. Alkorta, J. Elguero, J. E. Del Bene, O. Mó, M. Yáñez, Chem. Eur. J. 2010, 16, 11897–11905.
- [9] C. J. Carmalt, J. D. Mileham, A. J. White, D. J. Williams, J. W. Steed, *Inorg. Chem.* 2001, 40, 6035–6038.
- [10] M. Juhasz, S. Hoffmann, E. Stoyanov, K.-C. Kim, C. A. Reed, *Angew. Chem.* **2004**, *116*, 5466–5469.
- [11] M. Nava, I. V. Stoyanova, S. Cummings, E. S. Stoyanov, C. A. Reed, *Angew. Chem.* 2014, *126*, 1149–1152.
- [12] L. O. Müller, D. Himmel, J. Stauffer, G. Steinfeld, J. Slattery, G. Santiso-Quiñones, V. Brecht, I. Krossing, Angew. Chem. 2008, 120, 7772–7776.
- [13] J. Y. Corey, R. West, J. Am. Chem. Soc. 1963, 85, 2430–2433.
- [14] P. D. Bartlett, F. E. Condon, A. Schneider, J. Am. Chem. Soc. 1944, 66, 1531–1539.
- [15] J. B. Lambert, S. Zhang, J. Chem. Soc. Chem. Commun. 1993, 383.
- [16] J. B. Lambert, S. Zhang, S. M. Ciro, Organometallics 1994, 13, 2430–2443.
- [17] M. F. Ibad, P. Langer, A. Schulz, A. Villinger, J. Am. Chem. Soc. 2011, 133, 21016– 21027.
- [18] S. P. Hoffmann, T. Kato, F. S. Tham, C. A. Reed, *Chem. Commun.* **2006**, 767–769.
- [19] M. Nava, C. A. Reed, Organometallics 2011, 30, 4798–4800.
- [20] Z. Xie, R. Bau, A. Benesi, C. A. Reed, Organometallics 1995, 14, 3933–3941.

- [21] T. Küppers, E. Bernhardt, R. Eujen, H. Willner, C. W. Lehmann, *Angew. Chem.* **2007**, *119*, 6462–6465.
- [22] K.-C. Kim, C. A. Reed, D. W. Elliott, L. J. Mueller, F. Tham, L. Lin, J. B. Lambert, *Science* 2002, 297, 825–827.
- [23] A. Schäfer, M. Reißmann, A. Schäfer, W. Saak, D. Haase, T. Müller, *Angew. Chem.* **2011**, *123*, 12845–12848.
- [24] S. C. Bourke, M. J. Maclachlan, A. J. Lough, I. Manners, *Chem. Eur. J.* 2005, 11, 1989–2000.
- [25] H. F. T. Klare, K. Bergander, M. Oestreich, Angew. Chem. 2009, 121, 9241–9243.
- [26] D. W. Stephan, Org. Biomol. Chem. 2008, 6, 1535–1539.
- [27] K. Takeuchi, D. W. Stephan, *Chem. Commun.* **2012**, *48*, 11304–11306.
- [28] M. A. Dureen, D. W. Stephan, J. Am. Chem. Soc. 2009, 131, 8396–8397.
- [29] D. W. Stephan, G. Erker, Angew. Chem. 2010, 122, 50-81.
- [30] A. Villinger, P. Mayer, A. Schulz, Chem. Commun. 2006, 1236–1238.
- [31] D. Michalik, A. Schulz, A. Villinger, N. Weding, Angew. Chem. 2008, 120, 6565– 6568.
- [32] S. Herler, P. Mayer, J. Schmedt auf der Günne, A. Schulz, A. Villinger, J. J. Weigand, *Angew. Chem.* **2005**, *117*, 7968–7971.
- [33] P. Mayer, A. Schulz, A. Villinger, J. Organomet. Chem. 2007, 692, 2839–2842.
- [34] A. Schulz, A. Villinger, Angew. Chem. 2008, 120, 614–617.
- [35] M. Kuprat, A. Schulz, A. Villinger, Angew. Chem. 2013, 125, 7266–7270.
- [36] D. Michalik, A. Schulz, A. Villinger, *Inorg. Chem.* 2008, 47, 11798–11806.
- [37] M. Kowalewski, B. Krumm, P. Mayer, A. Schulz, A. Villinger, *Eur. J. Inorg. Chem.* 2007, 2007, 5319–5322.
- [38] T. Wondimagegn, Z. Xu, K. Vanka, T. Ziegler, Organometallics 2005, 24, 2076–2085.
- [39] P. Arndt, U. Jäger-Fiedler, M. Klahn, W. Baumann, A. Spannenberg, V. V. Burlakov, U. Rosenthal, *Angew. Chem.* **2006**, *118*, 4301–4304.
- [40] A. Villinger, A. Westenkirchner, R. Wustrack, A. Schulz, *Inorg. Chem.* 2008, 47, 9140–9142.
- [41] A. Schulz, P. Mayer, A. Villinger, *Inorg. Chem.* **2007**, *46*, 8316–8322.

- [42] C. Hubrich, A. Schulz, A. Villinger, Z. anorg. allg. Chem. 2007, 633, 2362–2366.
- [43] A. G. Massey, A. J. Park, J. Organomet. Chem. 1964, 2, 245–250.
- [44] F. Focante, P. Mercandelli, A. Sironi, L. Resconi, Coord. Chem. Rev. 2006, 250, 170– 188.
- [45] W. E. Pierrs, Adv. Organomet. Chem 2004, 52, 1–76.
- [46] J. Zhou, S. J. Lancaster, D. A. Walker, S. Beck, M. Thornton-Pett, M. Bochmann, J. *Am. Chem. Soc.* **2001**, *123*, 223–237.
- [47] S. J. Lancaster, A. Rodriguez, A. Lara-Sanchez, M. D. Hannant, D. A. Walker, D. H. Hughes, M. Bochmann, *Organometallics* 2002, 21, 451–453.
- [48] A. Bernsdorf, H. Brand, R. Hellmann, M. Köckerling, A. Schulz, A. Villinger, K. Voss, J. Am. Chem. Soc. 2009, 131, 8958–8970.
- [49] H. Jacobsen, H. Berke, S. Döring, G. Kehr, G. Erker, R. Fröhlich, O. Meyer, *Organometallics* **1999**, *18*, 1724–1735.
- [50] I. Krossing, I. Raabe, Angew. Chem. 2004, 116, 2116–2142.
- [51] T. Küppers, E. Bernhardt, R. Eujen, H. Willner, C. W. Lehmann, *Angew. Chem.* **2007**, *119*, 6462–6465.
- [52] M. Lehmann, A. Schulz, A. Villinger, Angew. Chem. 2009, 121, 7580–7583.
- [53] M. Swart, E. Rösler, F. M. Bickelhaupt, J. Comput. Chem. 2006, 27, 1486–1493.
- [54] A. Schulz, A. Villinger, Chem. Eur. J. 2010, 16, 7276–7281.
- [55] G. A. Olah, X.-Y. Li, Q. Wang, G. Rasul, G. K. S. Prakash, J. Am. Chem. Soc. 1995, 117, 8962–8966.
- [56] G. Prakash, C. Bae, Q. Wang, G. Rasul, G. Olah, J. Org. Chem. 2000, 65, 7646–7649.
- [57] M. Driess, R. Barmeyer, C. Monsé, K. Merz, Angew. Chem. 2001, 113, 2366–2369.
- [58] C. Friedel, J. M. Crafts, J. Prakt. Chem. 1877, 16, 233–237.
- [59] A. Corma, H. García, Chem. Rev. 2003, 103, 4307–4365.
- [60] A. Corma, H. García, *Chem. Rev.* **2002**, *102*, 3837–3892.
- [61] R. Qiu, Y. Chen, S.-F. Yin, X. Xu, C.-T. Au, RSC Adv. 2012, 2, 10774–10793.
- [62] K. Narasaka, Synthesis 1991, 1991, 1–11.
- [63] R. Qiu, G. Zhang, X. Xu, K. Zou, L. Shao, D. Fang, Y. Li, A. Orita, R. Saijo, H. Mineyama, et al., J. Organomet. Chem. 2009, 694, 1524–1528.

- [64] V. J. Scott, R. Celenligil-Cetin, O. V Ozerov, J. Am. Chem. Soc. 2005, 127, 2852– 2853.
- [65] R. Panisch, M. Bolte, T. Müller, J. Am. Chem. Soc. 2006, 128, 9676–9682.
- [66] C. Douvris, O. V Ozerov, Science 2008, 321, 1188–1190.
- [67] S. Duttwyler, C. Douvris, N. L. P. Fackler, F. S. Tham, C. A. Reed, K. K. Baldridge, J. S. Siegel, Angew. Chem. 2010, 122, 7681–7684.
- [68] O. Allemann, S. Duttwyler, P. Romanato, K. K. Baldridge, J. S. Siegel, Science 2011, 332, 574–577.
- [69] K. Hara, R. Akiyama, M. Sawamura, Org. Lett. 2005, 7, 5621–5623.
- [70] A. Schulz, A. Villinger, Angew. Chem. 2012, 124, 4602–4604.
- [71] G. Erker, Pure Appl. Chem. 2012, 84, 2203–2217.
- [72] D. Seyferth, T. C. Flood, J. Organomet. Chem. 1971, 29, C25–C28.
- [73] N. Wiberg, G. Hübler, Z. Naturforsch. 1976, 1317–1321.
- [74] N. Wiberg, W.-C. Joo, W. Uhlenbrock, Angew. Chem. 1968, 80, 661–662.
- [75] J. C. Bottaro, J. Chem. Soc. Chem. Commun. 1978, 990.
- [76] E. H. Amonoo-Neizer, R. A. Shaw, D. O. Skovlin, B. C. Smith, *Inorganic Syntheses*, John Wiley & Sons, Inc., Hoboken, NJ, USA, **1966**.
- [77] F. Reiß, A. Schulz, A. Villinger, Eur. J. Inorg. Chem. 2012, 2012, 261–271.
- [78] G. Alcaraz, R. Reed, A. Baceiredo, G. Bertrand, J. Chem. Soc. Chem. Commun. 1993, 4, 1354.
- [79] P. Pyykkö, M. Atsumi, Chem. Eur. J. 2009, 15, 12770–12779.
- [80] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al., *Gaussian 09, Revis. C.01* 2010, Gaussian, Inc., Wallingford CT.
- [81] T. H. J. Dunning, J. Phys. Chem. 1989, 90, 1007.
- [82] D. E. Woon, T. H. J. Dunning, J. Phys. Chem. 1993, 98, 1358.
- [83] T. H. J. Dunning, K. A. Peterson, J. Phys. Chem. 2002, 117, 10548.
- [84] E. D. Glendering, A. E. Reed, J. E. Carpenter, F. Weinold, in NBO Version 3.1
- [85] J. E. Carpenter, F. Weinold, J. Mol. Struc. 1988, 169, 41.

- [86] J. E. Weinold, F. Carpenter, in *Struct. Small Mol. Ions*, Plenum Press, **1988**, p. 211.
- [87] F. Weinold, C. Landis, in *Val. Bond. A Nat. Bond Orbital Donor Accept. Perspect.*, Cambridge University Press, **2005**, and references therein.
- [88] J. Harada, K. Ogawa, S. Tomoda, Acta Cryst. 1997, B53, 662–672.
- [89] M. Veith, H. Bärnighausen, Acta Cryst. 1974, B30, 1806–1813.
- [90] E. I. Davydova, T. N. Sevastianova, A. V. Suvorov, A. Y. Timoshkin, *Coord. Chem. Rev.* **2010**, *254*, 2031–2077.
- [91] D. G. Anderson, D. W. H. Rankin, H. E. Robertson, G. Gundersen, R. Seip, J. Chem. Soc. Dalt. Trans. 1990, 161–164.
- [92] H. Seidl, H. Bock, N. Wiberg, M. Veith, Angew. Chem. 1970, 82, 42–43.
- [93] C. Charrier, H. Bonnard, G. De Lauzon, F. Mathey, J. Am. Chem. Soc. 1983, 105, 6871–6877.
- [94] V. A. Soloshonok, V. P. Kukhar, Tetrahedron 1996, 52, 6953–6964.
- [95] M. Yasumoto, H. Ueki, V. a. Soloshonok, J. Fluor. Chem. 2007, 128, 736–739.
- [96] R. West, M. Ishikawa, R. E. Bailey, J. Am. Chem. Soc. 1967, 107, 4068–4072.
- [97] N. Wiberg, H. W. Häring, O. Schieda, Angew. Chem. 1976, 88, 383–384.
- [98] M. Veith, Angew. Chem. 1976, 88, 384–385.
- [99] N. Wiberg, H.-W. Häring, G. Huttner, P. Friedrich, *Chem. Ber.* 1978, 111, 2708–2715.
- [100] P. B. Dervan, M. E. Squillacote, P. M. Lahti, A. P. Sylwester, J. D. Roberts, J. Am. Chem. Soc. 1981, 103, 1120–1122.
- [101] G. Dierker, J. Ugolotti, G. Kehr, R. Fröhlich, G. Erker, Adv. Synth. Catal. 2009, 351, 1080–1088.
- [102] H. Schmidbaur, Chem. Ber. 1964, 97, 1639–1648.
- [103] K. Müther, P. Hrobárik, V. Hrobáriková, M. Kaupp, M. Oestreich, Chem. Eur. J. 2013, 19, 16579–16594.
- [104] S. Park, B. G. Kim, I. Göttker-Schnetmann, M. Brookhart, ACS Catal. 2012, 2, 307– 316.

5 Publikationen

Dieses Kapitel beinhaltet die Original-Publikationen zu den im Kapitel 3 zusammengefassten Arbeiten. Der eigene Beitrag zu der betreffenden Publikation ist jeweils gesondert hervorgehoben.

5.1 Catalytic Trimerization of Bis-silylated Diazomethane

Muhammad Farooq Ibad, Peter Langer, Fabian Reiß, Axel Schulz und Alexander Villinger

J. Am. Chem. Soc. 2012, 134, 17757–17768.

In dieser Publikation wurde ein Teil der experimentellen Arbeiten von mir durchgeführt. Von mir wurden die Verbindungen $[(Me_3Si)_2NCNSiMe_3][B(C_6F_5)_4]$, $[(Me_3Si)_2NNCSiMe_3][CHB_{11}H_5Br_6]$, $[(Me_3Si)_2NNCCPh_3][B(C_6F_5)_4]$ sowie $(Me_3Si)_2NNCB(C_6F_5)_3$ synthetisiert und vollständig charakterisiert. Desweiteren wurde die Studie zur katalytischen Aktivität verschiedener Lewis-Säuren von mir durchgeführt. Ich habe beim verfassen des Manuskriptes mitgewirkt und das Supportingfile mit verfasst. Der eigene Beitrag liegt bei ca. 50 %.

Ein ausführliches Supportingfile steht online zur freien Verfügung:

DOI: 10.1021/ja308104k

Catalytic Trimerization of Bis-silylated Diazomethane

Muhammad Farooq Ibad,^{†,‡} Peter Langer,^{‡,§} Fabian Reiß,[†] Axel Schulz,^{*,†,§} and Alexander Villinger^{*,†}

[†]Abteilung Anorganische Chemie and [‡]Abteilung Organische Chemie, Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, D-18059 Rostock, Germany

[§]Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, D-18059 Rostock, Germany

Supporting Information

ABSTRACT: $(Me_3Si)_2CNN$ isomerizes upon addition of traces of $[Me_3Si]^+$ ions to give $(Me_3Si)_2NNC$, which then undergoes an unusual trimerization reaction to give exclusively 4-diazenyl-3-hydrazinylpyrazole. As catalyst the isonitrilium ion, $[(Me_3Si)_2NNC-(SiMe_3)]^+$, was identified and fully characterized. Experiments and computations indicate a three-step reaction including isomerization of diazomethane, a C–C or N–C coupling, and a formal cycloaddition reaction. The kinetics and thermodynamics are discussed on the basis of DFT calculations.

1. INTRODUCTION

More than a decade after the first isolation and characterization of silylium ions,¹ their chemistry has been an area of rapid growth,² since many applications have been found due to their useful properties such as enormous Lewis acidity and catalytic behavior.^{3–6} For example, Ozerov et al.⁴ and Müller et al.^{3j} utilized silylium ions as reactive catalysts for the activation of C–F bonds. The Ozerov group introduced a class of carborane-supported, highly electrophilic silylium compounds that act as long-lived catalysts for hydro-defluorination of perfluoroalkyl groups by widely accessible silanes under mild conditions. The reactions are completely selective for aliphatic carbon–fluorine bonds.⁴ Recently, Oestreich et al.^{3h} demonstrated that a tamed, ferrocene-based silylium ion catalyzes demanding Diels–Alder reactions in an unprecedented temperature range.

Tri-coordinate silylium (also silylenium or silicenium) ions,^{2,7} with their electron sextet and a vacant p orbital, are electron-deficient species and therefore strong Lewis acids. Even relatively weak Lewis bases such as π/σ -donor solvents (toluene,⁸ CH₃CN,⁹ etc.) form tetrahedral complexes with silylium ions.^{8,10} In addition, intramolecular π coordination in silylium ions containing a 2,6-diarylphenyl scaffold was observed, which forms a Wheland-like complex.¹¹ The first well-documented examples of intramolecular π -stabilization in silyl cations were silanorbornyl cations.¹² The long search for a "naked" [R₃Si]⁺ cation,^{2,13} free of interactions with the environment, was finally brought to an end with the isolation and full characterization of [(Mes)₃Si][CHB₁₁Me₅Br₆]·C₆H₆ (Mes = 2,4,6-trimethylphenyl) by the groups of Lambert and Reed in 2002.¹⁴

The silylium ion $[Me_3Si]^+$ might be regarded as a sterically demanding big proton,¹⁵ and, similar to a proton, the bulky silylium ion is always solvated, forming the $[Me_3Si_{(solv)}]^+$ ion.^{8b,15-18} For example, the full series of salts containing the bis-silylated halonium/pseudo-halonium cations $[Me_3Si-X-$

 $SiMe_3$]⁺ (X = F, Cl, Br, I;¹⁵ CN, N₃, OCN, SCN;¹⁹ CF₃SO₃²⁰) were generated and fully characterized using the super Lewis acidic silylating media Me₃Si-X and [Me₃Si_(solv)]⁺ salt.¹⁵ In view of the success of the pseudo-halogen concept in super Lewis acidic silylating media,^{15,19,20} we were intrigued by the idea of utilizing the enormous Lewis acidity of the [Me₃Si]⁺ ion to activate small molecules such as bis-silvlated diazomethane (Me₃Si)₂CNN, aminoisonitrile (Me₃Si)₂NNC, and carbodiimide (Me₃Si)NCN(SiMe₃), which can be considered as 16electron-containing pseudo-chalcogens.²¹ In analogy to pseudohalogens, pseudo-chalcogens are species that form a homologous series H₂Y, MYH, M₂Y, in which alkali, alkaline earth, and heavy metals are typical representatives for M, and Y = NCN, CNN, NNC, CCO, CC, etc. Furthermore, the pseudochalcogen group is completely integrated in the resulting mesomeric bond system, and localization of the ionic charge at the terminal atoms is observed. Pseudo-chalcogenide anions can also act as bidentate ligands and are distinguished by their ambident nature.²¹ To the best of our knowledge, salts containing silvlated [(Me₃Si)₂CNN(SiMe₃)]⁺, [(Me₃Si)₂NNC-(SiMe₃)]⁺, and [(Me₃Si)₂NCN(SiMe₃)]⁺ have not yet been reported.

In this study, special attention was given to the diazomethane compound, as it is an ambivalent reagent.^{22,23} While electrophiles commonly attack at the nucleophilic C atom,²⁴ nucleophiles prefer the terminal N atom of diazomethane.²⁵ This ambivalent behavior was also observed in [3+2] cycloaddition reactions with dipolarophiles.²⁶ Herein, we report what is, to the best of our knowledge, the first trimerization of a bis-silylated diazomethane, which provides, based on the use of $[(Me_3Si)_2NNC(SiMe_3)]^+$ as a catalyst, an efficient and facile synthesis of 4-diazenyl-3-hydrazinyl-1*H*-pyrazoles. Pyrazoles represent one of the most important classes of heterocyclic

Received: August 15, 2012 Published: September 22, 2012

compounds.²⁷ Although a great variety of substituted pyrazoles are known, only a few examples of diazenyl- or hydrazinylpyrazoles have been described in the literature so far.²⁸ Likewise, di(hydrazinylidene)pyrazoles have only been scarcely reported in the literature.²⁹ To the best of our knowledge, trimerization reactions of diazomethane compounds have not yet been described; however, dimerizations of ethyl diazoacetate^{30a,b} and of a (diazomethylene)phosphorane^{30c} were previously reported to yield 1,2,4,5-tetrazine derivatives. As early as 1947, Meerwein reported the catalytic decomposition of diazomethane, yielding polymethylene.³¹

2. RESULTS AND DISCUSSION

For the molecule $(Me_3Si)_2CNN$, three acyclic constitutional isomers with an NNC unit can be formulated (Scheme 1).³²

Scheme 1. Isomerization of Bis-silylated Diazomethane Catalyzed by $[Me_3Si-S]^+$ with S = Isomer 1, 2, or 3^{32}					
Me ₃ Si C=	+ - [Me₃Si-S] ⁺ N≕N	+ - Si—C≡N—N	[<mark>Me₃Si</mark> -S] ⁺ -	. ₊ <mark>SiMe₃</mark> C≡N−N	
Me ₃ Si	1	2 ^{Si}	Me ₃	3 SiMe ₃	

Bis(trimethylsilyl)diazomethane $(1)^{33}$ and bis(trimethylsilyl)aminoisonitrile ((Me₃Si)₂NNC, 3)³⁴ are experimentally known, but no structural data are available (Figure 1). Wiberg et al.

Figure 1. ORTEP drawing of the molecular structures of $(Me_3Si)_2CNN$ (left) and $(Me_3Si)_2NNC$ (right) in the crystal. Thermal ellipsoids with 50% probability at 173 K. Selected bond lengths (Å) and angles (°): for $(Me_3Si)_2CNN$, N1–N2 1.135(2), N1–C1 1.312(2), C1–N1–N2 179.6(2); for $(Me_3Si)_2NNC$, N1–N2 1.366(2), N2–C1 1.152(2), C1–N1–N2 177.7(2).

have shown that nitrilimine isomer 2 cannot be isolated since it undergoes rapid isomerization to carbodiimide 4 (Scheme 2).³⁴ Ever since the discovery of the first C_rN -nitrilimines by Huisgen,³⁵ the development of their chemistry has been hampered because of their potential instability and the lack of suitable preparative methods. Bertrand et al. established efficient routes for preparing stable nitrilimines.^{36–38} Moreover,

the importance of steric hindrance was shown in the stabilization of *C*,*N*-nitrilimines. For instance, the reaction of *n*-BuLi with $R(H)CN_2$ followed by addition of R-Cl yields the bis-silylated diazomethane R_2CNN for $R = Me_3Si$,³³ while the analogous reaction for the bulkier substituent $R = {}^{i}Pr_3Si$ results in the formation of the thermally stable nitrilimine R-CNN-R, which only isomerizes to the carbodiimide R-NCN-R under photolytic conditions.³⁹

Besides 1 and 3, bis-silylated carbodiimde species 4 (Scheme 2)⁴⁰ was studied for comparison. 4 can be regarded as a constitutional isomer of 1–3 regarding the NCN unit. Only the N,N'-substituted carbodiimide species 4 can be isolated and structurally characterized,⁴⁰ while N,N-bis-silylated carbodiimde species 5 is unstable regarding the isomerization to species 4. For the reaction with silylium ions, compounds 1, 2, and 4 were utilized as starting materials. All three compounds are thermally stable liquids and do not isomerize or show any other reactivity in pure form at 298 K in the dark.

2.1. Reaction of $(Me_3Si)_2CNN$, $(Me_3Si)_2NNC$, and $(Me_3Si)NCN(SiMe_3)$ with Silylium lons and Other Strong Lewis Acids. The reaction of bis(trimethylsilyl)diazomethane $(Me_3Si)_2CNN$ with a $[Me_3Si_{(solv)}]^+$ source was studied in two series of experiments (Schemes 3 and 4). At first, the reaction

was carried out in neat (Me₃Si)₂CNN, generating a super Lewis acidic silylating medium. However, upon addition of $[Me_3Si_{(solv)}]^+$ salt (solv = Me_3Si-H), an immediate complex reaction contrary to the analogous reaction with Me_3Si-X (X = halogen, pseudo-halogen) was observed, resulting in a deep red, highly viscous reaction mixture. Thus n-pentane was added, which makes the workup and isolation of the products much easier due to a considerable decrease in the viscosity of the reaction mixture. However, it should be noted that the reaction in neat bis(trimethylsilyl)diazomethane yielded the same product. In a typical reaction setup, to a stirred suspension of $[Me_3Si_{(solv)}][B(C_6F_5)_4]$ in *n*-pentane was added a mixture of liquid $(Me_3Si)_2CNN$ (large excess) and *n*-pentane at -78 °C. The resulting suspension was allowed to warm to ambient temperature and stirred for 36 h. The reaction was followed by ¹H NMR experiments, and it was obvious that diazomethane (Me₃Si)₂CNN was involved in a more complex chemistry under these extreme Lewis acidic conditions, beyond the simple formation of $[(Me_3Si)_2CNN(SiMe_3)]^+$ (8) or $[(Me_3Si)_2NNC (SiMe_3)$]⁺ (9) (Scheme 5). Furthermore, these ¹H NMR experiments showed the exclusive and quantitative formation of pyrazole species 7 and the complete consumption of the starting material bis(trimethylsilyl)diazomethane (Scheme 3). The end of the reaction is indicated by deposition of the catalyst, $9[B(C_6F_5)_4]$, as a crystalline solid. Moreover, during the course of the reaction, the color of the supernatant changed gradually from yellow to dark red. Thus, both the precipitate and the reaction solution were further studied. The supernatant

Scheme 5. Calculated Relative Gibbs Free Energies of Isomers of Neutral $(Me_3Si)_2CNN$ (1, 2, and 3) and Cationic $[(Me_3Si)_3CNN]^+$ Species (8 and 9)^{*a*}

^aHigher-lying cyclic isomers are omitted for clarity (see Supporting Information).³²

was removed by filtration, and the brownish residue was washed with *n*-pentane. Recrystallization from a minimum of toluene at -25 °C resulted in the deposition of $9[B(C_6F_5)_4]$ as colorless crystals (49% yield based on $[Me_3Si_{(solv)}][B(C_6F_5)_4]$; Figure 2). Notably, exclusively $9[B(C_6F_5)_4]$ was isolated

Figure 2. ORTEP drawing of the molecular structure of the $[(Me_3Si)_2NCN(SiMe_3)]^+$ ion in $6[B(C_6F_5)_4]$ (left) and the $[(Me_3Si)_2NNC(SiMe_3)]^+$ ion in $9[B(C_6F_5)_4]$ (right) in the crystal. Thermal ellipsoids with 50% probability at 173 K. Selected bond lengths (Å) and angles (°): for 6, C1–N2 1.18(1), N1–C1 1.279 (2), N1–Si2 1.835(1), N1–Si3 1.838(1), C1–N2–Si1 159.4(9), C1–N1–Si2 115.01(8), C1–N1–Si3 116.04(8), Si2–N1–Si3 128.93(6), N1–C1–N2 173.3(5); for 9, N1–N2 1.309(2), N2–C1 1.143(2), Si2–N1 1.818(1), Si3–N1 1.816(1), Si1–C1 1.897(2), C1–N2–N1 179.3(1), N2–N1–Si3 113.76(8), N2–N1–Si2 114.89(8), N2–C1–Si1 174.6(1), Si3–N1–Si2 131.34(6).

instead of the expected $[(Me_3Si)_2CNN(SiMe_3)][B(C_6F_5)_4]$. From the combined solutions of the filtration and washing processes, the silvlated 4-diazenyl-3-hydrazinylpyrazole species (7) was isolated as dark green crystals (Scheme 3; see below, Figure 5 left). The overall isolated yield is about 51% (referring to $(Me_3Si)_2CNN$, which was used in a 22-fold excess both as reactant and as solvent instead of *n*-pentane) after 36 h at ambient temperatures. Referring to $[Me_3Si_{(solv)}][B(C_6F_5)_4]$), this trimerization corresponds to a catalytic process with a turnover number (TON) of about 10.8. Since DFT calculations (see below) indicated the catalytic formation of bis(trimethylsilyl)aminoisonitrile **3** in the first reaction step (Schemes 2 and 3), in a second series of experiments isomeric **3** was reacted with $[Me_3Si_{(solv)}]^+$ under the same reaction conditions as discussed before for bis-(trimethylsilyl)diazomethane (isomer 1). Indeed, the reaction of isomer **3** with $[Me_3Si_{(solv)}]^+$ resulted also in the exclusive formation of pyrazole species 7 along with $9[B(C_6F_5)_4]$, thus proving the computational results (see below). Since no isomerization step is needed prior to the C–C coupling and [3+2] cyclization, this reaction is faster (12 h for a complete conversion). The long-term activity and reuse of the catalyst was also studied (Table 1; see Supporting Information). Even

Table 1. Details of the Catalytic Trimerization of (Me₃Si)₂NNC

precatalyst ^a	mol% cat.	conversion	time/ min	TON ^b
$[Me_3Si-H-SiMe_3][B(C_6F_5)_4]$	1.0	0.92	1080	92
[Me ₃ Si][CHB ₁₁ H ₅ Br ₅]	2.0	0.90	180	45
$[(Et_2O)_2H][B(C_6F_5)_4]$	1.2	0.84	30	72
$[Me_3SiOEt_2][B(C_6F_5)]$	1.3	0.74	30	59
$B(C_{6}F_{5})_{3}$	1.9	0.84	14400	45
$[Ph_3C][B(C_6F_5)_4]^d$	0.9	0.89	240	100
GaCl ₃ ^c	4.9	0.00	780	0
Ag[CHB ₁₁ H ₅ Br ₅] ^c	1.3	0.00	780	0
$ \begin{bmatrix} (Me_3Si)_2NCN(SiMe_3) \end{bmatrix} \\ \begin{bmatrix} B(C_6F_5)_4 \end{bmatrix} $	1.0	0.70	30	71

^{*a*}Precatalyst that forms the catalyst [LA-CNN(SiMe₃)₂]⁺ (LA = Lewis acid). ^{*b*}TON = n(NNC)×conversion/n(precatalyst). ^{*c*}No conversion to 7, but slow decomposition to unidentified side products was observed. ^{*d*}Trityl ions do not catalyze the isomerization step.

after 14 days and several reuses, the catalyst was still active as well as when the catalyst concentration was decreased to less than 1 mol%. For instance, the reaction of aminoisonitrile **3** afforded in three runs isolated yields of pyrazole species 7 between 74 and 82% when 1 mol% catalyst was used, displaying a constant activity over all runs. A TON of 230 was estimated (36 h). After each cycle, the amount of catalyst remained almost unchanged. The catalyst can always be recovered in good yield as crystalline material at the end of the reaction.

For comparison, the reaction of carbodiimide 4 with 1 equiv of $[Me_3Si_{(solv)}][B(C_6F_5)_4]$ (solv = Me_3Si-H , toluene) dissolved in toluene leads in a straightforward, almost quantitative reaction (isolated yield 77%) to the formation of the silylated species 6 with $[B(C_6F_5)_4]^-$ as counterion (Scheme 2, Figure 2). Interestingly, no isomerization to the *N*,*N*-bis-silylated carbodiimde species 5 (Scheme 2) nor any other reactivity was observed, even under reflux conditions.

Variation of the Counteranion and the Lewis Acids. To study the influence of the anion on the trimerization process, we prepared trimethylsilylium *closo*-7,8,9,10,11,12-hexabromo-

carboranate $[Me_3Si][CHB_{11}H_5Br_6]$ and reacted it with (i) stoichiometrically amounts of diazomethane 1 or aminoisonitrile 3 in benzene and (ii) a large excess of 1 and 3 ($[Me_3Si][CHB_{11}H_5Br_6]$ as catalyst). As shown in Scheme 4, pyrazole species 7 was generated with the same reactivity, and it was also possible to isolate the catalytic species 9[CHB₁₁H₅Br₆] (Figure 3, Table 1).

Figure 3. ORTEP drawing of the molecular structure of $9[CHB_{11}H_5Br_6]$ in the crystal. Thermal ellipsoids with 50% probability at 173 K. Selected bond lengths (Å) and angles (°): N1–N2 1.309(3), N2–C1 1.147(4), Si2–N1 1.816(3), Si3–N1 1.809(3), Si1–C1 1.901(3), N2–N1–Si3 115.1(2), N2–N1–Si2 115.5(2), Si3–N1–Si2,129.4(1), C1–N2–N1 178.6(4).

As listed in Table 1, in a next series of experiments several neutral (GaCl₃, B(C₆F₅)₃) and cationic Lewis acids (Ag⁺, $[(Me_3Si)_2NCN(SiMe_3)]^+$ (6), $[Ph_3C]^+$, $[Me_3SiOEt_2]^+$, and $[(Et_2O)_2H]^+$) were tested. Except for Ag⁺ and GaCl₃, all other Lewis acids showed a significant reactivity and can be used for the generation of pyrazole species 7. Interestingly, in contrast to $[Ph_3C]^+$, the neutral Lewis acid B(C₆F₅)₃ also catalyzes the isomerization and trimerization process; however, the rates of both processes are much slower. For both $[Ph_3C]^+$ and B(C₆F₅)₃, we were also able to isolate and fully characterize the catalysts [(Me_3Si)_2NNC(CPh_3)]^+ (10) and [(Me_3Si)_2NNC(B-(C₆F₅)_3)]^+ (11), respectively (Figure 4).

2.2. Properties and Spectroscopic Characterization. All experimentally studied compounds $(6[B(C_6F_5)_4], 9[B-(C_6F_5)_4], 9[CHB_{11}H_5Br_6], 10$, and 11 as well as pyrazole species 7 and 12) are easily prepared in large scale and are stable when stored in a sealed tube and kept at ambient temperature. All these compounds have been fully characterized. All salts are extremely air- and moisture-sensitive but stable under argon atmosphere over a long period as a solid. Toluene is a good solvent for all species; however, the three salts $6[B(C_6F_5)_4]$, $9[B(C_6F_5)_4]$, and $9[CHB_{11}H_5Br_6]$ are poorly soluble in non-aromatic organic solvents such as *n*-hexane or slowly decompose in, e.g., CH_2Cl_2 , in contrast to neutral 10 and 11. The $[B(C_6F_5)_4]^-$ salts of 6 and 9 melt at 104 and 108 °C, respectively, while for $9[CHB_{11}H_5Br_6]$ (206 °C) and 10 (136 °C) only decomposition is observed. The highest melting point is found for the neutral compound 11, at 122 °C (Table 2).

The IR and Raman data of all isonitrile species show a sharp band in the expected region^{33,41} between 2209 and 2302 cm⁻¹, which can be approximately assigned to the stretching frequency $\nu_{\rm CN}$ (cf. 2041 cm⁻¹ (IR) in (Me₃Si)₂CNN and 2102 cm⁻¹ (Raman) in (Me₃Si)₂NNC)). It should be noted that the entire CNN moiety vibrates in an asymmetric mode; however, to a good approximation the small movement of the amino nitrogen can be neglected. As previously shown, the coordination of $B(C_6F_5)_3$ to a R-CN species causes a significant band shift to higher wave numbers; thus, for the $B(C_6F_5)_3$ adduct 11, a shift of $\Delta \nu = 197$ cm⁻¹ was observed.⁴² A shift with a similar magnitude was also observed for all salts containing cation 9 (Table 2). Hence, both IR and Raman spectroscopy are particularly well suited to distinguish between the starting material 3 and the silvlated cation 9. The shift to higher wave numbers upon adduct formation correlates nicely with a smaller C-N distance (3, d(CN) = 1.152(2) Å vs $9[B(C_6F_5)_4]$, 1.143(2); $9[CHB_{11}H_5Br_6]$, 1.147(2); 10, 1.145(2); and 11, 1.145(4) Å; see X-ray structure elucidation, Table 3). Interestingly, the CN distance in neutral adduct 11 is almost the same as found in all cationic adducts 9 and 10.

Pyrazole species 7 (Figure 5 left) is neither very air- nor moisture-sensitive, melts at 66 °C, and dissolves in almost all common organic solvents. Depending on the solvent, several solvates of 7 can be obtained, such as $7 \cdot n$ -hexane and $7 \cdot d$ isiloxane (see below). Interestingly, one Me₃Si group can be selectively hydrolyzed by addition of 1 equiv of CF₃SO₃H or water/*n*-hexane to give pyrazole species **12** (Scheme 6, Figure 5 right).⁴³ It is interesting to note that crystals of **12** show dichroism under polarized light which results in a violet or orange appearance.

Figure 4. ORTEP drawing of the molecular structures of **10** (left) and **11** (right) in the crystal. Thermal ellipsoids with 50% probability at 173 K. Selected bond lengths (Å) and angles (°): for **10**, N2–C1 1.145(4), N2–N1 1.334(4), C1–C8 1.480(4), N1–Si2 1.818(3), N1–Si1 1.823(3), C1–N2–N1 179.1(3), N2–N1–Si2 111.9(2), N2–N1–Si1 113.3(2), Si2–N1–Si1 132.6(2); for **11**, N2–C1 1.145(2), N2–N1 1.331(2), N1–Si1 1.805(1), N1–Si2 1.805(1), C1–B1 1.617(2), C1–N2–N1 177.7(1), N2–N1–Si1 114.91(6), N2–N1–Si2 111.52(6), Si1–N1–Si2 133.35(4).

Table 2. Spectros	copic Details
-------------------	---------------

	$6[B(C_6F_5)_4]$	$9[B(C_6F_5)_4]$	9 [CHB ₁₁ H ₅ Br ₆]	10	11
mp/°C	104	108	206^a	136 ^a	122
¹¹ B NMR	-16.64^{c}	-16.64^{c}	-20.22 (d, 5B, BH), -9.84 (s, 5B, BBr), -1.74 (s, 1B, 12-BBr)	-16.64	-21.27
Ra: $\nu_{\rm CN}/{\rm cm}^{-1}$	2251(4)	2209(9)	b	ь	2299(10), 2220(3),
IR: $\nu_{\rm CN}/{\rm cm}^{-1}$	2287(w), 2243(m)	2215(m)	2236(w), 2165(w)	2285(w)	2302(w)
^a Decomposition temperature. ^b Strong fluorescence. ^c Slow decomposition in CD ₂ Cl ₂					

Table 3. Selected Bond Lengths (Å) and Angles (°) from X-ray Structure Analyses

compound ^d	Х-Ү	Y–Z	Z-R	XYZ
$NNC(SiMe_2)_2$ (1)	1.135(2)	1.312(2)	1.885(1)	179.6(2)
$(Me_3Si)_2NNC (3)^b$	1.366(2)	1.152(2)	_	177.7(2)
$(Me_3Si)_2NNC (3)^b$	1.361(2)	1.153(2)	_	178.4(2)
$(Me_3Si)NCN(SiMe_3)$ (4) ^c	1.201(2)	1.194(2)	1.722(2)	176.6(2)
$[(Me_3Si)_2NCN(SiMe_3)][B(C_6F_5)_4]$	1.279(2)	1.18(1)	1.795(11)	173.3(5)
$[(Me_3Si)_2NNC(SiMe_3)][B(C_6F_5)_4]$	1.309(2)	1.143(2)	1.897(2)	179.3(1)
[(Me ₃ Si) ₂ NNC(SiMe ₃)][CHB ₁₁ H ₅ Br ₆]	1.309(3)	1.147(4)	1.901(3)	178.6(4)
$(Me_3Si)_2NNC(B(C_6F_5)_3) (11)^a$	1.331(2)	1.145(2)	1.617(2)	177.7(1)
$(Me_3Si)_2NNC(B(C_6F_5)_3) (11)^a$	1.342(2)	1.143(2)	1.615(2)	177.7(2)
$[(Me_3Si)_2NNC(CPh_3)][B(C_6F_5)_4]$ (10)	1.334(4)	1.145(4)	1.480(4)	179.1(3)

^{*a*}Two slightly different data sets were obtained from different experiments. ^{*b*}Two independent molecules in the unit cell. ^{*c*}See ref 44. ^{*d*}All compounds can formally be written as R'X-Y-Z-R; e.g., for 1 and 3, X = N, Y = N, Z = C; for 4, X = N, Y = C, Z = N, etc.

Figure 5. ORTEP drawing of the molecular structures of pyrazole species 7 (left) and **12** (right) in the crystal. Thermal ellipsoids with 50% probability at 173 K. Except from H4, all other hydrogen atoms are omitted for clarity. Selected bond lengths (Å): for 7, N1–C3 1.324(3), N1–N2 1.400(2), N2–C1 1.355(2), N3–N4 1.272(2), N3–C2 1.389(3), N5–C3 1.387(2), N5–N6 1.455(2), C1–C2 1.398(3), C2–C3 1.425(3); for **12**, N1–C3 1.381(3), N1–N2 1.433(3), N2–C1 1.314(3), N3–C2 1.310(3), N3–N4 1.348(3), N5–C3 1.307(3), N5–N6 1.467(3), C1–C2 1.437(3), C2–C3 1.470(3).

2.3. X-ray Structural Analysis. As far as we know, there are no structural data available for the starting materials 1 and 3, while the structures of bis-silylated carbodiimide 4 and its tetramer were reported in 1994 by Riedel et al.⁴⁴ The structures of silylium cation-containing species $6[B(C_6F_5)_4]$, $9[B(C_6F_5)_4]$, and $9[CHB_{11}H_5Br_6]$, as well as 10 and 11, besides pyrazoles 7

and 12, were determined. Tables S1–S4 (see Supporting Information) present the X-ray crystallographic data. X-rayquality crystals of all considered species were selected in Fomblin YR-1800 (Alfa Aesar) at ambient temperature. All samples were cooled to -100(2) °C during the measurement. The molecular structures are shown in Figures 1–5, along with selected bond lengths and angles. More details are found in the Supporting Information, including the data for the solvates 7·*n*-hexane and 7·disiloxane.

Structure of the Room-Temperature Liquids (Me₃Si)₂CNN (1), (Me₃Si)₂NNC (3), and (Me₃Si)NCN(SiMe₃) (4). Crystals of 1 and 3 suitable for X-ray crystallographic analysis were obtained by slow cooling of neat 1 and 3, respectively, to -80 °C over a period of 8 h. Both species crystallized (space group for 1, $P\overline{1}$; for 3, *Pbca*; cf. for 4, $P2_1/c^{44}$) with two independent molecules per unit cell. Only very weak van der Waals interaction can be assumed since large distances between molecules of 1, 3, and 4 are observed. There are only very small differences between the structural parameters of the independent molecules. Hence only one set of data is given for 1 and 3 in Figure 1 and Table 3. In general, in both isoelectronic species 1 and 3 the NNC moiety is almost linear, with short NN and CN bond lengths displaying partial double- and triple-bond character. For diazomethane species 1 a very short NN distance, indicating triple-bond character (N1–N2 1.135(2) Å, cf. $\sum r_{cov}(N\equiv N) =$ 1.08 Å),45 is found, while the CN bond is much longer, at 1.312(2) Å. This situation is exactly the other way around in 3, with a CN triple bond (1.152(2) Å, $\sum r_{cov}(C \equiv N) = 1.14$ Å)

17761

Figure 6. Left: Energies of the intrinsic isomerization process without a $[Me_3Si]^+$ ion as catalyst. Right: Calculated transition states for the intrinsic 1,3-Me₃Si shift in 1 (distances in Å).

and a rather long NN bond, at 1.366(2) Å (cf. $\sum r_{cov}(N=N) =$ 1.20 Å and $\sum r_{cov}(N-N) =$ 1.42 Å).⁴⁵ For comparison, in the carbodiimide species 4 the CN bond lengths amount to 1.201(2) and 1.194(2) Å, and the NCN unit is also almost linear (176.6(2)°).⁴⁴

 $[(Me_3Si)_2NCN(SiMe_3)][B(C_6F_5)_4]$ (**6** $[B(C_6F_5)_4]$). The X-ray diffraction analyses (space group $P2_1/c$) revealed a disordered cation with a di-coordinated and tri-coordinated (planar) nitrogen center (sum of the angles around $N1 = 360^\circ$, Figure 2 left). The strong interaction of carbodiimide with the formally added, electron-deficient [Me₃Si]⁺ center is clearly apparent from the Si-N bond lengths (N1-Si2 1.835(1), N1-Si3 1.838(1), and N2-Si1 1.794(1) Å), which are slightly shorter than the sum of the covalent radii (1.87 Å).⁴⁵ Due to the diand tri-coordination, respectively, two significantly different CN bond lengths (N1-C1 1.279(2), N2-C1 1.18(1) Å) are observed, in contrast to the neutral parent molecule 4 (1.201(2) and 1.194(2) Å).44 The NCN unit is slightly bent, with $173.3(5)^{\circ}$, and all Si atoms are not part of the plane formed by these three atoms. Only weak interactions are found between the ions.

 $[(Me_3Si)_2NNC(SiMe_3)][B(C_6F_5)_4]$ (9[B(C_6F_5)_4]). Compound 9 crystallizes in the monoclinic space group $P2_1/c$ with four units per cell. As depicted in Figure 2 (right), the cation adopts a C_1 symmetric structure with an almost linear CNN unit (C1-N2-N1 179.3(1)°, cf. 179.6(2) in $(Me_3Si)_2CNN$ and $177.7(2)^\circ$ in (Me₃Si)₂NNC, Figure 1), and a slightly bent Si1-C1-N2 angle of $174.6(1)^{\circ}$ is found. The C–N bond length amounts to 1.143(2) Å, which nicely agrees with the sum of the covalent radii for a CN triple bond $(\sum r_{cov}(C \equiv N) = 1.14 \text{ Å};^{45} \text{ cf.} 1.152(2) \text{ Å in } (Me_3Si)_2NNC \text{ or } 1.157(2) \text{ Å in } [Me_3Si-C \equiv N SiMe_3]^+).^{19}$ The N1–N2 bond is rather long, at 1.309(2) Å (cf. $\sum r_{cov}(N=N) = 1.20$ Å and $\sum r_{cov}(N-N) = 1.42$;⁴⁵ 1.135(2) Å in (Me₃Si)₂CNN and 1.366(2) Å in (Me₃Si)₂NNC), indicating partial double-bond character. In accord with natural bond orbital analysis,⁴⁶ thus the best Lewis representation is that with a CN triple bond and an NN single bond: [Me₃Si-C≡N⁺- $N(SiMe_3)_2$ ⁺. The tri-coordinated N1 atom sits in a trigonal planar environment ($\sum \angle N = 360.0^{\circ}$) with two small N2–N1–

Si angles $(113.76(8) \text{ and } 114.89(8)^{\circ})$ and one large Si3–N1–Si2 angle $(131.34(6)^{\circ})$.

 $[(Me_3Si)_2NNC(SiMe_3)][CHB_{11}H_5Br_6]$ (9 $[CHB_{11}H_5Br_6]$). As displayed in Table 3 and Figure 3, the structural parameters (bond lengths and angles) of the cation are identical (within the standard deviation) with those of 9 $[B(C_6F_5)_4]$, indicating that both borate anions are true weakly coordinating anions (shortest distances between $C1_{cation}$...Br_{anion} = 3.734 Å; cf. $C1_{cation}$...F_{anion} = 3.632 Å in 9 $[B(C_6F_5)_4]$).

[($Me_3Si_2NNC(CPh_3)$][$B(C_6F_5)_4$] (10) and [($Me_3Si_2NNC(B-(C_6F_5)_3)$] (11). The formal change of the Lewis acid (Me_3Si^+ in 9), as in 10 (Ph_3C^+) and 11 ($B(C_6F_5)_3$), leads to small differences in the NN distance, which are a little longer (10, 1.334(4), and 11, 1.342(2) Å vs 9[CHB₁₁H_5Br_6], 1.309(3), and 9[$B(C_6F_5)_4$], 1.309(2) Å), while the CN bond lengths are identical to those in 9[CHB₁₁H_5Br_6] and 9[$B(C_6F_5)_4$]) (Figure 4, Table 3). The donor–acceptor bond lengths are in the expected range, at 1.480(4) (C1–C8) and 1.615(2) (C1–B1), respectively ($\sum r_{cov}(C-C) = 1.50$ Å and $\sum r_{cov}(C-B) = 1.60$ Å).⁴⁵

Pyrazole Species 7 and 12. Both pyrazole species crystallize in the triclinic space group $P\overline{1}$ with two molecules per unit cell. As illustrated in Figure 5, the major difference in the molecular structure of both species arises from an intramolecular hydrogen bond in 12, which forces a change of the configuration along the diazenyl substituent (cf. 7, N4 trans to C3 vs 12, N4 cis to C3), allowing the formation of a sixmembered ring closed by the H-bridge. Furthermore, due to the hydrogen bond, the amino nitrogen atom of the $(Me_3Si)_2N$ moiety pyramidalizes ($\sum \angle N = 338.1^{\circ}$) since the nitrogen lone pair cannot be delocalized by hyperconjugation. Hyperconjugative effects are known to be responsible for the planarization of the amino nitrogen atom, as found in 7.47 Both N atoms of the hydrazine substituent in 12 have a distorted trigonal-planar geometry ($\sum \angle N = 359.4$ and 359.7°), and both trigonal planes are almost perpendicular to each other $(\angle Si4-N5-N6-Si6 = 93.8^{\circ})$. Both (amino)silyl groups adopt a staggered configuration in contrast to 12, for which an eclipsed configuration is observed. While the N5-N6 bond

Figure 7. Left: Energies of the intrinsic isomerization process with a $[Me_3Si]^+$ ion as catalyst. Right: Calculated transition state for the intrinsic 1,3-Me₃Si shift in 8 (distances in Å).

lengths are similar in 7 (1.455(2) Å) and 12 (1.467(3) Å), the N3–N4 bond length of the diazenyl unit increases upon hydrogen bond formation in 12 (cf. 1.272(2) vs 1.348(3) Å; $\sum r_{cov}(N=N) = 1.20$ Å, $\sum r_{cov}(N-N) = 1.42$ Å;⁴⁵ 1.247(3) Å in Ph–N=N–Ph).⁴⁸ The central five-membered pyrazole ring is planar (deviation from planarity less than 2°), with bond lengths and angles in the expected ranges.⁴⁹

2.4. Theoretical Aspects of the Trimerization Process. The astonishing isolation of [(Me₃Si)₂NNC(SiMe₃)]⁺ instead of isomeric [(Me₃Si)₂CNN(SiMe₃)]⁺ as well as the isolation of the trimerization product 7 prompted us to carry out quantum chemical calculations at the pbe1pbe/aug-cc-pwCVDZ level of theory to gain insight into the thermodynamics and kinetics of this complex reaction. In any case, the formation of pyrazole species 7, starting from diazomethane, includes several successive reaction steps, including (i) a C-C or C-N coupling and (ii) a [3+2] or [4+1] cycloaddition reaction. Experimentally, it is known that pure (Me₃Si)₂CNN is thermally stable for a long time. However, it is rearranged to bis(trimethylsilyl)carbodiimide, (Me₃Si)NCN(SiMe₃), when it is heated in the presence of suitable catalysts such as Cu^{2+,33,41a} Thus, we studied the potential energy surface of neutral $(Me_3Si)_2CNN$ and cationic $[(Me_3Si)_3CNN]^+$ species, always retaining the CNN unit. As depicted in Scheme 5, the diazomethane isomer 1 is favored by 5.0 and 5.1 kcal/mol over nitrilimine 2 and aminoisonitrile 3, respectively (cf. (Me₃Si)-NCN(SiMe₃) lies 42.1 kcal/mol below 1). Upon [Me₃Si]⁺ addition this situation switches. Now isomer 9 generated from 2 and 3 represents the lowest-lying isomer, separated by 10.5 kcal/mol from cation 8, in accord with the experimental observation (cf. [(Me₃Si)₂NCN(SiMe₃)]⁺ lies 49.7 kcal/mol below 9).

Two questions were addressed with respect to our experimental findings: (i) Why does diazomethane **1** isomerize to isonitrile **3** (which then trimerizes) upon addition of traces of $[Me_3Si]^+$, and (ii) why is cation **9** exclusively formed from diazomethane species **1** upon adding stoichiometric amounts of $[Me_3Si]^+$? To answer these questions we have calculated the transition states for the instrinsic 1,3-shift of a Me_3Si group in the neutral species **1** (Figure 6) and the cationic species **8** (Figure 7). In accord with our experimental data, the intrinsic

isomerization process in neutral 1 at ambient temperatures is rather unlikely, since activation barriers larger than 56 kcal/mol need to be overcome. These barriers for a 1,3-shift considerably decrease once the $[Me_3Si]^+$ ion is added. However, they are still too large (ca. 40.5 kcal/mol, Figure 7) to allow such an intrinsic process at ambient or even low temperatures. Therefore, it can be assumed that bimolecular processes such as illustrated in Scheme 7 have to be considered. For the equilibrium of the

Scheme 7. Isomerization Equilibria of Bis-silylated Diazomethane Catalyzed by Silylium Ions

isomerization process, which includes both the neutral and the cationic species as catalyst according to Scheme 7, the ΔG^{298} values are estimated to be -5.5 and 0.1 kcal/mol, respectively, displaying [Me₃Si]⁺ exchange equilibria. The barriers for [Me₃Si]⁺ exchange are dramatically decreased under solvation conditions, as can be seen by studying the bimolecular reaction paths (Scheme 7). Now, the exchange of a [Me₃Si]⁺ ion between cations 8 or 9 and the neutral isomers 1, 2, and 3 occurs almost barrier-free (less than 10 kcal/mol, see Supporting Information) at ambient temperatures, resulting in monosolvate formation of the type $[Me_3Si]^+ \cdot 2S$ adduct (S = 1, 2, and 3). In the cases of 1 and 3, these solvate adducts feature a trigonal planar [Me₃Si]⁺ ion that is almost symmetrically stabilized by two S donor molecules (Figure 8). From these computational data, which are in agreement with experimental data, it can be concluded that the initial reaction step for the trimerization is the catalytic isomerization of diazomethane 1 and the cation 8 in a bimolecular process, as

Figure 8. Calculated structures of stable $[Me_3Si]^+$ 2S adducts: left, $S = (Me_3Si)_2$ CNN (1); right, $S = (Me_3Si)_2$ NNC (3). Distances in Å.

shown in Scheme 7, generating the reactive species 2 and 3, respectively, besides cation 9.

The trimethylsilylium affinity, which describes the enthalpy change associated with the dissociation of the conjugated acid,⁵⁰ is largest for isomer 2 (71.1 kcal/mol), followed by 3 (69.0 kcal/mol) and 1 (53.1 kcal/mol) (cf. Me₃Si-H, 31.3; Me₃Si-CN, 54.4; and (Me₃Si)NCN(SiMe₃) 71.7 kcal/mol),¹⁹ indicating that $[(Me_3Si)_2NNC(SiMe_3)]^+$ (9) is the most stable ion in the reaction mixture, in accord with experiment. Once the isomerization is triggered by the action of $[(Me_3Si)_2NNC(SiMe_3)]^+$, probably a dimerization via C-C or N-C coupling reaction of aminoisonitrile 3 occurs prior to a formal [3+2] or even [4+1] cycloaddition, as illustrated in Scheme 8. It is also

Scheme 8. Retrosynthetic Analysis of 7: (i) C-C Coupling Prior to [3+2] Cycloaddition, (ii) C-C Coupling Prior to [4+1] Cycloaddition, and (iii) C-N Coupling Prior to [4+1] Cycloaddition

possible that species 2 and 3 undergo dimerization. Since aminoisonitrile 3 is thermally stable in pure state and reacts only when the catalyst 9 is present, it can be concluded that also the dimerization reaction is catalyzed by strong Lewis acids (e.g., silylium ions $[(Me_3Si)_2NNC(SiMe_3)]^+ + (Me_3Si)_2NNC)$. All three reactions steps are accompanied by formal Me₃Si shifts, which can easily occur upon addition of Me₃Si⁺ ions (vide supra). Interestingly, according to in situ NMR experiments (see above), there is no experimental proof for the generation of a dimer or any other species involved in the proposed formal [3+2] or [4+1] cycloaddition. The fact that only pyrazole species 7 is observed besides the starting material indicates either a fast reaction on the NMR time scale or a very low concentration of the intermediates. The overall trimerization process according to Scheme 3 is exothermic/exergonic, with -67.0/-35.1 kcal/mol in the gas phase.

2.5. Conclusions. We present an efficient and facile trimerization reaction of bis-silylated diazomethane, triggered by the action of silylium ions to give exclusively 4-diazenyl-3-hydrazinylpyrazole. As catalyst the isonitrilium ion $[(Me_3Si)_2NNC(SiMe_3)]^+$, a formal pseudo-chalcogonium ion, was identified and fully characterized for the first time. The reaction is described by an isomerization process followed by a C–C or N–C coupling reaction and a formal cycloaddition to give finally the pyrazole derivative. From a mechanistic viewpoint, we report the first trimerization of diazomethane

derivatives, which could also be extended to the aminoisonitrile isomer. This transformation can be regarded as a domino reaction.⁵¹ From a practical viewpoint, the chemistry reported herein provides a facile approach to novel hydrazine-diazenesubstituted pyrazoles that are of pharmacological relevance and not readily available by other methods.^{52,53}

3. EXPERIMENTAL DETAILS

3.1. General Information. All manipulations were carried out under oxygen- and moisture-free conditions under argon using standard Schlenk or drybox techniques.

Toluene and diethyl ether were dried over Na/benzophenone. n-Hexane and *n*-pentane were dried over Na/benzophenone/tetraglyme. Carbon tetrachloride, dichloromethane, and hexamethyldisiloxane $(Me_3Si)_2O$ were dried over P_4O_{10} . Acetone was dried by distillation from K₂CO₃ followed by storage over 3 Å molecular sieves for 24 h. All solvents were freshly distilled prior to use. n-Heptane, chlorotrimethylsilane Me₃SiCl (98%, Merck), and N,N-bis-(trimethylsilyl)carbodiimide (Me₃Si)NCN(SiMe₃) (97%, abcr) were freshly distilled prior to use. Lithium (99.9%, Merck), gallium trichloride GaCl₃ (abcr, 99.9%), chloromethyltrimethylsilane Me₃SiCH₂Cl (97%, abcr), n-BuLi (2.5 M, Acros), and magnesium sulfate MgSO₄ (98%, VWR) were used as received. Alumina (aluminum oxide, basic, type T, Merck), was activated with triethylamine (98%, Merck) and dried in an oven at 120 °C for 36 h. *p*-Toluenesulfonylazide MePhSO₂N₃,⁵⁴ bis(trimethylsilyl)-hydronium tetrakis(pentafluorophenyl)borate [Me₃Si-H–SiMe₃][B- $(C_6F_5)_4$], ^{8b,15,55} tris(pentafluorophenyl)borane $B(C_6F_5)_3$, ⁵⁵ tri-(phenyl)methylium tetrakis(pentafluorophenyl)borate [Ph₃C][B- $(C_6F_5)_4]^{55}$ trimethylsilyl(diethyl)oxonium tetrakis(pentafluoro-phenyl)borate [Me₃SiOEt₂][B(C₆F₅)],^{20,56} silver *closo*-7,8,9,10,11,12-hexabromocarboranate Ag[CHB₁₁H₅Br₆],⁵⁷ trimethylsilylium *closo*-7,8,9,10,11,12-hexabromocarboranate [Me₃Si][CHB₁₁H₅Br₆],⁵⁷ and bis(diethyloxo)hydronium tetrakis(pentafluorophenyl)borate $[(Et_2O)_2H][B(C_6F_5)_4]^{58}$ were prepared as previously reported. Trimethylsilyldiazomethane Me₃SiCHNN, bis(trimethylsilyl)diazomethane (Me₃Si)₂CNN, N,N-bis(trimethylsilyl)aminoisonitrile dichloride (Me₃Si)₂NNCCl₂, and N,N-bis(trimethylsilyl)aminoisonitrile $(Me_3Si)_2NNC$ have been reported in the literature and were prepared by slightly modified procedures.^{33,34,59}

NMR. ²⁹Si INEPT, ^{'13}C $\{^{1}H\}$, ¹³C DEPT, and ¹H NMR spectra were obtained on a Bruker AVANCE 250 or 300 spectrometer and were referenced internally to the deuterated solvent (¹³C: CDCl₃, $\delta_{reference} = 77$ ppm, CD₂Cl₂, $\delta_{reference} = 54$ ppm, C₆D₆, $\delta_{reference} = 128$ ppm) or to protic impurities in the deuterated solvent (¹⁴H: CHCl₃, $\delta_{reference} = 7.26$ ppm, CDHCl₂, $\delta_{reference} = 5.31$ ppm, C₆D₅H, $\delta_{reference} = 7.16$ ppm). CDCl₃ and CD₂Cl₂ were dried over P₄O₁₀; C₆D₆ was dried over Na/ benzophenone and freshly distilled prior to use.

IR. A Nicolet 6700 FT-IR spectrometer with a Smart Endurance ATR device was used.

Raman. A Bruker VERTEX 70 FT-IR spectrometer with a RAM II FT-Raman module, equipped with a Nd:YAG laser (1064 nm), was used.

CHN Analyses. A C/H/N/S-Mikronalysator TruSpec-932 instrument from Leco was used.

DSC. A DSC 823e instrument from Mettler-Toledo (heating rate, 5 $^{\circ}$ C/min) was used. Melting points (and decomposition points) were corrected. In addition, clearing points are given in brackets.

MS. A Finnigan MAT 95-XP spectrometer from Thermo Electron was used (CI⁺, isobutene; EI⁺, T = 200 °C, 70.0 V).

HRMS. A 6210 time-of-flight LC/MS instrument from Agilent Technologies (MeOH/0.1% HCOOH in H_2O 90:10) was used.

 $H-SiMe_3[B(C_6F_5)_4]$ (0.1 mmol, 0.083 g) in toluene (0.5 mL) was added neat (Me₃Si)NCN(SiMe₃) (0.1 mmol, 0.019 g) at ambient temperature. The resulting colorless solution was concentrated in vacuo, resulting in a colorless oil. Storage at -25 °C for 24 h led to the deposition of colorless crystals. Removal of supernatant by decantation and drying in vacuo yields 0.072 g (0.077 mmol, 77%) of $6[B(C_6F_5)_4]$. Mp: 104 °C (106 °C). Anal. Calcd (found): C, 43.51 (43.52); H, 2.90 (2.98); N, 2.98 (2.95). IR (ATR, 16 scans): 3467 (w), 3408 (w), 3381 (w), 3327 (w), 2962 (w), 2912 (w), 2359 (w), 2320 (m), 2287 (w), 2243 (m), 1643 (m), 1558 (w), 1512 (s), 1456 (s), 1412 (m), 1383 (m), 1374 (m), 1317 (m), 1263 (s), 974 (s), 907 (m), 853 (s), 823 (s), 768 (s), 755 (s), 726 (m), 700 (w), 683 (m), 661 (s), 634 (m), 610 (m), 603 (m), 573 (m). Raman (190 mW, 25 °C, 400 scans, cm⁻¹): 2982 (4), 2973 (4), 2913 (10), 2251 (4), 1648 (4), 1516 (1), 1468 (1), 1422 (1), 1380 (2), 1322 (2), 1277 (1), 1266 (1), 1127 (1), 1110 (1), 1098 (1), 1088 (1), 1056 (1), 980 (1), 824 (3), 774 (2), 760 (1), 710 (1), 687 (1), 664 (1), 645 (8), 587 (6), 531 (1), 494 (5), 479 (5), 452 (6), 425 (5), 398 (5), 381 (1), 361 (1), 350 (1), 290 (1), 248 (2), 210 (1), 190 (2), 161 (1), 124 (1), 76 (1). MS (CI⁺, isobutane): 259 [(SiMe₃)₃CN₂]⁺, 187 [(SiMe₃)₂CN₂ + H]⁺, 115 [(SiMe₃)CN₂ + 2H]⁺. Crystals suitable for X-ray crystallographic analysis were obtained from slowly cooling a saturated toluene solution of $6[B(C_6F_5)_4]$ to 5 °C over a period of 12 h.

3.3. Synthesis of $9[B(C_6F_5)_4]$ and Catalytic Reaction to 7. Procedure 1: Reaction with (Me₃Si)₂CNN. To a stirred suspension of $[Me_3Si-H-SiMe_3][B(C_6F_5)_4]$ (0.05 mmol, 0.040 g) in *n*-pentane (2 mL) was added a solution of (Me₃Si)₂CNN (1.06 mmol, 0.197 g) in npentane (2 mL) at -78 °C. The resulting suspension was allowed to warm to ambient temperature. Stirring for 36 h resulted in the deposition of crystals while the color of the supernatant changed gradually from yellow to dark red. The supernatant was removed by filtration (F4), and the brownish residue was washed three times with n-pentane (3 mL). Recrystallization from a minimum of toluene at -25 °C resulted in the deposition of colorless crystals. Removal of supernatant by decantation and drying in vacuo yielded 0.022 g (0.02 mmol, 49% yield based on 0.05 mmol of [Me₃Si-H-SiMe₃][B- $(C_6F_5)_4]$ of $9[B(C_6F_5)_4]$ as colorless crystals. The solutions from filtration and washing were combined, and the solvent was removed in vacuo, resulting in a dark red solution. Storage at -25 °C led to the deposition of greenish crystals. Removal of supernatant and drying in vacuo yielded 0.097 g (0.17 mmol, 51%) of 7 as dark green crystals.

Procedure 2: Reaction with (Me₃Si)₂NNC. To a stirred suspension of [Me₃Si-H-SiMe₃][B(C₆F₅)₄] (0.05 mmol, 0.041 g) in *n*-hexane (4 mL) was added neat (Me₃Si)₂NNC (1.0 mmol, 0.186 g) at -78 °C. The resulting suspension was allowed to warm slowly to ambient temperature. Stirring for 12 h resulted in the deposition of yellowish crystals while the color of the supernatant changed gradually from yellow to dark red. The supernatant was removed by filtration (F4), and the yellowish residue was washed with n-hexane (3 mL). Recrystallization from a minimum of toluene at 5 °C resulted in the deposition of colorless crystals. Removal of supernatant by decantation and drying in vacuo yielded 0.027 g (0.03 mmol, 58% yield based on 0.05 mmol $[Me_3Si-H-SiMe_3][B(C_6F_5)_4])$ of $9[B(C_6F_5)_4]$ as colorless crystals. The solutions from filtration and washing were combined and concentrated in vacuo, resulting in a dark red solution. Storage at -25 °C led to the deposition of greenish crystals. Removal of supernatant and drying in vacuo yielded 0.120 g (0.21 mmol, 68%) of 7 as dark green crystals.

Data for $9[B(C_6F_5)_4]$. Mp: 108 °C (109 °C). Anal. Calcd (found): C, 43.51 (43.75); H, 2.90 (2.85); N, 2.98 (2.86). IR (ATR, 16 scans): 3374 (w), 3224 (w), 2962 (w), 2912 (w), 2327 (w), 2215 (m), 1643 (m), 1600 (w), 1556 (w), 1512 (s), 1460 (s), 1413 (m), 1382 (m), 1374 (m), 1340 (w), 1261 (m), 1167 (m), 1081 (s), 976 (s), 923 (w), 907 (w), 855 (s), 822 (s), 773 (m), 768 (m), 756 (s), 726 (m), 700 (w), 683 (m), 660 (m), 643 (m) 626 (m), 611 (m), 602 (m), 573 (m). Raman (1500 mW, 25 °C, 800 scans, cm⁻¹): 2970 (4), 2910 (10), 2209 (9), 1643 (3), 1598 (1), 1576 (1), 1536 (1), 1513 (1), 1454 (1), 1417 (1), 1375 (2), 1314 (1), 1276 (1), 1263 (1), 1125 (1), 1106 (1), 976 (1), 960 (1), 945 (1), 862 (1), 845 (1), 820 (3), 771 (1), 757 (1), 733 (1), 700 (1), 685 (1), 661 (1), 643 (5), 628 (5), 584 (7), 509 (2), 491 (5), 476 (4), 448 (6), 422 (4), 394 (5), 371 (1), 359 (1), 348 (1), 320 (1), 287 (1), 265 (1), 244 (1), 206 (1), 186 (2), 157 (1), 119 (1). MS (CI⁺, isobutane): 259 [(SiMe₃)₃CN₂]⁺, 187 [(SiMe₃)₂CN₂ + H]⁺. Crystals suitable for X-ray crystallographic analysis were obtained from toluene as depicted above.

Data for 7. Mp: 66 °C (70 °C). Anal. Calcd (found): C, 45.10 (45.15); H, 9.73 (9.44); N, 15.03 (15.05). ¹H NMR (25 °C, CD₂Cl₂, 300.13 MHz): 0.15 (s, 18H, Si(CH₃)₃), 0.16 (s, 9H, Si(CH₃)₃), 0.28 (s, 9H, Si(CH₃)₃), 0.32 (s, 9H, Si(CH₃)₃), 0.48 (s, 9H, Si(CH₃)₃). ¹H NMR (25 °C, C₆D₆, 300.13 MHz): 0.23 (s, 9H, Si(CH₃)₃), 0.35 (s, 18H, Si(CH₃)₃), 0.37 (s, 9H, Si(CH₃)₃), 0.44(s, 9H, Si(CH₃)₃), 0.48(s, 9H, Si(CH₃)₃). ¹³C{¹H} NMR (25 °C, CD₂Cl₂, 62.89 MHz): -3.35 (s, Si(CH₃)₃), -0.21 (s, Si(CH₃)₃), 0.08 (s, (Si(CH₃)₃)₂), 0.11 (s, Si(CH₃)₃), 0.29 (s, Si(CH₃)₃), 137.29 (C), 146.91(C), 158.15 (C). ¹³C{¹H} NMR (25 °C, C₆D₆, 62.89 MHz): -0.64 (s, Si(CH₃)₃), 2.58 (s, Si(CH₃)₃), 2.75 (s, Si(CH₃)₃), 3.02 (s, 2 Si(CH₃)₃), 140.26 (C), 149.72 (*C*), 161.15 (*C*). ²⁹Si{¹H} NMR (25 °C, CD₂Cl₂, 49.69 MHz): -13.39 (m, 1Si, $J(^{1}H-^{29}Si) = 6.82$ Hz), 6.22 (m, 1Si, $J(^{1}H-^{29}Si) =$ 6.79 Hz), 8.94 (m, 2Si, $J({}^{1}\text{H}-{}^{29}\text{Si}) = 6.65$ Hz), 11.31 (m, 1Si, $J({}^{1}\text{H}-{}^{29}\text{Si}) = 6.59 \text{ Hz}$, 17.15 (m,1Si, $J({}^{1}\text{H}-{}^{29}\text{Si}) = 6.71 \text{ Hz}$). ${}^{29}\text{Si}\{{}^{1}\text{H}\}$ NMR (25 °C, C₆D₆, 49.69 MHz): -13.71 (m, 1Si, $J(^{1}H-^{29}Si) = 6.54$ Hz), 6.00 (m, 1Si, $J({}^{1}\text{H}-{}^{29}\text{Si}) = 6.54$ Hz), 9.09 (m, 2Si, $J({}^{1}\text{H}-{}^{29}\text{Si}) =$ 6.54 Hz), 11.40 (m, 1Si, $J({}^{1}\text{H}-{}^{29}\text{Si}) = 6.54$ Hz), 17.17 (m, 1Si, $J({}^{1}H-{}^{29}Si) = 6.54$ Hz). IR (ATR, 16 scans): 2956 (m), 2899 (m), 2864 (w), 1603 (w), 1574 (w), 1565 (w), 1521 (w), 1510 (w), 1490 (m), 1454 (m), 1388 (m), 1363 (m), 1298 (w), 1279 (m), 1245 (s), 1178 (m), 1142 (w), 1103 (w), 1074 (m), 1022 (w), 1004 (w), 981(w), 939 (m), 875 (m), 832 (s), 822 (s), 753 (s), 726 (m), 890 (m), 632 (m), 621 (m), 561 (w), 532 (m). Raman (1500 mW, 25 °C, 1209 scans, cm⁻¹): 2957 (3), 2903 (10), 1490 (2), 1453 (2), 1388 (7), 1364 (9), 1282 (5), 1245 (1), 1103 (1), 1080 (1), 1006 (1), 964 (2), 946 (1), 878 (1), 838 (1), 748 (1), 726 (1), 693 (3), 610 (3), 535 (1), 472 (1), 454 (1), 407 (1), 376 (1), 351 (1), 340 (1), 308 (1), 256 (1), 204 (1), 182 (1), 114 (1). MS (CI⁺, isobutane): 558 [M]⁺, 543 [M - CH_3^{+} , 486 $[M - SiMe_3]^+$. UV-vis (25 °C, CH_2Cl_2 , nm): 556, 393, 321, 255. Crystals suitable for X-ray crystallographic analysis were obtained by slowly cooling a saturated solution of 7 in either npentane, *n*-hexane, hexamethyldisiloxane, or acetone to -25 °C over a period of up to 12 h. Crystals obtained from n-hexane and hexamethyldisiloxane solutions could be characterized as n-hexane hemisolvate (7.n-hexane) or hexamethyldisiloxane hemisolvate (7.disiloxane), while crystals from n-pentane or acetone solutions did not contain solvent. However, the n-hexane was easily removed upon drying at ambient temperature for a few minutes.

3.4. Synthesis of 9[CHB₁₁H₅Br₆]. To a stirred brownish suspension of [Me₃Si][CHB₁₁H₅Br₆] (0.1 mmol, 0.069 g) in toluene (3.0 mL) was added neat (Me₃Si)₂NNC (0.6 mmol, 0.120 g) at ambient temperature. The resulting colorless suspension was allowed to stir for an additional 1 h. Removal of supernatant by syringe and drying in vacuo yielded 0.068 g (0.0785 mmol, 79%) of $9[CHB_{11}H_5Br_6]$ as pale brownish microcrystalline solid. Mp (dec): 206 °C. Anal. Calcd (found): C, 15.08 (14.88); H, 3.80 (4.06); N, 3.20 (3.50). ¹H NMR (25 °C, CD₂Cl₂, 300.13 MHz): 0.47 (s, 18H, $J({}^{1}\text{H}-{}^{29}\text{Si}) = 6.6 \text{ Hz}, J({}^{1}\text{H}-{}^{13}\text{C}) = 121 \text{ Hz}), 0.64 \text{ (s, 9H, } J({}^{1}\text{H}-{}^{29}\text{Si}) =$ 7.18 Hz, $J({}^{1}H-{}^{13}C) = 124$ Hz), 1.12–3.57 (m, 5H, BH, $J({}^{1}H-{}^{11}B) = 159$ Hz), 2.59 (s, 1H, CH-carboranate). ${}^{11}B$ NMR (25 °C, CD₂Cl₂) 96.29 MHz) -20.22 (d, 5B, BH), -9.84 (s, 5B, BBr), -1.74 (s, 1B, 12-BBr). ¹³C{¹H} NMR (25 °C, CD₂Cl₂, 75.48 MHz): -1.32 (s, $Si(CH_3)_3$, -0.15 (s, $2Si(CH_3)_3$). ²⁹ $Si{^1H}$ NMR (25 °C, CD_2Cl_2 , 59.62 MHz): 4.78 (1Si), 29.01 (2Si). IR (ATR, 16 scans): 3051 (w), 2958 (w), 2902 (w), 2606 (m), 2236 (w), 2165 (w), 1682 (w), 1417 (w), 1309 (w), 1256 (s), 1113 (m), 1054 (m), 1002 (m), 991 (m),

953 (m), 933 (m), 855 (s), 819 (s), 746 (s), 702 (m), 633 (s). MS (CI–, isobutane): $616 \ m/e \ [CHB_{11}H_5Br_6]^-$. Crystals suitable for X-ray crystallographic analysis of $9[CHB_{11}H_5Br_6]$ were obtained from the saturated catalyst phase of the benzene reaction mixture after 12 h.

3.5. Synthesis of $[(Me_3Si)_2NNC(CPh_3)]B(C_6F_5)_4]$ (10). To a stirred orange solution of $[Ph_3C][B(C_6F_5)_4]$ (0.5 mmol, 0.427 g) in dichloromethane (3 mL) was added neat (Me₃Si)₂NNC (0.5 mmol, 0.093 g) at ambient temperature. The mixture was allowed to stir for 1 h while the color of the solution changed within 20 min from orange to yellow. Slow addition of *n*-hexane (5 mL) resulted in the deposition of a yellow greenish, microcrystalline solid. The yellow supernatant was removed by syringe, and the residue was re-dissolved in dichloromethane (2 mL) and again precipitated by addition of nhexane (4 mL). This procedure was repeated a further two times. Removal of supernatant by decantation and drying in vacuo yielded 0.324 g (0.29 mmol, 58%) of $[(Me_3Si)_2NNC(CPh_3)]B(C_6F_5)_4]$ as microcrystalline solid. Mp (dec): 136 °C. Anal. Calcd (found): C, 54.16 (54.03); H, 3.00 (3.09); N, 2.53 (2.62). ¹H NMR (25 °C, CD₂Cl₂, 300.13 MHz): 0.38 (s, 18H, $J(^{1}H-^{29}Si) = 6.8$ Hz, $J(^{1}H-^{13}C)$ = 121 Hz), 7.08–7.53 (m, 15H, CH). ${}^{19}F{}^{1}H{}$ NMR (25 °C, CD₂Cl₂) 282.4 MHz): $\delta = -167.5$ (m, m-CF), -163.6 (m, p-CF), -133.0 (m, o-CF). ¹¹B NMR (25 °C, CD₂Cl₂, 96.29 MHz) -16.64. ¹³C{¹H} NMR (25 °C, CD₂Cl₂, 75.48 MHz): 0.10 (s, Si(CH₃)₃), 124.59 (br, *ipso-C*), 129.11 (s, CH), 130.43 (s, CH), 130.75 (s, *p*-CH), 136.91 (dm, *m*-CF, ${}^{1}J({}^{13}C-{}^{19}F) = 247.59$ Hz), 138.90 (dm, *p*-CF, ${}^{1}J({}^{13}C-{}^{19}F)$ = 232.18 Hz), 148.76 (dm, o-CF, ${}^{1}J({}^{13}C-{}^{19}F) = 240.44$ Hz). ${}^{29}Si\{{}^{1}H\}$ NMR (25 °C, CD₂Cl₂, 59.62 MHz): 30.87. IR (ATR, 16 scans): 2959 (w), 2913 (w), 2285 (w), 1643 (m), 1599 (w), 1584 (w), 1512 (s), 1493 (w), 1460 (s), 1456 (s), 1411 (m), 1383 (w), 1373 (w), 1359 (w), 1265 (m), 1186 (w), 1171 (w), 1160 (w), 1145 (w), 1084 (s), 1033 (w), 1001 (w), 974 (s), 942 (m), 902 (m), 854 (s), 823 (s), 773 (m), 756 (s), 748 (s), 726 (m), 698 (s), 683 (s), 660 (s), 635 (m), 610 (m), 603 (m), 573 (m). MS (CI+, isobutane): 431 (40) [M+H], 521 (10) $[B(C_6F_5)_3]$, 357 (10) $[Me_3SiN(H)NCCPh_3]$, 167 (78) $[C_6F_5]$, 187 (10) $[(SiMe_3)_2NNC + H]$, 270 (38) $[Ph_3CCN + H]$. Crystals suitable for X-ray crystallographic analysis were obtained from slow diffusion of *n*-hexane onto the saturated dichloromethane solution of 10 at ambient temperature over a period of 36 h.

3.6. Synthesis of $(Me_3Si)_2NNC(B(C_6F_5)_3)$ (11). Procedure 1: Reaction with $(Me_3Si)_2NNC$. To a stirred solution of $B(C_6F_5)_3$ (0.5 mmol, 0.256 g) in dichloromethane (2.5 mL) neat $(Me_3Si)_2NNC$ (0.5 mmol, 0.094 g) was added at 0 °C. The stirred reaction mixture was allowed to warm to ambient temperature within 1 h. The pale yellow solution was filtered (F4), concentrated approximately to 0.7 mL and stored in the refrigerator (5 °C) for 12 h. The resulting colorless Crystals were washed with dichloromethane (0.5 mL). Removal of supernatant by syringe and drying *in vacuo* yielded 0.250 g (0.358 mmol, 72%) of $(Me_3Si)_2NNC(B(C_6F_5)_3)$ (11).

Procedure 2: Reaction with $(Me_3Si)_2CNN$. To a stirred solution of $B(C_6F_5)_3$ (0.5 mmol, 0.256 g) in dichloromethane (2.5 mL) was added neat $(Me_3Si)_2CNN$ (0.6 mmol, 0.120 g) at 0 °C. The stirred reaction mixture was allowed to warm to ambient temperature within 1 h. The pale yellow solution was filtered (F4), concentrated approximately to 0.7 mL, and stored in the refrigerator (5 °C) for 12 h. The resulting colorless crystals were washed with dichloromethane (0.5 mL). Removal of supernatant by syringe and drying *in vacuo* yielded 0.178 g (0.255 mmol, 51%) of $(Me_3Si)_2NNCB(C_6F_5)_3$ (11).

Data for **11**. Mp: 122 °C (124 °C). Anal. Calcd (found): C, 42.99 (43.04); H, 2.60 (2.84); N, 4.01 (3.75). ¹H NMR (25 °C, CD₂Cl₂, 300.13 MHz): 0.29 (s, 18H, $J({}^{1}H-{}^{29}Si) = 6.8$ Hz, $J({}^{1}H-{}^{13}C) = 121$ Hz). ¹⁹F{¹H} NMR (25 °C, CD₂Cl₂, 282.4 MHz): $\delta = -164.5$ (m, m-CF), -157.9 (m, p-CF), -133.4 (m, o-CF). ¹¹B NMR (25 °C, CD₂Cl₂, 96.29 MHz): -21.27. ¹³C{¹H} NMR (25 °C, CD₂Cl₂, 75.48 MHz): -0.36 (s, Si(CH₃)₃), 116.02 (br, *ipso*-C), 137.63 (dm, *m*-CF, ${}^{1}J({}^{13}C-{}^{19}F) = 229.43$ Hz), 140.77 (dm, p-CF, ${}^{1}J({}^{13}C-{}^{19}F) = 214.03$ Hz), 148.58 (dm, o-CF, ${}^{1}J({}^{13}C-{}^{19}F) = 240.99$ Hz). ²⁹Si{¹H} NMR (25 °C, CD₂Cl₂, 59.62 MHz): 25.46. IR (ATR, 16 scans): 2972 (w), 2911 (w), 2302 (w), 1645 (m), 1557 (w), 1514 (s), 1470 (s), 1466 (s), 1456 (s), 1418 (m), 1392 (m), 1382 (s), 1287 (m), 1282 (m), 1261

(s), 1134 (m), 1127 (m), 1095 (s), 1029 (w), 979 (s), 968 (s), 928 (w), 890 (m), 880 (m), 854 (s), 826 (s), 800 (s), 764 (m), 747 (m), 728 (m), 700 (m), 680 (m), 672 (m), 647 (m), 630 (m), 577 (w). Raman (460 mW, 25 °C, 200 scans, cm⁻¹): 2974 (5), 2913 (10), 2797 (4), 2539 (3), 2299 (10), 2220 (3), 1650 (4), 1474 (1), 1422 (1), 1394 (2), 1279 (2), 1138 (1), 1098 (1), 861 (1), 803 (2), 766 (1), 753 (1), 710 (1), 685 (1), 676 (1), 652 (6), 635 (1), 622 (1), 585 (10), 510 (2), 496 (4), 471 (8), 450 (7), 419 (4), 398 (6), 357 (1), 344 (1), 288 (1), 271 (1), 244 (2), 188 (2), 159 (2), 91 (3). MS (EI, 70 eV): 698 (10) [M], 531 (14) [M - C₆F₅], 512 (100) [B(C₆F₅)], 364 (13) [M - 2C₆F₅], 186 (11) [(SiMe₃)₂NNC], 73 (83) [(SiMe₃)]. Crystals suitable for X-ray crystallographic analysis were obtained by slowly cooling a saturated dichloromethane solution of 11 to 5 °C over a period of 12 h.

3.7. Synthesis of 12. *Procedure 1.* To a stirred solution of 7 (0.48 mmol, 0.271 g) in *n*-hexane (5 mL) was added neat CF_3SO_3H (0.50 mmol, 0.075 g) dropwise at ambient temperature with stirring. The resulting suspension was stirred for 2 h while the color of the supernatant changed gradually from brown red to yellowish orange, and the yellowish precipitate was dissolved completely. Concentration to an approximate volume of 0.5 mL and storage at 5 °C resulted in the deposition of yellow crystals. Removal of supernatant, washing with a few drops of *n*-hexane, and drying *in vacuo* yielded 0.140 g (59%) of **12** as yellow crystals.

Procedure 2. 7 (0.179 mmol, 0.1 g) was dissolved in distilled (but not anhydrous) *n*-hexane (3 mL) at ambient temperature with stirring. The resulting orange solution was stirred for 15 min. Concentration to an approximate volume of 0.5 mL and storage at 5 °C resulted in the deposition of yellowish crystals. Removal of supernatant and drying *in vacuo* yielded 0.085 g (97%) of **12** as yellow crystals.

Data for 12. Mp: 94 °C (101 °C). Anal. Calcd (found): C, 44.39 (44.57); H, 9.523 (9.33); N, 17.26 (17.25). ¹H NMR (25 °C, C₆D₆, 500.13 MHz): 10.15 (s, 1H, NH), 0.52 (s, 9H, Si(CH₃)₃, N-1), 0.41 (s, 9H, Si(CH₃)₃, C-1), 0.27 (s, 9H, Si(CH₃)₃, N-4), 0.15 (s, 18H, 2 Si(CH₃)₃, N-6). $^{13}C{^{1}H}$ NMR (25 °C, C₆D₆, 128.0 MHz): 161.9, 142.1 (C-2, C-3), 157.3 (C-1), 0.3 (s, 2 Si(CH₃)₃, N-6), -0.5 (s, $Si(CH_3)_{31}$ N-1), -0.6 (s, $Si(CH_3)_{32}$ N-4), -1.5 (s, $Si(CH_3)_{32}$ C-1). ²⁹Si{¹H} NMR (25 °C, C₆D₆, TMS = 0, 99.3 MHz): 10.1, 7.4 $(SiMe_3(N-1), SiMe_3(N-4)), 6.6 (2, SiMe_3(N-6)), -8.6 (SiMe_3(C-1)).$ ¹H NMR (25 °C, CD₂Cl₂, 300.13 MHz): 0.10 (s, 18H, N(Si(CH₃)₃)₂, $J({}^{1}\text{H}-{}^{29}\text{Si}) = 6.6 \text{ Hz}), 0.24 \text{ (s, 9H, Si}(CH_3)_3, J({}^{1}\text{H}-{}^{29}\text{Si}) = 6.9 \text{ Hz},$ $J(^{1}H-^{13}C) = 121 \text{ Hz}$, 0.29 (s, 9H, Si(CH₃)₃), 0.37 (s, 9H, Si(CH₃)₃, $J({}^{1}H-{}^{29}Si) = 6.9$ Hz, $J({}^{1}H-{}^{13}C) = 120$ Hz), 9.97 (s, 1H, NH). ¹³C{¹H} NMR (25 °C, CD₂Cl₂, 62.89 MHz): -1.36 (s, Si(CH₃)₃), -0.32 (s, Si(CH₃)₃), -0.21 (s, Si(CH₃)₃), 0.56 (s, (Si(CH₃)₃)₂), 141.9 (C), 157.7 (C), 161.9 (C). ²⁹Si{¹H} NMR (25 °C, CD₂Cl₂, 99.3 MHz): -8.79, 6.91, 7.91, 9.91. IR (ATR, 16 scans): 2956 (m), 2899 (m), 2855 (w), 1573 (m), 1563 (m), 1520 (m), 1465 (m), 1405 (m), 1345 (w), 1325 (w), 1300 (m), 1245 (s), 1179 (s), 1076 (m), 1050 (m), 982 (m), 961 (m), 930 (m), 898 (m), 870 (m), 828 (s), 818 (s), 753 (s), 693 (m), 662 (m), 628 (s), 601 (m). Raman (1500 mW, 25 °C, 800 scans, cm⁻¹): 2960 (5), 2900 (10), 1562 (1), 1522 (1), 1466 (4), 1411 (1), 1345 (1), 1300 (1), 1250 (1), 1179 (1), 1076 (1), 983 (1), 963 (1), 941 (1), 898 (1), 843 (1), 763 (1), 694 (1), 663 (1), 634 (2), 601 (1), 531 (1), 462 (1), 435 (1), 357 (1), 318 (1), 303 (1), 235 (1), 177 (1), 117 (1). MS (CI⁺, isobutane): 486 [M]⁺, 471 [M-CH₃]⁺, 413 [M – SiMe₃]⁺. UV–vis (25 °C, CH₂Cl₂, nm): 412, 294.

ASSOCIATED CONTENT

S Supporting Information

Experimental and computational details, crystallographic information, and further experimental and theoretical data of all considered species. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

axel.schulz@uni-rostock.de

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Martin Ruhmann (University Rostock) is acknowledged for the measurement of Raman spectra. Financial support by the DFG is gratefully acknowledged.

REFERENCES

(1) (a) Lambert, J. B.; Zhao, Y. Angew. Chem., Int. Ed. Engl. 1997, 36, 400–402. (b) Lambert, J. B.; Zhao, Y.; Wu, H.; Tse, W. C.; Kuhlmann, B. J. Am. Chem. Soc. 1999, 121, 5001–5008. (c) Lambert, J. B.; Lin, L. J. Org. Chem. 2001, 66, 8537–8539.

(2) Reviews: (a) Schulz, A.; Villinger, A. Angew. Chem., Int. Ed. 2012, 51, 4526–4528. (b) Lee, V. Y.; Sekiguchi, A. Organometallic Compounds of Low-Coordinate Si, Ge, Sn and Pb; Wiley: Chichester, 2010. (c) Klare, H. F. T.; Oestreich, M. Dalton Trans. 2010, 39, 9176–9184. (d) Lee, V. Y.; Sekiguchi, A. In Reviews of Reactive Intermediate Chemistry; Platz, M. S., Moss, R. A., Jones, M., Eds.; Wiley: New York, 2007; pp 47–120. (e) Lee, V. Y.; Sekiguchi, A. Acc. Chem. Res. 2007, 40, 410–419. (f) Müller, T. Adv. Organomet. Chem. 2005, 53, 155–215. (g) Kochina, T. A.; Vrazhnov, D. V.; Sinotova, E. N.; Voronkov, M. G. Russ. Chem. Rev. 2006, 75, 95–110. (h) Lambert, J. B.; Zhao, Y.; Zhang, S. M. J. Phys. Org. Chem. 2001, 14, 370–379. (i) Reed, C. A. Acc. Chem. Res. 1998, 31, 325–332. (j) Lickiss, P. D. In The Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; Wiley: Chichester, 1998; Vol. 2, pp 557–594. (k) Lambert, J. B.; Kania, L.; Zhang, S. Chem. Rev. 1995, 95, 1191–1201.

(3) For example: (a) Schäfer, A.; Reißmann, M.; Schäfer, A.; Saak, W.; Haase, D.; Müller, T. Angew. Chem., Int. Ed. 2011, 50, 12636-12638. (b) Allemann, O.; Duttwyler, S.; Romanato, P.; Baldrige, K. K.; Siegel, J. S. Science 2011, 332, 574-577. (c) Müther, K.; Fröhlich, R.; Mück-Lichtenfeld, C.; Grimme, S.; Oestreich, M. J. Am. Chem. Soc. 2011, 133, 12442-12444. (d) Müther, K.; Oestreich, M. Chem. Commun. 2011, 47, 334-336. (e) Leszczyńska, K.; Mix, A.; Berger, R. J. F.; Rummel, B.; Neumann, B.; Stammler, H.-G.; Jutzi, P. Angew. Chem., Int. Ed. 2011, 50, 6843-6846. (f) Duttwyler, S.; Douvris, C.; Nathanael, C. D.; Fackler, N. L.; Tham, F. S.; Reed, C. A.; Baldrige, K. K.; Siegel, J. S. Angew. Chem., Int. Ed. 2010, 49, 7519-7522. (g) Lühmann, N.; Panisch, R.; Müller, T. Appl. Organomet. Chem. 2010, 24, 533-537. (h) Klare, H. F. T.; Bergander, K.; Oestreich, M. Angew. Chem., Int. Ed. 2009, 48, 9077-9079. (i) Douvris, C.; Ozerov, O. Science 2008, 321, 1188-1190. (j) Panisch, R.; Boldte, M.; Müller, T. J. Am. Chem. Soc. 2006, 128, 9676-9682. (k) Hara, K.; Akiyama, R.; Sawamura, M. Org. Lett. 2005, 7, 5621-5623.

(4) Scott, V. J.; Çelenligil-Çetin, R.; Ozerov, O. V. J. Am. Chem. Soc. 2005, 127, 2852–2853.

(5) Meier, G.; Braun, T. Angew. Chem., Int. Ed. 2009, 48, 1546–1548.
(6) Zhang, Y.; Huynh, K.; Manners, I.; Reed, C. A. Chem. Commun.

2008, 494–496. (7) In contrast, siliconium ions are positively charged species in which silicon has higher than four coordination. Some authors prefer to restrict the term silylium ion to the fully tricoordinate form. See also: http://old.iupac.org/publications/books/rbook/Red_Book_

2005.pdf.
(8) (a) Lambert, J. B.; Zhang, S.; Stern, C. L.; Huffman, J. C. Science
1993, 260, 1917–1918. (b) Lambert, J. B.; Zhang, S.; Ciro, S. M. Organometallics 1994, 13, 2430–2443.

(9) Xie, Z.; Liston, D. J.; Jelinek, T.; Mitro, V.; Bau, R.; Reed, C. A. J. Chem. Soc., Chem. Commun. **1993**, 384–386.

(10) Ibad, M. F.; Langer, P.; Schulz, A.; Villinger, A. J. Am. Chem. Soc. **2011**, 133, 21016–21027.

(11) Duttwyler, S.; Do, Q.-Q.; Linden, A.; Baldridge, K. K.; Siegel, J. S. Angew. Chem., Int. Ed. **2008**, 47, 1719–1722.

(12) Müller, T.; Bauch, C.; Ostermeier, M.; Bolte, M.; Auner, N. J. Am. Chem. Soc. 2003, 125, 2158–2168.

(13) Maerker, C.; Kapp, J.; Schleyer, P. von, R. In Organosilicon Chemistry II; Auner, N., Weis, J., Eds.; VCH: Weinheim, Germany, 1996; pp 329-358.

(14) Kim, K.-C.; Reed, C. A.; Elliott, D. W.; Mueller, L. J.; Tham, F.; Lin, L.; Lambert, J. B. *Science* **2002**, *297*, 825–827.

(15) Lehmann, M.; Schulz, A.; Villinger, A. Angew. Chem., Int. Ed. 2009, 48, 7444-7447.

(16) Lambert, J. B.; Zhang, S. J. Chem. Soc., Chem. Commun. 1993, 383-384.

(17) Reed, C. A.; Xie, Z.; Bau, R.; Benesi, A. *Science* **1993**, *262*, 402–404.

(18) (a) Prakash, G. K. S.; Keyaniyan, S.; Aniszfeld, R.; Heiliger, L.; Olah, G. A.; Stevens, R. C.; Choi, H.-K.; Bau, R. J. Am. Chem. Soc. 1987, 109, 5123–5126. (b) Lambert, J. B.; Schulz, W. J., jr.; McConnell, J. A.; Schilf, W. J. Am. Chem. Soc. 1988, 110, 2201–2210.

(19) Schulz, A.; Villinger, A. Chem.—Eur. J. 2010, 16, 7276–7281.
(20) Schulz, A.; Thomas, J.; Villinger, A. Chem. Commun. 2010, 46,

(20) Serial, 11, 116(1143, 5., Vininger, 12 Chem. Commun. 2010, 10, 3696–3698.

(21) Jäger, L.; Köhler, H. Sulfur Rep. 1992, 12, 159-212.

(22) Huisgen, R. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984; pp 1–31.

(23) (a) Regitz, M. Diazoalkane: Eigenschaften und Synthesen; Thieme Verlag: Stuttgart, 1977. (b) Zollinger, H. Diazo Chemistry I; VCH: Weinheim, 1994. (c) Zollinger, H. In Diazo Chemistry II; VCH: Weinheim, 1995. (d) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091–1160.

(24) (a) Fink, J.; Regitz, M. Synthesis **1985**, 569–585. (b) Bug, T.; Hartnagel, M.; Schlierf, C.; Mayr, H. Chem.—Eur. J. **2003**, 9, 4068– 4076.

(25) Huisgen, R. Angew. Chem. 1955, 67, 439-461.

(26) (a) Ledwith, A.; Shih-Lin, Y. J. Chem. Soc. B 1967, 83-84.
(b) Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 565-598.
(c) Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 633-696.

(27) (a) Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. Chem. Rev. **2011**, 111, 6984–7034. (b) Elguero, J.; Silva, A. M. S.; Tome, A. C. In Modern Heterocyclic Chemistry, Vol. 2; Alvarez-Builla, J., Vaquero, J. J., Barluenga, J., Eds.; Wiley-VCH: Weinheim, 2011; pp 635–725.

(28) (a) Metwally, M. A.; Darwish, Y. M.; Amer, F. A. Indian J. Chem., Sect. B 1989, 28, 1069–1071. (b) Zauhar, L. Can. J. Chem. 1968, 46, 1079–1085. (c) Karci, F.; Sener, N.; Yamac, M.; Sener, I.; Demircali, A. Dyes Pigm. 2008, 80, 47–52. (d) Fahmy, S. H.; El-Hosami, M.; El-Gamal, S.; Elnagdi, M. H. J. Chem. Technol. Biotechnol. 1982, 32, 1042–1048.

(29) Mohareb, R. M.; Ho, J. Z.; Alfarouk, F. O. J. Chin. Chem. Soc. 2007, 54, 1053–1066.

(30) (a) Boger, D. L.; Coleman, R. S.; Panek, J. S.; Huber, F. X.;
Sauer, J. J. Org. Chem. 1985, 50, 5377–5379. (b) Boger, D. L.; Panek,
J. S.; Duff, S. R. J. Am. Chem. Soc. 1985, 107, 5745–5754.
(c) Sotiropoulos, J. M.; Baceiredo, A.; Bertrand, G. Bull. Soc. Chim.
Fr. 1992, 129, 367–375.

(31) (a) Meerwein, H. Angew. Chem. **1948**, 60, 78. (b) Kantor, S. W.; Osthoff, R. C. J. Am. Chem. Soc. **1953**, 75, 931–932.

(32) Only one major resonance Lewis formula is shown for clarity.

(33) Seyferth, D.; Flood, T. C. J. Organomet. Chem. 1971, 29, C25–C28.

(34) Wiberg, N.; Hübler, G. Z. Naturforsch. 1976, 31b, 1317–1321.
(35) (a) Huisgen, R.; Seidel, M.; Sauer, J.; McFarland, J. W.;
Wallbillich, G. J. Org. Chem. 1959, 24, 892–893. (b) Huisgen, R.;
Seidel, M.; Wallbillich, G.; Knupfer, H. Tetrahedron 1962, 17, 3–29.
(36) Bertrand, G.; Wentrup, C. Angew. Chem., Int. Ed. Engl. 1994, 33, 527–545.

(37) Granier, M.; Baceiredo, A.; Dartiguenave, Y.; Dartiguenave, M.; Menu, M. J.; Bertrand, G. J. Am. Chem. Soc. **1990**, *112*, 6277–6285.

(38) Emig, N.; Gabbaï, F. P.; Krautscheid, H.; Réau, R.; Bertrand, G. Angew. Chem., Int. Ed. **1998**, 37, 989–992.

(39) Castan, F.; Baceiredo, A.; Bertrand, G. Angew. Chem., Int. Ed. 1989, 1250–1251.

Journal of the American Chemical Society

(40) (a) Pump, J.; Wannagat, U. Liebigs Ann. 1962, 652, 21–27.
(b) Stenzel, J.; Sundermeyer, W. Chem. Ber. 1967, 100, 3368–3370.
(c) Drake, J. E.; Glavincevski, B. M.; Henderson, H. E.; Wong, C. Can. J. Chem. 1979, 57, 1162–1166. (d) Kienzle, A.; Obermeyer, A.; Riedel, R.; Aldinger, F.; Simon, A. Chem. Ber. 1993, 126, 2569–2571.

(41) (a) Seyferth, D.; Menzel, H.; Dow, A. W.; Flood, T. C. J. Organomet. Chem. **1972**, 44, 279–290. (b) Seyferth, D.; Dow, A. W.; Menzel, H.; Flood, T. C. J. Am. Chem. Soc. **1968**, 90, 1080–1082.

(42) Jacobsen, H.; Berke, H.; Doering, S.; Kehr, G.; Erker, G.; Froehlich, R.; Meyer, O. Organometallics **1999**, *18*, 1724–1735.

(43) Addition of an excess of CF₃SO₃H leads to a complete Me_3Si/H substitution of all N-bound Me_3Si groups. Only the C-bound $SiMe_3$ group remains intact.

(44) Obermeyer, A.; Kienzle, A.; Weidlein, J.; Riedel, R.; Simon, A. Z. Anorg. Allg. Chem. **1994**, 620, 1357–1363.

(45) Pyykkö, P.; Atsumi, M. Chem.—Eur. J. 2009, 15, 12770–12779.
(46) (a) Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO, Version 3.1. (b) Carpenter, J. E.; Weinhold, F. J. Mol. Struct. (Theochem) 1988, 169, 41–62. (c) Weinhold, F.; Carpenter, J. E. The Structure of Small Molecules and Ions; Plenum Press: New York, 1988; p 227. (d) Weinhold, F.; Landis, C. Valency and Bonding. A Natural Bond Orbital Donor-Acceptor Perspective; Cambridge University Press: Cambridge, UK, 2005; and references therein.

(47) Fischer, G.; Herler, S.; Mayer, P.; Schulz, A.; Villinger, A.; Weigand, J. J. *Inorg. Chem.* **2005**, *44*, 1740–1751.

(48) Brown, C. J. Acta Crystallogr. 1966, 21, 146.

(49) Prasad, T. N. M.; Raghava, B.; Sridhar, M. A.; Rangappa, K. S.; Prasad, J. S. X-ray Struct. Anal. Online 2010, 26, 75.

(50) Swart, M.; Rösler, E.; Bickelhaupt, M. J. Comput. Chem. 2006, 1485-1492.

(51) Reviews: (a) Tietze, L. F.; Beifuss, U. Angew. Chem., Int. Ed. Engl. 1993, 32, 131–163. (b) Tietze, L. F. Chem. Rev. 1996, 96, 115–136.

(52) (a) Musad, E. A.; Lokanatha, R. K. M.; Mohamed, R.; Saeed, A. B.; Vishwanath, B. S.; Rao, K. M. L. *Bioorg. Med. Chem. Lett.* **2011**, *21*, 3536–3540. (b) Kaymakcioglu, B. K.; Rollas, S. *Farmaco* **2002**, *57*, 595–600. (c) Coumar, M. S.; Leou, J.-S.; Shukla, P.; Wu, J.-S.; Dixit, A. K.; Lin, W.-H.; Chang, C.-Y.; Lien, T.-W.; Chen, C.-H.; Hsu, J. T.-A; Chao, Y.-S.; Wu, S.-Y.; Hsieh, H.-P.; Tan, U.-K., Jr. *J. Med. Chem.* **2009**, *52*, 1050–1062. (d) Ali, T. E.; Abdel-Aziz, S. A.; El-Shaaer, H. M.; Hanafy, F. I.; El-Fauomy, A. Z. Phosphorus, Sulfur, Silicon Relat. Elem. **2008**, *183*, 2139–2160. (e) Silveira, I. A. F. B.; Paulo, L. C.; de Miranda, A. L. P.; Rocha, S. O.; Freitas, A. C. C.; Barreiro, E. J. J. Pharm. Pharmacol. **1993**, *45*, 646–649.

(53) (a) El-Shafei, A.; Fadda, A. A.; Khalil, A. M.; Ameen, T. A. E.; Badria, F. A. Bioorg. Med. Chem. 2009, 17, 5096-5105. (b) El-Hawash, S. A.; Habib, N. S.; Fanaki, N. H. Pharmazie 1999, 54, 808-813.
(c) Khalil, Z. H.; Yanni, A. S.; Gaber, A. M.; Abdel-Mohsen, S. A. Phosphorus, Sulfur, Silicon Relat. Elem. 2000, 166, 57-70. (d) Bekhit, A. A.; Ashour, H. M. A.; Guemei, A. A. Arch. Pharm. 2005, 338, 167-174.
(e) Amir, M.; Khan, S. A.; Drabu, S. J. Indian Chem. Soc. 2002, 79, 280-281. (f) Krystof, V.; Cankar, P.; Frysova, I.; Slouka, J.; Kontopidis, G.; Dzubak, P.; Hajduch, M.; Srovnal, J.; de Azevedo, W. F.; Orsag, M.; Paprskarova, M.; Rolccik, J.; Latr, A.; Fischer, P. M.; Strnad, M. J. Med. Chem. 2006, 49, 6500-6509.

(54) Reiß, F.; Schulz, A.; Villinger, A.; Weding, N. Dalton. Trans. 2010, 39, 9962–9972.

(55) Nava, M.; Reed, C. A. Organometallics 2011, 30, 4798–4800.
(56) Driess, M.; Barmeyer, R.; Monsé, C.; Merz, K. Angew. Chem., Int. Ed. 2001, 40, 2308–2310.

(57) (a) Dunks, G. B.; Palmer-Ordonez, K. Inorg. Chem. 1978, 17, 1514–1516. (b) Dunks, G. B.; Barker, K.; Hedaya, E.; Hefner, C.; Palmer-Ordonez, K.; Remec, P. Inorg. Chem. 1981, 20, 1692–1697. (c) Franken, A.; King, B. T.; Rudolph, J.; Rao, P.; Noll, B. C.; Michl, J. Collect. Czech. Chem. Commun. 2001, 66, 1238–1249. (d) Xie, Z.; Jelinek, T.; Bau, R.; Reed, C. A. J. Am. Chem. Soc. 1994, 116, 1907–1913. (e) Xie, Z.; Bau, R.; Benesi, A.; Reed, C. Organometallics 1995, 14, 3933–3941.

(58) (a) Reiß, F.; Schulz, A.; Villinger, A. Eur. J. Inorg. Chem. 2012, 261–271. (b) Jutzi, P.; Müller, C.; Stammler, A.; Stammler, H.-G. Organometallics 2000, 19, 1442–1444.

(59) Barton, T. J.; Hoekman, S. K. Synth. React. Inorg. Met.-Org. Chem. 1979, 9, 297–300.

5.2 Isolation of a Labile Homoleptic Diazenium Cation.

W. Baumann, D. Michalik, F. Reiß, A. Schulz, A. Villinger

Angew. Chem. 2014, 126, 3314-3318; Angew. Chem. Int Ed. 2014, 53, 3250-3253.

In dieser Publikation wurde ein groß Teil der experimentellen Arbeiten von mir durchgeführt. Die Direkt-Silylierungen wurden von mir verifiziert, alle Oxidations-Experimente wurden von mir durchgeführt. Ich habe das Manuskript mit verfasst und das Supportingfile verfasst. Der eigene Beitrag liegt bei ca. 75 %.

Ein ausführliches Supportingfile steht online zur freien Verfügung:

DOI: 10.1002/anie.201310186

Diazenium Ions

Isolation of a Labile Homoleptic Diazenium Cation**

Wolfgang Baumann, Dirk Michalik, Fabian Reiß, Axel Schulz,* and Alexander Villinger*

Abstract: Following our interest in nitrogen chemistry, we now describe the synthesis, structure, and bonding of labile disilylated diazene, its GaCl₃ adduct, and the intriguing trisilylated diazenium ion $[(Me_3Si)_2N=N-SiMe_3]^+$, a dark blue and highly labile $(T_{decomp} > -30^{\circ}C)$ homoleptic cation of the type $[R_3N_2]^+$. Although direct silylation of $Me_3Si-N=N-SiMe_3$ failed, the $[(Me_3Si)_2N=N-SiMe_3]^+$ ion was generated in a straightforward two-electron oxidation reaction from mercury(II) dihydrazide and $Ag[GaCl_4]$. Moreover, previous structure data of $Me_3Si-N=N-SiMe_3$ were revised on the basis of new data.

The rise of the synthetic dyestuffs industry during the 19th century began with the discovery of diazonium salts, for example, [R-N=N]+Cl-, and diazotation reactions by Griess as early as 1858.^[1,2] Azo dyes, compounds that usually contain two aromatic fragments connected by a N=N bond, still have a large impact and versatile scientific, medical, ecological, and technical importance.^[3] Although aryl-substituted diazenes have been extensively investigated and represent a class of stable compounds, much less is known about alkyl- and silylsubstituted diazenes R-N=N-R (also known as diimines). It was not until 1968 that Wiberg et al. succeeded in the isolation of pale blue N,N'-bis(trimethylsilyl)diazene (2) from the reaction of p-tosylazide with lithium tris(trimethylsilyl)hydrazide (1) at low temperatures (Scheme 1).^[4] In 1974 Veith and Bärnighausen published a single-crystal structure determination of 2, which confirmed the postulated trans configuration but revealed an extraordinary short N-N distance of 1.171(7) Å.^[5] This value, however, lies outside the reported

Scheme 1. Synthesis of N,N'-bis(trimethylsilyl) diazene (2); Tos = p-MeC₆H₄SO₂.

 [*] Dr. W. Baumann, Dr. D. Michalik, Prof. Dr. A. Schulz, Dr. A. Villinger Universität Rostock, Institut für Chemie Albert-Einstein-Strasse 3a, 18059 Rostock (Deutschland) and Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Strasse 29a, 18059 Rostock (Germany) E-mail: axel.schulz@uni-rostock.de alexander.villinger@uni-rostock.de
 Homepage: http://www.chemie.uni-rostock.de/ac/schulz

- [**] We are indebted to N. Wiberg, G. Fischer, and H. Brand (Ludwig-Maximilians-Universität München).
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201310186.

range for known *trans* diazenes (1.219–1.254 Å; cf. Σr_{cov} -(N=N) = 1.20 Å),^[6] and therefore provoked controversial remarks in the literature. Moreover, computational studies predicted longer N–N bonds, which were consistent with experimental and theoretical trends found for other diazenes.^[5,7]

Reports on the chemistry of diazenium cations $[R_2N=N-R]^+$ (R = alkyl, aryl) are restricted to only a few examples or are even unknown ($R = SiMe_3$) in the literature.^[8-10] Herein, we focus on the synthesis of highly labile silylated diazenium species. Interestingly, the formation of mostly transient diazenium ions such as $[Ph_2N=N-H]^{+[11]}$ was previously discussed in Diels–Alder, thermolysis, and solvolysis reactions, or electrochemically induced redox processes, often without any characterization.^[12–15]

As shown by Wiberg, the reaction of tosylazide with **1** at low temperatures provides ready access to light blue, disilylated *trans* diazene **2** in approximately 65% yield (Scheme 1, Figure 1 left).^[4] The major challenge when dealing with **2** arises from its very low decomposition point T_{decomp}

Figure 1. ORTEP representation of the molecular structure of **2** (left) and **3** (right) in the crystal. Thermal ellipsoids correspond to 50% probability at 173 K.

< -40 °C (cf. *t*Bu-N=N-*t*Bu > 200 °C, Ph-N=N-Ph > 600 °C), which even lies below its melting point of about -3 °C.^[16,17] Since diazene 2 decomposes at ambient temperatures with a half-time of 7.6 h (zero-order reaction, in a 5:1 mixture of npentane/toluene) it must be kept at temperatures below -50 °C in solution or in the solid state (see Figure S14 in the Supporting Information).^[18] A suitable low-temperature synthesis had to be found to generate the tris(trimethylsilyl)diazenium ion $[(Me_3Si)_2N=N-SiMe_3]^+$ from diazene 2.^[19] We thought that the obvious route to the desired [(Me₃Si)₂N=N- $SiMe_3$ ⁺ cation was the direct silulation of diazene 2 with salts of the type $[Me_3Si \cdot LB]^+[B(C_6F_5)_4]^-$ or $[Me_3Si]^+[CB]^-$ at low temperatures (Scheme 2, route A; LB = weak Lewis base = toluene, Me₃Si-H, Me₃Si-X with X = Cl, F; CB = $[CHB_{11}H_5X_6]$, X = Br, Cl). The calculated gas-phase reaction (1)^[18g] with $\Delta H_{298} = -57.1 \text{ kcal mol}^{-1}$ also supported the idea of direct silvlation (cf. $-8.9N_2$, -30.4 toluene,

Scheme 2. Unsuccessful attempts for the synthesis of salts bearing the diazenium ion 4^+ (A: [wca] = [B(C_6F_5)_4], [CHB_{11}H_6X_6], X = Br, Cl; B/C: [wca] = [B(C_6F_5)_4], [SbCl_6], [AsF_6], [GaCl_4]).

 $-31.3 \text{ Me}_3 \text{Si-H}$, $-34.8 \text{ Me}_3 \text{Si-F}$, $-54.4 \text{ Me}_3 \text{Si-CN}$, and $-71.7 \text{ kcal mol}^{-1}$ for Me₃Si-N=C=N-SiMe₃).^[19]

 $Me_{3}Si-N=N-SiMe_{3(g)} + [Me_{3}Si]^{+}_{(g)} \rightarrow [(Me_{3}Si)_{2}N=N-SiMe_{3}]^{+}_{(g)} \quad (1)$

Reactions of all the utilized silvlating agents (Scheme 2) with an excess of 2 in the absence of solvent led to violent decomposition even at very low temperatures (<-150 °C), Me₃Si but the reactions in all the applied solvents were also not successful due to decomposition of the reactants and the $[B(C_6F_5)_4]^-$ ion. In contrast, $[Me_3Si]^+[CHB_{11}H_5X_6]^-$ (X = Cl, Br) did not decompose under these reaction conditions; of limited however, because the solubility of $[Me_3Si]^+[CHB_{11}H_5X_6]^-$ no reaction with 2 below its decomposition temperature was observed. Since all these attempts failed, we then treated 2 with Me₃Si-X (X = Cl, I) in the presence of Ag[wca] (wca=weakly coordinating anion) or strong Lewis acids (LA) such as GaCl₃ and SbCl₅ (Scheme 2, routes B and C; $[wca] = [AsF_6]$, $[SbCl_6]$, $[B(C_6F_5)_4]$, $[GaCl_4]$). Again, only decomposition or undesired side reactions were observed. Although the initially precipitation of AgX (X = I, Cl) was observed, all the reactions led to the complete decomposition of 2 into N₂ and Me₃Si-X, along with the formation of $E^{(III)}X_3$ (E = As, Sb, Ga; X = F, Cl).^[18] This is in accord with the observation by Wiberg that 2 reduces main group element chlorides such as GeCl₄ with release of N₂ and Me₃Si-Cl.^[16c] However, the reaction of 2 with GaCl₃ as the Lewis acid or with Ag[GaCl₄]/Me₃Si-I in dichloromethane at low temperatures resulted in the formation of the diazene adduct Me₃Si-N=N-SiMe₃·GaCl₃ (3, Figure 1, right) in the form of dark blue crystals (yield ca. 95%), which were thermally stable up to -20 °C (Scheme 2, routes B and C).

Although gas-phase computations predict an almost barrier-free approach of the $[Me_3Si]^+$ ion to diazene **2** (see Figure S16 in the Supporting Information), all the synthetic routes used did not succeed in preparing the diazenium ion.^[18] We therefore decided to attempt the preparation of the diazenium salt $[(Me_3Si)_2N=N-SiMe_3]^+[GaCl_4]^-$ (**4**[GaCl_4]) by redox reactions starting from heavy metal hydrazide derivatives already bearing a $[(Me_3Si)_2N-N-SiMe_3]^-$ unit. For example, the dihydrazinobismuth cation in $[Bi\{N(SiMe_3)N-(SiMe_3)2_1_2]^+[GaCl_4]^-$ (**5**[GaCl_4])^[20] and the neutral mercury(II) dihydrazide Hg[N(SiMe_3)N(SiMe_3)2_1] (**6**)^[21] seemed to

be promising candidates, since the 100% signal in the CI⁺ mass spectra of $5[GaCl_4]$ and 6 could be assigned to diazenium cation 4^+ , thus indicating their potential as diazenium sources. Indeed, the reaction of $5[GaCl_4]$ with GaCl₃ and elemental chlorine or sulfuryl chloride as the oxidizer in dichloromethane at temperatures below -50 °C gave, after filtration to remove precipitates, concentration in vacuum, and storage at -80 °C, low yields of blue, highly temperature-sensitive crystals, which were identified as 4-[GaCl₄] by X-ray studies (Scheme 3, top).^[18] However, the decomposition of the bismuth salt $5[GaCl_4]$ to $4[GaCl_4]$ and bismuth chlorides was difficult to carry out because of the high reactivity of Cl₂ and SO₂Cl₂ leading to many side reactions and low yields.

Finally, we found that treatment of mercury salt **6** with two equivalents of Ag[GaCl₄] at -80 °C led in a clean, almost quantitative reaction to pure, crystalline **4**[GaCl₄] as well as elemental mercury and silver. The latter form an amalgam which can be easily removed by low-temperature filtration (Scheme 3, bottom).^[18h] It is interesting to note, that the

Scheme 3. Synthesis of 4[GaCl₄].

analogous reaction of **6** with other silver salts such as $Ag(toluene)_3[B(C_6F_5)_4]$, $Ag[CF_3SO_3]$, $Ag[CHB_{11}H_5X_6]$, or $Ag[AsF_6]$ was not successful.^[18] The overall process represents a remarkable two-electron oxidation of the $[(Me_3Si)_2N-N-SiMe_3]^-$ ion according to the following formal Equations (2) and (3).^[18h]

 $2 [(Me_{3}Si)_{2}N-N-SiMe_{3}]^{-} \rightarrow 2 [(Me_{3}Si)_{2}N=N-SiMe_{3}]^{+} + 4 e^{-}$ (2)

$$\mathrm{Hg}^{2+} + 2\,\mathrm{Ag}^{+} + 4\,\mathrm{e}^{-} \to \mathrm{Hg}\mathrm{Ag}_{2} \tag{3}$$

Blue **4**[GaCl₄] is extremely air and moisture sensitive, and decomposes at temperatures above -30 °C. In solution it also decomposes rapidly at temperatures above -30 °C. Nonetheless, **4**[GaCl₄] could be fully characterized by low-temperature ¹H, ¹³C, ^{14/15}N, ²⁹Si NMR, and Raman spectroscopy as well as by single-crystal X-ray diffraction (Table 1).¹⁵N NMR spectroscopy (-60 °C, CD₂Cl₂) is particularly well suited to distinguish between two-coordinate and the three-coordinate nitrogen atoms found in diazene species (**2**: $\delta = 605$ (N1/N2) versus **4**⁺: 612 (N1) and 214 ppm (N2)). Silylation at N2 results in the resonance for N2 being dramatically upfield shifted by more than $\Delta\delta = 404$ ppm, while the resonance for

Angewandte Communications

Table 1: Spectroscopic data of diazene species 2, 3, 4[GaCl ₄] and for	
comparison mercury(II) dihydrazide 6 .	

	, , ,			
Species	2	3	4 [GaCl₄]	6
Mp/T _{decomp} /°C	$-3/-30^{[d]}$	36/-20	-/-30	-/156
NMR ^[a]				
¹⁵ N, N1	605	596	612	-269
¹⁵ N, N2	605	248	214	-309
²⁹ Si, N1	5.2	23.8	24.26	9.77
²⁹ Si, N2	5.2	45.6	44.99	5.18
¹³ C, N1	-4.0	-1.6	-0.9	3.09
¹³ C, N2	-4.0	-1.8	-0.4	2.63
¹ H, N1	0.17	0.64	0.70	0.277
¹ H, N2	0.17	0.46	0.55	0.284
$v_{\rm NN,Raman}/{\rm cm}^{-1}$	1555 ^[b]	1568 ^[b]	1570 ^[b]	1062
N1-N2/Å	1.227(2) ^[e]	1.243(2)	1.254(2)	1.462(4)
N1-Si1/Å	1.807(3) ^[e]	1.826(2)	1.829(1)	1.725(3)
N2-Si2/Å	1.807(3) ^[e]	1.884(2)	1.894(1)	1.735(3)
N2-Si3/Å	-	-	1.899(1)	1.737(3)
Si1-N1-N2/°	117.3(2) ^[e]	134.6(1)	140.5(1)	123.8(2)
Si1-N1-N2-Si2/°	180	175.5(1)	175.3(1)	-98.0(3) ^[g]
q(N1)/e	-0.55	-0.43	-0.40	-1.15
q(N2)/e	-0.55	-0.59	-0.59	-1.21
$Q_{\rm CT}/e^{\rm [f]}$	-	0.24	0.33	0.48

[a] δ [ppm], -75 °C, CD₂Cl₂. [b] The sample decomposes in the laser beam. [c] No signals were detected. [d] Slow decomposition starts earlier. [e] Only structural parameters of part A with the larger occupancy of the disordered molecule are listed. [f] $Q_{\rm CT}$ = total charge transfer from the diazene to the Lewis acid. [g] The hydrazide group adopts an almost perpendicular arrangement as a result of Pauli repulsion between the lone pairs of electrons localized on the two N atoms (see Figure S1).

dicoordinated N1 is only shifted by about $\delta = 8 \text{ ppm}$ to a higher field (cf. $\delta = 357/-11$ ppm by the addition of GaCl₃ to 3). These values display an extreme nuclear magnetic deshielding of both nitrogen atoms in 2 and N1 in 3 and 4^+ , a fact which was already observed and studied by Wrackmeyer and co-workers in a series of diazenes (cf. 2: $\delta = 618$ -630, Ph-N=N-SiMe₃: 251,^[18j] Ph-N=N-Ph: 131, Et-N=N-Et: 151 ppm).^[17a,22] Wrackmeyer and co-workers found that the remarkable downfield shift of δ ^{[14}N] upon substituting one or both alkyl or phenyl groups in R-N=N-R by Me₃Si can be attributed to a decrease in the energy gap for magnetic dipole allowed electronic transitions, in particular of the $n \rightarrow \pi^*$ type, and thus reflects the unique influence of silvl substituents on the electronic structures, and is also responsible for the blue color. $^{\left[22,23\right] }$ Thus, the ^{15}N resonance of azo compounds of the type R-N=N-SiMe3 was observed approximately in the middle of the 15N resonances of the symmetrically substituted compounds. A similar effect can be discussed when 2 is silvlated to yield 4⁺. The ²⁹Si NMR data illustrate that when silvlation occurs both ²⁹Si resonances are shifted downfield with respect to those of diazene 2 by $\Delta \delta = 19$ (N1) and 39 ppm (N2) (2: $\delta = 5.2$ (N1/N2) versus 4⁺: 24.3 (N1) and 45.0 ppm (N2)). The Raman data of all the considered diazene species (Table 1) show sharp bands in the expected region between 1560 and 1600 cm⁻¹, which can be assigned to the $v_{\rm NN}$ stretching frequency (cf. 1589 cm⁻¹ in Ph-N=N-Ph). The coordination of [Me₃Si]⁺ and GaCl₃ to diazene 2 causes no significant shift in the band to lower wave numbers, thus indicating an almost pure nonbonding character of the lone pair of electrons at the nitrogen donor center. It should be

Figure 2. Left: ORTEP representation of the molecular structure of 4^+ in the crystal. Thermal ellipsoids correspond to 50% probability at 173 K. Right: Three-dimensional representation of the ELF at 0.82.

mentioned that **2**, **3**, and **4**[GaCl₄] quickly decompose in the laser beam to form molecular nitrogen and the hydrazine derivative (Me₃Si)₄N₂, which is in accord with observations by Wiberg et al.^[4]

X-ray diffraction analysis (Figure 2) revealed unequivocally the existence of diazenium cation 4^+ with an almost planar N₂Si₃ skeleton (deviation from planarity less than 5°). There are neither significant cation-anion nor anion-anion contacts. Both N atoms are in a planar environment with two slightly different sets of N-Si bond lengths (N1-Si1 1.829(1), N2-Si2 1.894(1), and N2-Si3 1.899(1); cf. $\Sigma r_{cov}(Si-N) =$ 1.87 Å),^[6] which can be attributed to hyperconjugation of the lone pair of electrons localized at N1 into the N2-Si and Si1-C σ^* orbitals, respectively. The most striking feature is the N-N bond length of 1.254(2) Å, which lies in the typical range of a N=N bond (cf. Σr_{cov} (N-N) = 1.42, N=N 1.20, N=N 1.08 Å; 1.243(3) Å in azobenzene)^[6,24] and in accord with those found in tetracyclic and hexacyclic formal bis(trialkyldiazenium) bis(tetrafluoroborate) salts reported by Nelsen et al. (1.244(5)-1.261(5) Å), where the N₂ units are, however, part of a six-membered ring.^[10b] Comparison of the structural data of 4^+ with those of 2 and 3 reveal only small differences (Table 1). For all species, the N-Si skeleton is planar and two slightly different Si-N bond lengths are observed, except for the C_2 -symmetric diazene (trans configuration). The shortest Si-N bonds are found in 2 because of stronger hyperconjugative effects. The two Me₃Si groups in 2 and 3 adopt a trans arrangement. The Ga-N donor-acceptor bonds in **3** at 2.036(2) $Å^{[25]}$ are in the expected range (cf. 2.011(4) in NH(SiMe₃)₂·GaCl₃, 1.965(2) Å in Me₃Si-N = S = N-SiMe₃·GaCl₃).^[26,27]

Finally, it is interesting to note that the previous structure determination of diazene **2** needs to be revised on the basis of our data.^[5] Although the cell data are in agreement (space group $P2_1/c$, Z=2), the previously reported structure of **2** was refined without taking into account that the whole molecule is disordered, which results for example in an unrealistically short N–N bond length of 1.171(7) Å and a large N-N-Si angle of 120.0(4)°. However, if the molecule is refined as disordered over two positions then a significantly longer N-N distance of 1.227(2) Å (cf. Σr_{cov} (N=N) = 1.20 Å) and a smaller N-N-Si angle of 117.3(2)° in accordance with the computations are obtained (e.g. 1.247 from B3LYP/6-311 + G(d,p),^[22] 1.242 Å from M06-2X/aug-cc-pvTZ), which now lie in the expected range for diazenes.^[18]

Figure 3. Left: Lewis representations of 4⁺ according to NBO/NRT analysis. Right: MO40 (π), HOMO (n/σ), and LUMO (π^*).

DFT calculations of the electronic structure as well as ELF, MO, and NBO/NRT analyses (ELF = electron localization function,^[28] NBO = natural bond orbital, NRT natural resonance theory)^[29] were carried out to gain insight into the structure and bonding of diazenium ion 4⁺. MO and NBO calculations show a localized N=N bond and a lone pair of electrons that according to NRT analysis is mainly localized at N1 (Figure 3). This is in accordance with the ELF of 0.82 that exhibits a small dumbbell-shaped region of localized electrons between the two N atoms, which is a good indicator of a classical double bond, along with a monosynaptic valence basin for the lone pair of electrons localized at N1 (Figure 2, right). The calculated natural atomic orbital population (NAO) net charges are q(N1) = -0.40 and -0.59 e (N2), which means that N1 becomes slightly less negative and N2 even more negative upon formal [Me₃Si]⁺ addition, that is, the overall charge along the N1-N2 unit remains almost constant (cf. 2: q(N1) + q(N2) = -1.10, 3: -1.02, 4⁺: -0.99 e, Table 1), in accordance with the charge distribution in the adduct 3. According to TD-DFT calculations,^[18] the blue color arises from the weak n/ $\sigma \rightarrow \pi^*$ HOMO–LUMO electronic transition at $\lambda_{\text{max,calcd}} = 731$ nm in cation 4⁺ (Figure 3, right).^[17b]

In summary, a highly labile salt bearing the trisilylated homoleptic diazenium ion 4^+ is presented for the first time. Although the direct silylation of **2** failed because of side reactions or low solubility, diazenium ion 4^+ was formed in a straightforward two-electron oxidation process starting from mercury(II) dihydrazide and Ag[GaCl₄]. Structural and spectroscopic data are in accordance with those of diazene **2** and the hitherto unknown diazene GaCl₃ adduct **3**. Furthermore, we found that the previous structural data of diazene **2** needed to be revised on the basis of a new singlecrystal structure determination, thus solving an old problem in diazene chemistry.

Received: November 23, 2013 Published online: February 14, 2014

Keywords: diazenes · diazenium ions · oxidation · silylium ions · structure elucidation

- [2] R. Wizinger-Aust, Angew. Chem. 1958, 70, 199.
- [3] A. Bafana, S. Devi, T. Chakrabarti, Environ. Rev. 2011, 19, 350.
- [4] N. Wiberg, W.-C. Joo, W. Uhlenbrock, Angew. Chem. 1968, 80, 661.
- [5] M. Veith, H. Bärnighausen, Acta Crystallogr. 1974, B30, 1806.
- [6] P. Pyykkö, M. Atsumi, Chem. Eur. J. 2009, 15, 12770.
- [7] A. Modelli, F. Scagnolari, D. Jones, G. Distefano, J. Phys. Chem. A 1998, 102, 9675.
- [8] H. Wieland, E. Wecker, Chem. Ber. 1910, 43, 3260.
- [9] U. Kuhlmann, DE1419789B1, 1969.
- [10] a) S. F. Nelsen, R. T. Landis II, *J. Am. Chem. Soc.* **1974**, *96*, 1788;
 b) S. F. Nelsen, H. Chang, J. J. Wolff, D. R. Powell, *J. Org. Chem.* **1994**, *59*, 6558.
- [11] S. Hünig, H. Balli, E. Breither, F. Brühne, H. Geiger, E. Grigat, F. Müller, H. Quast, *Angew. Chem.* **1962**, *74*, 818; *Angew. Chem. Int. Ed. Engl.* **1962**, *1*, 640.
- [12] See, for example: a) G. Cauquis, M. Genies, *Tetrahedron Lett.* 1968, 32, 3537; b) G. Cauquis, M. Genies, *Tetrahedron Lett.* 1971, 48, 4677.
- [13] A. Ferguson, Tetrahedron Lett. 1973, 30, 2889.
- [14] a) W. R. McBride, H. W. Kruse, J. Am. Chem. Soc. 1957, 79, 572;
 b) W. R. McBride, E. M. Bens, J. Am. Chem. Soc. 1959, 81, 5546.
 [15] F. Allard, J. Am. Chem. Soc. 1959, 104 51402
- [15] E. Allred, J. Am. Chem. Soc. 1982, 104, 5422.
- [16] a) N. Wiberg, W. Uhlenbrock, W. Baumeister, J. Organomet. Chem. 1974, 70, 259; b) N. Wiberg, W. Uhlenbrock, J. Organomet. Chem. 1974, 70, 239; c) N. Wiberg, W.-C. Joo, G. Schwenk, W. Uhlenbrock, M. Veith, Angew. Chem. 1971, 83, 379; Angew. Chem. Int. Ed. Engl. 1971, 10, 374.
- [17] a) J. Kroner, W. Schneid, N. Wiberg, B. Wrackmeyer, G. Ziegleder, *J. Chem. Soc. Faraday Trans.* 2 **1978**, *74*, 1909; b) H. Bock, K. Wittel, M. Veith, N. Wiberg, *J. Am. Chem. Soc.* **1976**, *98*, 109.
- [18] Supporting information: a) Synthesis details, b) details of X-ray structure elucidation, c) kinetics of the decomposition of diazene, d) IR, Raman, NMR spectra, e) ¹H,¹⁵N HMBC spectra, and f) computational details, g) applied level theory: pbe1pbe/aug-cc-pwCVDZ, h) the precipitate could be identified as a mixture of amalgam Ag₁₁Hg₉ along with traces of AgCl by a Rietveld refinement of the powder diffraction data, i) diazene **2**: The asymmetric unit was split in two parts and the occupancy of each part was refined freely (0.652(12)/0.348(12)); j) we observed two resonances at $\delta = 310$ (N_{Si}) and 255 ppm (N_{Ph}).
- [19] a) M. Lehmann, A. Schulz, A. Villinger, Angew. Chem. 2009, 121, 7580; Angew. Chem. Int. Ed. 2009, 48, 7444; b) A. Schulz, A. Villinger, Chem. Eur. J. 2010, 16, 7276; c) M. F. Ibad, P. Langer, F. Reiß, A. Schulz, A. Villinger, J. Am. Chem. Soc. 2012, 134, 17757.
- [20] W. Baumann, A. Schulz, A. Villinger, Angew. Chem. 2008, 120, 9672; Angew. Chem. Int. Ed. 2008, 47, 9530.
- [21] K. Seppelt, W. Sundermeyer, Chem. Ber. 1970, 103, 3939.
- [22] B. Wrackmeyer, C. Köhler, Heteroat. Chem. 2005, 16, 84.
- [23] H. Seidl, H. Bock, N. Wiberg, M. Veith, Angew. Chem. 1970, 82, 42; Angew. Chem. Int. Ed. Engl. 1970, 9, 69.
- [24] C. J. Brown, Acta Crystallogr. 1966, 21, 146.
- [25] E. I. Davydova, T. N. Sevastianova, A. V. Suvorov, A. Y. Timoshkin, Coord. Chem. Rev. 2010, 254, 2031.
- [26] C. J. Carmalt, J. D. Mileham, A. J. P. White, D. J. Williams, *Dalton Trans.* 2003, 4255.
- [27] C. Hubrich, A. Schulz, A. Villinger, Z. Anorg. Allg. Chem. 2007, 633, 2362.
- [28] a) B. Silvi, A. Savin, *Nature* 1994, 371, 683; b) H. Grützmacher, T. F. Fässler, *Chem. Eur. J.* 2000, 6, 2317.
- [29] F. Weinhold, C. Landis, Valency and Bonding, A Natural Bond Orbital Donor-Acceptor Perspective, Cambridge University Press, Cambridge, 2005 and references therein.

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

^[1] P. Griess, Liebigs Ann. Chem. 1858, 106, 123.

5.3 Synthesis, Structure and Reactivity of Diazene Adducts – Isolation of *iso*-Diazene stabilized as Borane Adduct

Fabian Reiß, Axel Schulz, Alexander Villinger.

Chem. Eur. J. 2014, 20, 11800-11811.

In dieser Publikation wurden sämtliche experimentelle Arbeiten sowie Berechnungen von mir durchgeführt. Ich habe das Manuskript verfasst und das Supportingfile erstellt. Der eigene Beitrag liegt bei ca. 90 %.

Ein ausführliches Supportingfile steht online zur freien Verfügung.

DOI: 10.1002/chem.201402921

Diazene Chemistry

Synthesis, Structure and Reactivity of Diazene Adducts – Isolation of the First *iso*-Diazene Stabilized as Borane Adduct

Fabian Reiß,^[a] Axel Schulz,^{[a],[b],*} and Alexander Villinger^[a]

Abstract: This work describes the synthesis and full characterization of a series of GaCl₃ and B(C₆F₅)₃ adducts of diazenes R¹-N=N-R² (R^{1,2} = Me₃Si, Ph; R¹ = Me₃Si and R² = Ph). While *trans*-Ph-N=N-Ph forms a stable adduct with GaCl₃, no adduct but a frustrated Lewis acid base pair is formed with B(C₆F₅)₃. The *cis*-Ph-N=N-Ph·B(C₆F₅)₃ adduct could only be isolated when UV light was used, which triggers the isomerization from *trans*- to *cis*-Ph-N=N-Ph, which provides more space for the bulky borane. Treatment of *trans*-Ph-N=N-SiMe₃ with GaCl₃ led to the expected *trans*-Ph-N=N-SiMe₃·GaCl₃ adduct but the reaction with B(C₆F₅)₃ triggered a 1,2-Me₃Si shift resulting in the formation of a

highly labile *iso*-diazene Me₃Si(Ph)N=N stabilized as B(C₆F₅)₃ adduct. *Trans*-Me₃Si-N=N-SiMe₃ forms a labile *cis*-Me₃Si-N=N-SiMe₃·B(C₆F₅)₃ adduct, that isomerizes to give also the transient *iso*-diazene species (Me₃Si)₂N=N·B(C₆F₅)₃ upon heating. Both *iso*-diazene species insert easily into one B-C bond of the B(C₆F₅)₃ affording hydrazinoboranes. All new compounds were fully characterized by means of X-ray, vibrational spectroscopy, CHN analysis, and NMR experiments. All compounds were further investigated by means of density functional theory and the bonding situation was accessed by natural bond orbital (NBO) analysis.

Introduction

The rise of the synthetic dyestuffs industry in the middle of nineteenth century began with the discovery of diazonium salts, *e.g.* $[R-N\equiv N^{+}]CI^{-}$, and diazotation reactions by Peter Griess.^[1,2] The development of chemical companies was boosted by textile industry, especially by dyestuffs industry, and vice versa. Azo dyes, compounds that usually contain two aromatic fragments connected by a N-N double bond (diazenes), still play an important role in science and are also of medical, ecological and technical relevance.^[3]

Alkyl or aryl substituted 1,2-diazanes are often subject to *trans/cis*-isomerization with the trans-isomer being the thermodynamically favoured species in most cases. For example, for diaryl diazenes it is known, that UV irradiation triggers *trans/cis*-isomerization,^[4,5] which can be exploited to develop e.g. photoswitchable drugs. Contrary to the more stable 1,2-diazene

- [a] F. Reiβ, Prof. Dr A. Schulz, Dr. A. Villinger Institut f
 ür Chem., Abteilung Anorganische Chem., Universit
 ät Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany E-mail: axel.schulz@uni-rostock.de
- [b] Prof. Dr A. Schulz Leibniz-Institut f
 ür Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany Supporting information for this article is available on the WWW

Supporting information for this article is available on the WWW under http://www.chemeurj.org/ or from the author. isomers, iso-diazene (also known as diimines, 1,1-diazenes, aminonitrenes, N-nitrenes, Scheme 1) are usually not isolated or detected by spectroscopic methods, but rather are assumed intermediates.^[6] To the best of our knowledge fully characterized iso-diazenes or their adducts are not known yet. Dervan et al. reported in a series of papers the in situ synthesis and direct persistent 1,1-diazenes, observation of N-(2.2.6.6tetramethylpiperidyl)nitrene and N-(2,2,5,5tetramethylpyrrolidyl)nitrene, which were characterized on the basis of solution IR and UV spectra and their decomposition kinetics.^[7-10] In these compounds the diazene unit is part of a fiveand six-membered ring, respectively, which stabilizes these cyclic 1,1-dialkyldiazenes.

Scheme 1. Diazenes derived by formal dimerization of nitrenes.^[11]

In 1910 Wieland studied the oxidative coupling of diphenyl hydrazine with NaClO in acidic solution affording an azo dye salt.^[12] The *in situ* formation of diazenium ions such as $[Ph_2N=NH]^+$ was discussed.^[13] Oxidative coupling of asymmetric

diaryl hydrazine with aromatic amines was patented by Ugine-Kuhlmann in 1962 for the synthesis of basic dyes of the type $[R_2N=NR]^+C|^-$ (with R = substituted aryls).

Scheme 2. Preparation of bicyclic examples of six-, five-, and four-membered ring diazenium tetrafluoroborate salts (R = alkyl).

McBride found, that 1,1-dialkylhydrazines react with KEO₃ (E =Br, I) and halogens (X₂ = Br₂, I₂), respectively, in acidic media to form *in situ* [R₂N=NH]⁺ diazenium ions, which in neutral or basic solution (when it is deprotonated) immediately dimerize to form tetraalkyltetrazenes, R₂N-N=N-NR₂.^[14,15] It is assumed, that in basic solution [R₂N=NH]⁺ is deprotonated to give the reactive R₂N=N species with nitrene reactivity which then dimerizes (Scheme 1). Considerably more stable are alkyl substituted diazenium salts, in which the N=N moiety is part of a bicyclic ring or cage such as 3-*tert*-butyl-2,3-diazanorborn-2-ene diazenium tetrafluoroborate salts. These salts were prepared from the corresponding diazene and AgBF₄ in the presence of R-I (Scheme 2).^[16–19] In 1965 Gutmann studied on the basis of IR/UV spectroscopy the formation of different Lewis acid diaryl diazene adducts in solution, however, without any characterization in the solid state.^[20,21]

While aryl substituted 1,2-diazenes (azo compounds), which are stabilized by a conjugated π -electron system, have been extensively investigated and represent a class of stable compound, much less is known about alkyl- or silvl substituted diazenes R¹-N=N-R². This can be attributed to the decreasing thermal stability along the series aryl/aryl > aryl/silyl > silyl/silyl (cf. R^{1}/R^{2} = Ph/Ph: T_{dec} > 400 °C, R^{1}/R^{2} = Ph/SiMe₃: T_{dec} > 180 °C, R^{1}/R^{2} = SiMe₃/SiMe₃: T_{dec} > -30 °C) which is accompanied by an increasing reactivity of these diazenes. In a series of papers Wiberg et al. reported the synthesis of labile bissilylated diazene Me₃Si-N=N-SiMe₃ and follow-up chemistry.^[22-35] The reaction of tosylazide with lithium tris(trimethylsilyl)hydrazide (1) at low temperatures provides readily access to light blue trans-diazene Me₃Si-N=N-SiMe₃ in ca. 65 % yield (2, Scheme 3).^[22] Since 2 decomposes at ambient temperatures with a half time of 7.6 h it should be stored at temperatures below -50 °C.^[36] As shown by Wiberg, a higher silvlation at diazenes caused an increase of the HOMO (n_N) and lower LUMO (π^*_{NN}) energies.^[37,38] The decrease of the energy gap is also responsible for the bathochromic shift from orange Ph-N=N-Ph (λ_{max} = 446 nm) to pale blue Me₃Si-N=N-SiMe₃ (λ_{max} = 784 nm, *cf*. Ph-N=N-SiMe₃: λ_{max} = 580 nm).

Scheme 3. Synthesis of trans-N,N'-bis(trimethylsilyl) diazene (2); Tos = $p\text{-}MeC_6H_4SO_2.$

Recently, we reported on the synthesis, structure and bonding of labile bissilylated diazene Me₃Si-N=N-SiMe₃, its GaCl₃ adduct and the intriguing trissilylated diazenium ion, $[(Me_3Si)_2N=N-SiMe_3]^+$, a dark blue and highly labile ($T_{dec} > -30$ °C) homoleptic cation of the type $[R_3N_2]^+$.^[36] While direct silylation of Me₃Si-N=N-SiMe₃ failed, the $[(Me_3Si)_2N=N-SiMe_3]^+$ ion was generated in a straightforward two-electron oxidation reaction from mercury(II) bishydrazide and Ag[GaCl₄]. Herein, we want to report on the reaction of different diazenes of the type R^1 -N=N- R^2 ($R^{1,2} = Me_3Si$, Ph; $R^1 = Me_3Si$ and $R^2 = Ph$) with Lewis acids such as GaCl₃ and B(C_6F_5)₃.

Results and Discussion

Starting point of this project was the attempted direct silylation of diazenes R¹-N=N-R² (R^{1,2} = SiMe₃,^[36] Ph; R¹ = Me₃Si and R² = Ph) with trimethylsilicenium-solvate tetrakis(penta-fluorophenyl)borate salts of the type [Me₃Si-X][B(C₆F₅)₄] (X = toluene, Me₃SiH), which all failed to generate diazenium cations of the type [R¹-N=N(SiMe₃)R²]⁺ or [R¹(Me₃Si)N=N-R²]⁺. Only decomposition or mixtures of products were observed even at low temperatures. These observations prompted us to utilize less strong, neutral Lewis acids such as GaCl₃ and B(C₆F₅)₃ in the reaction with diazenes.

Scheme 4. Synthesis of diazene adducts 3 (top) and 4 (bottom).

Synthesis

Ph-N=N-Ph adducts. Treatment of trans-N,N'bisphenyldiazene, trans-Ph-N=N-Ph, with GaCl₃ in CH₂Cl₂ at -80 °C leads after warming to ambient temperatures in a straightforward reaction (Scheme 4) to the expected adduct trans-Ph-N=N-Ph·GaCl₃ (3) in good yields (>50 %, Figure 1). Orange crystals of 3 start to decompose at temperatures above 108 °C. Astonishingly, the same reaction with $B(C_6F_5)_3$ a stronger and bulkier Lewis acid (compared to GaCl₃) did not lead to the formation of any adduct. Thus, the mixture of **3** and B(C₆F₅)₃ can be referred to as frustrated Lewis acid base pair (FLP). [39] Since a very slow reaction in the presence of daylight was observed and presumably steric hindrance prevented adduct formation (Figure 2), we carried out the same reaction in the presence of UV light to trigger isomerization to cis-Ph-N=N-Ph,^[4,5] which should provide more space for the bulky Lewis acid $B(C_6F_5)_3$. Indeed, the yellow reaction mixture of trans-Ph-N=N-Ph and B(C₆F₅)₃ in CH₂Cl₂ at ambient temperatures turned into deep orange solution under UV irradiation, from which thermally stable (up to 168°), orange

crystals of cis-Ph-N=N-Ph·B(C_6F_5)_3 (4) could be isolated (yield: 23 %, Figure 1).

Figure 1. ORTEP drawing of the molecular structure of 3 (left) and 4 (right) in the crystal. Thermal ellipsoids with 50 % probability at 173 K. Selected structural data are listed in Table 3.

 ^{11}B and ^{19}F NMR spectroscopy are particularly well suited to distinguish between three-coordinate boron and the four-coordinate boron found in the Lewis acid-base adducts.^[40,41] As depicted in Figure 2, the completeness of the reaction can be monitored by ^{19}F NMR spectroscopy, which clearly indicates the formation of the adduct. Also ^{11}B NMR experiments are a suitable tool to detect adduct formation since upon adduct formation the signal of the free borane is shifted by about 59 ppm (cf. B(C₆F₅)₃ in CD₂Cl₂: 59.1, **4** in CD₂Cl₂: -0.2 ppm).^[42,43]

Figure 2. ¹⁹F NMR spectra after 3 h reaction time (*bottom*), 16 days reaction time (*middle*) at daylight and 3 h photo activation (*top*) with UV lamb (366 nm/245 nm). Dot marked species: uncoordinated $B(C_6F_5)_3$, star marked product: *cis*-Ph-N=N-Ph-B(C_6F_5)_3 (**4**).

*Ph-N=N-SiMe*₃ adducts. The starting material *N*-phenyl-*N*-trimethylsilyldiazene (**5**) can be prepared in 90 % yield by oxidation of the *N*-phenyl-*N*-trimethylsilyl-hydrazine, PhN(H)-N(H)SiMe₃, with dimethyl azodicarboxylate in light petroleum.^[44] Wiberg *et al.* and Wannagat *et al.* already described the synthesis of **5** by oxidation with molecular oxygen or *p*-benzochinone in the 1964 and 1971, respectively.^[45,46] We used a new route starting from a mixture of *N*,*N*-bis(trimethylsilyl)-*N'*-phenylhydrazine, (Me₃Si)₂N–N(H)Ph, and *N*,*N'*-bis(trimethylsilyl)-*N'*-phenylhydrazine, Me₃Si(H)N–N(SiMe₃)Ph, which was treated with

n-BuLi and 1.2 equivalents of CCl₄ yielding pure *trans*-Ph-N=N-SiMe₃ (**5**) after fractional distillation as blue liquid (Figure 3, see supporting information).

As expected treatment of **5** with one equivalent of GaCl₃ in CH₂Cl₂ at -80 °C (Scheme 5) gives in rather good yields (40 %) the highly labile adduct *trans*-Ph-N=N-SiMe₃·GaCl₃ (**6**). This adduct is only stable at temperatures below -20 °C and should be stored at temperatures below -50 °C. As unequivocally shown by single crystal X-ray studies, the GaCl₃ is attached to the nitrogen atom bearing also the Me₃Si group (Figure 3). As indicated by natural bond analysis (NBO) analysis (*vide infra*),^[47,48] the larger inductive effect of the Me₃Si leads to a larger negative charge at the N_{SiMe3} atom (*q*(N_{SiMe3}) = -0.58*e* vs. *q*(N_{Ph}) = -0.18*e*). Therefore, the coordination of the N_{SiMe3} atom to the GaCl₃ is favoured over that of the N_{Ph} atom. Moreover, computation at the B3LYP/6-31G(d,p) level of theory also favours the N_{SiMe3} atom coordination by 5.4 kcal/mol.

Scheme 5. Synthesis of diazene adducts 6 (top) and 7 (bottom).

In the next step we treated 5 with one equivalent of the bulky $B(C_6F_5)_3$ in CH_2Cl_2 at -80 °C (Scheme 5). The resulting golden solution was allowed to warm up to ambient temperature. After concentration and storage at -0 °C over a period of 12 hours orange crystals of a new adduct could be isolated in 30 % yield. X-ray structure elucidation revealed the formation of an intriguing iso-diazene adduct (Scheme 1), iso- $Me_3Si(Ph)NN\cdot B(C_6F_5)_3$ (7), which means, that upon adduct formation the Me₃Si group migrates to the N atom bearing already the phenyl substituent (Figure 3). In the solid iso-diazene adduct 7 is thermally stable up to 104 °C, while it slowly decomposes in solution even at ambient temperatures (see section nitrene reactivity, vide infra), thus not allowing NMR characterization of 7 at ambient temperatures. However, adduct formation was also deduced from low temperature ¹⁹F and ¹¹B NMR experiments displaying an up-field shift of 63 ppm compared to free B(C6F5)3 $(\delta [^{11}B](7) = -4.4 \text{ ppm})$. It should be noted that dimerization of *iso*diazene forming a tetrazene was not observed (see below).

 Me_3Si -N=N-SiMe₃ adducts. Synthesis and structure of bissilylated diazene GaCl₃ adduct Me_3Si -N=N-SiMe₃ · GaCl₃ was recently reported (*vide supra*).^[36] The reaction of *trans*-Me₃Si-N=N-SiMe₃ with GaCl₃ as Lewis acid or with Ag[GaCl₄]/Me₃Si–I in CH₂Cl₂ at low temperatures resulted in the formation of diazene adduct *trans*-Me₃Si-N=N-SiMe₃·GaCl₃ (**8**) in form of dark blue crystals (yield ca. 95 %), which were thermally stable up to – 20 °C. The blue B(C₆F₅)₃ adduct (**9**) is formed, when B(C₆F₅)₃ is added to *trans*-Me₃Si-N=N-SiMe₃ at -80 °C (yield 30 %)

Figure 3. ORTEP drawing of the molecular structure of 5 (left), 6 (middle) and 7 (right) in the crystal. Thermal ellipsoids with 50 % probability at 173 K. Selected structural data are listed in Table 3.

A broad singlet could be detected in the up-field region (compared to $B(C_6F_5)_3$, *vide supra*) of the ¹¹B NMR spectrum at δ = 0.75 ppm, supportive of an adduct species. However, as depicted in Figure 4, upon addition of $B(C_6F_5)_3$ to *trans*-Me₃Si-N=N-SiMe₃ the *cis*-adduct is obtained contrary to the reaction with GaCl₃. This means *cis-trans* isomerization occurred prior to adduct formation thus avoiding frustration between the Lewis acid and base (see above discussion for *trans*-Ph-N=N-Ph). The different products, *cis*- versus *trans*-adduct formation, arises from the significantly larger steric hindrance introduced by $B(C_6F_5)_3$ compared to GaCl₃, which triggers the isomerization process. Again, $B(C_6F_5)_3$ adduct **9** is thermally stable to 127 °C as solid but decomposes like **7** slowly in solution even at low temperatures (see section on nitrene reactivity, *vide infra*).

Figure 4. ORTEP drawing of the molecular structure of 9 in the crystal. Thermal ellipsoids with 50 % probability at 173 K. Selected structural data are listed in Table 3.

Nitrene reactivity of adduct 7 and 9 - Insertion reactions

The formation of *iso*-diazene species **7** as well as the thermally induced decomposition of **7** and **9** prompted us to have a closer look at the reactivity of both adduct species. For this reason we studied the decomposition reaction at slightly elevated temperature in CH_2Cl_2 . When **7** is heated up to 75 °C under autogeneous pressure for three hours, a complete conversion of the diazene adduct **7** into a hydrazinoborane species (**10**), which can be regarded as insertion of a nitrene type nitrogen atom into one B-C bond of the Lewis acid B(C_6F_5)₃ (Schemes 1 and 6,

	Mp/Tde c	color	δ[¹⁹ F]	δ[¹¹ B]
PhNNPh ^[a]	68/>400	red	-	-
Me ₃ SiNNSiMe ₃ ^[b,c]	-3/-30	pale blue	-	-
	-			
Me₃SiNNPh	100/>18	blue	-	-
	0			
adduct 3	-/108	orange	-	-
adduct 4	-/168	orange	-164.8, -157.3, -131.1	-0.2
adduct 6 ^[c]	40/-20	orange	-	-
adduct 7	-/104	orange	-164.7, -158.3, -131.7	-4.4
adduct 8 ^[b,c]	36/-20	blue	-	-
adduct 9	-/127	blue	-164.4, -158.1, -129.6	0.8
			-162.0, -161.2, -160.9	
10	71/102	colourless	-154.4, -150.7, -149.9	40.2
			-141.8, -131.6, -127.8	40.2
			-162.1, -161.5, -161.4	
11	-/168	colourless	-154.7, -151.0, -150.8	26.6
			-140.3, -131.9, -127.4	30.0

Figure 5 left), is observed. The activation of the B-C bond might arise from the nitrene character of the *iso*-diazene species **7** (Scheme 6), for which also a nitrene Lewis representation should have a small but significant contribution. Such B-C activation processes are known for transition metal complexes such as zirconocen species as shown by the groups of Rosenthal and Bochmann,^[50–52] and in reactions of B(C₆F₅)₃ with alkynes as demonstrated by Stephan and Erker *et al.*^[53,54] Our group proved, that *in situ* generated, highly labile (Me₃Si)₂N-NP⁺ can activate one B-C bond in B(C₆F₅)₃.^[55] Colorless crystals of **10** melt at 71 °C and decompose at 102 °C. The ¹¹B resonance is found at 40.2 ppm (*cf.* Table 1).

In a second experiment *cis*-Me₃Si-N=N-SiMe₃ · B(C₆F₅)₃ adduct **9** was warmed up to 75 °C for three hours in CH₂Cl₂. The reaction was monitored by ¹¹B NMR experiments indicating the full conversion of **9** into one new species, which resonated downfield shifted compared to **9** at δ [¹¹B] = 36.59 ppm (*cf.* **9**: 0.75 ppm, B(C₆F₅)₃: 59.1 ppm).

Scheme 6. Nitrene like behavior in silylated iso-diazene B(C6F5)3 adducts.[11]

The resulting solution was concentrated and crystallized at 0 °C affording colourless crystals in good yields (40 %). These crystals were shown by X-ray structure elucidation to be hydrazinoborane 11 (Scheme 6, Figure 5 right). Crystals of 11 decompose at the melting point at 163 °C. The formation of hydrazinoborane 11 starting from diazene species 9 led to the assumption, that 11 first isomerizes to give an iso-diazene species, which could be isolated in the reaction of Ph-N=N-SiMe₃ (5) with B(C₆F₅)₃ yielding iso-diazene 7. Now the nitrene reactivity of this transient intermediate iso-(Me₃Si)₂N=N·B(C₆F₅)₃, which could not be isolated but assumed on the basis of ¹⁹F NMR spectroscopy (Scheme 6, Figure S22), led to the analogous insertion into one B-C bond finally affording hydrazinoborane 11. Astonishingly, iso-diazene 7 can be isolated in the reaction of Ph-N=N-SiMe₃ (5) with $B(C_6F_5)_3$ but not the 1,2-substituted diazene adduct (neither trans nor cis), while in the reaction of Me₃Si-N=N-SiMe₃ (2) with $B(C_6F_5)_3$ the adduct 9 was obtained and the isodiazene species seems to be a transient species generated upon thermal treatment, which leads for both reactions to the formation of the according hydrazinoborane. It should be mentioned, that thermal treatment of the cis-Ph-N=N-Ph·B(C₆F₅)₃ (4) adduct led to the dissociation of the adduct and small amounts of unidentified decomposition products (Figure S20). Moreover, it is interesting to note, that we did not observe dimerization of the iso-diazene adduct species as found for N-(2.2.6.6tetramethylpiperidyl)nitrene yielding the tetrazene, R2N-N=N-NR₂.^[7] Also for Me₃Si-N=N-SiMe₃ (2) it was shown by Wiberg et al. that it dimerizes upon thermal treatment forming the tetrakis(trimethylsi1yl)tetrazene (Me₃Si)₂N-N=N-N(SiMe₃)₂.^[23] Later the same group described the almost quantitative dimerization of 2 when equimolar amounts of silicon tetrafluoride are added to 2 at low temperatures.^[33] Wiberg et al. already speculated on the in situ formation of iso-diazene, (Me₃Si)₂N=N, (at larger temperatures or induced by the Lewis acid SiF₄), which then dimerizes to give the tetrazene (Me₃Si)₂N-N=N-N(SiMe₃)₂. Obviously, in the presence of the strong bulky Lewis acid B(C₆F₅)₃ the intramolecular insertion reaction into the B-C bond is the preferred reaction channel since we could not observe any experimental hints for tetrazene formation. Furthermore, Wiberg et al. reacted Me₃Si-N=N-SiMe₃ with different metallocene complexes such as Cp₂M (M = V, Cr, Mn) and Cp₂TiCl₂, yielding amino-imido complexes of the type Cp₂MN₂(SiMe₃)₂ (M = V, Ti) and $[Cp_2MN_2(SiMe_3)_2]_2$ (M = Cr, Mn).^[27,56,57] Since all these complexes exhibit rather long N-N bonds (e.g. for M = Mn: 1.44(1) vs. 1.243(2) Å in iso-diazene adduct 7, see section X-ray crystallography), which are in the range of a N-N single bond, and short M-N bonds featuring partly double bond character, these complexes cannot be regarded as iso-diazene complexes but

rather as amino-imido complexes depending on the bond situation.^[58] Additionally, there are transition metal complexes of the type [M]-N(R)=N-R and [M]-N=N-R bearing aryl-substituted diazene and diazenido ligands, respectively.^[59-65]

Finally, hydrazinoboranes (also known as boryl hydrazines) represent a well-established class of compounds,^[66–70] however, to the best of our knowledge no pentafluorophenyl substituted hydrazine derivative is known so far. In both hydrazinoboranes **10** and **11** the ¹⁹F NMR spectra showed nine resonances (*cf.* Table 1, see supporting information), which is in accord with a hindered rotation about the N-B bond. This observation is in agreement with the X-ray and NBO analysis data displaying partially double bond character (*vide infra*).

Figure 5. ORTEP drawing of the molecular structure of 10 (left) and 11 (right) in the crystal. Thermal ellipsoids with 50 % probability at 173 K. Selected structural data are listed in Table 3.

Vibrational spectroscopy

Both IR and Raman experiments were carried out to study the nitrogen-nitrogen stretching mode and the influence of adduct formation on the position of this mode. Since the intensity of this mode is much stronger in the Raman spectra and Raman experiments could be carried out at low temperatures as well as in a sealed glass container (in contrast to our IR experiments), we want to focus on the Raman data in comparison with theoretically obtained data (Table 2). In addition, the NN stretch of the trans species is IR silent. As shown in Table 2, all diazenes and their adducts contain bands, which can be assigned to stretches of the -N=N- unit in the expected range^[20,21] between 1463 (trans-Me₃Si-NN-Ph·GaCl₃) and 1593 cm⁻¹ (*cis*-Me₃Si-NN-SiMe₃·B(C₆F₅)₃). These results are in reasonable agreement with those obtained by computations (harmonic approximation). Interestingly, for all phenyl substituted compounds the N-N stretching mode strongly couples with the C-C stretching of the phenyl ring. Therefore, for these species two modes are listed in Table 2, whereupon V_{NN}

DOI: 10.1002/chem.201xxxxx

describes mainly the -N=N- stretch with a small Cphenyl-Cphenyl contribution and V_{NN+CC} is dominated by C_{phenyl}-C_{phenyl} motion. There are no obvious trends for the -N=N- stretching mode with respect to adduct formation. For example, while for trans-Me₃Si-NN-SiMe₃·GaCl₃ (8) the v_{NN} vibration is shifted to slightly larger wave numbers (1568 cm⁻¹) compared to *trans*-Me₃Si-NN-SiMe₃ (1555 cm⁻¹), the opposite is found for *trans*-Ph-NN-SiMe₃ (1510 cm⁻¹) and *trans*-Me₃Si-NN-Ph·GaCl₃ (1479 cm⁻¹) indicating that upon adduct formation mainly non-bonding electron density of a lone pair localized at the N atom interacts with the Lewis acid. This in turn is in agreement with the structural data displaying also double bond character along the NN unit for all considered diazene adduct species, which scarcely change upon adduct formation (see Table 3). On the basis of our computed vibrational data it can be concluded, that the cis/trans/iso-isomerization process leads to larger shifts in the v_{NN} vibration rather than the adduct formation (see supporting information Table S13).

At significant lower wave numbers at 1059 and 1068, respectively, appear the >N-N< stretching frequencies of the hydrazine species **10** and **11** in accord with data for other hydrazines.^[71,72]

Table 2. Experimental (Raman) and theoretical data^[a] of the NN stretching mode (cm⁻¹).

compound	VNN ovo	$V_{NN,}$	V _{NN+CN,CC} ,	V _{NN+CC,}
compound	• ININ, exp	theo	exp	theo
<i>trans</i> -Ph-NN-Ph	1491	1498	1589	1593
trans-Ph-NN-SiMe ₃ (5)	1510	1523	1603	1592
trans-Me ₃ Si-NN-SiMe ₃ (2)	1555	1528	-	-
<i>cis</i> -Ph-NN-Ph	[b]	1547	[b]	1593
<i>cis</i> -Me ₃ Si-NN-SiMe ₃	[b]	1603	[b]	-
<i>iso</i> -Me₃Si(Ph)NN	[b]	1502	[b]	1591
<i>trans</i> -Ph-NN-Ph⋅GaCl ₃ (3)	1463	1480	1589	1589
<i>trans</i> -Me₃Si-NN-Ph⋅GaCl₃ (6)	1479	1481	1591	1587
<i>trans</i> -Me ₃ Si-NN-SiMe ₃ ·GaCl ₃ (8)	1568	1591	-	-
<i>cis</i> -Ph-NN-Ph⋅B(C ₆ F ₅) ₃ (4)	1516	1517	1590	1598
<i>cis</i> -Me ₃ Si-NN-SiMe ₃ ·B(C ₆ F ₅) ₃ (9)	1593	1631	-	-
<i>iso</i> -Me₃Si(Ph)NN·B(C ₆ F ₅)₃ (7)	1556	1544	1603	1585
$(Me_3Si)_2NN(C_6F_5)B(C_6F_5)_2$ (11)	1059	1034	-	-
$Ph(Me_{3}Si)NN(C_{6}F_{5})B(C_{6}F_{5})_{2}$ (10)	1068	1047	-	-
[a] B3LYP/6-31G(d,p) level, scaled	frequencie	es used	with scaling	factor =

Computations

Scheme 7. Relative Gibbs energies for the different isomers of diazenes at the B3LYP/6-31G(d,p) level.

The electronic structure of *cis*-, *trans*- and *iso*-diazenes has already been the subject of a number of theoretical investigations,^[6,74–79] all indicating that the *iso*-form of the parent species H_2NN has a triplet ground state and is the least stable

isomer with the trans-isomer being the global minimum species. To get further insight into the structure and bonding of the herein experimentally isolated diazenes and their adducts and especially of the unprecedented formation of the iso-form of diazene stabilized as B(C₆F₅)₃ adduct, computations utilizing density functional theory at the B3LYP/6-31G(d,p) level of theory were carried out. All structures were characterized as minima by frequency analysis. For each of the three different diazenes (R¹-N=N-R²; R¹, R² = Ph and/or SiMe₃) all three isomers (*trans-, cis*and iso-form, see Scheme 7) were studied. As depicted in Scheme 7, the trans-isomer is always energetically preferred over the *cis*-compound by $\Delta_{298}G = 15.1$ (Ph, Ph), 13.0 (Ph, SiMe₃) and 15.5 kcal/mol (SiMe₃, SiMe₃). As expected the trans-isomers are even favoured by 32.6 (Ph, Ph), 26.4 (Ph, SiMe₃) and 21.2 kcal/mol (SiMe₃, SiMe₃) over the iso compounds in accord with experimental observations. All three trans-diazenes are known and have been isolated and fully characterized (vide supra). The same picture is found for the GaCl₃ adducts, which is also in agreement with the experimentally observed *trans*-adduct species. The most stabile isomer is always the trans-adduct, however, the relative energy gaps between the isomers has considerably decreased (Scheme 8). The trans-isomers are only stabilized by 4.9 (Ph, Ph), 7.2 (Ph, SiMe₃) and 5.9 kcal/mol (SiMe₃, SiMe₃).

For the mixed substituted adducts there are six different isomers (trans1/2, cis1/2 and iso1/2) to be considered. In accord with experiment, the trans-GaCl₃ adduct with the Lewis acid attached to the nitrogen atom bearing also the SiMe3 substituent (trans2) is the most stable isomer indicating a larger inductive effect of the Me₃Si group and thus a larger negative charge at this nitrogen atom (vide supra, see NBO charges Table S18, see supporting information). This situation dramatically changes when B(C₆F₅)₃ is used as Lewis acid. For diphenyldiazene now the *cis*isomer was found to be the most stable isomer with -7.6 kcal/mol energetically favoured over the trans-species. Also the isodiazene B(C6F5)3 adduct is stabilized by 2.2 kcal/mol compared to the trans-form, again in accord with our experimental observations. Obviously, the trans-isomer is kinetically and thermodynamically disfavoured over the cis-isomer. Therefore, the experimental formation of the cis-adduct 4 was observed after isomerization of the starting material trans-Ph-N=N-Ph, which was triggered by UV irradiation (vide supra). Also for the bissilylated diazene 2, the cis-adduct isomer 9 was experimentally observed, although according to our computation 9 is energetically less favoured by 2.8 kcal/mol over the transspecies. This energy difference is rather small but presumably, the trans-B(C₆F₅)₃-adduct formation is slower (due to steric repulsion) than the isomerization process to the cis-diazene followed by *cis*-adduct formation. [Me₃Si]⁺ groups are known to easily migrate along N-N moieties, therefore often referred to as big protons.^[72,80-85] It should be noted that Me₃Si group shifts are not triggered by UV-Vis light but by the action of a Lewis acid in contrast to the isomerization process observed in the phenyl substituted diazenes. Interestingly, the stability of the cis/iso $B(C_6F_5)_3$ adduct species over the *trans*-form decreases along R^{1,2} = Ph > R^1 = Ph, R^2 = SiMe₃ > $R^{1,2}$ = SiMe₃ (Scheme 8). Astonishingly, for the mixed substituted species the lowest lying isomer is the iso-adduct (iso1 species, B(C₆F₅)₃ adduct 7 in Figure 3) which is only stabilized by 1.4 kcal/mol over the cis1isomer and 2.5 kcal/mol over the trans2-isomer (Scheme 8 bottom) in accord with our experimental findings.

Scheme 8. Relative Gibbs energies for the different isomers of diazenes $GaCl_3$ and $B(C_6F_{5})_3$ adducts at the B3LYP/6-31G(d,p) level (LA = Lewis acid)

NBO analysis data display for all considered diazenes and their adducts covalently bound nitrogen atoms with double bonds localized between the two nitrogen atoms. The bond between the diazene and the Lewis acids can be referred to as a donoracceptor bond^[86-89] with a total charge transfer between 0.195-0.262e for the GaCl₃ adduct and between 0.352-0.426e for the B(C₆F₅)₃ adducts indicating a larger charge transfer when $B(C_6F_5)_3$ is used as Lewis acid. Moreover, as displayed in Table S18 (supporting information), with an increasing degree of Me₃Si substitution increases the partial charges at the nitrogen atom (cf. q(N1/2, trans-PhNNPh) = -0.197 vs. q(N1/2, trans- $Me_3SiNNSiMe_3$ = -0.553*e*) and thus a larger overall inductive effect occurs (cf. q(N1+N2): -0.394 in trans-PhNNPh vs. -1.101e in trans-Me₃SiNNSiMe₃), which is more than twice as large. Therefore, adduct formation always occurs preferably at the nitrogen atoms bearing a trimethylsilyl rather than a phenyl group if the adduct formation is electrostatically driven.

X-ray crystallography

The structures were solved by direct methods (SHELXS-97)^[90] and refined by full-matrix least squares procedures (SHELXL-97).^[91] Semi-empirical absorption corrections were applied

(SADABS).^[92] All non-hydrogen atoms were refined anisotropically, hydrogen atoms were included in the refinement at calculated positions using a riding model. Selected structural parameters are summarized in Table 3. Crystallographic Details of all considered species are listed in Tables S1-S3 (supporting information).

Diazenes. Since the structures of trans-Ph-N=N-Ph^[93,94] and trans-Me₃Si-N=N-SiMe₃ (2)^[36] have been reported before, we want to focus in the discussion on trans-Ph-N=N-SiMe₃ (5). Compound 5 (Figure 3 left) crystallizes in the monoclinic space group P21/c with eight formula units per cell. For the two independent molecules the same position disorder was observed as discussed for trans-Ph-N=N-Ph^[94] and trans-Me₃Si-N=N-SiMe₃.^[36] The observed molecular structure exhibits the expected trans configuration (Si-N-N-C 179.7°) with a short N-N distance (1.238(1) Å; cf. trans-Ph-N=N-Ph: 1.248(2), trans-Me₃Si-N=N-SiMe₃: 1.227(2), $\Sigma r_{cov}(N-N) = 1.42$ and $\Sigma r_{cov}(N=N) = 1.20 \text{ Å}^{[95]}$, clearly indicating double bond character along the N-N unit. It can be deduced from these data that with increasing substitution of the phenyl by trimethylsilyl groups the shorter is the N-N distance. The entire phenyl ring lies in the plane spanned by the N-N-Si moiety (dihedral angle C-N-N-Si 179.2°) with a C1a-N1a-N2a angles of 115.3(1)° (cf. trans-Ph-N=N-Ph: 114.5(2)°) and a Si1-N2a-N1a angle of 114.7(1)° (cf. 2: 117.3(2)°) indicative for formal sp² hybridized N atoms.

Diazene adducts. X-ray diffraction analysis (Figures 1, 3 and 4) revealed unequivocally the existence of diazene adduct species 3 (trans-Ph-N=N-Ph·GaCl₃), 4 (cis-Ph-N=N-Ph·B(C₆F₅)₃), 6 (trans- $Ph-N=N-SiMe_3 \cdot GaCl_3$, 9 (*cis*-Me_3Si-N=N-SiMe_3 \cdot B(C_6F_5)_3), and iso-diazene adduct 7 Me₃Si(Ph)N=N·B(C₆F₅)₃) exhibiting an almost planar N₂R¹R²E skeleton (R¹, R² = Ph, Si; E = Ga or B; largest deviation from planarity in 3: 22.5°, 4: 13.9°, 6: 18.4°, 7: 6.7°, 9: 13.3°). All tri-coordinated N atoms are in a planar environment ($\Sigma < N > 358^\circ$), which can be attributed to hyperconjugative effects of the lone pair localized at the nitrogen atom into the N2-Si and Si1-C σ^* orbitals, respectively, or in case of the phenyl substituted species due to conjugation with the π -electron system of the phenyl group. The most striking structural feature is the short N-N bond length, which only slightly elongates upon adduct formation. For example, the N-N bond lengths increase by 0.016 in GaCl₃ adduct ${\bf 8}$ and 0.015 Å in B(C₆F₅)₃ adduct 9 compared to trans-Me₃Si-N=N-SiMe₃ or 0.011 in GaCl₃ adduct **6** and 0.005 Å in $B(C_6F_5)_3$ adduct **7** compared to trans-Ph-N=N-SiMe₃. Similar values (0.006 and 0.015 Å) are observed for 3 (trans-Ph-N=N-Ph·GaCl₃) and 4 (cis-Ph-N=N-Ph·B(C₆F₅)₃), respectively. The N-N distances of all adducts between 1.242(2) (adduct 9) and 1.263(4) Å (adduct 4) are still in the range of a typical N-N double bond $(\Sigma r_{cov}(N-N) = 1.42$ and $\Sigma r_{cov}(N=N) = 1.20 \text{ Å}^{[95]}$ indicating that the charge transfer from the diazene to the Lewis acid mainly stems from a non-bonding molecular orbital. The bond of the diazenes to the Lewis acids are rather long as well as the E-N-N angles (E = B, Ga), which are observed between 116.3(1) and 130.7(2)° (Table 3). The Ga-N donor acceptor bonds in adducts 3 and 6 with 2.064(3) and 2.042(2), respectively, are in the expected range $^{[87]}$ (cf. 8: 2.036(2),^[36] 1.965(2) Å in Me₃Si-N=S=N-SiMe₃·GaCl₃).^[96]

Table 3. S	elected struc	ctural data fr	om single cr	ystal X-ray e	xperiments (distances in Å	, angles in °))		
	2 ^[a]	3	4	5 ^[b]	6 ^[b]	7 ^[b]	8 ^[a,e]	9 ^[d]	10 ^[b]	11
N-N	1.227(2)	1.254(4)	1.263(4)	1.238(2)	1.249(2)	1.243(2)	1.243(2)	1.242(2)	1.432(2)	1.443(2)
N-R ¹	1.807(3)	1.460(4)	1.465(5)	1.447(2)	1.413(3)	1.461(2)	1.884(2)	1.885(1)	1.421(2)	1.773(1)
N-R ²	1.807(3)	1.414(4)	1.414(4)	1.804(1)	1.885(2)	1.888(1)	1.826(2)	1.801(2)	1.781(2)	1.778(1)
N-E ^[c]	-	2.064(3)	1.657(5)	-	2.042(2)	1.591(2)	2.036(2)	1.643(2)	1.394(3)	1.397(2)
R ¹ -N-N	117.3(2)	112.1(3)	123.9(3)	115.3(1)	121.0(2)	125.93(1)	111.3(1)	117.2(1)	115.4(1)	117.46(9)
R ² -N-N	117.3(2)	118.6(3)	123.8(4)	114.7(1)	108.9(2)	113.1(1)	134.6(1)	144.6(1)	120.2(1)	117.79(9)
E-N-N	-	130.7(2)	116.3(3)	-	126.52(2)	128.06(1)	127.2(1)	116.3(1)	121.3(2)	122.8(1)
$[^{a]}$ Taken from reference; $[^{36]}$ $[^{b]}$ $R^{1}=C_{6}H_{5}$, R^{2} = SiMe ₃ ; $[^{c]}$ E = Ga for species 3 , 6 , 8 ; E = B for 4 , 7 , 9 , 10 , 11 ; $[^{d]}$ R^{1} = Si1 is attached to N1 and R^{2} = Si2 linked to N2, see Figure 4. $[^{e]}$ R^{1} linked to N which is attached to GaCl ₃										

A close look at the B-N donor acceptor bond lengths reveals a significant different distance for *iso*-diazene adduct **7** with 1.591(2) Å compared to 1.657(5) and 1.643(2) Å determined for diazene adduct **4** and **9**, respectively (cf. 1.616(3) Å in CH₃CN·B(C₆F₅)₃,^[40] Σ r_{cov}(B–N) = 1.56 Å),^[95] which can be attributed to less steric hindrance in **7** and a considerably larger charge transfer from the diazene to the B(C₆F₅)₃ Lewis acid (Table S18, see supporting information). The coordination geometry around the boron is tetrahedrally distorted with the smallest angle of around 101° and the largest around 112°.

Hydrazinoboranes. Crystals of 11 were grown from CH₂Cl₂ at 0 °C, while compound 10 only crystallizes from a saturated benzene solution at 25 °C. 10 crystalizes in the triclinic space group P-1 with two formula units per unit cell as benzene solvate, adduct 11 crystallizes without solvent molecules in the monoclinic space group P2₁/n with four formula units. In both molecules all nitrogen atoms sit in a trigonal planar coordination environment with a dihedral angle of 69.6 and 64.0° between the two planes around N1 and N2. The dihedral angle RNNR strongly depends on the bulkiness of the groups R and delocalization effects. The N-N distances of 1.432(2) and 1.443(2) Å describe a typical single bond (cf. 1.435(3) in Me(Ph₂B)N-N(BPh₂)Me, $^{[67]}\Sigma r_{cov}(N-N)$ = 1.42 Å).^[95] The B-N bonds are rather short with 1.394(3) and 1.397(2) Å (Table 3), respectively, compared to those of the adducts (cf. 1.59-1.64 Å, vide supra; 1.397(4) Å in Me(Ph₂B)N-N(BPh₂)Me^[67]) indicating partial double bond character in accord with NBO analysis. This double bond character arises from delocalization of the lone pair localized at the N atom into the empty p atomic orbital localized at the formally sp² hybridized B atom describing resonance between Lewis representations R2N- BR_2 and $R_2N^{(+)}=B^{(-)}R_2$.

Conclusion

Diazenes of the type R¹-N=N-R² (R^{1,2} = SiMe₃, Ph; R¹ = Me₃Si and R² = Ph) were shown to form stable GaCl₃ and B(C₆F₅)₃ adducts depending on the reaction conditions temperature and UV light. While *trans*-Ph-N=N-Ph reacts with GaCl₃ to give *trans*-Ph-N=N-Ph·GaCl₃, due to steric hindrance B(C₆F₅)₃ does not react with *trans*-Ph-N=N-Ph. However, when UV light is used *trans*-Ph-N=N-Ph isomerizes yielding *cis*-Ph-N=N-Ph which in the presence of B(C₆F₅)₃ forms the stable *cis*-Ph-N=N-Ph·B(C₆F₅)₃ adduct. Treatment of *trans*-Ph-N=N-SiMe₃ with GaCl₃ led to the expected *trans*-Ph-N=N-SiMe₃·GaCl₃ adduct but the reaction with B(C₆F₅)₃ triggered a 1,2 Me₃Si shift leading to the formation of the hitherto unprecedented labile *iso*-diazene

 $Me_3Si(Ph)N=N\cdot B(C_6F_5)_3$. In the case of *trans*- $Me_3Si-N=N-SiMe_3$ the bulky $B(C_6F_5)_3$ induces an *trans/cis* isomerization to form a labile *cis*- $Me_3Si-N=N-SiMe_3\cdot B(C_6F_5)_3$ adduct even at low temperatures without UV activation. The latter was shown to isomerize to give the transient *iso*-diazene species which possesses nitrene type reactivity upon heating. While this *iso*-diazene intermediate could not be isolated in contrast to $Me_3Si(Ph)N=N\cdot B(C_6F_5)_3$ address insert easily into one B-C bond of the $B(C_6F_5)_3$ affording hydrazinoboranes. Therefore, nitrene reactive of *iso*-diazene species can be utilized to synthesize (borylated) hydrazines bearing perfluorophenyl groups.

Experimental

General information. All manipulations were carried out under oxygen- and moisture-free conditions under argon using standard Schlenk or drybox techniques. All solvents were dried, freshly distilled and degassed prior to use.

NMR: ¹H NMR, ¹³C{¹H}, ¹¹B{¹H}, ¹⁹F{¹H}, ²⁹Si INEPT, ¹H,²⁹Si HMQC, ¹H,¹⁵N HMBC and spectra were obtained on Bruker AVANCE 300, Bruker AVANCE 400 or AVANCE 500 spectrometers and were referenced internally to the deuterated solvent (¹³C, CD₂Cl₂, $\bar{\sigma}_{reference} = 53.8$ ppm, toluene-d₆, $\bar{\sigma}_{reference} = 20.4$ ppm, benzene-d₆, $\bar{\sigma}_{reference} = 128.4$) or to protic impurities in the deuterated solvent (¹H, CDHCl₂, $\bar{\sigma}_{reference} = 5.32$ ppm, C_7D_7H , $\bar{\sigma}_{reference} = 2.03$ ppm, C_6D_5H , $\bar{\sigma}_{reference} = 7.16$). ¹H, ¹⁵N HMBC spectra were obtained on a Bruker AVANCE 500 or AVANCE 400 spectrometer and were referenced externally (33 % (vol.) MeNO₂ in the corresponding solvent, $\bar{\sigma}_{reference} = 0$ ppm).

IR: Nicolet 6700 FT-IR spectrometer with a Smart Endurance ATR device or Nicolet 380 FT-IR (HeNe laser, 633nm) with Smart Orbit ATR device.

Raman: Horiba LabRAM HR Raman microscope with Olympus optics (10x NA 0.25), 784 nm Laser diode, 800 mm focal length spectrograph. Linkam THMS600 System and PE95/T95 System Controller was used for low temperature Raman measurements. Samples were prepared under N₂ atmosphere at an ENRAF NONIUS FR558-S low temperature mounting system. **MS**: Finnigan MAT 95-XP from Thermo Electron was used (Cl⁺, *isobutene*; El⁺, T = 200 °C, 70.0 V).

CHN analyses: Analysator Flash EA 1112 from Thermo Quest.

Melting points are uncorrected (EZ-Melt, Stanford Research Systems). Heating-rate 20 °C/min. Decomposition point of **6** was estimated with the Raman microscope during slow warming the Linkam THMS600 System. Heating-rate ca. 10 °C/min.

DSC: DSC 823e from Mettler-Toledo (Heating-rate 5 °C/min) was used, uncorrected melting points were reported.

Synthesis of *trans*-PhNNSiMe₃ (5): To a stirred solution of isomer mixture *N*,*N*-bis(trimethylsilyl)-*N*'-phenylhydrazine and *N*,*N*'-bis(trimethylsilyl)-*N*'-phenylhydrazine (11.98 g, 47.05 mmol) in Et₂O (100 mL) a solution of *n*-butyl lithium/*n*-hexane (18.8 mL, 47.05 mmol) was added dropwise over a period of 30 minutes at -80 °C and stirred for further two hours. To the resulting pale orange suspension a solution of tetrachloromethane (8.69 g, 56.46 mmol) in Et₂O (20 mL) was added over a period of 30 minutes. The reaction mixture was slowly warmed to ambient temperature. The resulting brownish suspension was concentrated *in vacuo* to an approximate volume of 50 mL and condensed *in*

vacuo in a smaller flask. This raw product was fractional distilled at 5.10⁻² mbar and separated in two fractions. Yield: 2.71 g, 32 % Bp. 110-115 °C $(5 \cdot 10^{-2} \text{ mbar})$.¹H NMR (25 °C, CD₂Cl₂, 300.13 MHz): δ = 0.40 (s, 9H, CH₃, $J(^{1}H^{-13}C) = 120 \text{ Hz}, ^{2}J(^{1}H^{-29}Si) = 6.8 \text{ Hz}), 7.62 \text{ (m, 5H, }C_{6}H_{5}). ^{13}C \text{ NMR} (25 ^{\circ}C),$ CH_2Cl_2 , 75.48 MHz): $\delta = -2.64$ (s, $Si(CH_3)_3$, $^1J(^{13}C^{-29}Si) = 56.12$ Hz), 121.0 (s, 2C, o-C₆H₅), 129.3 (s, 2C, m-C₆H₅), 131.3 (s 1C, p-C₆H₅), 156.7 (s, 1C, ipso-C₆H₅). ¹H, ¹⁵N NMR (25 °C, CD₂Cl₂, 300.13 MHz, 30.43 MHz) : δ = 255 (d, NPh), 310 (s, N(Si(CH₃)₃). IR (ATR, 16 scans): 3062 (w), 2959 (w), 2901 (w), 1599 (w), 1501 (m), 1468 (w), 1450 (w), 1306 (w), 1247 (s), 1177 (w), 1128 (w), 1066 (w), 1020 (w), 961 (w), 923 (w), 867 (s), 835 (s), 760 (s), 686 (s), 630 (m), 566 (w). Raman (25 °C, 784 nm, 200 mW, 30 sec, 4 acc., cm⁻¹): 3069 (2), 2969 (1), 2906 (3), 1603 (4), 1510 (5), 1476 (4), 1458 (3), 1314 (1), 1259 (1), 1184 (4), 1163 (1), 1136 (10), 1028 (1), 1006 (8), 877 (1), 847 (1), 775 (1), 756 (1), 705 (1), 687 (1), 640 (3), 622 (2), 577 (3), 314 (1), 248 (1), 190 (2). UV/VIS (25 $^\circ\text{C},$ Et₂O): 575 nm. Crystals suitable for X-ray crystallographic analysis were obtained, by slow cooling neat 5 to -100 °C using a low temperature mounting device, equipped with an ENRAF NONIUS FR558-S.

Synthesis of trans-PhNNPh GaCl₃ (3): To a stirred solution of trans-N,N'diphenyldiazene (0.091 g, 0.50 mmol) in CH_2CI_2 (3 mL), $GaCI_3$ (0.088 g, 0.5 mmol) in CH₂Cl₂ (1 mL) was added at -80 °C over a period of 10 minutes. The resulting orange solution was allowed to warm to ambient temperatures and stirred for one hour at this temperature. The solution is then concentrated to a volume of 0.5 mL in vacuo storage at -25 °C over a period of 12 hours results in the deposition of orange crystals. Removal of supernatant by syringe and short drying in vacuo yields (0.094 g, 52 %) 3 as orange crystals. Mp. 108 °C (dec.). Anal. calc. % (found): C, 40.23 (40.40); H, 2.81 (3.01); N, 7.82 (7.83). ¹**H NMR** (25 °C, CD_2Cl_2 , 500.13 MHz): δ = 7.66 (m, 4H, *m*-C₆H₅), 7.73 (m, 2H, p-C₆H₅), 7.91 (m, 4H, o-C₆H₅). ¹³C(¹H) NMR (25 °C, CD₂Cl₂, 125.77 MHz): δ = 123.9 (s, 4C, o-C₆H₅), 130.2 (s, 4C, m-C₆H₅), 134.6 (s, 2C, p-C₆H₅), 151.3 (s, 2C, ipso-C₆H₅). IR (ATR, 16 scans): 3170 (w), 3107 (w), 3065 (w), 3036 (w), 2979 (w), 2918 (w), 1583 (s), 1557 (w), 1539 (m), 1504 (w), 1483 (w), 1477 (w), 1452 (m), 1429 (m), 1391 (m), 1332 (w), 1318 (w), 1300 (m), 1241 (m), 1218 (m), 1192 (w), 1171 (m), 1163 (m), 1098 (w), 1071 (w), 998 8m), 973 (m), 947 (m), 926 (m), 882 (m), 842 (w), 826 (w), 768 (s), 683 (s), 673 (s), 665 (s), 617 (m), 595 (w), 569 (m), 549 (m), 523 (s). Raman (25 °C, 784 nm, 7 mW, 12 s, 6 acc., cm⁻¹): 1589 (2), 1552 (1), 1463 (3), 1432 (10), 1320 (1), 1162 (3), 1144 (1), 1027 (1), 1003 (1), 948 (1), 924 (1), 837 (1), 760 (1), 612 (1), 522 (1), 492 (2), 424 (1), 412 (2), 358 (1), 322 (3), 287 (1), 219 (2), 185 (1), 140 (1), 126 (1), 100 (2). **MS** (CI, m/z,): 239 (2) [PhNNPh + *isobutane*]⁺, 183 (100) [PhNNHPh]⁺, 105 (2) [PhNN]⁺, 94 (8) [PhNH₃]⁺. Crystals suitable for X-ray crystallographic analysis were obtained, by cooling a saturated dichloromethane solution of ${\bf 3}$ to _40 °C

Synthesis of cis-PhNNPh-B(C_6F_5)₃ (4): To a stirred suspension of N,N'diphenyldiazene (0.182 g, 1.00 mmol) in CH2CI2 (5 mL), B(C6F5)3 (0.512 g, 1.00 mmol) in CH₂Cl₂ (5 mL) was added dropwise at -80 °C over a period of ten minutes. The orange reaction solution was allowed to warm to ambient temperatures and stirred in the present of UV light for several days. The completeness of the reaction was monitored by $^{19}\rm{F}(^1\rm{H})$ NMR spectroscopy see Figure S19. The resulting dark orange solution was concentrated to approximately 2 mL in vacuo. Storage at -40 °C over a period of 12 hours results in the deposition of orange crystals. Removal of supernatant by syringe and short drying in vacuo at ambient temperatures yields (0.160 g, 23 %) 4 as orange crystals, Mp. 168 °C (dec.) Anal. calc. % (found); C. 51.90 (51.64); H. 1.45 (1.48); N, 4.04 (4.10). ¹H NMR (25 °C, CD₂Cl₂, 300.13 MHz): δ = 7.05 (m, 2H, ρ -C₆H₅), 7.16 (m, 2H, ρ -C₆H₅), 7.20 (m, 2H, m-C₆H₅), 7.30 (m, 1H, ρ -C₆H₅), 7.41 (m, 1H, m-C₆H₅), 7.49 (m, 1H, ρ -C₆H₅). ¹³C{¹H} NMR (25 °C, CD₂Cl₂, 125.77 MHz): δ = 117.6 (broad, 3C, *ipso*-C₆F₅), 124.1 (s, 2C, *o*-C₆H₅), 124.8 (s, 2C, ρ -C₆H₅), 130.02 (s, 2C, m-C₆H₅), 130.08 (s, 2C, m-C₆H₅), 131.9 (s, 1C, p-C₆H₅), 134.5 (s, 1C, p-C₆H₅), 137.5 (m, 6C, m-C₆F₅, ¹J(¹³C-¹⁹F) = 246 Hz), 140.7 (m, 3C, p-C₆F₅, ¹J(¹³C-¹⁹F) = 253 Hz), 147.4 (s, 1C, ipso-C₆H₅), 148.5 (m, 6C, ρ -C₆H₅), 148.7 (m, 6C, ρ -C₆ C_6F_5 , ${}^{1}J({}^{13}C-{}^{19}F) = 242$ Hz), 150.1 (s, 1C, *ipso*- C_6H_5). ${}^{11}B$ NMR (25°C, CD_2CI_2 , 96.29 MHz): -0.20 (broad) ¹⁹F{¹H} NMR (25 °C, CD₂Cl₂, 282.38 MHz): δ = -164.75 (m, m-C₆F₅), -157.32 (m, p-C₆F₅), -131.11 (m, o-C₆F₅). **IR** (ATR, 16 scans): 3070 (w), 1644 (m), 1579 (m), 1516 (s), 1463 (s), 1451 (s), 1403 (m), 1378 (m), 1337 (w), 1319 (w), 1289 (m), 1282 (m), 1198 (w), 1189 (w), 1169 (w), 1092 (s), 1032 (w), 980 (s), 967 (s), 951 (m), 908 (m), 867 (w), 858 (m), 834 8w), 812 (m), 774 (s), 764 8m), 746 /m), 733 (m), 719 (m), 681 (s), 665 (m), 640 (m), 622 (m), 600 (m), 577 (m), 543 (m), 534 (m). Raman (25 $^\circ\text{C},~784$ nm, 65 mW, 60 s, 6 acc., cm⁻¹): 3098 (1), 3072 (1), 1645 (2), 1590 (4), 1579 (2), 1500 (3), 1485 (2), 1455 (2), 1389 (1), 1198 (1), 1191 (1), 1170 (2), 1165 (2), 1141 (5), 1033 (3), 1025 (1), 1005 (5), 835 (2), 814 (1), 765 (2), 602 (1), 584 (3), 579 (2), 535 (1), 493 (2), 449 (2), 409 (4), 401 (2), 294 (1), 241 (1), 212 (2), 146 (2), 140 (2), 96 (6), 84 (10). **MS** (CI, m/z,): 512 (6) $[B(C_6F_{5})_3]^+$, 183 (100) [PhNNHPh]⁺, 239 (1) [PhNNPh+isobutane]⁺,105 (1) [PhNN]⁺. Crystals suitable

for X-ray crystallographic analysis were obtained, by cooling a saturated dichloromethane solution of 4 to –40 $^\circ C.$

Synthesis of trans-PhNNSiMe3. GaCl3 (6): To a stirred solution of 5 (0.190 g, 1.170 mmol) in CH_2Cl_2 (3 mL), $GaCl_3$ (0.208 g, 1.18 mmol) in CH_2Cl_2 (2 mL) was added at -80 °C over a period of 20 minutes. The resulting orange solution was allowed to stir at -80 °C for 80 minutes. The solution is then concentrated to a volume of 1 mL in vacuo at -50 °C. Storage at -80 °C over a period of 12 hours results in the deposition of orange crystals. Removal of supernatant by syringe and short drying in vacuo at -50 °C yields 6 as orange crystals (40 %). Storage at temperatures below -50 °C. Mp. -20 °C (dec.). ¹H NMR (-77 °C, $CD_{2}CI_{2}$, 500.13 MHz): 0.64 (s, 9H, ${}^{1}J({}^{1}H-{}^{13}C) = 122.3 Hz, {}^{2}J({}^{1}H-{}^{29}Si) = 6.67 Hz),$ 7.51 (m, 2H, o-C₆H₅), 7.61 (m, 2H, m-C₆H₅), 7.98 (m, 1H, p-C₆H₅)¹³Cl¹H **NMR** (-77 °C, CD₂Cl₂, 125.77 MHz): δ = -0.38 (s, 3C, CH₃, ¹J(¹³C-²⁹Si) = 57.74 Hz), 120.8 (s, 2C, *o*-C₆H₅), 129.4 (s, 2C, *m*-C₆H₅), 134.9 (s, 1C, *p*-C₆H₅), 156.6 (s, 1C, *ipso*-C₆H₅). ²⁹Si NMR (-77 °C, CD₂Cl₂, 99.35 MHz): δ = 43.1 (1Si). Raman (-50 °C, 784 nm, 65 mW, 80 sec., 6 acc., cm⁻¹): 3077 (1), 2988 (1), 2909 (1), 1591 (2), 1578 (1), 1479 (1), 1456 (7), 1451 (10), 1400 (1), 1310 (1), 1202 (1), 1165 (3), 1157 (4), 1027 (1), 1001 (2), 996 (1), 930 (1), 887 (1), 831 (1), 774 (2), 746 (1), 705 (1), 633 (1), 616 (1), 512 (1), 490 (2), 416 (2), 399 (1), 358 (2), 338 (2), 305 (1), 242 (1). Crystals suitable for X-ray crystallographic analysis were obtained, by cooling a saturated dichloromethane/trimethylsilyl chloride (1:1) solution of 6 to -80 °C.

Synthesis of *iso1*-Me₃**Si(Ph)NN-B(C**₆F₅)₃ (7): To a stirred solution of 5 (0.250 g, 1.54 mmol) in CH₂Cl₂ (5 mL), $B(C_6F_5)_3$ (0.789 g, 1.54 mmol) in CH₂Cl₂ (6 mL) was added dropwise at -80 °C. The resulting golden solution was allowed to warm to ambient temperature. The solution was then concentrated to an approximate volume of 3 mL. Storage at 0 °C over a period of 12 hours results in the deposition of orange crystals. Removal of supernatant by syringe and short drying in vacuo at ambient temperature yields 7 (0.324 g, 30 %) as orange crystals. Storage at temperatures below 0 °C. Mp. 104 °C (dec.). Anal. calc. % (found): C, 46.98 (46.69); H, 2.08 (2.05); N, 4.06 (4.08).). ¹H NMR (-60 °C, CD₂Cl₂, 300.13 MHz): δ = 0.49 (s, 9H, Si(CH₃)₂, ¹J(¹H⁻¹³C) = 122.8 Hz), 6.73 (m, 2H, *ρ*-C₆H₅), 7.21 (m, 2H, *m*-C₆H₅), 7.32 (m, 1H, *ρ*-C₆H₅). ¹³C(¹H) NMR (-60 °C, CD₂Cl₂, 75.48MHz): δ = -1.3 (s, 3C, Si(CH₃)₃), 119.3 (s, 2C, *o*-C₆H₅), 129.1 (s, 2C, m-C₆H₅), 130.6 (s, 1C, p-C₆H₅), 150.2 (s, 1C, ipso-C₆H₅). ¹⁹F{¹H} **NMR** (-60 °C, CD₂Cl₂, 282.38 MHz): $\delta = -164.68$ (m, *m*-C₆F₅), -158.34 (m, *p*- C_6F_5), -131.74 (m, o- C_6F_5). ¹¹B NMR (-60 °C, CD_2Cl_2 , 96.29 MHz): $\delta = -4.4$ ²⁹Si **NMR** (25 °C, CD₂Cl₂, 59.62 MH2): δ = 46.14 (15i). **IR** (ATR, 16 scans): 2973 (w), 2915 (w), 1645 (m), 1516 (m), 1463 (s), 1455 (s), 1377 (w), 1279 (m), 1263 (m), 1105 (m), 1087 (m), 980 (s), 962 (s), 861 (m), 841 (m), 802 (m), 773 (m), 764 (m), 746 (m), 692 (m), 685 (m), 672 (m), 631 (w), 572 (m). Raman (25 °C, 784 nm, 64 mW, 60 sec., 6 acc., cm⁻¹): 3108 (1), 3080 (1), 2985 (1), 2929 (2), 1657 (1), 1603 (1), 1556 (5), 1495 (1), 1193 (1), 1162 (2), 1038 (2), 1017 (5), 815 (1), 653 (2), 645 (5), 633 (2), 597 (10), 586 (3), 529 (2), 522 (2), 479 (5), 480 (2), 462 (7), 453 (3), 419 (4), 405 (3), 359 (1), 322 (1), 264 (2), 245 (1), 212 (1). MS (CI, m/z,): 179 (100) [(Me₃Si)PhNNH]⁺, 690 (2) [M]⁺, 746 (66) [M+isobutane]⁺. Crystals suitable for X-ray crystallographic analysis were obtained, by cooling a saturated dichloromethane solution of 7 to -25 °C

Synthesis of cis-Me₃SiNNSiMe₃·B(C₆F₅)₃ (9): To a stirred solution of 2 (0.174 g, 1.0 mmol) in CH₂Cl₂ (10 mL), B(C₆F₅)₃ (0.563 g, 1.1 mmol) in CH₂Cl₂ (5 mL) was added dropwise at -80 °C. The resulting blue solution was stirred at -80 °C for 10 minutes. The solution is then concentrated to an approximate volume of 2 mL in vacuo at -50 °C. Storage at -25 °C over a period of 12 hours results in the deposition of blue crystals. Removal of supernatant by syringe and short drying in vacuo at ambient temperature yields 9 as blue crystals. Storage at temperatures below 0 °C. **Mp**.: 127 °C (dec.). **Anai. caic.** 70 (10010), C, 10010, **NMR** (-16 °C, CD_2CI_2 , 282.4 MHz): δ = -164.4 (broad, *m*-C₆F₅), -158.1 (broad, p-C₆F₅), -129.6 (broad, o-C₆F₅). ¹¹B NMR (-16 °C, CD₂Cl₂, 80.3 MHz): δ = 0.75 (broad). ¹H,¹⁵N HMBC NMR (-16 °C, CD₂Cl₂, 40.6 MHz): 464.50 (s, NSi(CH₃)₃,). IR (ATR, 32 scans): 2991 (w), 2973 (w), 2913 (w), 1645 (m), 1593 (w), 1518 (s), 1463 (s), 1390 (m), 1379 (m), 1284 (m), 1267 (m), 1256 (m), 1098 (s), 1037 (w), 976 (s), 853 (s), 834 (s), 784 (m), 773 (m), 746 (m), 728 (w), 700 (m), 682 (m), 656 (m), 633 (m), 600 (m), 584 (w), 571 (m), 543 (w). Raman (25 °C, 1064 nm, 100 mW, 163 scans, cm⁻¹): = 2973 (4), 2911 (10), 1647 (4), 1593 (3), 1421 (2), 1383 (3), 1261 (2), 1116 (1), 1095 (1), 855 (2), 814 (1), 767 (2), 710 (2), 688 (1), 638 (6), 583 (4), 543 (1), 486 (4), 471 (3), 447 (3), 426 (2), 399 (4), 236 (2), 186 (2), 153 (3). **MS** (EI, m/z, >10 %): 73 (73) $[SiMe_3]^{+}$, 168 (23) $[C_6F_5H]^{+}$, 227 (26), SiMe₃+H]⁺, 671 (2) [M–Me]⁺, 686 (3) [M]⁺. UV-Vis (25 °C, CH₂Cl₂): 585 nm. Crystals suitable for X-ray crystallographic analysis were obtained, by cooling a saturated dichloromethane solution of 4 to -25 °C.

Synthesis of 10: A solution of 7 (0.324 g, 0.47 mmol) in CH₂Cl₂ (5 mL) was heated to 75 °C for 3 hours. The solvent of the resulting colourless solution was removed in vacuo and the residue dried for further for 30 minutes. The resulting colourless residue was dissolved in 0.2 mL benzene. Storage at ambient temperature over a period of 12 hours results in the deposition of colourless crystals. The crystals were washed with brenzene (2 x 0.1 mL) and dried in vacuo at ambient temperature yields 10 (0.204 g, 63 %) as colourless crystals. Mp. 71/102 °C (dec.). Anal. calc. % (found): C, 46.98 (46.86); H, 2.04 (2.57); N, 4.06 (4.07). ¹H NMR (25 °C, CD_2CI_2 , 300.1 MHz): δ = 0.29 (s, 9H, (CH₃)₃Si), ${}^{1}J({}^{1}H-{}^{13}C) = 118.2 \text{ Hz}, {}^{2}J({}^{1}H-{}^{29}Si) = 6.65 \text{ Hz}) 6.87 \text{ (m, 1H, } p-C_{6}H_{5}) 7.03 \text{ (m, 2H, }$ o-C₆H₅) 7.22 (m, 2H, *m*-C₆H₅). ¹³C{¹H} NMR (25 °C, CD₂Cl₂, 75.5 MHz): δ = 1.2 (s, 3C, (CH₃)₃Si), 110.7 (broad, 2C, *ipso*-C₆F₅), 116.2 (s, 2C, *o*-C₆H₅), 121.1 (s, (s, 3C, (CH₃)₃Si), 110.7 (broad, 2C, ipso-C₆F₅), 116.2 (s, 2C, o-C₆H₅), 127.1 (s, 1C, p-C₆H₅), 121.6 (broad, 1C, ipso-C₆F₅), 129.2 (s, 2C, m-C₆H₅), 137.8 (m, 4C, m-C₆F₅, $^{1}J_{4}^{(13}C^{-19}F) = 249$ Hz), 138.3 (m, 2C, m-C₆F₅, $^{1}J_{4}^{(13}C^{-19}F) = 249$ Hz), 143.4 (m, 2C, p-C₆F₅, $^{1}J_{4}^{(13}C^{-19}F) = 252$ Hz), 144.3 (m, 1C, p-C₆F₅, $^{1}J_{4}^{(13}C^{-19}F) = 252$ Hz), 144.3 (m, 1C, p-C₆F₅, $^{1}J_{4}^{(13}C^{-19}F) = 252$ Hz), 146.5 (s, 1C, ipso-C₆H₅), 147.1 (m, 4C, o-C₆F₅, $^{1}J_{4}^{(13}C^{-19}F) = 242$ Hz), 147.6 (m, 2C, o-C₆F₅, $^{1}J_{4}^{(13}C^{-19}F) = 242$ Hz). ^{29}Si NMR (25 °C, CD₂Cl₂, 59.6 MHz): $\delta = 14.87$ (m, (CH₃)₃Si). ¹¹B NMR (25 °C, CD₂Cl₂, 96.3 MHz): $\delta = 40.24$ (broad). ¹⁹F¹H} NMR (25 °C, CD₂Cl₂, 282.4 MHz): $\delta = -161.188$ (m, m, P(C₂F₂)) = -161.18 (m, m, C(C₂F₂)) = -161.09 (1 m, m, C(C₂F₂)) = -154.45 (m, p-C B(C₆F₅)), -161.18 (m, m-N(C₆F₅)), -160.91 (m, m-B(C₆F₅)), -154.45 (m, p- $\begin{array}{l} \mathsf{N}(\mathsf{c}_{\mathsf{F}}\mathsf{s})), \ -150.73 \ (\mathsf{m}, \ \mathcal{P}\mathsf{B}(\mathsf{C}_{\mathsf{e}}\mathsf{F}_\mathsf{s})), \ -149.85 \ (\mathsf{m}, \ \mathcal{P}\mathsf{B}(\mathsf{C}_{\mathsf{e}}\mathsf{F}_\mathsf{s})), \ -141.75 \ (\mathsf{broad}, \ \mathcal{O} \\ \mathsf{N}(\mathsf{c}_{\mathsf{F}}\mathsf{s})), \ -131.60 \ (\mathsf{m}, \ \mathcal{O}\mathsf{B}(\mathsf{C}_{\mathsf{e}}\mathsf{F}_\mathsf{s})), \ -127.75 \ (\mathsf{m}, \ \mathcal{O}\mathsf{E}(\mathsf{C}_{\mathsf{e}}\mathsf{F}_\mathsf{s})). \ \mathbf{IR} \ (\mathsf{ATR}, \ 16 \ \mathsf{scans}): \end{array}$ 3041 (w), 2975 (w), 2914 (w), 1650 (m), 1597 (w), 1520 (s), 1505 (s), 1476 (s), 1409 (m), 1401 (m), 1310 (m), 1272 (m), 1258 (m), 1231 (m), 1143 (m), 1107 (m), 1068 (w), 1031 (w), 997 (s), 974 (s), 923 (m), 913 (s), 841 (s), 796 (m), 757 (m), 749 (m), 734 (m), 717 (w), 689 (m), 674 (m), 662 (m), 647 (m), 608 (m), 570 (m), 545 (m). Raman (25 °C, 784 nm, 16 mW, 12 s, 6 acc., cm⁻¹): 3063 (1), 3050 (1), 2948 (1), 2915 (1), 2899 (1), 2861 (1), 1647 (2), 1599 (2), 1586 (2), 1478 (1), 1449 (1), 1404 (1), 1315 (1), 1235 (1), 1173 (1), 1038 (1), 990 (6), 850 (1), 628 (1), 604 (1), 581 (3), 568 (1), 545 (1), 489 (4), 457 (1), 441 (2), 410 (1), 392 (2), 376 (2), 355 (1), 273 (1), 249 (1), 224 (1), 181 (1), 86 (9), 68 (10). MS (CI, m/z,): 675 (3) $[M-CH_3]^+$, 691 (100) $[M+H]^+$, 733 (33) $[M+isobutane-CH_3]^+$, 747 (64) [M+isobutane]⁺. Crystals suitable for X-ray crystallographic analysis were obtained, by storage of a saturated benzene solution of 10 at 25 °C. Synthesis of 11: A blue solution of 9 (0.100 g, 0.15 mmol) in CH₂Cl₂ (5 mL) was heated to 75 °C for 3 hours. The resulting colourless solution was concentrated to an approximate volume of 2 mL in vacuo at ambient

temperatures. Storage at 0 °C over a period of 12 hours results in the deposition of colourless crystals. Removal of supernatant by syringe and drying in vacuo at ambient temperature yields 11 (0.040 g, 40 %) as colourless crystals. Mp. 163 °C. Anal. calc. % (found): C, 42.00 (41.55); H, 2.64 (2.56); N, 4.08 (4.27). ¹**H NMR** (25 °C, CD_2CI_2 , 300.13 MHz): δ = 0.07 (s, 18H, (CH₃)₃Si), 4.08 (4.27). If NMH (25 °C, CD₂Cl₂, 300.13 MH2): $\delta = 0.07$ (8, 18H, (CH₃)₃S), ¹J(¹H-¹³C) = 119.2 Hz). ¹³C{¹H} (NMR 25 °C, CD₂Cl₂, 75.5 MHz): $\delta = 1.86$ (8, 6C, Si(CH₃)₃). ²⁹Si NMR (25 °C, CD₂Cl₂, 59.6 MHz): $\delta = 13.4$ (m, (CH₃)₃Si). ¹¹B NMR (25 °C, CD₂Cl₂, 96.3 MHz): $\delta = 36.59$ (broad). ¹⁹F{¹H} NMR (25 °C, CD_2CI_2 , 282.4 MHz): $\delta = -162.06$ (m, m-B(C₆F₅)), -161.53 (m, m-N(C₆F₅)), -161.43 (m, m-B(C₆F₅)), -154.68 (m, p-N(C₆F₅)), -150.96 (m, p-B(C₆F₅)), -150.76 (m, p-B(C₆F₅)), -140.31 (m, o-N(C₆F₅)), -131.87 (m, o-B(C₆F₅)), -127.35 (m, o-B(C₆F₅)). IR (ATR, 32 scans): 2977 (w), 2949 (w), 2899 (w), 1650 (m), 1520 (s), 1507 (m), 1476 (s), 1397 (m), 1296 (m), 1261 (m), 1255 (m), 1167 (m), 1143 (m), 1104 (m), 1059 (m), 996 (s), 976 (s), 958 (s), 906 (s), 857 (s), 840 (s), 818 (s), 794 (m), 764 (m), 732 (m), 712 (m), 654 (m), 613 (m), 573 (m), 559 (m). Raman (25 °C, 784 nm, 33 mW, 20 s, 5 acc., cm⁻¹): 2980 (1), 2967 (1), 2951 (1), 2915 (1), 2900 (1), 1648 (5), 1525 (1), 1510 (1), 1480 (2), 1451 (4), 1404 (4), 1384 (2), 1315 (1), 1272 (1), 1165 (1), 1058 (1), 1011 (1), 980 (1), 960 (1), 861 (1), 840 (2), 764 (1), 751 (1), 682 (1), 654 (3), 613 (1), 586 (6), 572 (1), 560 (1), 491 (4), 467 (2), 458 (2), 446 (3), 433 (1), 429 (2), 391 (3), 379 (2), 355 (1), 334 (1), 283 (1), 237 (1), 186 (1), 149 (2), 124 (1), 68 (10). MS (CI, m/z,): 146 (31) [(Me₃Si)₂NH₂-CH₃]⁺, 162 (100) [(Me₃Si)₂NH₂]⁺, 671 (61) [M-CH₃]⁺, 686 (80) [M]⁺. Crystals suitable for X-ray crystallographic analysis were obtained, by cooling a saturated dichloromethane solution of 11 to 0 °C.

Acknowledgements

Dr. Dirk Michalik and Dr. Wolfgang Baumann are gratefully acknowledged for his help with ¹¹B and ²⁹Si NMR experiments. Financial support by the University Rostock and the LIKAT are gratefully acknowledged. We thank Christian Hering for X-ray measurements.

Keywords: diazene, nitrene, diazene adducts, hydrazinoboranes, silylium ion, Lewis acids, $GaCl_3$ adducts, $B(C_6F_5)_3$ adducts,

structure, bonding, charge transfer, frustrated Lewis acid base pair

Referenzes

- [1] P. Griess, Justus Liebigs Ann. Chem. 1858, 106, 123–125.
- [2] R. Wizinger-Aust, Angew. Chem. 1958, 70, 199–204.
- [3] A. Bafana, S. S. Devi, T. Chakrabarti, Environ. Rev. 2011, 19, 350-371.
- [4] M. Stein, A. Breit, T. Fehrentz, T. Gudermann, D. Trauner, Angew. Chem. Int. Ed. 2013, 52, 9845–8.
- [5] F. Cisnetti, R. Ballardini, A. Credi, M. T. Gandolfi, S. Masiero, F. Negri, S. Pieraccini, G. P. Spada, *Chem. Eur. J.* 2004, *10*, 2011–21.
- [6] G. Wagniere, Theor. Chim. Acta 1973, 31, 269–274.
- [7] P. B. Dervan, M. E. Squillacote, P. M. Lahti, A. P. Sylwester, J. D. Roberts, J. Am. Chem. Soc. 1981, 103, 1120–1122.
- [8] W. D. Hinsberg, P. B. Dervan, J. Am. Chem. Soc. 1979, 101, 6142–6144.
- [9] W. D. Hinsberg, P. B. Dervan, J. Am. Chem. Soc. 1978, 100, 1608–1610.
- [10] P. G. Schultz, P. B. Dervan, J. Am. Chem. Soc. 1980, 102, 878-880.
- [11] A. Schulz, A. Villinger, Angew. Chem. 2013, 125, 3146-3148.
- [12] H. Wieland, E. Wecker, Chem. Ber. 1910, 43, 3260-3271.
- [13] S. Hünig, H. Balli, E. Breither, F. Brühne, H. Geiger, E. Grigat, F. Müller, H. Quast, Angew. Chem. 1962, 74, 818–824.
- [14] W. R. McBride, H. W. Kruse, J. Am. Chem. Soc. 1957, 79, 572–576.
- [15] W. R. McBride, E. M. Bens, J. Am. Chem. Soc. 1959, 81, 5546–5550.
- [16] S. F. Nelsen, R. T. Landis, J. Am. Chem. Soc. 1974, 96, 1788–1793.
- [17] S. F. Nelsen, S. C. Blackstock, J. Org. Chem. 1984, 49, 1134–1135.
- [18] E. L. Allred, T. J. Chow, J. E. Oberlander, J. Am. Chem. Soc. 1982, 104, 5422–5427.
- [19] S. F. Nelsen, H. Chang, J. J. Wolff, D. R. Powell, J. Org. Chem. 1994, 59, 6558–6563.
- [20] V. Gutmann, A. Steininger, Monatshefte f
 ür Chemie 1965, 96, 1173– 1182.
- [21] A. Steininger, V. Gutmann, Monatshefte für Chemie 1966, 97, 171–177.
- [22] N. Wiberg, W.-C. Joo, W. Uhlenbrock, Angew. Chem. 1968, 80, 661–662.
- [23] N. Wiberg, W. Uhlenbrock, Angew. Chem. 1970, 82, 47-47.
- [24] N. Wiberg, H. Bachhuber, G. Fischer, Angew. Chem. 1972, 84, 889–890.
- [25] N. Wiberg, G. Fischer, H. Bachhuber, Angew. Chem. 1976, 88, 386–387.
- [26] N. Wiberg, A. Gieren, Angew. Chem. 1962, 74, 942–942.
- [27] N. Wiberg, H.-W. Häring, G. Huttner, P. Friedrich, Chem. Ber. 1978, 111, 2708–2715.
- [28] N. Wiberg, G. Preiner, O. Schieda, G. Fischer, Chem. Ber. 1981, 114, 3505–3517.
- [29] N. Wiberg, G. Schwenk, Chem. Ber. 1971, 104, 3986–3988.
- [30] N. Wiberg, W. Uhlenbrock, Chem. Ber. 1971, 104, 3989–3991.
- [31] N. Wiberg, W. Uhlenbrock, J. Organomet. Chem. 1974, 70, 249–257.
- [32] N. Wiberg, W. Uhlenbrock, W. Baumeister, J. Organomet. Chem. 1974, 70, 259–271.
- [33] N. Wiberg, S. K. Vasisht, H. Bayer, R. Meyers, Chem. Ber. 1979, 112, 2718–2729.
- [34] N. Wiberg, S. K. Vasisht, G. Fischer, E. Weinberg, Chem. Ber. 1976, 109, 710–722.

DOI: 10.1002/chem.201xxxxx

- [35] N. Wiberg, E. Weinberg, W.-C. Joo, *Chem. Ber.* **1974**, *107*, 1764–1766.
- [36] W. Baumann, D. Michalik, F. Reiß, A. Schulz, A. Villinger, Angew. Chem. Int. Ed. 2014, 53, 3250–3.
- [37] J. Kroner, W. Schneid, N. Wiberg, B. Wrackmeyer, G. Ziegleder, J. Chem. Soc. Faraday Trans. 2 1978, 74, 1909.
- [38] H. Bock, K. Wittel, M. Veith, N. Wiberg, J. Am. Chem. Soc. 1976, 98, 109–114.
- [39] D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2010, 49, 46–76.
- [40] A. Bernsdorf, H. Brand, R. Hellmann, M. Köckerling, A. Schulz, A. Villinger, K. Voss, J. Am. Chem. Soc. 2009, 131, 8958–8970.
- [41] M. Becker, A. Schulz, A. Villinger, K. Voss, RSC Adv. 2011, 1, 128–134.
- [42] I. C. Vei, S. I. Pascu, M. L. H. Green, J. C. Green, R. E. Schilling, G. D. W. Anderson, L. H. Rees, *Dalt. Trans.* 2003, 2550.
- [43] A. A. Danopoulos, J. R. Galsworthy, M. L. H. Green, L. H. Doerrer, S. Cafferkey, M. B. Hursthouse, *Chem. Commun.* 1998, 2529–2560.
- [44] J. C. Bottaro, J. Chem. Soc. Chem. Commun. 1978, 990.
- [45] U. Wannagat, C. Krüger, Z. anorg. und allg. Chemie 1964, 326, 288–295.
- [46] N. Wiberg, M. Veith, Chem. Ber. 1971, 104, 3191–3203
- [47] A. E. Reed, L. a. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899–926.
- [48] E. D. Glendening, C. R. Landis, F. Weinhold, J. Comput. Chem. 2013, 34, 1429–1437.
- [49] A. Leiba, I. Oref, J. Chem. Soc. Faraday Trans. 1 1979, 75, 2694.
- [50] P. Arndt, U. Jäger-Fiedler, M. Klahn, W. Baumann, A. Spannenberg, V. V Burlakov, U. Rosenthal, *Angew. Chemie, Int. Ed. English* 2006, 45, 4195–4198.
- [51] P. Arndt, W. Baumann, A. Spannenberg, U. Rosenthal, V. V Burlakov, V. B. Shur, Angew. Chem. Int. Ed. 2003, 42, 1414–8.
- [52] T. J. Woodman, M. Bochmann, M. Thornton-Pett, Chem. Commun. 2001, 329–330.
- [53] M. M. Hansmann, R. L. Melen, F. Rominger, a S. K. Hashmi, D. W. Stephan, J. Am. Chem. Soc. 2014, 136, 777–82.
- [54] G. Dierker, J. Ugolotti, G. Kehr, R. Fröhlich, G. Erker, Adv. Synth. Catal. 2009, 351, 1080–1088.
- [55] M. Kowalewski, B. Krumm, P. Mayer, A. Schulz, A. Villinger, *Eur. J. Inorg. Chem.* 2007, 2007, 5319–5322.
- [56] N. Wiberg, H. W. Häring, O. Schieda, Angew. Chem. Int. Ed. 1976, 15, 386–387.
- [57] M. Veith, Angew. Chem. Int. Ed. 1976, 15, 387-388.
- [58] R. Eikey, *Coord. Chem. Rev.* **2003**, *243*, 83–124.
- [59] J. A. Ibers, R. S. Dickson, S. Otsuka, Y. Tatsuno, J. Am. Chem. Soc. 1971, 93, 4636–4637.
- [60] R. Hüttel, A. Konietzny, Chem. Ber. 1973, 106, 2098–2113.
- [61] E. W. Abel, C. A. Burton, M. R. Churchill, K.-K. G. Lin, J. Chem. Soc. Chem. Commun. 1974, 268.
- [62] M. A. Aubart, R. G. Bergman, Organometallics 1999, 18, 811-813.
- [63] T. Avilés, A. Dinis, M. G. B. Drew, V. Félix, *Monatshefte fuer Chemie*. 2000, 131, 1305–1310.
- [64] J. R. Dilworth, H. J. de Liefde Meijer, J. H. Teuben, J. Organomet. Chem. 1978, 159, 47–52.
- [65] R. S. Dickson, J. A. Ibers, J. Am. Chem. Soc. 1972, 94, 2988–2993.
- [66] H. Fuβstetter, H. Nöth, *Liebigs Ann. der Chemie* **1981**, *1981*, 633–641.

- [67] H. Hommer, H. Nöth, H. Sachdev, M. Schmidt, H. Schwenk, *Chem. Ber.* 1995, 128, 1187–1194.
- [68] D. Nölle, H. Nöth, Chem. Ber. 1978, 111, 469–479.
- [69] H. Nöth, W. Regnet, Chem. Ber. 1969, 102, 2241–2248.
- [70] H. Nöth, W. Regnet, H. Rihl, R. Standfest, Chem. Ber. 1971, 104, 722– 733.
- [71] N. Götz, S. Herler, P. Mayer, A. Schulz, A. Villinger, J. J. Weigand, Eur. J. Inorg. Chem. 2006, 2006, 2051–2057.
- [72] G. Fischer, S. Herler, P. Mayer, A. Schulz, A. Villinger, J. J. Weigand, *Inorg. Chem.* 2005, 44, 1740–51.
- [73] A. P. Scott, L. Radom, J. Phys. Chem. 1996, 100, 16502–16513.
- [74] B. J. Smith, J. Phys. Chem. 1993, 97, 10513–10514.
- [75] M. L. McKee, J. Phys. Chem. 1993, 97, 13608–13614.
- [76] J. A. Pople, K. Raghavachari, M. J. Frisch, J. S. Binkley, P. V. R. Schleyer, J. Am. Chem. Soc. 1983, 105, 6389–6399.
- [77] J. Boyd, G. I. Pagola, M. C. Caputo, M. B. Ferraro, P. Lazzeretti, J. Chem. Theory Comput. 2009, 5, 1343–1349.
- [78] B. A. Shainyan, A. V Kuzmin, M. Y. Moskalik, Comput. Theor. Chem. 2013, 1006, 52–61.
- [79] C. J. Casewit, W. A. Goddard, J. Am. Chem. 1980, 102, 4057–4062.
- [80] S. Herler, P. Mayer, J. S. A. der Günne, A. Schulz, A. Villinger, J. J. Weigand, Angew. Chem. Int. Ed. 2005, 44, 7790–3.
- [81] D. Michalik, A. Schulz, A. Villinger, Inorg. Chem. 2008, 47, 11798–11806.
- [82] M. Lehmann, A. Schulz, A. Villinger, Angew. Chem. Int. Ed. 2009, 48, 7444–7.
- [83] A. Schulz, A. Villinger, Angew. Chem. Int. Ed. 2012, 51, 4526-4528.
- [84] M. F. Ibad, P. Langer, F. Reiß, A. Schulz, A. Villinger, J. Am. Chem. Soc. 2012, 134, 17757–17768.
- [85] M. F. Ibad, P. Langer, A. Schulz, A. Villinger, J. Am. Chem. Soc. 2011, 133, 21016–21027.
- [86] A. Haaland, Angew. Chem. 2006, 101, 1017–1032.
- [87] E. I. Davydova, T. N. Sevastianova, A. V. Suvorov, A. Y. Timoshkin, *Coord. Chem. Rev.* 2010, 254, 2031–2077.
- [88] E. A. Berezovskaya, A. Y. Timoshkin, T. N. Sevastianova, A. D. Misharev, A. V Suvorov, H. F. Schaefer, *J. Phys. Chem. B* 2004, *108*, 9561–9563.
- [89] G. Frenking, S. Fau, C. M. Marchand, H. Grützmacher, J. Am. Chem. Soc. 1997, 119, 6648–6655.
- [90] G. M. Sheldrick, SHELXS-97 Progr. Solut. Cryst. Struct. Univ. Göttingen, Ger. 1997.
- [91] G. M. Sheldrick, SHELXL-97 Progr. Refinement Cryst. Struct. Univ. Göttingen, Ger. 1997.
- [92] G. M. Sheldrick, SADABS. Version 2. Univ. Göttingen, Ger. 2004.
- [93] J. J. de Lange, J. M. Robertson, I. Woodward, Proc. R. Soc. A Math. Phys. Eng. Sci. 1939, 171, 398–410.
- [94] J. A. Bouwstra, A. Schouten, J. Kroon, R. B. Helmholdt, Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1985, 41, 420–426.
- [95] P. Pyykkö, M. Atsumi, Chem. Eur. J. 2009, 15, 12770–12779.
- [96] C. Hubrich, A. Schulz, A. Villinger, Z. anorg. allg. Chem. 2007, 633, 2362–2366.

5.4 Synthesis of the First Persilylated Ammonium Ion [(Me₃Si)₃NSi(H)Me₂]⁺ By Silylium Catalysed Alkyl/Hydrogen Redistribution

René Labbow, Fabian Reiß, Axel Schulz, Alexander Villinger.

Organometallics, 2014, 33, 3223-3226.

In dieser Publikation wurde ein groß Teil der experimentellen Arbeiten sowie die gesamten Berechnungen von mir durchgeführt. Ich habe das Manuskript verfasst und das Supportingfile erstellt. Der eigene Beitrag liegt bei ca. 80 %.

Ein ausführliches Supportingfile steht online zur freien Verfügung:

DOI: 10.1021/om500519j

ORGANOMETALLICS-

Communication pubs.acs.org/Organometallics

Synthesis of the First Persilylated Ammonium Ion, [(Me₃Si)₃NSi(H)Me₂]⁺, by Silylium-Catalyzed Methyl/Hydrogen Exchange Reactions

René Labbow,[†] Fabian Reiß,[†] Axel Schulz,^{*,†,‡} and Alexander Villinger[†]

[†]Institut für Chemie, Abteilung Anorganische Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany [‡]Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany

S Supporting Information

ABSTRACT: This work describes the unexpected synthesis and characterization of the first persilylated ammonium ion, $[(Me_3Si)_3NSi(H)Me_2]^+$, in the reaction of $(Me_3Si)_3N$ with $[Me_3Si-H-SiMe_3][B(C_6F_5)_4]$. NMR and Raman studies revealed a transition-metal-free silylium ion catalyzed substituent redistribution process when $[Me_3Si-H-SiMe_3]^+$ was used as the silylating reagent. These observations were affirmed in the reaction with $[Et_3Si-H-SiEt_3][B(C_6F_5)_4]$. A Lewis acid catalyzed scrambling process always occurs if an excess of silanes is present in the formation of silylium cations while employing the standard Bartlett–Schneider–Condon type reaction. Additionally, the

thermodynamics of this process was accessed by DFT computations at the pbe1pbe/aug-cc-pVDZ level, indicating alkyl substituent exchange equilibria at the silane and preference of the formation of $[(Me_3Si)_3NSi(H)Me_2]^+$ over $[(Me_3Si)_4N]^+$.

T he rise of silylium cation chemistry was motivated by the search for a three-coordinate silicon cation $[R_3Si]^+$ (where R is an alkyl or aryl group) in analogy to the well-studied lighter group 14 carbenium ions $[R_3C]^{+,1-3}$ In 2002 Reed and Lambert solved the silylium ion problem by the synthesis and full characterization of the salt $[(Mes)_3Si][CHB_{11}Me_5Br_6]$ · C_6H_6 (Mes = 2,4,6-trimethylphenyl) with a sterically encumbered silylium cation.⁴ The major problem in the synthesis of "naked" $[R_3Si]^+$ cations arises from their electron sextet and an empty 3p valence orbital on the silicon, resulting in super Lewis acidic character. This leads to the formation of Lewis acid–base adducts even with weak Lewis bases (e.g., toluene, ^{5–7} Me_3Si–H^{8,9}) or close cation–anion contacts with weakly coordinating anions (wca; e.g., $[CHB_{11}H_5Br_6]$, ¹⁰ $[CHB_{11}F_{11}]^{11}$), respectively.

In 1963 Corey and West¹² used the Lewis acid assisted hydrogen/halogen exchange Bartlett–Schneider–Condon¹³ reaction for the first time in silicon chemistry. Thirty years later Lambert used a borate ($[B(C_6F_5)_4]^-$) as a wca in this reaction type and published a general synthetic approach to trialkylsilylium cations $[R_3Si]^+$ for the first time.⁶ However, Nava and Reed⁹ showed that the commonly used triethylsilyl perfluorotetraphenylborate salt, $[Et_3Si][B(C_6F_5)_4]$, was misidentified. As prepared, the cation is the hydride-bridged silane adduct $[R_3Si-H-SiR_3]^+$. The effective combination of a Hsilane (R_3Si-H) and a triphenylmethylium (tritylium) salt with a wca (e.g., $[Ph_3C][B(C_6F_5)_4]$ (1)) has been shown to be a well-established method, which was used to synthesize a variety of silylium cations on numerous occasions. This reaction is tolerant toward different solvents (benzene, toluene, 1,2dichlorobenzene) or can be even carried out in neat silanes R_3Si-H as solvent, yielding $[R_3Si-H-SiR_3][B(C_6F_5)_4]$ (2 for R = Me) (Scheme 1).

Scheme 1. General Syr	nthesis of Sily	lium Ions
$[Ph_3C][B(C_6F_5)_4] + R_3Si-H$	>	$[R_3Si \cdot X][B(C_6F_5)_4] + PhCH$
1	R ₃ Si-H or benzene	R = Me, Et, <i>i-</i> Pr, Me ₃ Si X = R ₃ Si-H or benzene

Furthermore, especially $[Me_3Si \cdot X][wca]$ salts (X = Me_3SiH , arene; wca = $[B(C_6F_5)_4]^-$, $[CHB_{11}H_3Y_6]^-$ (Y = Br, Cl)) allowed access to homoleptic onium ions, for example bissilylated halonium and pseudohalonium cations of the type $[Me_3Si-X-SiMe_3]^+$ (X = F, Cl, Br, I;¹⁴ X = CN, OCN, SCN, NNN),¹⁵ which could be isolated and fully characterized as their $[B(C_6F_5)_4]^-$ salts. The persilylated chalcogonium ions $[(Me_3Si)_3O]^+$ and $[(Me_3Si)_3S]^+$ were prepared and investigated by Olah et al.^{16,17} Recently, we reported the fully characterized pseudochalcogonium salts $[(Me_3Si)_2NCN-(SiMe_3)][B(C_6F_5)_4]$ and $[(Me_3Si)_2NNC(SiMe_3)][B(C_6F_5)_4]^{-18}$ In 2001 Driess et al. presented the first structurally characterized persilylated phosphonium $[(Me_3Si)_4P]^+$ and arsonium $[(Me_3Si)_4As]^+$ ions (pnictonium).¹⁹ All of these examples of onium ions can be obtained in a general silylation reaction combining the super Lewis acidic²⁰ media of $[Me_3Si]$

Received: May 16, 2014

ACS Publications © XXXX American Chemical Society

Organometallics

 $(solvent)][B(C_6F_5)_4]$ and the neutral silvlated group 15–17 compound in suitable solvents, as depicted in Scheme 2.

Scheme 2. Synthesis of Homoleptic Onium Cations^a

 $[Me_3Si \cdot X][B(C_6F_5)_4] + (Me_3Si)_n E \longrightarrow [(Me_3Si)_{n+1}E][B(C_6F_5)_4] + X$

 ${}^{a}n = 1$: E = F, Cl, Br, I, CN, OCN, SCN, NNN with X = Me₃SiH. n = 2: E = O, S, NCN, NNC with X = Me₃SiH. n = 3: E = P, As with X = benzene.

We have long been interested in the preparation of the missing homoleptic tetrakis(trimethylsilyl)ammonium cation, $[(Me_3Si)_4N]^+$. Herein we describe the attempted synthesis of the $[(Me_3Si)_4N]^+$ cation and show that a $[(Me_3Si)_3NSi(H)-Me_2]^+$ cation is formed instead. In addition, while studying the problem with the synthesis of $[(Me_3Si)_4N]^+$ we discovered a hidden silylium-catalyzed methyl/hydrogen exchange at the silane Me_3SiH, which finally explained the loss of one methyl group.

The starting point of this project was the attempted direct silylation of $(Me_3Si)_3N$, as depicted in Scheme 2. Although Driess and Wiberg²¹ failed in similar experiments, we decided to reinvestigate the preparation of the missing persilylated ammonium ion. The gas-phase reaction (1) of $(Me_3Si)_3N$ with

$$(\mathrm{Me}_{3}\mathrm{Si})_{3}\mathrm{N}(g) + [\mathrm{Me}_{3}\mathrm{Si}]^{+}(g) \rightarrow [(\mathrm{Me}_{3}\mathrm{Si})_{4}\mathrm{N}]^{+}(g) \qquad (1)$$

 $[Me_3Si]^+$ calculated at the pbe1pbe/aug-cc-pVDZ level of theory ($\Delta H_{298} = -427.1 \ \text{kJ mol}^{-1}$) also strongly supported the idea of direct silylation (cf. $-127.2 \ \text{kJ mol}^{-1}$ for toluene, $-131.0 \ \text{kJ mol}^{-1}$ for Me_3Si-H and $-227.6 \ \text{kJ mol}^{-1}$ for Me_3Si-CN).

We repeated the reactions reported by Driess¹⁹ and coworkers, who attempted to use $[Me_3Si \cdot (toluene)][B(C_6F_5)_4]$ (3) as the silvlation agent with no success. However, in an earlier work we noticed that the salt 3 slowly decomposes during drying in vacuo and isolation, which was indicated by a gradual color switch from colorless to yellow.⁷ Therefore, we decided to prepare 3 in situ. $[Me_3Si-H-SiMe_3][B(C_6F_5)_4]$ (2) was treated with an excess of toluene. Then trimethylsilane (bp 6.7 °C) was removed with a freeze-pump-thaw procedure, affording colorless crystals of $[Me_3Si \cdot (toluene)][B(C_6F_5)_4]$ (3). The resulting suspension was reacted with 1 equiv of $(Me_3Si)_3N$ (4) and heated to 70 °C, where a characteristic biphasic system was observed. Slow cooling of this solution to -40 °C resulted in the deposition of colorless crystals of the unexpected salt $[(Me_3Si)_3NSi(H)Me_2][B(C_6F_5)_4]$ (5) in a moderate isolated yield of 46% (Figure 1).

As an isolated solid, **5** is thermally surprisingly stable up to 152 °C, while it immediately decomposes in CH₂Cl₂ solution at ambient temperature, which is indicated by a switch from colorless to deep orange. This prompted us to carry out NMR experiments at -80 °C in CD₂Cl₂. However, only decomposition products of the cation could be detected. Remarkably, the borate anion is not involved in the decomposition, as visualized by its characteristic ¹⁹F{¹H} NMR resonance pattern and ¹¹B NMR shift of -17 ppm. Actually, the use of *o*-dichlorobenzene as the solvent in NMR experiments failed to identify the cation. This observation is in contrast to the case for the analogous phosphonium and arsonium cations, which remain unchanged in CH₂Cl₂ solution. These results gave evidence for the dissociation of **5** even in weak Lewis basic

Figure 1. ORTEP drawing of the molecular structure of the cation $[(Me_3Si)_3NSi(H)Me_2]^+$ in the crystal. Thermal ellipsoids are drawn with 50% probability at 153 K, and the $[B(C_6F_5)_4]^-$ anion is omitted for clarity. Selected distances (Å) and angles (deg): N–Si1 1.889(2), N–Si2 1.899(2), N–Si3 1.891(2), N–Si4 1.870(2); Si1–N–Si2 112.27(2), Si1–N–Si3 110.27(2), Si3–N–Si2 107.92(2) Si4–N–Si1 111.24(2) Si4–N–Si2 106.32(2) Si4–N–Si3 108.69(2).

solvents followed by uncontrolled decomposition. The IR spectrum of 5 showed a weak mode at 2192 cm⁻¹, which could be assigned to stretches of the Si-H unit. This is in reasonable agreement with the calculated value for $\nu_{\rm SiH}({\rm calcd})$ 2232 cm $^{-1}$ (pbe1pbe/aug-cc-pVDZ level; see the Supporting Information). The existence of ammonium salt 5 was unequivocally proven by X-ray diffraction analysis (Figure 1). 5 crystallizes in the monoclinic space group $P2_1/c$ with four formula units per cell. It is interesting to note that crystallization at higher temperatures (3 °C) resulted in the crystallization of another modification of 5 (triclinic space group $P\overline{1}$; see the Supporting Information), which, however, showed a highly disordered cation. Therefore, only the ordered structure is discussed. There are neither significant cation-anion nor anion-anion contacts. The observed molecular structure exhibits the expected nearly tetrahedral coordination environment around the nitrogen atom with Si-N-Si angles between 106.32(2) and 112.27(2)° (cf. [(Me₃Si)₄P]⁺, Si-P-Si 107.30(7)-111.06(7)°; $[(Me_3Si)_4As]^+$, Si-As-Si 108.8(1)-110.0(1)°). The N-Si bonds of 5 (N-Si1 1.889(2) Å, N-Si2 1.899(2) Å, N-Si3 1.891(2) Å, N–Si4 1.870(2) Å) are in good agreement with those observed in the persilylated diazonium cation $[(Me_3Si)_2NN(SiMe_3)]^+$ (cf. 1.829(1), 1.894(1), 1.899(1) Å,²² $\sum r_{cov}(Si-N) = 1.87$ Å).²³ It should be mentioned that the silicon-nitrogen bond of the dimethylsilyl group (N-Si4) is significantly shortened in comparison to those of the three trimethylsilyl groups (N-Si1, N-Si2, N-Si3) as a consequence of less steric hindrance (cf. N-Si1 1.889(2) Å, N-Si2 1.899(2) Å, N-Si3 1.891(2) Å, N-Si4 1.870(2) Å).

All of these results highlighted the difficulties in the synthesis of the intended homoleptic $[(Me_3Si)_4N]^+$ ion but gave no satisfactory explanation for the loss of a methyl group at one silyl group. For this reason, we took a closer look at our starting materials and their preparation. The analytical data of 1, 2, and 4 showed no appreciable impurities. Therefore, we decided to examine the stability of 2 in solution. After the treatment of $[Ph_3C][B(C_6F_5)_4]$ (3 mol %) with an excess of Me₃SiH and storage over a period of 12 h (Scheme 1), we recondensed the excess silane into a sealed NMR tube. The ¹H NMR data revealed, in addition to the expected signals for Me₃SiH (δ (¹H) 0.92 (d), 4.87 (dec)), additional signals which could be assigned to Me₄Si (δ (¹H) 0.86 (s)), Me₂SiH₂ (δ (¹H) 0.97 (t), 4.67 (sep)), and MeSiH₃ (δ (¹H) 4.41 (q)).²⁴ The composition of the mixture $(0.14 \text{ (MeSiH}_3):0.88 \text{ (Me}_2\text{SiH}_2):1$ (Me₃SiH):0.70 (Me₄Si)) was rather unexpected to us (Figure

2), but the formation of this methylsilane mixture now explained the presence of one Me₂SiH group in **5**.

Figure 2. ¹H NMR spectrum of the recovered silane mixture (25 °C, C₆D₆ (external), 300.13 MHz): δ 0.86 (s, (CH₃)₄Si, ²*J*(¹H-²⁹Si) = 6.4 Hz), 0.92 (d, (CH₃)₃SiH, ³*J*(¹H-¹H) = 3.59 Hz), 0.97 (t, (CH₃)₂SiH₂, ³*J*(¹H-¹H) = 4.15 Hz). 4.41 (quart, (CH₃)SiH₃, ³*J*(¹H-¹H) = 4.72 Hz), 4.67 (sep, (CH₃)₂SiH₂), 4.87 (dec, (CH₃)₃SiH).

To gain more insight into the formation of these mixed methylsilanes, we treated 0.26 mol % of 1 with Me₃SiH as reactant and solvent at ambient temperature, resulting in the precipitation of $[Me_3Si-H-SiMe_3][B(C_6F_5)_4]$ (2), which represented the catalytically active species in this reaction. The upper silane phase was investigated in a series of ¹H NMR and Raman experiments. This long-term analysis showed an unambiguous catalytic reaction, as depicted in Scheme 3 and Figure 3 (see also the Supporting Information).

Scheme 3. Catalytic Exchange Reaction of Me₃SiH^a

n Me₃SiH $\frac{PC}{rt}$ r MeSiH₃ + s Me₂SiH₂ + t Me₃SiH + u Me₄Si

^{*a*}PC = precatalyst = $[Ph_3C][B(C_6F_5)_4]$.

Since the increase of Me_2SiH_2 and Me_4Si was accompanied by the decrease of Me_3SiH (Figure 3, left), the reaction might be regarded as a methyl/hydrogen redistribution reaction (Scheme 4, reaction A with R = Me). Moreover, a second much slower equilibrium reaction interfered with the aforementioned exchange reaction. This equilibrium could be attributed to the substituent redistribution of Me_2SiH_2 into the methylsilane $MeSiH_3$ and the starting material Me_3SiH , as depicted in Scheme 4 (reaction B with R = Me) and Figure 3 (right). The small enthalpy changes along reactions A (-0.6 kJ mol⁻¹) and B (-1.9 kJ mol⁻¹) support this assumption.

			Communicat	101
Scheme 4.	Alkyl Exchange	Reactions (R = Me, Et)	
Α	R ₃ SiH + R ₃ SiH		$R_4Si + R_2SiH_2$	
В	$R_2SiH_2 + R_2SiH_2$		R ₃ SiH + RSiH ₃	

In further experiments we studied the influence of the wca. For this reason we added catalytic amounts of [Ph₃C]-[CHB₁₁H₅Cl₆] to neat Me₃SiH, leading also to the formation of a silane mixture, as depicted in Schemes 3 and 4. Additionally, the reaction of 1 as precatalyst (0.34 mol %) and Et₃SiH was examined by a ²⁹Si-INEPT NMR study, which showed signals for Et₄Si (δ ⁽²⁹Si) 8.33), Et₃SiH (δ ⁽²⁹Si) 0.52) and Et₂SiH₂ (δ ⁽²⁹Si) –22.56) after an equilibration time of 70 days (see Supporting Information, Figure S18). Again the in situ formed silylium ion (here $[Et_3Si-H-SiEt_3][B(C_6F_5)_4]$ (6) catalyzes the ethyl/hydrogen exchange reactions, for which also very small enthalpies were computed (equilibrium A, 0.3 kJ mol⁻¹; equilibrium B, -0.1 kJ mol⁻¹; see Scheme 4 with R = Et). Interestingly, no signal for the $EtSiH_3$ species was observed, which might be due to the less sensitive 29Si-INEPT NMR method. The estimated turnover numbers (TON) and turnover frequencies (TOF) were calculated at the 50% state of equilibration and are depicted in Table 1. The higher activity of

Table 1. Estimated Parameters for the Catalyzed Alkyl/ Hydrogen Exchange Reaction

silane	amt of PC, mol $\%^a$	TON ₅₀ ^b	TOF ₅₀ ^c
Me ₃ SiH	0.26	63	1.28
Et ₃ SiH	0.34	39	0.41
PC = precataly	yst = $[Ph_3C][B(C_6F_5)_4]$. ^b]	Referenced to I	R ₄ Si species at

50% of equilibration state. ${}^{c}\text{TOF}_{50} = \text{TON}/\text{time (h)}$.

the smaller " $[Me_3Si]^{+}$ " silylium ion is impressively demonstrated by a 3 times larger TOF and should be taken into account when preparing 2 or homoleptic species bearing Me₃Si groups.

These results can be compared to earlier observations by Müller and co-workers^{25,26} and Oestreich et al.,²⁷ who described substituent scrambling in the formation of the arene silylium cation $[(Mes)_3Si]^+$ and the ferrocene-substituted species $[iPrSi(Fc)_2]^+$, respectively. As these reports focused on the substituent scrambling at the silylium cation center, there was no report of catalytic substituent redistribution at the silane compounds. Brookhart et al. reported on a reaction of Me₂EtSiH with the transition-metal complex Et₃Si(H)₂Ir(μ -SiEt₂)₂Ir(H)₂SiEt₃ as catalyst in the presence of hydrogen and observed a substituent redistribution, affording Et₂MeSiH,

Figure 3. Time-dependent relative integrals taken from ¹H NMR spectra: (left) high-field region Me_xSi; (right) low-field region SiH_x.

Organometallics

 Me_2EtSiH , Me_3SiH , and Et_3SiH . 28 Astonishingly, the transient metal complex seemed to be restricted in the catalysis of redistribution on the substitution pattern R_3SiH without forming R_4Si and R_2SiH_2 species. Nonetheless, this work represented the first catalytic alkyl redistribution reaction via an assumed silyl–silylene intermediate. Just recently, Heinekey and co-workers described the structural characterization of $[Et_3Si-H-SiEt_3][B(C_6F_5)_4]$ (6). 29 When 6 was dissolved in benzene or toluene, the evolution of hydrogen gas and the formation of tetraethylsilane was observed. The latter observation clearly indicated a substituent redistribution. Thus, Heinekey proposed "This suggests that the highly reactive, Lewis acidic silylium species are promoting redistribution of the ethyl groups. Further, the reaction appears to be catalytic."²⁹

With these results in mind, we can now explain the formation of $[(Me_3Si)_3NSi(H)Me_2]^+$ instead of $[(Me_3Si)_4N]^+$ in the reaction of $(Me_3Si)_3N$ with in situ generated $[Me_3Si(toluene)][B(C_6F_5)_4]$ (3) (vide supra). In situ generated 3 (precipitation in toluene) always contains Me_3SiH (Figure S3, Supporting Information). In combination with Lewis acidic $[Me_3Si]^+$ a methyl/hydrogen redistribution process at Me_3SiH can be considered as discussed above, leading to Me_2SiH₂ and Me_4Si dissolved in toluene. Now Me_2SiH₂ is easily activated by formation of a $[Me_3Si-H-Si(H)Me_2]^+$ cation (7⁺), as depicted in Scheme 5.

Scheme 5. Activation of Dimethylsilane by Formation of Dimethylsilylium Ion 7⁺

 $[Me_3Si-H-SiMe_3]^* + Me_2SiH_2 \longrightarrow [Me_3Si-H-Si(H)Me_2]^* + Me_3SiH$ 7⁺

Dimethylsilylium ion 7⁺ is kinetically and thermodynamically favored to bind to $(Me_3Si)_3N$ by about -60.6 kJ mol⁻¹ (cf. $[(Me_3Si)_3NSi(H)Me_2]^+$, $\Delta H_{298} = -487.7$; $[(Me_3Si)_4N]^+$, -427.1 kJ mol⁻¹), affording the acid–base adduct $[(Me_3Si)_3NSi(H)Me_2]^+$ and Me_3SiH rather than the intended homoleptic cation $[(Me_3Si)_4N]^+$ and Me_2SiH_2 . Hence, the formation of $[(Me_3Si)_3NSi(H)Me_2]^+$ and Me_2SiH_2 . Hence, the formation of $[(Me_3Si)_3NSi(H)Me_2]^+$ and its precipitation as a $[B(C_6F_5)_4]^-$ salt superimposes the described exchange equilibrium adjustment. By this equilibrium adjustment consumed Me_2SiH_2 is reproduced. Furthermore, it can be assumed that $(Me_3Si)_3N$ as base itself may accelerate the Me/H exchange.

The foregoing describes the synthesis and characterization of the first persilylated ammonium cation in the salt $[(Me_3Si)_3NSi(H)Me_2][B(C_6F_5)_4]$. The unexpected loss of one methyl group during direct silylation of $(Me_3Si)_3N$ led to the discovery of a transition-metal-free silylium-catalyzed alkyl scrambling process starting from Me_3SiH and Et_3SiH, respectively. This scrambling process occurs if an excess of silanes is present in the formation of silylium cations while employing the standard Bartlett–Schneider–Condon type reaction.⁶

ASSOCIATED CONTENT

Supporting Information

Text, tables, figures, and CIF and xyz files giving detailed information about experiments and computations. This material is available free of charge via the Internet at http://pubs. acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail for A.S.: axel.schulz@uni-rostock.de.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Dr. Dirk Michalik is gratefully acknowledged for the attempted low-temperature NMR experiments. Financial support by the Universität Rostock and the LIKAT is gratefully acknowledged.

REFERENCES

- (1) Reed, C. A. Acc. Chem. Res. 1998, 31, 325-332.
- (2) Lambert, J. B.; Kania, L.; Zhang, S. Chem. Rev. 1995, 95, 1191– 1201.
- (3) Lambert, J. B.; Zhao, Y.; Zhang, S. M. J. Phys. Org. Chem. 2001, 14, 370-379.
- (4) Kim, K.-C.; Reed, C. A.; Elliott, D. W.; Mueller, L. J.; Tham, F.; Lin, L.; Lambert, J. B. Science 2002, 297, 825–827.
- (5) Lambert, J. B.; Zhang, S.; Ciro, S. M. Organometallics 1994, 13, 2430–2443.
- (6) Lambert, J. B.; Zhang, S. J. Chem. Soc., Chem. Commun. 1993, 383.
 (7) Ibad, M. F.; Langer, P.; Schulz, A.; Villinger, A. J. Am. Chem. Soc. 2011, 133, 21016–21027.
- (8) Hoffmann, S. P.; Kato, T.; Tham, F. S.; Reed, C. A. Chem. Commun. 2006, 767–769.
- (9) Nava, M.; Reed, C. A. Organometallics 2011, 30, 4798-4800.
- (10) Xie, Z.; Bau, R.; Benesi, A.; Reed, C. A. Organometallics 1995, 14, 3933-3941.
- (11) Küppers, T.; Bernhardt, E.; Eujen, R.; Willner, H.; Lehmann, C. W. Angew. Chem., Int. Ed. **2007**, 46, 6346–6349.
- (12) Corey, J. Y.; West, R. J. Am. Chem. Soc. 1963, 85, 2430-2433.
- (13) Bartlett, P. D.; Condon, F. E.; Schneider, A. J. Am. Chem. Soc. 1944, 66, 1531–1539.
- (14) Lehmann, M.; Schulz, A.; Villinger, A. Angew. Chem., Int. Ed. 2009, 48, 7444–7447.
- (15) Schulz, A.; Villinger, A. Chem. Eur. J. 2010, 16, 7276-7281.
- (16) Olah, G. A.; Li, X.-Y.; Wang, Q.; Rasul, G.; Prakash, G. K. S. J. Am. Chem. Soc. **1995**, 117, 8962–8966.
- (17) Prakash, G.; Bae, C.; Wang, Q.; Rasul, G.; Olah, G. A. J. Org. Chem. 2000, 65, 7646-7649.
- (18) Ibad, M. F.; Langer, P.; Reiß, F.; Schulz, A.; Villinger, A. J. Am. Chem. Soc. 2012, 134, 17757–17768.
- (19) Driess, M.; Barmeyer, R.; Monse, C.; Merz, K. Angew. Chem., Int. Ed. 2001, 40, 2308–2310.
- (20) Müller, L. O.; Himmel, D.; Stauffer, J.; Steinfeld, G.; Slattery, J.; Santiso-Quiñones, G.; Brecht, V.; Krossing, I. Angew. Chem., Int. Ed. 2008, 47, 7659–7663.
- (21) Wiberg, N.; Schmid, K. H. Z. Anorg. Allg. Chem. 1966, 345, 93–105.
- (22) Baumann, W.; Michalik, D.; Reiß, F.; Schulz, A.; Villinger, A. Angew. Chem., Int. Ed. 2014, 53, 3250–3253.
- (23) Pyykkö, P.; Atsumi, M. Chem. Eur. J. 2009, 15, 12770-12779.
- (24) Schmidbaur, H. Chem. Ber. 1964, 97, 1639–1648.
- (25) Schäfer, A.; Reißmann, M.; Jung, S.; Schäfer, A.; Saak, W.; Brendler, E.; Müller, T. Organometallics **2013**, 32, 4713–4722.
- (26) Schäfer, A.; Reißmann, M.; Schäfer, A.; Saak, W.; Haase, D.; Müller, T. Angew. Chem., Int. Ed. **2011**, 50, 12636–12638.
- (27) Müther, K.; Hrobárik, P.; Hrobáriková, V.; Kaupp, M.; Oestreich, M. Chem. Eur. J. 2013, 19, 16579-16594.
- (28) Park, S.; Kim, B. G.; Göttker-Schnetmann, I.; Brookhart, M. ACS Catal. 2012, 2, 307–316.
- (29) Connelly, S. J.; Kaminsky, W.; Heinekey, D. M. Organometallics 2013, 32, 7478–7481.

6 Anhang

6.1 Abbildungsverzeichnis

Abbildung 1. Allgemeines Konzept der Säure-Base-Theorie nach Lewis
Abbildung 2. Vereinfachtes Energiediagramm einer Addukt-Bindung
Abbildung 3. Stabilisierung klassischer Lewis-Säuren über Halogenbrücken
Abbildung 4. Synthese von 25; ${}^{19}F{}^{1}H$ -NMR Spektren nach 3 h Reaktionszeit (unten), 16 Tagen (mitte) und 3 h Photoaktivierung (oben) mit einer UV-Lampe (366 nm/ 245 nm). Mit
Punkt markierte Spezies ist das Edukt ($B(C_6F_5)_3$), der Stern markiert das Produkt 2515
Abbildung 5. Verknüpfungsschemata der Aminoisonitril- und Diazen-Addukte (R^1 , $R^2 = Me_3Si$ in Aminoisonitrilen, 4, 20, 23 19; $R^1 = Me_3Si$, $R^2 = Ph$ in 5, 21, 24; R^1 , $R^2 = Ph$ in 6, 22, 25).
Abbildung 6. Darstellung der Positionsfehlordnung in den Silyl-substituierten-Diazenen 19
Abbildung 7. ORTEP Darstellung der Pseudochalkogonium-Kationenstrukturen von 15(links) und 14 (rechts). Die thermischen Ellipsoide entsprechen 50%Aufenthaltswahrscheinlichkeit bei 173 K
Abbildung 8. ORTEP-Darstellung von 19 (links) und 24 (rechts). Die thermischen Ellipsoide entsprechen 50% Aufenthaltswahrscheinlichkeit bei 173 K
Abbildung 9. ORTEP-Darstellung der Kationenstruktur von 26. Die thermischen Ellipsoide entsprechen 50% Aufenthaltswahrscheinlichkeit bei 173 K
Abbildung 10. Retrosynthetische Betrachtung der möglichen Cycloadditionen zur Bildung des Trimers
Abbildung 11. Isomerisierung an silylierten Diazen $B(C_6F_5)_3$ -Addukten (R = SiMe ₃ oder Ph).
Abbildung 12. ORTEP-Darstellung der Molekülstrukturen von 28 (links) und 27 (rechts) im
Kristall. Die thermischen Ellipsoide entsprechen 50% Aufenthaltswahrscheinlichkeit bei 173 K

Abbildung 13. ¹ H-NMR-Spektrum (links), Raman-Spektum (rechts) der Silanmischung at	JS
Me ₄ Si, Me ₃ SiH und Me ₂ SiH ₂ (rot gemessenes Spektrum, blau berechnetes Spektum)	1
Abbildung 14. Allgemeine Darstellung des katalytischen Alkylgruppenaustausches (R	=
Me,Et)	52

6.2 Tabellenverzeichnis

Tabelle 1. Zusammenfassung der isolierten Diazen-Addukte.	15
Tabelle 2. Summe der NX-Kovalenzradien nach P. Pyykkö. ^[79]	17
Tabelle 3. Ausgewählte Strukturparameter der Lewis-Basen und ihrer isolierten	Addukt-
Spezies. Bindungslängen in Å, Bindungswinkel in °	18
Tabelle 4. Zusammenfassung ausgewählter Eigenschaften der isolierten Addukte	24
Tabelle 5. Als Pre-Katalysatoren der Trimerisation identifizierte Lewis-Säuren	27

6.3 Schemataverzeichnis

Schema 1. Modifizierte Wasserstoff/Halogen Austauschreaktion nach Corey und West 4
Schema 2. Allgemeine Synthese von Silylium-Supersäuren nach Lambert et al. (R = Me,Et, i-
$Pr, Me_3Si; X = Solvens = R_3SiH oder Benzol).$
Schema 3. Neuartige Synthese von sterisch überfrachteten Silylium-Salzen nach Müller et al. ^[23]
Schema 4. Lewis-Säure-assistierte [3+2]-Cycloadditionen unter Verwendung versteckter
Dipolarophile und 1,3-Dipole bilden Addukt stabilisierte Azapniktole. (LS = GaCl ₃ ; E =P, As;
$R = Mes^*, Ter, N(SiMe_3)_2).$
Schema 5. Synthese eines cyclo-Diphosphadiazans über die formale Insertion eines NNP-
Fragmentes in die BC-Bindung des $B(C_6F_5)_3$
Schema 6. Chlor/Methyl Austausch am Me ₃ SiNSNSiMe ₃ · GaCl ₃ gefolgt von Bildung des
isolierten Oxadisilathiadiazin-Ring nach Schulz et. al. ^[42]
Schema 7. Definition der Trimethylsilyl-Affinität

Schema 8. Allgemeine Synthese von homoleptischen Onium-Kationen (n = 1: $E = F$, Cl, Br, I,
CN, OCN, SCN, NNN, wobei $X = Me_3SiH$; $n = 2$: $E = O$, S, mit $X = Me_3SiH$; $n = 3$: $E = P$,
As mit X = Benzol)
Schema 9. Aufklärung des Zerfalls von labilen Trimethylsilylium-Verbindungen über die Abfangreaktion mit CS_2 nach Schulz et al. ^[17]
Schema 10. Silylium katalysierte CC-Kupplung (links) und Hydrodefluorierung (rechts) 10
Schema 11. Silylium katalysierte Diels-Alder Cyclisierung10
Schema 12. Synthese von $[(Me_3Si)_2NNCSiMe_3][WCA]$ Salzen in stöchiometrisch geführten Reaktionen $([WCA]^- = [B(C_6F_5)_4]^-, [CHB_{11}H_5Br_6]^-).$ 12
Schema 13. Fehlgeschlagene direkte Silylierungen des Bis(trimethylsilyl)diazens (A: [WCA] = [GaCl ₄], [SbF ₆]; B: [WCA] = [GaCl ₄], [SbF ₆], [B(C ₆ F ₅) ₄], [AsF ₆]; C: [B(C ₆ F ₅) ₄], [CHB ₁₁ H ₅ X ₆], X = Br, Cl)
Schema 14. Synthesen des homoleptischen Diazenium-Salzes über Oxidation von Hydrazinoverbindungen
Schema 15. Trimerization von 1 zum Pytrazolderivat (16)
Schema 16. Ein möglicher bimolekularer Isomerisierungsweg

Lebenslauf

Persönliche Daten

Name	Fabian Reiß
Geburtsdatum	17. Juni 1983
Geburtsort	Goslar
Familienstand	ledig, ein Kind

Schulbildung

1989 - 2000	RS Goldene Aue Goslar, Realschulabschluß.
2000 - 2004	Berufsbildende Schulen I Braunschweig.
2004 - 2005	Fachoberschule Technik BBS – Goslar Fachabitur Technik.
2005 - 2006	Berufsoberschule Technik BBS- Goslar Fachgebundene
	Hochschulreife.

Berufsausbildung

2000 - 2004	Ausbildung zum Chemielaboranten am Institut für Aufbereitung
	und Deponietechnik an der Technischen Universität Clausthal.

Studium

10/2006 - 09/2008	Chemie - Studium an der Universität Rostock. Abschluss
	Vordiplom.
09/2008 - 07/2011	Chemie - Studium an der Universität Rostock. Abschluss Diplom.

11/2010 - 07/2011	Diplomarbeit: "Darstellung und Charakterisierung von
	niedrigkoordinierten Pniktogen-Stickstoffverbindungen"
	Abschluss: Diplom-Chemiker (univ.).
07/2011 - 06/2014	Anfertigung der Dissertation im Arbeitskreis Prof. Dr. Axel
	Schulz an der Universität Rostock.

Berufstätigkeit

02/2004 - 04/2004	Chemielaborant am Institut für Aufbereitung und Deponietechnik
	an der Technischen Universität Clausthal, Arbeitskreis Prof. Dr. –
	Ing. Eberhard Gock.
12/2004 - 07/2006	Teamleiter der Lerngruppen im Rahmen des Förderprogramms
	"Schüler helfen Schülern im Fach Mathematik", auf Honorar.
10/2008 - 09/2011	Hilfswissenschaftlicher Mitarbeiter am Institut für Chemie der
	Universität Rostock, Lehrstuhl für Anorganische und
	Elementorganische Chemie, Arbeitskreis Prof. Dr. Axel Schulz.
Seit 10/2011	Wissenschaftlicher Mitarbeiter Mitarbeiter am Institut für Chemie
	der Universität Rostock, Lehrstuhl für Anorganische und
	Elementorganische Chemie, Arbeitskreis Prof. Dr. Axel Schulz.

Auszeichnung

02/2004	Auszeichnung durch die IHK Braunschweig der sehr guten
	Gesamtprüfungsleistung in der Abschlussprüfung zum
	Chemielaborannten.

Wissenschaftliche Arbeiten

Publikationen

 "Synthesis of Sterically Encumbered 2,4-bis-*m*-terphenyl-1,3-dichloro-2,4cyclo-dipnictadiazanes [m-TerNPnCl]₂, (Pn = P, As)", F. Reiß, A. Schulz, A. Villinge, N. Weding, *Dalton Trans.* 2010, *39*, 9962 – 9972.

- "The N,N-Bis(terphenyl)aminophosphenium Cation A Sensetive Probe for Interactions with Different Anions", F. Reiß, A. Schulz, A. Villinger, *Eur. J. Inorg. Chem.* 2012, 2012, 261–271.
- "Catalytic Trimerization of Bis-silylated Diazomethane", M. F. Ibad, P. Langer,
 F. Reiß, A. Schulz, A. Villinger, J. Am. Chem. Soc. 2012, 134, 17757 17768.
- 4a. "Isolation of a Labile Homoleptic Diazenium Cation", W. Baumann, D. Michalik, F. Reiß, A. Schulz, A. Villinger, *Angew. Chem. Int. Ed. Engl.* 2014, 53, 3250 3253.
- 4b. "Die Isolierung eines labilen homoleptischen Diazeniumkations", W. Baumann,
 D. Michalik, F. Reiß, A. Schulz, A. Villinger, *Angew. Chem.* 2014, *126*, 3314 3318.
- "Synthesis, Structure and Reactivity of Diazene Adducts Isolation of the First *iso*-Diazene stabilized as Borane Adduct", F. Reiß, A. Schulz, A. Villinger, *Chem. Eur. J.* 2014, *im Druck*.
- "Synthesis of the First Persilylated Ammonium Ion [(Me₃Si)₃NSi(H)Me₂]⁺ By Silylium Catalyzed Methyl/Hydrogen Exchange Reactions", R. Labbow, F. Reiß, A. Schulz, A. Villinger, *Organometallics* 2014, *im Druck*.

Posterbeiträge

- "The *N*,*N*-Bis(terphenyl)aminophosphenium Cation A Sensetive Probe for Interactions with Different Anions", 14th. Frühjahressymposium 2012, Young Scientists Conference On Chemistry, Rostock, 18.03. – 21.03.2012, Fabian Reiß, Axel Schulz, Alexander Villinger.
- "Catalytic Trimerisation of Bissilylated Diazomethane and Aminoisonitrile", 15th Northern-German Doctoral Student Colloquim of Inorganic Chemistry, Walsrode, 24.09. – 21.03.2012, Muhammad Farooq Ibad, Peter Langer, Fabian Reiß, Axel Schulz, Alexander Villinger.

Vortrag

 "Activation of Diazenes with Lewis Acids",16th Northern-German Doctoral Student Colloquim of Inorganic Chemistry, Bremen, 19.09. – 20.03.2012, Fabian Reiß, Axel Schulz, Alexander Villinger.