

Traditio et Innovatio

Untersuchungen zu Phosphor-zentrierten, aromatischen Bi- und Tetraradikalen

Kumulative Dissertation

zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Rostock

vorgelegt von Edgar Zander, geboren am 05.06.1996 in Rostock Rostock, 17.04.2023 Die vorliegende Arbeit wurde in der Zeit von Oktober 2019 bis April 2023 am Institut für Chemie der Universität Rostock am Lehrstuhl für Anorganische Chemie in der Arbeitsgruppe von Prof. Dr. Axel Schulz angefertigt.

- 1. Gutachter: Prof. Dr. Axel Schulz (Universität Rostock)
- 2. Gutachter: Prof. Dr. Manfred Scheer (Universität Regensburg)
- 3. Gutachter: Prof. Dr. Frank Breher (Karlsruher Institut für Technologie)

Erklärung

Ich versichere hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig angefertigt und ohne fremde Hilfe verfasst habe. Dazu habe ich keine außer den von mir angegebenen Hilfsmitteln und Quellen verwendet und die den benutzten Werken inhaltlich und wörtlich entnommenen Stellen habe ich als solche kenntlich gemacht.

Rostock, 17.04.2023

Edgar Zander

Danksagungen

An erster Stelle möchte ich mich bei **Axel Schulz** dafür bedanken, im Rahmen meiner Promotion ein selbstkonzipiertes Thema erforschen zu können. Die gemeinsamen Gespräche waren ausnahmslos unkompliziert, konstruktiv und fanden auf Augenhöhe statt, was maßgeblich zum Erfolg dieser Arbeit beitrug. Darüber hinaus möchte ich ihm ganz generell für seinen Einsatz für gute Lehre und Forschungsbedingungen danken.

Genauso möchte ich mich bei **Jonas Bresien** bedanken, der mich schon als Betreuer meiner Bachelorarbeit zunächst gründlich in die präparative Schutzgastechnik und anschließend in viele Aspekte quantenmechanischer Berechnungen eingearbeitet hat. Für viele Probleme war er ein verlässlicher Ansprechpartner und trug maßgeblich zu deren Lösung bei. Insbesondere möchte ich ihm für viele ideengebende und reflektierende Gespräche bedanken, die meine Zeit von der Bachelorarbeit bis zur Promotion geprägt haben sowie für die Durchführung einer Vielzahl an quantenmechanischen Berechnungen, die zum Verständnis synthetisierter Verbindungen führten. Auch möchte ich für die Möglichkeit danken, Computerchemieseminare leiten und somit erste Lehrerfahrungen sammeln zu können.

Ich möchte mich bei Alexander Hinz bedanken, der mir als Mentor stets ein guter Ansprechpartner war und insbesondere Aufgrund seiner großen Expertise in der Chemie niedervalenter Hauptgruppenelemente viele hilfreiche Hinweise geben konnte.

Spannende Aspekte der Arbeit konnten nur im Team mit externen Kooperationspartnern erarbeitet werden. Aus diesem Grund möchte ich **Vladimir Zhivonitko** für die Durchführung von PHIP-NMR-Experimenten und **Johannes Fessler** für das Durchführen von Autoklavenreaktionen danken.

Ich möchte mich bei dem Fonds der Chemischen Industrie für die Förderung mit einem Kekulé-Stipendium bedanken und bei der Deutschen Forschungsgemeinschaft für die weitere Finanzierung dieses Promotionsprojektes.

Innerhalb des Institutes möchte ich **Dirk Michalik** und **Heike Borgwaldt** für die Messung zahlreicher NMR-Spektren danken. Insbesondere die hochauflösende Messung komplexer Kopplungsmuster und temperaturabhängige Messungen waren sehr zeitaufwändig.

Isabel Schicht danke ich für ihre unermessliche Geduld und Flexibilität beim Aufsetzen von Kristallen und **Alexander Villinger** für das akribische Lösen der Kristallstrukturen.

Den analytischen Bereichen danke ich für zahlreiche Messungen, insbesondere Angela Weihs und Jana Pitter für zahlreiche Messungen oxidations- und hydrolyse-empfindlicher Proben in der Elementaranalyse.

Der elektrischen und der mechanischen Werkstatt danke ich für unbürokratische Reparaturen und Neubauten insbesondere im Zusammenhang mit UV-Reaktoren. Der Glasbläserei danke ich für Reparaturen und Spezialanfertigungen, ohne die die präparative Arbeit so nicht möglich gewesen wäre.

Ich möchte mich zudem bei Nadja Kohlmann, Ronald Wustrack und Jörg Harloff bedanken. Bei sehr unterschiedlichen Arten von Fragestellungen waren sie meine ersten Ansprechpartner. Bei Kerstin Bohn, Paul Goschnick und Jana Unger bedanke ich mich für die großartige Unterstützung in allgemeinen Laborangelegenheiten.

Gerade in der Anfangszeit des Laboralltags ist eine gute Aufnahme in den Arbeitskreis wichtig. Hier möchte ich mich bei Max, Kevin, Tim, Julia, Lilli und Henrik für eine gute Unterstützung bedanken – von euch konnte ich viel lernen. Mein Dank gilt ebenso den aktuellen Laborgefährten Basti, Jan, Yannic, Peter, Jonas S. und Pascal. Die gemeinsame Arbeit mit euch hat viel Spaß gemacht und zu manch einer guten Idee geführt. Außerdem möchte ich mich bei Piérre, Simon und Lea für ihre engagierte Arbeit im Rahmen ihrer jeweiligen Bachelorarbeit bedanken. Gerade die Einschränkungen durch Corona haben das Arbeiten nicht immer leicht gemacht.

Meinen **Freunden**, insbesondere den **Brokkolis** möchte ich für eine intensive Unterstützung durch ein ausgewogenes Maß an Interesse an der Promotionsarbeit und großartige Ablenkung von dieser danken. Meiner **Familie** möchte ich für ihre Unterstützung danken, die überhaupt ein Studium der Chemie mit anschließender Promotion ermöglicht hat. Gerade in stressigen Phasen, wart ihr ein wertvoller Gegenpol und Anker, den ich nicht missen möchte!

Abschließend gilt dir, Liesa, mein besonderer, herzlichster Dank! Die gemeinsame wunderschöne Zeit mit dir, egal ob im Labor oder anderswo war nie langweilig. Du hast es stets vermocht, mich aufzubauen, wenn der Laboralltag mal deprimierend war. Es ist schön zu wissen, dass es jemanden gibt, der stets auf einen achtgibt. Auf die vor uns liegende spannende Zeit freue ich mich sehr!

Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Synthese, Charakterisierung und dem Verständnis Resonanz-stabilisierter Polyradikale. Dafür wurden zunächst Synthesen für die als Ausgangsverbindungen benötigten Dichlorphosphane, 1,2-Bis(dichlorphosphino)benzol und 1,2,4,5-Tetrakis(dichlorphosphino)benzol, entwickelt. Ausgehend von diesen wurden in zweistufigen Syntheserouten substituierte biradikalische 2-Aza-1,3-diphosphaindan-1,3-diyle und tetraradikalische 2,6-Diaza-1,3,5,7-tetraphospha-*s*-hydrindacen-1,3,5,7-tetrayle aufgebaut. Die Stabilität der Verbindungen wurde in Abhängigkeit verschiedener, sterisch anspruchsvoller Substituenten hinsichtlich Oligomerisierungsreaktionen untersucht. Zudem wird die Reaktivität des Tetraradikals gegenüber Wasserstoff beschrieben. Die theoretische Beschreibung der synthetisierten Bi- und Tetraradikale ist ein zentraler Bestandteil der Arbeit. Auf der Grundlage quantenmechanischer Berechnungen konnten diese mit literaturbekannten Verbindungen z.B. hinsichtlich ihrer Aromatizität und ihres Multireferenzcharakters verglichen werden.

Summary

The present work focusses on the synthesis, characterization and understanding of resonancestabilized polyradicals. For this purpose, in a first step syntheses were developed for the dichlorophosphanes, 1,2-bis(dichlorophosphino)benzene and 1,2,4,5-tetrakis(dichlorophosphino)benzene, which were required as precursor compounds. Starting from these, substituted biradical 2-aza-1,3-diphosphaindane-1,3-diyls and tetraradical 2,6-diaza-1,3,5,7tetraphospha-s-hydrindacene-1,3,5,7-tetrayls were synthesized in two-step synthesis routes. The stability of these compounds was investigated depending on different sterically demanding substituents with respect to oligomerization reactions. In addition, the reactivity of the tetraradical towards hydrogen is described. The theoretical description of the synthesized bi- and tetraradicals is a central part of the work. Based on quantum mechanical calculations, these bi- and tetraradicals could be compared with compounds known from literature, for example, with respect to their aromaticity and multireference character.

Für Liesa

Inhaltsverzeichnis

1	Zie	elsetzung und Motivation1				
2	Ein	Einleitung				
	2.1	Bi- und Tetraradikale – Eine theoretische Betrachtung				
	2.2	Bi- und Tetraradikale – Eine präparative Betrachtung				
3	Erg	ebnisse und Diskussion13				
	3.1	Synthese von Bi- und Tetraradikalen				
	3.2	Eigenschaften der Bi- und Tetraradikale sowie ihrer Oligomerisierungsprodukte20				
	3.3	Elektronische Struktur von 10R und 13R				
	3.4	Multireferenzcharakter von 10R und 13R				
	3.5	Aromatizität von 10H und 13H				
	3.6	Folgechemie von 10 ^{Bu} Bhp und 13EMind				
4	Zus	ammenfassung und Ausblick				
5	Ref	eferenzen				
6 Publikationen						
	6.1	Synthesis of Benzene Derivatives with Multiple Dichlorophosphino groups				
	6.2	Azadiphosphaindane-1,3-diyls: A Class of Resonance-Stabilized Biradicals				
	6.3	Rational Design of Persistent Phosphorus-Centered Singlet Tetraradicals and Their				
		Use in Small-Molecule Activation				

Abkürzungsverzeichnis

btmsa	Bis(trimethylsilyl)acetylen	μ	mittellangreichende Elektronen-
CASSCF	complete active space self		austauschkopplungskonstante
	consistent field	NEVPT	n-electron valence state
	(Rechenmethode)		perturbation theory
Dipp	2,6-Diisopropylphenyl		(Störungsrechnung)
^{Dipp} Ter	2,6-Bis(2,6-diisopropyl-	NICS	nucleus independent chemical
	phenyl)phenyl		shift
Dmp	2,6-Dimethylphenyl	NMR	nuclear magnetic resonance
EMind	1,1,7,7-Tetraethyl-3,3,5,5-		(Kernresonanz)
	tetramethyl-s-hydrindacen-4-yl	Oma	1,1,4,4,5,5,8,8-Octamethyl-
η	Ausbeute		1,2,3,4,5,6,7,8-
exp.	experimentell		octahydroanthracen-9-yl
HONO	highest occupied natural orbital	PHIP	Parahydrogen-induced
	(höchstes besetztes natürliches		polarization
	Orbital)	σ	kurzreichende Elektronen-
J	Kopplungskonstante (NMR)		austauschkopplungskonstante
J	Elektronenaustauschkopplungs-	sim.	Simuliert
	konstante	SMD	solvation model based on
λ	langreichende Elektronen-		density
	austauschkopplungskonstante	^{tBu} Bhp	2,6-Bis(benzhydryl)-4-
LUNO	lowest unoccupied natural		tertbutyl-phenyl
	orbital (niedrigstes unbesetztes	Ter	2,6-Dimesitylphenyl
	natürliches Orbital)	THF	Tetrahydrofuran
Mes*	Supermesityl	TMS	Trimethylsilyl
	(2,4,6-tri-tert-butylphenyl)	XS.	excess (Überschuss)
μ	verbrückend (in Formeln)		

Maßeinheiten

In dieser Arbeit werden die im Internationalen Einheitensystem (SI) gültigen Maßeinheiten verwendet. Alle davon abweichenden Einheiten und deren Umrechnung in SI-Einheiten sind im Folgenden aufgeführt:

Größe	Einheit	Bezeichnung	Umrechnung in SI-Einheiten
Druck	bar	Bar	1 bar = 1 × 10⁵ Pa
	atm	Physikalische Atmosphäre	1 atm = 101 325 Pa
Frequenz	MHz	Megahertz	$1 \text{ MHz} = 1 \times 10^6 \text{ s}^{-1}$
	Hz	Hertz	1 Hz = 1 s ^{−1}
Länge	Å	Ångström	1 Å = 1 × 10 ⁻¹⁰ m
Temperatur	°C	Grad Celsius	θ /°C = <i>T</i> /K − 273.15
Wärmemenge	kJ	Kilojoule	$1 \text{ kJ} = 1 \times 10^3 \text{ m}^2 \text{ kg s}^{-2}$
Wellenzahl	cm⁻¹	reziproke Zentimeter	1 cm ⁻¹ = 100 m ⁻¹
Zeit	d	Tag	1 d = 8.64 × 10 ⁴ s
	h	Stunde	1 h = 3.6 × 10 ³ s
	min	Minute	1 min = 60 s

Substituentenverzeichnis

Verzeichnis synthetisierter Verbindungen

1 Zielsetzung und Motivation

Im Jahr 1995 gelang Niecke mit der Synthese des Singulett-Biradikals $[ClC(\mu-PMes^*)]_2$ die Synthese des ersten stabilen Heterocyclobutan-1,3-diyls.^[1] Seitdem wurde eine Vielzahl strukturverwandter, viergliedriger cyclischer Biradikale synthetisiert und hinsichtlich ihrer Reaktivität gegenüber kleinen Molekülen untersucht.^[2] Weitaus weniger Studien gibt es hingegen zu stabilen Heterocyclopentan-1,3-diylen.^[2] Hier gelang es in unserer Gruppe, stabile P-zentrierte Derivate durch Insertionsreaktionen von CO und Isonitrilen in viergliedrige Biradikale darzustellen.^[3,4] Die so erhaltenen Biradikale sind jedoch in ihrer Reaktivität eingeschränkt, da durch Eliminierung des CO oder Isonitrils oftmals die gleichen Reaktionsprodukte gebildet werden, wie in Reaktionen mit entsprechenden viergliedrigen Biradikalen.^[3,4] An diesem Punkt sollte die vorliegende Arbeit anknüpfen und so wurde zunächst das Ziel formuliert, neuartige fünfgliedrige P-zentrierte Biradikale auf einem alternativen Syntheseweg darzustellen. Die Idee war es, ausgehend vom 1,2-Bis(dichlorphosphino)benzol 2-Aza-1,3-diphosphaindan-1,3-diyle aufzubauen, die nur durch einen sterisch anspruchsvollen Rest, aber dafür durch zusätzliche Resonanzen mit dem Linker stabilisiert werden sollten (Schema 1).

Schema 1. Generellerer Aufbau der in dieser Arbeit behandelten Azadiphosphaindan-1,3-diyle (Pfad **a**) und 2,6-Diaza-1,3,5,7-tetraphospha-*s*-hydrindacen-1,3,5,7-tetrayle (Pfad **b**)

Darüber hinaus sollte das Strukturmotiv des Biradikals ausgehend von dem bisher unbekannten 1,2,4,5-Tetrakis(dichlorphosphino)benzol zu tetraradikalischen Verbindungen, den 2,6-Diaza-1,3,5,7-tetraphospha-*s*-hydrindacen-1,3,5,7-tetraylen erweitert werden (Schema 1). Es galt die Eigenschaften dieser neuen Verbindungen mit bekannten Verbindungen über experimentelle und quantenmechanische Methoden zu vergleichen. Alle synthetisierten Verbindungen sollten vollständig charakterisiert werden.

2 Einleitung

2.1 Bi- und Tetraradikale – Eine theoretische Betrachtung

Unter Biradikalen werden allgemein Moleküle mit zwei radikalischen Elektronen, in zwei nahezu entarteten Orbitalen verstanden.^[5–9] Von entscheidender Rolle für die Reaktivität von Biradikalen ist unter anderem das Maß der Wechselwirkung zwischen den radikalischen Elektronen. Anhand der Wechselwirkung, die über die Elektronenaustauschkopplungskonstante (J)^[10] beschrieben wird, ist eine Klassifizierung von Biradikalen möglich (Abbildung 1).

Abbildung 1. Klassifizierung von Bi-^[2,11] und Tetraradikalen^[12] anhand der Elektronenaustauschkopplungskonstante *J*. Ein grüner Kreis entspricht einem Atom mit einem radikalischen Elektron^[9] In Systemen, in denen keine Wechselwirkung zwischen den radikalischen Elektronen stattfindet, ist $J \approx 0$. Derartige Moleküle werden, nach der von Schulz vorgeschlagenen Nomenklatur,^[11] als Dis-Biradikale bezeichnet und zeigen eine Reaktivität, die der von Monoradikalen entspricht.^[13] Im spektroskopischen Sinne sind Dis-Biradikale als Zwei-Dublett-Spezies aufzufassen. Im Falle einer signifikanten Interaktion zwischen den radikalischen Elektronen ($J \neq 0$), werden die Moleküle als Biradikaloide bezeichnet. Wenn die Elektronen hierbei antiferromagnetisch koppeln (J < 0), resultiert ein Singulett-Biradikaloid. Der Übergang von Singulett-Biradikaloiden zu geschlossenschaligen Molekülen ist hierbei fließend. Singulett-Biradikaloide zeichnen sich durch eine Reaktivität aus, die zwischen Dis-Biradikalen bzw. Monoradikalen (z.B. Radikaladditionen) und geschlossenschaligen Molekülen (z.B. pericyclische Reaktionen) liegt, sodass oft beide Formen der Reaktivität auftreten.^[13]

Analog zur Definition von Biradikalen als Moleküle, in denen zwei radikalische Elektronen zu signifikanten Anteilen zwei Orbitale besetzen, handelt es sich bei Tetraradikalen um Moleküle mit vier radikalischen Elektronen, die zu signifikanten Anteilen vier Orbitale besetzen. Auch hier ist eine Beschreibung anhand von Elektronenaustauschkopplungskonstanten möglich, jedoch nimmt die Anzahl benötigter Kopplungskonstanten bei Polyradikalen mit $0.5 \cdot n \cdot (n-1)$ zu (*n* = Anzahl an radikalischen Elektronen). Formal sind somit für die exakte Beschreibung von Tetraradikalen sechs Kopplungskonstanten erforderlich. Zur Vereinfachung wird hier in Anlehnung an Überlegungen von Casanova und Mitarbeitende^[12] ein symmetrisches System diskutiert, das sich durch zwei Kopplungskonstanten (J_1, J_2) beschreiben lässt (Abbildung 1). Ein solches symmetrisches System besteht z.B. aus zwei die über Biradikaleinheiten, einen Linker miteinander verknüpft Die sind. Kopplungskonstante J1 beschreibt die Wechselwirkung innerhalb der Biradikaleinheiten und J_2 die Wechselwirkung zwischen den beiden Biradikaleinheiten, wobei $|J_1| \ge |J_2|$ ist. Im Rahmen dieser Arbeit wurde für unterschiedliche Fälle von J_1 und J_2 eine Nomenklatur für Tetraradikale erarbeitet (Abbildung 1),^[9] die an die vorgestellte Nomenklatur für Biradikale^[11] anknüpft und bereits in der Literatur verwendete Bezeichnungen für Tetraradikale^[3] berücksichtigt. Moleküle, in denen alle Radikalzentren isoliert vorliegen und somit keine Interaktionen zwischen den radikalischen Elektronen möglich sind ($J_1 \approx J_2 \approx 0$), werden als Dis-Tetraradikale bezeichnet. Wenn die Biradikaleinheiten isoliert sind ($J_2 \approx 0$), aber eine Interaktion innerhalb der Biradikaleinheiten besteht $(J_1 \neq 0)$, dann handelt es sich um Bis(Biradikaloide). Um (Singulett-/Quintett-)Tetraradikaloide handelt es sich, wenn zwischen allen Elektronen signifikante Wechselwirkungen bestehen $(J_1, J_2 \neq 0)$. Im spektroskopischen Sinne lässt sich dann zwischen Singulett-, Vier-Dublett-, Zwei-Triplettund Quintett-Spezies unterscheiden (siehe Abbildung 1).^[9]

Aus chemischer Sicht ist insbesondere die Differenzierung zwischen Singulett-Bis(Biradikaloiden) und Singulett-Tetraradikaloiden interessant. So kann in Bis(Biradikaloiden) eine Reaktion an einer Biradikaloid-Einheit erfolgen, ohne dass dies signifikante Auswirkungen auf die Reaktivität der zweiten Biradikaloid-Einheit hat. In einem Singulett-Tetraradikaloid sind hier Unterschiede im Energieprofil zwischen der Erst- und Zweitsubstitution zu erwarten.^[9] Experimentelle Untersuchungen hierzu finden sich in Kapitel 3.6 (S. 30ff).

Eine andere Möglichkeit der Quantifizierung des Polyradikalcharakters besteht in der Angabe der Besetzungszahlen der niedrigstliegenden "unbesetzten" natürlichen Orbitale (LUNO, LUNO+1, usw.), die mithilfe von CASSCF-Rechnungen^[14-22] ermittelt werden.^[2] Für Biradikale ist hier mindestens eine CASSCF(2,2)-Rechnung erforderlich (zwei Elektronen, zwei Orbitale), während Tetraradikale mindestens eine CASSCF(4,4)-Rechnung erfordern. In einem perfekten Biradikal sind das HONO und LUNO mit jeweils einem Elektron besetzt, wobei die Besetzung des LUNOs im Allgemeinen dem Biradikalcharakter entspricht. In Tetraradikalen entspricht die Besetzung des LUNOs ebenfalls dem Biradikalcharakter; die Besetzung des LUNO+1 dem Tetraradikalcharakter. In einem perfekten Tetraradikal (Dis-Tetraradikal) sind HONO–1, HONO, LUNO und LUNO+1 mit jeweils einem Elektron besetzt. Der Tetraradikalcharakter n(LUNO+1) ist durch den Biradikalcharakter (n(LUNO)) begrenzt, sodass die beiden Größen stets gemeinsam betrachtet werden müssen. Der Zusammenhang zwischen den Größen wird anschaulich in Kapitel 6.3 erläutert.^[9]

In dieser Arbeit wird zur Vereinfachung lediglich von Bi- bzw. Tetraradikalen gesprochen, wobei es sich, wenn nicht anders angegeben, um Singulett Bi- bzw. Tetraradikaloide handelt.

2.2 Bi- und Tetraradikale – Eine präparative Betrachtung

In den letzten Jahren wurde eine Vielzahl an Biradikalen synthetisiert und hinsichtlich ihrer Reaktivität untersucht.^[2,10,11,23–26] Für diese Arbeit von besonderem Interesse sind cyclische, Hauptgruppenelement-zentrierte Biradikale, für deren Stabilisierung es sterisch anspruchsvoller Substituenten bedarf. Die Synthese des ersten bei Raumtemperatur stabilen, viergliedrigen cyclischen Biradikales (1, Schema 2) gelang 1995 durch Niecke und Mitarbeitende.^[1] Seitdem wurde eine Vielzahl vielgliedriger Biradikale isoliert.^[2] Die Vielfalt dieser Verbindung soll anhand der exemplarisch in Schema 2 dargestellten Verbindungen gezeigt werden. Hierbei handelt es sich um Biradikale, deren Radikalzentren an Elementen der 13. ($2^{[27]}$, $3^{[28]}$), 14. ($1^{[1]}$, $4^{[29]}$) und 15. ($5^{[30,31]}$, $6^{[32]}$) Gruppe lokalisiert sind.

Schema 2. Eine Auswahl isolierter viergliedriger Biradikale mit Radikalzentren an Elementen der 13. (**2**^[27], **3**^[28]), 14. (**1**^[1], **4**^[29]) und 15. (**5**^[30,31], **6**^[32]) Gruppe.

Die Synthese der cyclischen Biradikale gelang hierbei auf sehr individuelle Weise. Jedoch lässt sich der Großteil der Synthesen in eines oder mehrere der folgenden vier Synthesekonzepte (A bis D in Schema 3) einordnen.

Konzept A: Reduktion höhervalenter Precursorverbindungen

Konzept B: Eliminierungsreaktionen

Konzept C: Additions- und Insertionsreaktionen

Konzept D: Ring-aufbauende Metathesereaktionen

Schema 3. Die Synthesen cyclischer Biradikale lassen sich in verschiedene Konzepte (A-D) einteilen. (Referenzen zu den Synthesen: Konzept A: links,^[32] rechts;^[30] Konzept B: links,^[33] rechts^[34]; Konzept C: links,^[29] rechts;^[4] Konzept D: links,^[1] rechts^[27]).

So ist beispielsweise eine Synthese cyclischer Biradikale durch Reduktion von höhervalenten Ausgangsverbindungen möglich (Konzept A). Nach diesem Konzept wurden insbesondere Pnictogen-zentrierte Biradikale der Gruppen Schulz^[11] und Ghadwal^[30,35–38] synthetisiert. Als Reduktionsmittel können beispielsweise Li-Sand,^[39] KC_{8} ,^[30,36,37,39] $Mg^{[11,36]}$ oder niedervalente Ti-Komplexe ([Cp₂Ti(btmsa)], [{Cp₂TiCl}₂])^[32] verwendet werden. Andere Biradikale wurden über reduktive Eliminierungen hergestellt (Konzept B). Diese Synthesestrategie wird primär bei der Synthese C-zentrierter Biradikale verwendet, indem N₂ durch Bestrahlung eliminiert wird.^[33,34,40–42] Bei Heteroatom-zentrierten Biradikalen spielt Konzept B bisher keine Rolle. Vereinzelt sind jedoch Additions- bzw. Insertionsreaktionen von kleinen Molekülen (z.B.: H₂,^[43] 2,3-Dimethylbutadien,^[44] CO^[4], Isonitrile^[3]) mit Biradikalen thermisch reversibel, was zeigt, dass eine Darstellung Heteroatom-zentrierter Biradikale nach Konzept B konzeptionell möglich ist. Des Weiteren wurden Biradikale durch Additions- und Insertionsreaktionen dargestellt (Konzept C). Hierbei wird der zentrale Ring oft durch Additionsreaktionen von Mehrfachbindungen schwerer Elemente mit anderen Mehrfachbindungen,^[29,45] Heterocumulenen^[46,47] oder Silylenen^[48] aufgebaut. Es ist aber auch möglich, dass die Ringgrößen bestehender Biradikale durch Insertionsreaktionen (z.B. mit $CO^{[4]}$ oder Isonitrilen^[3]) erweitert werden. Konzept D beschreibt die Synthese von Biradikalen durch Ring-aufbauende Metathesereaktionen. So wurden beispielsweise symmetrische Biradikale durch Lithiierung halogenierter Mehrfachbindungssysteme und anschließende LiX-Eliminierung (X = Halogen) hergestellt.^[1] Unsymmetrische Biradikale lassen sich hingegen durch Umsetzung eines dihalogenierten Synthesebausteins mit einem dilithiierten Synthesebaustein zu einem Biradikal umsetzen^[27].

Fünfgliedrige P-zentrierte Biradikale sind bisher nur über wenige Syntheserouten zugänglich. So ist eine Synthese des fünfgliedrigen Biradikals **70** durch eine Insertionsreaktion von CO in das viergliedrige Biradikal **6** möglich (Schema 4). Hierbei steht **70** in Abhängigkeit vom CO-Druck im Gleichgewicht zu **6** und einer Verbindung in der die Radikalzentren über ein weiteres Äquivalent CO verbrückt werden.^[4] Ein zu **70** strukturanaloges Biradikal **7S** in dem O durch S substituiert ist, konnte durch Umsetzung von **6** mit Thiophosgen und anschließende Reduktion mit elementarem Magnesium erhalten werden (Schema 4).^[49]

Schema 4. Darstellung der fünfgliedrigen Biradikale **70**^[4] und **7S**^[49] ausgehend von dem viergliedrigen Biradikal **6**.

In Analogie zur Synthese von **70** ermöglicht die Umsetzung von **6** mit verschieden substituierten Isonitrilen (Isonitrile sind isovalenzelektronisch zu CO) die Synthese von fünfgliedrigen Biradikalen des Typs **8R** (Schema 5).^[3,50]

Schema 5. Reaktionen des viergliedrigen Biradikals 6 mit Isonitrilen führen durch Ringerweiterung zu fünfgliedrigen Biradikalen des Typs 8R.^[3]

Die Bildung dieser Biradikale ist jedoch aufgrund einer Vielzahl an Restriktionen nicht universell anwendbar. So kommt es bei kleinen Isonitrilen neben der gewünschten Insertion partiell zur Überbrückung der Radikalzentren durch ein weiteres Äquivalent Isonitril.^[3] Bei Isonitrilen mit großem sterischen Anspruch (z.B. TerNC) kommt es hingegen zu keiner Reaktion mit dem viergliedrigem Biradikal.^[3] Darüber hinaus existieren Beschränkungen in Bezug auf den Substituenten am Biradikal^[51] und das Substitutionsmuster an den Isonitrilen,^[50] da es hier zu Umlagerungsreaktionen kommt.

In Reaktionen der fünfgliedrigen Biradikale **70** und **8R** kommt es häufig zu einer Eliminierung des CO oder Isonitrils, sodass in vielen Folgereaktionen die gleichen Produkte wie in der Umsetzung des viergliedrigen Biradikals erhalten werden (Schema 6).

Schema 6. In den aufgeführten Reaktionen werden ausgehend von den fünfgliedrigen Biradikalen (**70**, **8***t***Bu**, **8Dmp**) die gleichen Reaktionsprodukte erhalten wie in der Reaktion mit dem viergliedrigen Biradikal 6.^[3,4,52,53]

Eines der Ziele dieser Arbeit war es, einen anderen Zugang zu neuen fünfgliedrigen Pzentrierten Biradikalen zu finden, die nicht mehr durch eine Eliminierungsreaktion zu viergliedrigen Systemen abreagieren können. Hierfür wurde zunächst ein Synthesekonzept entwickelt (Schema 7), nach dem in einem ersten Schritt halogenierte Heterocyclen hergestellt werden, die dann in einem abschließenden Schritt durch Reduktion (vgl. Konzept A) zu den entsprechenden Biradikalen umgesetzt werden können. Wie in Schema 7 dargestellt, werden die beiden P-Atome der Heterocyclen auf der einen Seite durch eine N-R Einheit verbrückt, über die sich die sterische Abschirmung der Radikalzentren durch den Substituenten R einstellen lässt. Auf der anderen Molekülseite erfolgt die Verknüpfung der P-Atome über variierbare C-basierte Linker. Mit diesen lässt sich die Ringgröße einstellen und konjugierte oder nicht konjugierte Strukturmotive können in das Biradikal integriert werden. Die halogenierten Heterocyclen lassen sich hierbei konzeptionell entweder durch baseninduzierte Umsetzung einer Bis(dichlorphosphino)verbindung mit einem primären Amin (Route 1) oder durch Umsetzung eines dilithiierten Linkers mit einem R-substituierten Bis(dichlorphosphino)amin (Route 2) darstellen.

Schema 7. Synthesekonzept für den Aufbau verschiedener Biradikale ausgehend von literaturbekannten Linkern.^[54–58] Im Fokus dieser Arbeit steht das Biradikal **10**, das ausgehend von 1,2-Bis(dichlorphosphino)benzol (**9**) dargestellt werden sollte.

In dieser Arbeit sollte ausgehend vom 1,2-Bis(dichlorphosphino)benzol (9) das Biradikal 10R, ein 2-Aza-1,3-diphosphaindan-1,3-diyl, synthetisiert werden. Das Biradikal 10R verfügt durch den ankondensierten Benzolring (6 π -Elektronen) zusammen mit den 4 π -Elektronen im Fünfring insgesamt über 10 π -Elektronen, deren Resonanz zu einer Stabilisierung der Verbindung führen sollte. Die Synthese dieses neuen Biradikals und damit verbundene Untersuchungen sind im Kapitel 3 (Ergebnisse und Diskussion, S. 13ff) zusammengefasst.

Durch Verknüpfung zweier Biradikale mit einem Linker ist es konzeptionell möglich, Tetraradikale zu generieren, die bisher lediglich Gegenstand weniger Untersuchungen waren.^[3,27,59] So konnten Schulz und Mitarbeitende das Strukturmotiv des Cyclopentan-1,3diyls **8Dmp** über einen Methylendiphenyl-Linker zu dem Tetraradikal **11** verbrücken (Schema 8).^[3] Auf einem konzeptionell ähnlichen Weg gelang es in der Gruppe von Bertrand, das Tetraradikal *p*-12 darzustellen, in welchem sich das Strukturmotiv des viergliedrigen Biradikals **2** wiederfindet. Allgemein beeinflusst die verbrückende Einheit in den Tetraradikalen die Wechselwirkung zwischen den radikalischen Elektronen. Während der nicht konjugierte Linker in Tetraradikal **11** keine Wechselwirkung zwischen den Biradikaleinheiten zulässt (es handelt sich um ein Bis(Biradikaloid)), ermöglicht der konjugierte Linker in Tetraradikal *p*-12 eine signifikante Wechselwirkung zwischen den radikalischen Elektronen (es handelt sich um ein Tetraradikaloid), wie durch Casanova und Mitarbeitende anhand von quantenmechanischen Rechnungen gezeigt werden konnte.^[12]

Schema 8. Literaturbekannte Heteroatom-zentrierte Tetraradikale (**11**,^[3] *p*-**12**^[60]), die durch formale Verknüpfung zweier Biradikale (**8Dmp**,^[3] **2**^[27]) aufgebaut sind. In Rahmen dieser Arbeit sollte neben dem Biradikal **10R** als Strukturerweiterung das Tetraradikal **13R** synthetisiert werden.^[9] Neben **11** und *p*-**12** existieren weitere Tetraradikale, die jedoch C-zentriert^[59,61–64] bzw. Cluster-^[59], Aminoxyl-^[65–68] oder Aminyl-basiert^[69] sind und somit eine geringe Strukturverwandtschaft zu **13R** aufweisen.

In dieser Arbeit sollte in Analogie zu diesen Tetraradikalen das bisher unbekannte Biradikal 10R zu dem Tetraradikal 13R verknüpft werden. In 13R befinden sich alle Radikalzentren in einem Tricyclus, sodass die Wechselwirkung zwischen den Radikalzentren im Vergleich zu 11 und *p*-12 noch einmal verstärkt werden kann. Es galt zu untersuchen, welche Auswirkung die Strukturerweiterung des Biradikals (Biradikaloids) zum Tetraradikal (Tetraradikaloid) 13R auf die generellen Eigenschaften wie beispielsweise Multireferenzcharakter, Wechselwirkung der radikalischen Elektronen und die Folgereaktivität im Vergleich zum Biradikal 10R hat.

3 Ergebnisse und Diskussion

3.1 Synthese von Bi- und Tetraradikalen

Für die Synthese des Biradikals **10** und des Tetraradikals **13** mussten zunächst die entsprechenden Dichlorphosphinobenzole als Ausgangsverbindungen synthetisiert werden.

Route 1:

Schema 9. Bekannte Darstellungsmöglichkeiten für 1,2-Bis(dichlorphosphino)benzol (**9**) ausgehend von 1,2-Dibrombenzol oder 1,2-Dichlorbezol.^[54,70–75]

1,2-Bis(dichlorphosphino)benzol (9) war zu Beginn dieser Arbeit bereits literaturbekannt,^[54] und es existierten verschiedene dreistufige Syntheserouten für dessen Darstellung, die in Schema 9 zusammengefasst sind. Jede der dort vorgestellten Syntheserouten birgt jedoch Nachteile. So muss die erste Lithiierung entsprechend der Route 1^[70,71] unter sehr tiefen Temperaturen (-110 °C) erfolgen, um eine Arinbildung^[76] zu vermeiden, sodass sich die Ansatzgröße nicht beliebig skalieren lässt. Für den Reaktionspfad 2a werden hohe Reaktionstemperaturen bei der Chlorierung mit PCl₅ (120 °C) und der anschließenden Reduktion zu 9 (230 °C) benötigt. Bei dem Reaktionspfad 2b liegt das Hauptproblem in der Chlorierung, da Phosgen als Chlorierungsreagenz stark toxisch und schwierig in der Handhabung ist. Eine Substitution durch Triphosgen ist möglich, allerdings wird für beide Chlorierungsreagenzien eine relativ geringe Ausbeute beschrieben (Phosgen: 54 %,^[74] Triphosgen: 44 %^[54]).

In dieser Arbeit wurde sich darauf konzentriert, eine Alternative für die Chlorierung des 1,2-Diphosphinobenzols in Pfad 2b zu finden. Für die Chlorierung anderer primärer Phosphane fand bereits eine Vielzahl an verschiedenen Chlorierungsmittel (z.B. Cl₂,^[77,78] C₂Cl₆,^[79] Phosgen,^[74,80] Diphosgen,^[81] Triphosgen,^[82] PCl₃,^[83] und *N*-Chlorsuccinimid^[84]) Anwendung. Für eine verbesserte Synthese von **9** wurde das von Weferling erstmalig als Chlorierungsmittel von primären Phosphanen beschriebene PCl₅ verwendet. In der Reaktion wird eine PH₂-Gruppe mit zwei Äquivalenten PCl₅ in eine PCl₂-Gruppe und jeweils zwei Äquivalente PCl₃ und HCl überführt. Die Chlorierung zu **9** konnte bei Raumtemperatur durchgeführt werden, wobei der Reaktionsumsatz über die HCl-Entwicklung verfolgt wurde. Nach der Reaktion wurden alle flüchtigen Verbindungen im Vakuum entfernt und eine Aufreinigung des bei Raumtemperatur flüssigen Produktes erfolgte durch eine fraktionelle Destillation. Durch die Verwendung von PCl₅ wurde die Ausbeute für die Chlorierung von 1,2-Diphosphinobenzol zu **9** auf 93 % verbessert.^[75]

Schema 10. Darstellung von 1,2-Bis(dichlorphosphino)benzol (9), 1,2,4-Tris(dichlorphosphino)benzol (15) und 1,2,4,5-Tetrakis(dichlorphosphino)benzol (14) ausgehend von 1,2-Dichlorbenzol, bzw. 1,2,4,5-Tetrachlorbenzol. Im letzten Schritt erfolgte die Chlorierung zu 9, 15 und 14 durch Chlorierung der entsprechenden primären Phosphane mit PCI₅.^[75]

Für die Synthese des Tetraradikals **13R** musste zunächst ein Zugang zu dem bisher unbekannten 1,2,4,5-Tetrakis(dichlorphosphino)benzol (**14**) gefunden werden (Schema 10). Dieses konnte analog zur Synthese von **9** über eine Chlorierung des entsprechenden (literaturbekannten) 1,2,4,5-Tetraphosphinobenzols^[85,86] mit PCl₅ in sehr guten Ausbeuten (91 %) hergestellt werden. In der Synthese des 1,2,4,5-Tetraphosphinobenzols entstand zudem durch reduktive P-C-Bindungsspaltung das 1,2,4-Triphosphinobenzol. Dieses konnte mit PCl₅ in analoger Weise zum 1,2,4-Tris(dichlorphosphino)benzol (**15**) umgesetzt werden ($\eta =$ 89 %), ist aber im Rahmen dieser Arbeit nicht für die Synthese von Polyradikalsystemen verwendet worden (für weitere Informationen: Kap. 6.1).^[75]

Während **9** eine Flüssigkeit ist und nur bei tiefen Temperaturen aus CH₂Cl₂ (-40 °C) kristallisiert werden konnte, ist **14** ein Feststoff, der bereits bei Raumtemperatur aus Toluol kristallisiert werden konnte (Abbildung 2, Ansichten A und B). Der Unterschied in den Schmelzpunkten der beiden Verbindungen kann über die unterschiedliche Anzahl an intermolekularen P…Cl-Wechselwirkungen erklärt werden (Abbildung 2, Ansichten C und D). So liegt **9** im Festkörper als centrosymmetrisches Dimer und **14** in einer linearen, polymeren Form vor.^[75]

Abbildung 2. Molekülstrukturen von **9** (oben) und **14** (unten) im Festkörper. Thermische Ellipsoide entsprechen 50 % Wahrscheinlichkeit bei 123 K. **9** liegt als Dimer vor (Ansicht C, a = 3.6943(5) Å, b = 3.4692(5) Å), während **14** eine polymere Struktur aufweist (Ansicht D, a = 3.6943(5) Å).^[75]

Im ³¹P-NMR-Spektrum führen die beiden Chlorphosphane **9** und **14** zu sehr ähnlichen chemischen Verschiebungen (δ : **9** = 152 ppm, **14** = 147 ppm), die im Bereich anderer Aryldichlorphosphane (z.B.: PhPCl₂: δ = 162 ppm)^[87] liegen.^[75]

Ausgehend von den Chlorphosphanen (9, 14) wurden durch baseninduzierte Umsetzung mit primären Aminen fünfgliedrige Ringe aufgebaut (Schema 11). Die Umsetzung von 9 führte zu den bicyclischen 1,3-Dichlor-2-aza-1,3-diphosphaindanen (16), die Umsetzung von 14 zu den tricyclischen 1,3,5,7-Tetrachlor-2,6-diaza-1,3,5,7-tetraphospha-*s*-hydrindacenen (17).^[9,71]

Schema 11. Ausgehend von den Chlorphosphanen **9** und **14** können durch baseninduzierte Umsetzung mit unterschiedlichen sterisch anspruchsvollen primären Aminen kondensierte Ringsysteme mit P-CI Funktionalitäten aufgebaut werden.^[9,71]

Wie in Schema 11 dargestellt, ist es möglich, über das primäre Amin verschiedene sterisch anspruchsvolle Substituenten R (R = Dmp, Ter, ^{*I*Bu}Bhp, EMind) einzuführen.^[9,71] Über den sterisch anspruchsvollen Substituenten lassen sich die Eigenschaften von **16R** und **17R** und somit auch des Biradikals **10R** und des Tetraradikals **13R** steuern (z.B.: Löslichkeit, Kristallisierbarkeit). Von besonderer Relevanz ist der sterische Anspruch des Substituenten: Ein gewisser Mindestanspruch ist notwendig, um **10R** und **13R** hinsichtlich Oligomerisierung stabilisieren zu können. Ein zu großer sterischer Anspruch ist hingegen zu vermeiden, da dieser die Reaktivität der Verbindungen einschränkt indem die zu aktivierenden Moleküle einen erschwerten Zugang zu den Radikalzentren hätten.^[9]

Schema 12. Die Reduktion des Bicyclus **16R** führt in Abhängigkeit von R zu verschiedenen Reaktionsprodukten. Das Biradikal **10R** konnte nur unter Verwendung des ^{*t*Bu}Bhp-Substituenten isoliert werden.^[71]

Die Reduktion von **16R** (Schema 12) in THF mit elementarem Magnesium wurde mittels ${}^{31}P{}^{1}H$ -NMR-Spektroskopie verfolgt und führte bei allen Substituenten zunächst zur Bildung des Biradikals **10R** ($\delta({}^{31}P) = 280 - 285$ ppm). Im Falle von **10Dmp** kommt es im Anschluss zur Bildung eines Polymers, dessen Struktur nicht aufgeklärt wurde. **10Ter** bildet selektiv ein Trimer (**18**), welches ein [2+2]-Cycloadditionsprodukt des Monomers ist. Formal addieren hierbei zwei Biradikale an die C-C-Doppelbindungen des zentralen Benzolrings einer weiteren Formeleinheit. Lediglich für R = Bu Bhp wurde keine Oligomerisierung beobachtet und das Biradikal konnte in monomerer Form isoliert werden (Beschreibung siehe S. 22).^[71]

Schema 13. Die Reduktion des Tricyclus **17R** führt mit R = EMind zu dem Tetraradikal **13EMind**. Mit R = Ter wird das Dimer **19Ter** gebildet, wobei jedoch **13Ter** intermediär beobachtet wurde.^[9]

Auch für die Reduktion von 17R mit elementarem Zink in THF zeigte sich ein Substituentenspezifisches Reaktionsverhalten (Schema 13). So wurde zunächst die Reduktion von 17Ter untersucht, da angenommen wurde, dass es im Gegensatz zur Reduktion von 16Ter zu keiner Oligomerisierung aufgrund der erhöhten Anzahl an Substituenten kommt. Das Tetraradikal **13Ter** konnte in Lösung nachgewiesen werden (δ (³¹P) = 287 ppm), überraschenderweise kam es jedoch in Folge zur selektiven Bildung des Dimers 19Ter. Dieses wurde unter Knüpfung einer P-P-, zweier P-C- und einer C-C-Bindung zwischen zwei Monomeren 13Ter gebildet. Um 13R in monomerer Form isolieren zu können, musste eine Erhöhung des sterischen Anspruchs des Substituenten erfolgen. Eine Substitution mit dem ^{tBu}Bhp-Substituenten analog zu dem Biradikal 10^{tBu}Bhp konnte aufgrund schlechter Löslichkeitseigenschaften von 17^{tBu}Bhp nicht abschließend untersucht werden, sodass ein anderer Substituent gefunden werden musste. Hierfür wurden guantenmechanische Rechnungen auf PBE-D3/def2-TZVP^{[88-} ^{90]} Niveau durchgeführt, die die Dimerisierung von 13R zu 19R in Toluol (SMD-Solvatationsmodell)^[91] für verschiedene sterisch anspruchsvolle Substituenten R untersuchen (R = Ter, EMind, Mes*, Oma). Die Rechnungen zeigen, dass die Dimerbildung für R = Ter in Übereinstimmung mit den experimentellen Befunden exergon verläuft ($\Delta_{\rm R}G^{\circ} =$ -75.1 kJ/mol). Für die anderen drei Substituenten ist das Monomer jedoch energetisch bevorzugt (Schema 14). Experimentelle Untersuchungen erfolgten anschließend mit dem EMind-Substituenten, und in Übereinstimmung mit den Berechnungen konnte 13EMind in monomerer Form nach Reduktion von 17EMind isoliert werden.^[9]

Schema 14. Freie molare Enthalpie ($\Delta_R G^\circ$) in Toluol (SMD-Solvatationsmodell) für die Dimerisierung von **13R** zu **19R** in Abhängigkeit verschiedener sterisch anspruchsvoller Substituenten R, berechnet auf PBE-D3/def2-TZVP-Niveau.^[9]

Die Tendenz zur Oligomerisierung von **10R** und **13R** korreliert mit dem sterischen Anspruch der Verbindungen. Dieser kann beispielsweise über statische Modelle wie den Kegelwinkel (engl. *cone angle*)^[92–94] oder das besetzte Kugelvolumen ($V_{bur.}$, engl. *buried volume*)^[95–97] quantifiziert werden. In Abbildung 3 ist das besetzte Kugelvolumen, um das Zentrum zwischen zwei P-Atomen eines fünfgliedrigen Ringes, gegen den Kugelradius für verschiedene Substituenten aufgetragen.

Abbildung 3. Besetztes Kugelvolumen^[95–97] in verschieden substituierten Biradikalen **10R** (links) und Tetraradikalen **13R** (rechts) in Abhängigkeit vom Kugelradius r.^[9,71]

Der Verlauf der Graphen für $V_{\text{bur.}}$ ist substituentenspezifisch, während sich kein signifikanter Unterschied in der Abschirmung zwischen dem Biradikal **10R** und dem Tetraradikal **13R** zeigt (vgl. Verlaufskurven mit R = Ter). Der Ter-Substituent führt insbesondere bei großen Kugelradien zu großen Werten für $V_{\text{bur.}}$ ($V_{\text{bur.}}(5.0 \text{ Å}) = 32.2 \%$), jedoch zeigt die Trimerisierung von **10R** und die Dimerisierung von **13R**, dass die Abschirmung bei großen Kugelradien nicht ausschlaggebend für die Stabilität der Verbindungen ist. Eine Korrelation zwischen dem Oligomerisierungsverhalten und den besetzten Kugelvolumen findet sich bei Kugelradien von r = 2.5 bis 3.5 Å. Hier steigt $V_{\text{bur.}}$ in **10R** von R = Dmp (Polymerbildung), über Ter (Trimerbildung) zu ^{*(BuBhp*} (Monomer) und korreliert mit den berechneten Dimerisierungsenergien für **13R** ($\Delta_R G^\circ$: Oma > Mes* > EMind > Ter). Das besetzte Kugelvolumen kann somit ein hilfreiches Modell für künftige Substituentenvariationen sein, hat jedoch als starres Modell Limitierungen bei besonders flexiblen Substituenten (vgl. *flexible steric bulk*)^[98].^[9,71]

3.2 Eigenschaften der Bi- und Tetraradikale sowie ihrer Oligomerisierungsprodukte

Zunächst sollen die unerwarteten Strukturmotive des Trimers **18Ter** und des Dimers **19Ter** diskutiert werden. In beiden Strukturen ist die Oligomerisierung nicht ausschließlich über die Radikalzentren unter Ausbildung von P-P-Bindungen abgelaufen. In **18Ter** wurden durch zwei formale [2+2]-Cycloadditionen der C=C-Doppelbindungen der Phenyleneinheit eines Monomers mit den Radikalzentren zweier weiterer Formeleinheiten ausschließlich P-C-Bindungen geknüpft. Das so resultierende Strukturmotiv beinhaltet den ersten sechsgliedrigen Kohlenstoffcyclus, an welchen sechs P-Atome direkt gebunden sind (Abbildung 4).^[71] Bei **19Ter** erfolgte die Dimerisierung durch Ausbildung einer P-P-, zweier P-C- und einer C-C-Bindung, wobei der Mechanismus der Dimerisierung nicht untersucht wurde. Das so entstandene Strukturmotiv leitet sich vom Tricyclo[5.5.0.0^{4,10}]dodeca-1(7),4(10)-dien ab, in dem zwei orthogonal zueinander ausgerichtete Etyleneinheiten an vier Punkten über (H₂C)₂-Ketten miteinander verbunden sind. Diese Kohlenwasserstoffstammverbindung konnte bisher nicht synthetisiert werden.^[99]

Von **18Ter** und **19Ter** konnten Einkristalle gewonnen werden, deren Struktur mittels Einkristallröntgenstrukturanalytik untersucht wurde (Abbildung 4). Beide Strukturen sind nahezu C_2 -symmetisch, sodass, wenn nicht anders angegeben, gemittelte Werte diskutiert werden. In beiden Molekülen kommt es in Folge der Oligomerisierung zu signifikanten Änderungen in mindestens einem sechsgliedrigen Kohlenstoffring durch Aufhebung der Aromatizität (blau eingefärbt, Abbildung 4). In **18Ter** bleibt der zentrale C₆-Ring dabei nahezu planar (\ll (C1-C2-C5-C4) = 178.6(4)°), während es in **19Ter** entlang der C-Atome, die an der Dimerisierung beteiligt sind (C3, C6, C7, C10), zu einer Abwinkelung des Ringes kommt (\ll (C12-C7-C10-C9) = 144.4(3)°). Durch die Oligomerisierung differenzieren sich in jedem Molekül zudem zwei verschiedene Arten fünfgliedriger Ringe. In den rot eingefärbten Ringen (Abbildung 4) sind die P-Atome direkt an der Oligomerisierung beteiligt (trivalente P-Atome), sodass es entlang der P-Atome zu einer Abwinkelung kommt (**18Ter**: 76.9(4)°, **19Ter**: 25.4(2)°). Die verbleibenden, an der Oligomerisierung unbeteiligten Ringe (grün
eingefärbt, divalente P-Atome) winkeln nicht an den P-Atomen ab (**18Ter**: 2.2(2)°, **19Ter**: 0.3(3)°). Die P-C Bindungslängen in den planaren Ringen (**18Ter**: 1.722(3), **19Ter**: 1.710 (3) Å) sind im Bereich typischer P-C-Doppelbindungen ($\Sigma r_{kov.}$ (P=C) = 1.69 Å)^[100]. Die P-C-Bindungen in **18Ter**, die die monomeren Einheiten verknüpfen, sind im Bereich typischer P-C-Einfachbindungen (\emptyset (P-C) = 1.889(6) Å; $\Sigma r_{kov.}$ (P-C) = 1.86 Å)^[100]. Im Gegensatz dazu sind die Bindungen, die die Monomere in **19Ter** verknüpfen (P2-P5 = 2.3364(9) Å, P1-C10 = 1.945(3) Å, P6-C3 = 1.942(3), C6-C7 = 1.625(3) Å), gegenüber den Summen der entsprechenden Kovalenzradien deutlich verlängert ($\Sigma r_{kov.}$ (P-C) = 1.86 Å, $\Sigma r_{kov.}$ (P-P) = 2.22 Å, $\Sigma r_{kov.}$ (C-C) = 1.50 Å)^[100].^[9,71]

Abbildung 4. Molekülstrukturen von **18Ter** (links) und **19Ter** (rechts) im Kristall. Thermische Ellipsoide entsprechen 50 % Wahrscheinlichkeit bei 123 K. Ausgewählte Abstände (Å) und Winkel (°) in **18Ter**: C1–C2 1.509(5), C1–C6 1.397(5), C2–C3 1.559(5), C3–C4 1.554(5), C4–C5 1.558(5), C5–C6 1.505(5), N1–P1 1.698(3), N1–P2 1.698(3), P1–C6 1.698(3), P2–C1 1.719(3), P1–P2 2.921(3); C1–C2–C5–C4 178.6(4), N1–P2–P1–C6–179.7(3), P1–C6–C1–C2 175.4(3); in **19Ter**: P3–P4 2.943(1), P5–P6 2.928(1), P1–C10 1.945(3), P2–P5 2.3364(9), P7–C8 1.703(3), P8–C9 1.714(3), P5–C11 1.802(3), P6–C12 1.817(3), P6–C3 1.942(3), C6–C7 1.625(3), P1–N1–P2 116.4(1), P3–N2–P4 119.4(2), P5–N3–P6 116.1(2), P7–N4–P8 118.9(2), N3–P6–P5–C11 155.2(2), P5–C11–C12–C7 158.5(2), C12–C7–C10–C9 144.4(3), C10–C9–C8–P7 178.1(3), C8–P7–P8–N4 –176.8(3).^[9,71]

Die C_2 -Symmetrie in Lösung führt in den ³¹P{¹H}-NMR-Spektren zu einem AA'BB'XX'-Spinsystem für **18Ter** bzw. einem AA'BB'XX'YY'-Spinsystem für **19Ter**. Die zwei unterschiedlichen Arten P-haltiger Ringe (siehe Strukturdiskussion) bestimmen die Signallagen der Resonanzen. So liegen die Resonanzen der divalenten P-Atome in den planaren Ringen bei $\delta(^{31}P) = 287$ (**18Ter**) bzw. 273 (**19Ter**, P4/P7) und 280 ppm (**19Ter**, P3/P8, Bezeichnung siehe Abbildung 4). Die trivalenten P-Atome sind dazu mit $\delta(P4 / P5) =$ 83 und $\delta(P3 / P6) =$ 89 in **18Ter**, bzw. $\delta(P2 / P5) =$ 120 und $\delta(P1 / P6) =$ 136 ppm in **19Ter** hochfeldverschoben. Hochtemperatur-³¹P{¹H}-NMR-Experimente zeigten, dass sich **19Ter** in Toluol-*d*₈ langsam zersetzt. Eine Dissoziation in die Monomere konnte trotz der ungewöhnlichen Bindungslängen zwischen den monomeren Einheiten in **19Ter** nicht nachgewiesen werden.^[9,71]

Bei den Molekülen mit den sterisch anspruchsvollsten Substituenten 16^{*t*Bu}Bhp und 17EMind führte die Reduktion mit Mg (16^{*t*Bu}Bhp) bzw. Zn (17EMind) zu keiner Bildung von Oligomeren. Anstelle dessen konnte das Biradikal 10^{*t*Bu}Bhp als gelber Feststoff und das Tetraradikal 13EMind als grüner Feststoff isoliert werden. Die Hauptabsorptionen im UV/Vis-Spektrum liegen bei 424 nm für 10^{*t*Bu}Bhp bzw. 396 und 667 nm für 13EMind. Während 10^{*t*Bu}Bhp in kristalliner Form nur mit 11 % Ausbeute isoliert werden konnte, gelang es, 13EMind in guter Ausbeute ($\eta = 67$ %) im Grammaßstab zu isolieren. Beide Verbindungen sind mit einem Schmelzpunkt von 252-258 °C (10^{*t*Bu}Bhp) bzw. einem Zersetzungspunkt von 365 °C (13EMind) bemerkenswert temperaturbeständig (vgl.: 6: $T_{zers.} = 224 \text{ °C}$)^{[32],[9,71]}

Abbildung 5. Molekülstrukturen von **10**^{rBu}**Bhp** (links) und **13EMind** (rechts) im Kristall. Thermische Ellipsoide entsprechen 50 % Wahrscheinlichkeit bei 123 K. Ausgewählte Abstände (Å) und Winkel (°) in **10**^{rBu}**Bhp**: P1–N1 1.696(2), P1–C42 1.742(2), P2–N1 1.692(2), P2–C37 1.742(2), C37–C38 1.425(3), C37–C42 1.428(3), C38–C39 1.365(3), C39–C40 1.406(3), C40–C41 1.357(3), C41–C42 1.426(2), C42–C41–C38–C39 179.3(3), N1–P1–P2–C37 –179.4(2), P1–C37–C42–C41 –177.9(2); in **13EMind**: P1–C1 1.857(2), P1–C7 1.885(2), P2–C2 1.845(2), P1–P2 2.7877(7), P2–C8 1.879(2), P3–C4 1.865(2), P3–C22 1.878(2), C7–C8 1.344(3), C22–C21 1.347(3), P2–C8–C7 114.0(2), P3–C22–C21 111.4(1).^[9,71]

Von beiden Verbindungen konnten Einkristalle gewonnen werden, deren Struktur mittels Einkristallröntgenstrukturanalytik untersucht wurde (Abbildung 5). In beiden Strukturen sind die zentralen kondensierten Ringsysteme vollständig planar und die Benzolringe der

Substituenten stehen nahezu orthogonal zu diesen (10^{tBu}Bhp: 89.79(7)°, 13EMind: 83.11(5)°). Die Strukturparameter des fünfgliedrigen Heterocyclus in 10^{*t*Bu}Bhp unterscheiden sich nicht signifikant von denen in 13EMind. So betragen die mittleren P-C-Bindungslängen in 10^{(Bu}Bhp 1.742(2) und in 13EMind 1.752(2) Å und sind somit im Vergleich zu den P-C-Doppelbindungen in den Oligomeren (18Ter: 1.722(3), 19Ter: 1.710(3) Å) sowie der Summe der Kovalenzradien (Σr_{kov} (P=C) = 1.69 Å)^[100] geringfügig verlängert. Die Verlängerung der P-C-Bindungen kann durch den signifikanten Multireferenzcharakter der Verbindungen erklärt werden. Die transannularen P····P-Abstände (10^{tBu}Bhp: 2.9574(7) Å, 13EMind: 2.9702(9) Å) sind zu lang für eine kovalente P-P-Wechselwirkung, aber signifikant kürzer als die Summe der van-der-Waals Radien (vgl. $\Sigma r_{vdW}(P \cdots P) = 3.8$ Å).^[101] Die C-C-Bindungslängen in den zentralen Ringsystem liegen in 10^{tBu}Bhp zwischen 1.357(3) (C40-C41) und 1.428(2) Å (C37-C42) bzw. in 13EMind zwischen 1.400(3) (C1-C3') und 1.449(3) Å (C1-C2) und weisen somit auf einen partiellen Doppelbindungscharakter hin $(\Sigma r_{kov}, (C-C) = 1.5, \Sigma r_{kov}, (C=C) = 1.34 \text{ Å})^{[100]} \cdot [9,71]$ Zu 10^{tBu}Bhp und 13EMind strukturell verwandt sind 1-Aza-2,5-diphosphole, die in freier Form nur in situ nachgewiesen werden konnten.^[102,103] In koordinierter Form wurden 1-Aza-2,5-diphosphole als n⁴-koordinierte Ir-Verbindung isoliert, sind strukturell jedoch nur bedingt vergleichbar, da die Koordination über die P=C-Doppelbindungen zu einer Abwinkelung des fünfgliedrigen Ringes entlang der P-Atome führt.^[104]

In den ³¹P{¹H}-NMR-Spektren zeigen beiden Verbindungen scharfe Resonanzen bei 285 (**10**^{*t*Bu}**Bhp**) bzw. 289 ppm (**13EMind**).^[9,71] Die Verschiebungen sind ähnlich zu den strukturverwandten 1-Aza-2,5-diphospholen ((*t*BuC)₂(μ -P)₂N*t*Bu (286 ppm)^[102,103]), den Resonanzen der divalenten P-Atome des Trimers **18Ter** (287 ppm) und des Dimers **19Ter** (273 und 280 ppm) sowie zu anderen P-zentrierten Biradikalen (**6**: 276, **8Dmp**: 221 und 258 ppm).^[105] Die scharfen NMR-Resonanzen deuten auf einen Singulett-Grundzustand für **10**^{*t*Bu</sub>**Bhp** und **13EMind** hin. Um dies zu validieren, wurden quantenmechanische Rechnungen durchgeführt.}

3.3 Elektronische Struktur von **10R** und **13R**

Generell existieren für ein Biradikal als System mit zwei radikalischen Elektronen drei Singulett- und ein Triplett-Zustand,^[2] während für ein Tetraradikal als ein System mit vier radikalischen Elektronen 20 Singulett-, 15 Triplett- und ein Quintett-Zustand möglich sind.

Für eine Beschreibung des elektronischen Grundzustands wurden NEVPT2^[106–108]/CASSCF^[14–22]/def2-TZVP^[90,109]-Rechnungen für das Biradikal **10**^{*t*Bu}**Bhp** und das Tetraradikal **13EMind** durchgeführt (bzw. für deren Protonen-substituierte Modellsysteme **10H** und **13H**). Für beide Moleküle ist ein offenschaliger Singulett-Zustand der elektronische Grundzustand. Bei **10**^{*t*Bu</sub>**Bhp** (CASSCF(10,9)) beträgt die Singulett-Triplett-Lücke $\Delta E_{ST} = E_S - E_T = -126$ kJ/mol (vgl.: **6**: -87 kJ/mol, **8Dmp**: -58 kJ/mol). In **13EMind** (CASSCF(14,12)) beträgt die Energiedifferenz zum 1. angeregten Zustand, einem Triplett-Zustand $\Delta E_{ST} = -91$ kJ/mol, zum ersten Quintett-Zustand $\Delta E_{SQ} = -311$ kJ/mol. Diese Energiedifferenzen sind nahezu identisch zu den Energiedifferenzen im Modellsystem **13H** (Tabelle 1), was zeigt, dass der Substituent die elektronische Struktur des Tetraradikals nicht signifikant beeinflusst.^[9,71]}

Angeregter Zustand	Termsymbol	Δ <i>Ε</i> [eV]	Δ <i>E</i> [kJ/mol]
Grundzustand	${}^{1}A_{g}$	0.00	0
1	³ B _{2u}	0.97	93
2	³ B _{3g}	1.59	154
3	¹ <i>B</i> _{2<i>u</i>}	1.95	188
4	$^{1}A_{g}$	2.66	256
5	³ B ₁	2.84	274
6	³ B _{3g}	3.00	290
7	${}^{1}B_{3g}$	3.11	300
8	³ B _{2u}	3.11	300
9	${}^{1}B_{3g}$	3.16	305
10	${}^{5}A_{g}$	3.22	311

Tabelle 1: Relative Energien der angeregten Zustände in 13H (NEVPT2/CAS(14,12)/def2-TZVP).^[9]

Aus den Energien der angeregten Zustände lassen sich die Elektronenaustauschkopplungskonstanten (J_{ij} siehe Kap. 2.1) berechnen, die die Wechselwirkung zwischen zwei radikalischen Elektronen (i, j) in den Polyradikalen **10R** und **13R** beschreiben. Der Zusammenhang zwischen den Energien der Zustände und den Kopplungskonstanten J_{ij} ergibt sich aus dem phänomenologischen Heisenberg-Dirac-van Vleck-Hamilton-Operator^[110,111] (\hat{H}_{HDvV} ; $\hat{S} =$ Spin-Operator):^[9]

$$\widehat{H}_{\text{HDvV}} = -\sum_{i < j} J_{ij} \, \widehat{S}_i \, \widehat{S}_j \tag{1}$$

Im Falle von Biradikalen ist $J = E_{\rm S} - E_{\rm T} = \Delta E_{\rm ST}$.^[2,112,113] Mit einer steigenden Zahl an radikalischen Elektronen nimmt die Anzahl an Kopplungskonstanten mit $0.5 \cdot n \cdot (n-1)$ zu. In Tetraradikalen gibt es somit sechs Kopplungskonstanten. Im Tetraradikal **13R** gibt es jedoch aufgrund der im zentralen Ringsystem vorliegenden D_{2h} -Symmetrie nur drei verschiedene Elektronenaustauschkopplungskonstanten, die in Anlehnung an Arbeiten von Casanova und Mitarbeitende^[12] als σ (kurz), μ (medium) und λ (lang) bezeichnet werden (Abbildung 6). Ihr Zusammenhang mit den Energien bestimmter angeregten Zustände ist in Tabelle 2 aufgelistet. Die für die Berechnung der Kopplungskonstanten in **13EMind** benötigten Energien wurden analog zu **13H** (Tabelle 1) berechnet und sind in Tabelle 2 aufgeführt.

Zustand	Irreduzible Darstellung.	Δ <i>Ε</i> [kJ/mol]	E _{rel.} =
Q1	A_g	313	$-\frac{\sigma}{2}-\frac{\mu}{2}-\frac{\lambda}{2}$
ТЗ	Au	276	$-\frac{\sigma}{2}+\frac{\mu}{2}+\frac{\lambda}{2}$
S1	A_g	253	$-\frac{\sigma}{2} + \mu + \lambda$
Τ2	B_g	156	$+\frac{\sigma}{2}+\frac{\mu}{2}-\frac{\lambda}{2}$
T1	B_u	91	$+\frac{\sigma}{2}-\frac{\mu}{2}+\frac{\lambda}{2}$
SO	A_g	0	$+\frac{3}{2}\sigma$

Tabelle 2: Abhängigkeit der relative Energien der elektronischen Zustände im Tetraradikal **13EMind** von den Elektronenaustauschkopplungskonstanten σ , μ und λ .^[9]

Mithilfe eines Least-Square Verfahrens wurden aus den Energien der elektronischen Zustände σ , μ und λ bestimmt (Abbildung 6). Die transannulare antiferromagnetische Kopplung ist im Tetraradikal **13EMind** mit $\sigma = -151$ kJ/mol (**13H**: -150 kJ/mol) im Vergleich zu dem Biradikal **10'^{Bu}Bhp** (-126 kJ/mol) und den Tetraradikalen *m*-**12** (-98 kJ/mol) und *p*-**12** (-94 kJ/mol) verstärkt.^[12,71] Eine weitere antiferromagnetische Kopplung besteht zwischen den Elektronen an den *para*-ständigen P-Atomen in **13EMind** mit $\lambda = -50$ kJ/mol (**13H**: -47 kJ/mol) analog zu den *para*-ständigen B-Atomen in *p*-**12** ($\lambda = -31$ kJ/mol).^[12] Die Elektronen der *meta*-ständigen P-Atome in **13EMind** koppeln mit $\mu = +14$ kJ/mol (**13H**: +14 kJ/mol) ferromagnetisch, wie auch die Elektronen der *meta*-ständigen B-Atome in *m*-**12** (+5 kJ/mol).^[12] Zusammenfassend ist das Tetraradikal **13R** als ein substituiertes Benzol mit Radikalzentren in 1-, 2-, 4- und 5-Position aufzufassen, dessen elektronische

Wechselwirkungen zwischen den radikalischen Elektronen vergleichbar zu analogen Kopplungswegen in anderen Polyradikalen wie 10^{*t*Bu}Bhp, *m*-12 und *p*-12 sind. Gemäß der in Kapitel 2.1 eingeführten Nomenklatur handelt es sich aufgrund signifikanter Wechselwirkungen zwischen allen radikalischen Elektronen bei 10^{*t*Bu}Bhp um ein Biradikaloid und bei 13EMind um ein Tetraradikaloid.^[9]

Abbildung 6. Elektronenaustauschkopplungskonstanten in 10^{rBu} Bhp, 13EMind, *m*-12 und *p*-12. ^[9,12,71] Im Gegensatz zu allen anderen hier abgebildeten Tetraradikalen konnte *m*-12 nicht experimentell beobachtet werden, da ein geschlossenschaliges Isomer mit transannularen B-B-Bindungen energetisch bevorzugt ist.^[60] *m*-12 wurde jedoch ebenso wie *p*-12 umfassend von Casanova und Mitarbeitenden theoretisch untersucht.^[12] Die hier aufgeführten Werte für *m*-12 und *p*-12 wurden aus dieser Publikation übernommen.

3.4 Multireferenzcharakter von 10R und 13R

Eine weitere Quantifizierung des Bi- und Tetraradikalcharakters ist anhand der Besetzungszahlen der niedrigstliegenden "unbesetzten" natürlichen Orbitale möglich. Hierbei entspricht die Besetzung des niedrigsten unbesetzten natürlichen Orbitals n(LUNO) dem Biradikalcharakter und die Besetzung des darauf folgenden Orbitals n(LUNO+1) dem Tetraradikalcharakter, n(LUNO+2) dem Hexaradikalcharakter usw.^[9]

Es wurden CASSCF-Rechnungen für die Protonen-substituierten Modellsysteme **10H** und **13H** mit unterschiedlichen aktiven Räumen durchgeführt, um die Besetzungszahlen zu bestimmen (Tabelle 3). Hierbei wurden zum einen CASSCF-Rechnungen genutzt, die die minimale Anzahl an Elektronen und Orbitalen berücksichtigen, derer es bedarf, um ein Biradikal (CASSCF(2,2)) oder ein Tetraradikal (CASSCF(4,4)) zu beschreiben. Zum anderen wurden CASSCF-Rechnungen mit einem erweiterten aktiven Raum durchgeführt, sodass alle π -Elektronen der zentralen kondensierten Ringsysteme berücksichtigt wurden (**10H**: CASSCF(10,9), **13H**: CASSCF(14,12)).^[9]

Verbindung	aktiver Raum	n(LUNO)	<i>n</i> (LUNO+1)	<i>n</i> (LUNO+2)
10H	CASSCF(2,2)	0.18	-	-
	CASSCF(10,9)	0.20	0.09	0.09
13H	CASSCF(4,4)	0.26	0.19	-
	CASSCF(14,12)	0.32	0.19	0.09

Tabelle 3: Besetzungszahlen von LUNO, LUNO+1 und LUNO+2 in **10H** und **13H** auf Basis verschiedener CASSCF-Rechnungen.^[9,71]

Zunächst sollen die Besetzungszahlen aus den CASSCF(2,2)-, bzw. aus den CASSCF(4,4)-Rechnungen diskutiert werden. Im Falle des Biradikals **10H** ist das LUNO mit 0.18 Elektronen besetzt, was einem Biradikalcharakter von 18 % entspricht. Die Besetzungszahl aus einer CASSCF(2,2) Rechnung entspricht zudem dem Biradikalcharakter auf der von Xantheas und Mitarbeitenden definierten und auf den Koeffizienten der CASSCF-Wellenfunktion beruhenden β -Skala ($\beta = 2 \cdot c_2^2 / (c_1^2 + c_2^2)$).^[5,7,114] Der Biradikalcharakter ist in **10H** deutlich kleiner als in anderen P-zentrierten Biradikalen (6: 28 %, **8Dmp**: 28 %). In dem Realsystem **10^{rBu}Bhp** ist die Besetzung des LUNOs mit 0.18 Elektronen identisch zu **10H** sodass auch hier kein Einfluss des Substituenten auf die Elektronische Struktur des Biradikals festgestellt werden konnte.^[71]

Die Erweiterung des Strukturmotives des Biradikals **10H** zum Tetraradikal **13H** führt zu einer deutlichen Vergrößerung des mittels CASSCF(4,4)-Rechnungen ermittelten Biradikalcharakters auf 26 %. Der Tetraradikalcharakter in **13H** beträgt 19 %. Der Unterschied zwischen n(LUNO) und n(LUNO+1) belegt eine signifikante Interaktion zwischen den beiden Biradikaleinheiten sodass das Strukturmotiv **13R** korrekterweise als Tetraradikaloid aufgefasst werden muss. Für ein Bis(Biradikaloid) wäre ein identischer Bi- und Tetraradikalcharakter zu erwarten gewesen^[9]. So gibt es im Tetraradikaloid p-12 Unterschiede im Bi- (22 %)^[12] und Tetraradikalcharakter (17%)^[12] während das experimentell nicht zugängliche *m*-12 aufgrund des identischen Bi- und Tetraradikalcharakters (19%)^[12] als Bis(Biradikaloid) klassifiziert werden kann.^[9]

Bei den erweiterten CASSCF-Rechnungen, in denen alle π -Elektronen der zentralen kondensierten Ringsysteme berücksichtigten werden, sind die Besetzungszahlen der LUNOs aufgrund dynamischer Elektronenkorrelationen erhöht, während die Besetzung des LUNO+1 in **13H** unverändert bleibt. Die geringe Besetzung höherer Orbitale (<10 %) zeigt, dass die Beschreibung von **10H** als Biradikal und **13H** als Tetraradikal ausreichend ist, da der geringe

Tetraradikalcharakter in **10H** und Hexaradikalcharakter in **13H** auf dynamische Korrelation zurückzuführen sind.^[9,71]

Das HONO und LUNO von **10H** sind in Abbildung 7 dargestellt. Das HONO beschreibt eine transannular antibindende Situation zwischen den benachbarten C- und P-Atomen. Das LUNO hingegen beschreibt eine transannular bindende Situation zwischen den P-Atomen und eine antibindende Situation zwischen benachbarten C- und P-Atomen. Eine antibindende Situation zwischen den Radikalzentren im HONO findet sich auch in anderen cyclischen Singulett-Biradikalen (z.B.: **6**^[32] und **8Dmp**^[105]). Durch Bildung einer Linearkombination des HONOs und LUNOs ist es möglich, lokalisierte Orbitale zu erhalten. Diese zeigen eine primäre Lokalisierung der radikalischen Elektronen an den P-Atomen.

Abbildung 7. Delokalisierte (links) und lokalisierte Grenzorbitale (rechts) von **10H** (Rechenmethode: CASSCF(2,2)/def2-TZVP//PBE-D3/def2-TZVP).^[71]

In analoger Weise beschreiben das HONO und das HONO–1 in **13H** transannular antibindende Situationen zwischen den P-Atomen desselben fünfgliedrigen Rings, während das LUNO und das LUNO+1 bindende Situationen beschreiben (Abbildung 8). Die Lokalisierung der vier Valenzorbitale führt auch hier zu einer Lokalisierung der radikalischen Elektronen an den P-Atomen.^[9]

Abbildung 8. Delokalisierte (links) und lokalisierte Grenzorbitale (rechts) von **13H** (Rechenmethode: CASSCF(4,4)/def2-TZVP//PBE-D3/def2-TZVP).^[9]

3.5 Aromatizität von 10H und 13H

Der in den vorangegangenen Kapiteln beschriebene Multireferenzcharakter (Kapitel 3.4) und die starke antiferromagnetische Kopplung zwischen den radikalischen Elektronen innerhalb der fünfgliedrigen Ringe (Kap. 3.3) haben die Frage aufgeworfen, ob dies einen Einfluss auf die Aromatizität des Biradikals **10^{***r***Bu}Bhp** und des Tetraradikals **13EMind** hat. Eine Betrachtung der Aromatizität erfolgte ausschließlich anhand der Protonen-substituierten Modellsysteme **10H** und **13H** unter Verwendung magnetischer Parameter (magnetisch induzierter Ringstrom,^[115,116] NICS-Werte^[117–119]) unter anderem im Vergleich mit Benzol und [P(μ -NH)]₂ (einem Protonen-substituierten Modellsystem für das Biradikal **6**).^[9,71]

Abbildung 9. Stromliniendarstellung der Suszeptibilität der Stromdichte^[116] für Benzol (a), [P(μ-NH)]₂ (b), **10H** (c) und **13H** (d).^[9,71]

In Abbildung 9 ist zunächst die Suszeptibilität der elektrischen Stromdichte^[116] in Benzol, $[P(\mu-NH)]_2$, **10H** und **13H** visualisiert. Für Benzol als archetypische aromatische Verbindung zeigt sich ein ausgeprägter diatroper π -Elektronen-Ringstrom, der das Molekül oberhalb und unterhalb der Ringebene umkreist. Im Gegensatz dazu umkreist der Strom in $[P(\mu-NH)]_2$ alle Heteroatome separat, ohne dass es zu einem globalen Stromfluss kommt. Die im Rahmen dieser Arbeit untersuchten Verbindungen 10H und 13H gleichen eher dem Benzol, wobei der π -Elektronen-Ringstrom die gesamten Ringsysteme umkreist.^[9,71] Durch eine Integration der Stromdichte lässt sich der effektiv induzierte Ringstrom quantifizieren (Tabelle 4). Hier hat das viergliedrige Biradikal $[P(\mu-NH)]_2$ mit 2.1 nA/T einen deutlich kleineren Ringstrom als Benzol (12.1 nA/T) und ist somit - im Einklang zu anderen Untersuchungen - als nichtaromatische Verbindung aufzufassen.^[120] Die Werte des Biradikals **10H** (fünfgliedriger Ring: 13.5 nA/T; sechsgliedriger Ring: 11.2 nA/T) und des Tetraradikals 13H (fünfgliedriger Ring: 13.2 nA/T; sechsgliedriger Ring: 13.5 nA/T) sind hingegen mit Benzol vergleichbar und deuten auf eine ausgeprägte Aromatizität der Verbindung hin. Die NICS(1)zz-Werte (Tabelle 4) unterstützen diese Schlussfolgerungen. Die ausgeprägte Aromatizität in 10H bietet einen möglichen Erklärungsansatz für den geringeren Biradikalcharakter im Vergleich zu dem nicht-aromatischen Biradikal [P(μ -NH)]₂. ^[9,71]

Tabelle 4: Effektiv induzierte Ströme und NICS(1)_{zz}-Werte für Benzol, $[P(\mu-NH)]_2$, **10H** und **13H**. Für kondensierte Ringsysteme sind Werte für den fünfgliedrigen (\blacklozenge) und sechsgliedrigen Ring (\blacklozenge) angegeben.^[9,71]

	C ₆ H ₆	[P(µ-NH)]2	10H	13H
Netto induzierter Strom [nA/T]	12.1	2.1	13.5 (●)	13.2 (●)
			11.2 (●)	13.5 (●)
NICS(1) [ppm]	-30.2	-9.4	-31.1 (♠)	-29.5 (♠)
	50.2		-24.9 (●)	-29.4 (●)

3.6 Folgechemie von 10^{tBu}Bhp und 13EMind

Sowohl das Biradikal **10^{***Bu***}Bhp** als auch das Tetraradikal **13EMind** können zur Aktivierung kleiner Moleküle genutzt werden. Von anderen cyclischer Biradikalen ist bekannt, dass diese in der Lage sind unterschiedliche kleine Moleküle^[2,10,24] wie beispielsweise Chalcogene,^[4,52,121], Halogenalkane^[3,45,122–124] und Molekülen mit Mehrfachbindungen (z.B.: CO,^[4] HCCH^[3,125]) zu aktivieren. Für viele Systeme wurde insbesondere die Reaktivität

gegenüber H₂ untersucht, das bereits durch vier- $[^{31,43,126}]$, fünf- $[^{126}]$ und sechs-gliedrige $[^{127-129}]$ Biradikale aktiviert werden konnte.

Im Fokus dieser Arbeit stand vor allem die Wasserstoffaktivierung mit **13EMind**, die in Kollaborationen mit Prof. Dr. Vladimir Zhivonitko (PHIP-NMR-Studien) und Johannes Fessler (Autoklavenversuche) eingehend untersucht wurde.

13EMind unterscheidet sich im Hinblick auf die Wasserstoffaktivierung von den Biradikalen, da hier durch schrittweise "Absättigung" der radikalischen Elektronen die Möglichkeit besteht sowohl ein als auch zwei Äquivalente H₂ zu aktivieren (Schema 15). Da die Aktivierungen als konzertierte [2+2]-Cycloadditionen ablaufen (siehe S. 34f), gibt es nur ein zu beobachtendes Isomer für das Monoaddukt (**20EMind**), nämlich das *cis*-Isomer, aber zwei Isomere für das Diaddukt (*syn-21EMind* und *anti-21EMind*).

Schema 15. Reaktivität des Tetraradikals **13R** gegenüber Diwasserstoff (experimentelle Parameter für R = EMind).^[9]

Die Umsetzung von **13EMind** mit H₂ bei einem Wasserstoffdruck von 1 atm führte erst im Laufe mehrerer Wochen zu einer selektiven Bildung des Monoadduktes **20EMind**. Die Produktbildung ging mit einer vollständigen Farbänderung der Lösung von grün nach gelb einher. Die Hydrierung des viergliedrigen Biradikals **6** unter vergleichbaren Reaktionsbedingungen dauerte lediglich 1 min.^[43] Ein schnellerer Umsatz zu **20EMind** erfolgte innerhalb von 2.5 h bei einem Wasserstoffdruck von 10 bar und einer Temperatur von 65 °C. Die Wasserstoffaddition ist thermisch reversibel. Bei 120 °C konnte im Festkörper eine erneute Grünfärbung und mittels ³¹P-NMR-Spektroskopie eine Rückbildung zu **13EMind** unter H₂-Eliminierung beobachtet werden.^[9]

Das Monoaddukt **20EMind** konnte aus 1,2-Dichlorbenzol kristallisiert und die Festkörperstruktur mittels Einkristallröntgendiffraktometrie aufgeklärt werden (Abbildung

10). Im Vergleich zur Ausgangsverbindung **13EMind**, verändern sich vor allem die Strukturparameter des fünfgliedrigen Ringes, an dem die Wasserstoffaddition erfolgt ist. So kommt es in diesem Ring entlang der P-Atome zu einer Abwinkelung (\measuredangle entlang P1····P2: 30.6(5)°) und die P-C-Bindungslängen (C1–P1: 1.825(1), C6–P2: 1.832(1) Å) entsprechen einer polarisierten P-C-Einfachbindung (Σr_{kov} .(C–P) = 1.86 Å)^[100]. Der Biradikal-artige, fünfgliedrige Ring des Moleküls, ist hingegen nicht signifikant abwinkelt (\measuredangle entlang P3····P4: 0.7(5)°) und die P-C-Bindungslängen in dem Ring (C3–P3: 1.737(1), C4–P4: 1.739(1) Å) sind nur minimal kürzer als die mittleren P-C-Bindungslängen in **13EMind** (1.752(2) Å). Darüber hinaus führt die Abwinkelung zu einer Verringerung des transannularen P-P-Abstandes (P1–P2: 2.9350(6) vs. P3–P4: 2.9566(6) Å).^[9]

Abbildung 10. Molekülstruktur von **20EMind** im Kristall. Thermische Ellipsoide entsprechen 50 % Wahrscheinlichkeit bei 173 K. Ausgewählte Abstände (Å) und Winkel (°): C1-P1 1.825(1), C6-P2 1.832(1), C3-P3 1.737(1), C4-P4 1.739(1), P1-P2 2.9350(6), P3-P4 2.9566(6), C1-P1-P2-N1 150.06(9), C3-P3-P4-N2 179.6(1).^[9]

³¹P- bzw. ¹H-NMR-spektroskopisch kann **20EMind** als AA'BB'XX'YY'-Spinsystem (A, B = ¹H; X, $Y = {}^{31}P$) beschrieben werden (Abbildung 11, Ausschnitt **a**). Für die Analyse des Spinsystems wurden zunächst Werte für die Kopplungskonstanten berechnet (PBE-D3/def2-TZVP-Niveau), die anschließend mit einem Least-Square-Verfahren an die experimentellen ¹H- und ³¹P-NMR-Spektren angepasst wurden. Die chemische Verschiebung der divalenten P-Atome in 20EMind gleicht mit 289 ppm der des Eduktes 13EMind. Im Vergleich dazu trivalenten deutlich hochfeldverschoben sind die P-Atome (58 ppm). Größere Kopplungskonstanten (>|10 Hz|) finden sich zwischen H_A-P_X (183 Hz) und P_X…P_{X'} (-26 Hz).^[9]

Abbildung 11. a) Experimentelle und simulierte ³¹P- und ¹H-NMR-Spektren von **20EMind**; b) Experimentelles und simuliertes ³¹P-NMR-Spektrum eines Gemisches aus **20EMind** (76 %), *syn*-**21EMind** (12 %) und *anti-***21EMind** (12 %).^[9]

Um einen Zugang zu den beiden Diaddukten *syn-* und *anti-2*1EMind zu finden, wurde eine Lösung von 13EMind in Toluol mit H₂ bei 50 bar Wasserstoffdruck und 100 °C in einem Autoklaven über einen Zeitraum von 3 h umgesetzt. Daraus resultierte eine Mischung aus 20EMind (76 %), *syn-2*1EMind (12 %) und *anti-2*1EMind (12 %, bestimmt mittels ³¹P{¹H}-NMR-Spektroskopie). Eine Verlängerung der Reaktionszeit auf 48 h führte zu keiner Veränderung des Produktverhältnisses, was zeigt, dass sich die Reaktion bereits nach 3 h im Gleichgewicht befand. Eine Isolierung der Diaddukte gelang nicht. Allerdings konnte die Produktmischung ³¹P-NMR-spektroskopisch analysiert werden (Abbildung 11, Ausschnitt b). Die ³¹P-Resonanzen (*syn-2*1EMind: 59 ppm, *anti-2*1EMind: 58 ppm) unterscheiden sich nur geringfügig von denen der trivalenten P-Atome in 20EMind (58 ppm). Beide Diaddukte können als AA'A"A"''BB'XX'X"X'''-Spinsystem (A, B = ¹H; X = ³¹P) beschrieben werden. Größere Kopplungskonstanten (>|10 Hz|) finden sich zwischen H_A-P_X (*syn-2*1EMind: 183 Hz) und P_X…P_X (*syn-2*1EMind: -27 Hz, *anti-2*1EMind -26 Hz).^[9]

Um Informationen über den Mechanismus der Wasserstoffaktivierung zu erhalten, wurden spezielle Hyperpolarisationsexperimente mit para-H₂ durchgeführt. Bei Raumtemperatur liegt H₂ ungefähr in einem 1:3 Gemisch aus para-H₂ (Spin 0-Isomer, ein möglicher Spinzustand) und ortho-H₂ (Spin 1-Isomer, drei mögliche Spinzustände) vor. Bei tiefen Temperaturen ist es möglich, den Anteil an para-H₂ durch Wechselwirkung mit einem Spininterkonversions-katalysator zu erhöhen (z.B. auf 98% para-H₂ bei 28 K), da Parawasserstoff energetisch bevorzugt ist. Nach Abtrennung des Katalysators ist es möglich, den so generierten Wasserstoff über einen Hyperpolarisationstransfer für die Signalverstärkung in NMR-Messungen zu nutzen. Derartige Methoden werden PHIP-Methoden genannt (*parahydogeninduced polarisation*).^[130,131] Bedingung für den Polarisationstransfer ist jedoch eine konzertierte Reaktion mit para-H₂.^[131] Entsprechende Untersuchungen wurden bereits an anderen Biradikalen (z.B.: 6 und 8Dmp) durchgeführt,^[126,132] womit experimentell gezeigt werden konnte, dass die Wasserstoffaktivierungen im Sinne einer [2+2]-Cycloaddition ablaufen, was zudem erklärt, warum selektiv das *cis*-Isomer gebildet wird.

Für Untersuchungen im Rahmen dieser Arbeit wurde zunächst das Tetraradikal **13EMind** mit para-H₂ zu dem hyperpolarisierten **20EMind*** umgesetzt (Der Stern * bezeichnet hyperpolarisierte Verbindungen). Das im Anschluss aufgenommene ³¹P-NMR-Spektrum (Abbildung 12, **a**) zeigt eine eindeutige Hyperpolarisation in **20EMind***, erkennbar u.a. an negativen Signalintensitäten. Ein ähnliches Experiment wurde für die Bildung der Diaddukte durchgeführt, indem **20EMind** mit *para*-H₂ umgesetzt wurde. Auch hier zeigen sich hyperpolarisierte Signale von *syn*-**21EMind*** und *anti*-**21EMind***. Zusätzlich zeigt sich eine Verzerrung des Signals von **20EMind** durch hyperpolarisiertes **20EMind***, was eine Dissoziationsdynamik von **21EMind*** zu **20EMind*** und H₂ nahelegt. Die Hyperpolarisation belegt experimentell den konzertierten Mechanismus der Wasserstoffaktivierungen und die Dissoziationsdynamik ist im Einklang mit der Gleichgewichtsreaktion, die bei der Synthese von **21EMind** beobachtet wurde.^[9]

Abbildung 12. ³¹P-NMR-Spektren aus der Reaktion von *para*-H₂ mit **13EMind** (**a**) und **20EMind** (**b**). In **a** erfolgte die Bildung des hyperpolarisierten **20EMind*** (orange). Zusätzlich ist ein simuliertes thermisches Spektrum der Verbindung abgebildet (blau), um die durch die Hyperpolarisation verursachten Veränderungen im Spektrum hervorzuheben. In **b** erfolgte die partielle Bildung der hyperpolarisierten Diaddukte **21EMind*** sowie des hyperpolarisierten **20EMind***. Zur Vereinfachung wurde die Substituentenbezeichnung "EMind" in der Abbildung weggelassen. Das Sternchen (*) bezeichnet hyperpolarisierte Spezies, HP = hyperpolarisiertes Spektrum, TH = thermisches Spektrum.^[9]

Energieprofils Zur Beschreibung des der Wasserstoffaktivierungen wurden quantenmechanische Berechnungen auf DLPNO-CCSD(T)/def2-TZVP-Niveau ausgehend von 13EMind und dem Protonen-substituierten Modellsystem 13H durchgeführt (Tabelle 5). Für die Aktivierung des ersten Äquivalents H₂ mit **13H** unter Bildung von **20H** beträgt die Aktivierungsbarriere 80 kJ/mol und die Reaktion ist exergon ($\Delta_R G^\circ = -52$ kJ/mol). Für die Aktivierung des zweiten Äquivalentes (ausgehend von 20H) gibt es keinen signifikanten Unterschied im Energieprofil für die Bildung der unterschiedlichen Isomere (siehe Tabelle 5). Die Aktivierungsbarrieren sind jedoch im Vergleich zur ersten Wasserstoffaktivierung deutlich höher ($\Delta_R G^{\ddagger} = 104 \text{ kJ/mol}$) und die Reaktionen sind weniger exergon ($\Delta_R G^{\circ} \geq$ -13 kJ/mol). Dieses Verhalten resultiert aus der Wechselwirkung aller radikalischen Elektronen und zeigt das es sich bei 13H um ein Tetraradikaloid und nicht um ein Bis(Biradikal) handelt. Die Abnahme der Reaktivität korreliert mit einer Abnahme des Biradikalcharakters von 26 % in **13H** (CASSCF(4,4)) zu 17 % in **10H** (CASSCF(2,2)).^[9]

Reaktion				
von	zu		$IJ \qquad \Delta_{\rm R}G [KJ/IIIOI]$	
13R + H ₂	20R	98.6 (80.0)	-40.0 (-52.2)	
20R + H ₂	syn-21R	118.1 (104.3)	-2.4 (-12.4)	
20R + H ₂	anti-21R	119.5 (103.6)	-1.3 (-12.7)	

Tabelle 5: $\Delta_R G^{\ddagger}$ und $\Delta_R G^{\circ}$ (DLPNO-CCSD(T)/def2-TZVP) für die Aktivierung von H₂ durch **13EMind** und **20EMind** (Die Werte in Klammern beziehen sich auf die Modellsysteme **13H** und **20H**).^[9]

Die sterisch anspruchsvollen Substituenten in **13EMind** führen im Vergleich zu **13H** zu einer deutlichen Abnahme der Reaktivität gegenüber H₂. Entscheidend ist dies vor allem für die Bildung von *syn-21EMind* und *anti-21EMind*, da die Aktivierungsbarrieren hoch sind (≥ 118 kJ/mol) und die Reaktionen kaum exergon sind (≥ -2 kJ/mol), sodass nachvollziehbar ist, dass die Diaddukte *syn-21EMind* und *anti-21EMind* nur bei hohen Temperaturen und Drücken und lediglich im Gleichgewicht mit **20EMind** gebildet werden konnten und eine Isolierung nicht möglich war.^[9]

Erste Untersuchungen zur Reaktivität des Biradikals **10^{***r***Bu}Bhp** gegenüber H₂ zeigten, das auch hier eine Aktivierung möglich ist. Die Reaktion läuft jedoch langsamer ab, als die erste H₂-Aktivierung mit **20EMind**. Eine umfassende Untersuchung dieser Reaktion ist Gegenstand derzeitiger Untersuchungen.

4 Zusammenfassung und Ausblick

Im Rahmen dieser Arbeit konnte zunächst eine verbesserte Synthese für das 1,2-Bis(dichlorphosphino)benzol gefunden werden und in analoger Weise das bisher unbekannte 1,2,4,5-Tetrakis(dichlorphosphino)benzol dargestellt werden.^[75] Ausgehend von diesen Chlorphosphanen gelang die erfolgreiche Synthese des 2-Aza-1,3-diphosphaindan-1,3-diyls (10^{tBu}Bhp) 2,6-Diaza-1,3,5,7-tetraphospha-s-hydrindacen-1,3,5,7-tetrayls und des (13EMind). Für beide Verbindungen musste jedoch zunächst ein geeigneter sterisch anspruchsvoller Substituent gefunden werden, um eine Oligomerisierung zu vermeiden. Das Tetraradikal 13EMind stellt eine Strukturerweiterung des Biradikals 10^{tBu}Bhp um eine zweite Biradikaleinheit dar. Die beiden Verbindungen wurden mit quantenmechanischen Berechnungen eingehend untersucht und verglichen. Beide Verbindungen haben einen offenschaligen Singulett-Grundzustand, in dem die radikalischen Elektronen signifikant miteinander koppeln, sodass es sich bei 10^{tBu}Bhp um ein Biradikaloid und bei 13EMind um ein Tetraradikaloid handelt. Die Strukturerweiterung zu dem Tetraradikal führt zu einer Erhöhung des Biradikalcharakters von 18 % in 10^{tBu}Bhp zu 26 % in 13H. Zudem weist 13H einen Tetraradikalcharakter von 19 % auf.^[9,71]

Anhand von **13EMind** wurde die Reaktivität gegenüber H₂ umfassend untersucht. **13EMind** kann in [2+2]-Cycloadditionen reversibel ein oder zwei Äquivalente H₂ aktivieren. Das Monoadditionsprodukt **20EMind** konnte aufgrund der günstigen Thermodynamik ($\Delta_R G^\circ = -40 \text{ kJ/mol}$) als Reinsubstanz isoliert werden. Die Diaddukte *syn-* und *anti-21EMind* konnten jedoch nur bei hohen Temperaturen (100 °C) und Drücken ($p(H_2) = 50$ bar) im Gleichgewicht mit **20EMind** beobachtet werden (**20EMind**: 76 %, *syn-21EMind*: 12 %, *anti-21EMind*: 12 %). Das unterschiedliche Reaktionsverhalten zwischen der ersten und zweiten Wasserstoffaktivierung stellt einen experimentellen Beweis für die Interaktion der Biradikaleinheiten in **13EMind** dar.^[9]

Mit **10**^{*r*Bu}**Bhp** und **13EMind** konnten somit die ersten stabilen Vertreter zwei neuer Substanzklassen an Polyradikalen isoliert, und mithilfe experimenteller und quantenmechanischer Methoden charakterisiert werden.^[9,71]

Für Folgeuntersuchungen steht eine umfassende Beschreibung der Reaktivität von 10^{tBu}Bhp und 13EMind gegenüber kleinen Molekülen an. Hierbei soll insbesondere auf den Untersuchungen zur reversiblen Wasserstoffaktivierung mit dem Tetraradikal 13EMind aufgebaut und erforscht werden, ob diese Reaktivität für eine katalytische Anwendung des Tetraradikals genutzt werden kann (Schema 16). Konzeptionell ist mit dem Monowasserstoffaddukt 20EMind über die verbleibenden biradikalischen P-Atome die Aktivierung eines weiteren Moleküls (z.B. Tolan) möglich. Beim Hochheizen dieses Diadduktes könnte z.B. unter Rearomatisierung zu dem Tetraradikal 13EMind ein hydriertes Reaktionsprodukt (z.B.: Stilben) eliminiert werden. Die erfolgreiche Realisierung eines solchen Hydrierkatalysecyclus wäre das erste Beispiel für die Anwendung eines P-zentrierten Polyradikals in der metallfreien Katalyse.

Schema 16. Hypothetischer Katalysecyclus für die Hydrierung von Mehrfachbindungen mit dem Tetraradikal **13EMind**. 1) Aktivierung von Wasserstoff in einer [2+2]-Cycloaddition unter Bildung des biradikalischen Adduktes **20EMind**. 2) Addition eines weiteren Moleküls (hier Tolan). 3) Thermische Rearomatisierung zum Tetraradikal unter Eliminierung eines hydrierten Reaktionsproduktes (hier Stilben). In einer ähnlichen Weise könnte aus D₂ und H₂ das Isomerengemisch HD hergestellt werden oder andere Moleküle mit Mehrfachbindungen (z.B.: Alkine, Alkene, Azoverbindungen) hydriert werden.

5 Referenzen

- [1] E. Niecke, A. Fuchs, F. Baumeister, M. Nieger, W. W. Schoeller, *Angew. Chem. Int.* Ed. 1995, 34, 555–557.
- J. Bresien, L. Eickhoff, A. Schulz, E. Zander, in *Comprehensive Inorganic Chemistry III* (Eds.: J. Reedijk, K.R. Poeppelmeier), Elsevier, 2023, pp. 165–233.
- [3] A. Hinz, A. Schulz, A. Villinger, J. Am. Chem. Soc. 2015, 137, 9953–9962.
- [4] A. Hinz, A. Schulz, A. Villinger, Angew. Chem. Int. Ed. 2015, 54, 2776–2779.
- [5] L. Salem, C. Rowland, Angew. Chem. Int. Ed. 1972, 11, 92–111.
- [6] W. T. Borden, Ed., *Diradicals*, John Wiley & Sons Ltd, New York, Brisbane, Chichester, Toronto, Singapore, 1982.
- [7] E. Miliordos, K. Ruedenberg, S. S. Xantheas, Angew. Chem. Int. Ed. 2013, 52, 5736– 5739.
- [8] G. Gryn'ova, M. L. Coote, C. Corminboeuf, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2015, 5, 440–459.
- [9] E. Zander, J. Bresien, V. V. Zhivonitko, J. Fessler, A. Villinger, D. Michalik, A. Schulz 2023, *eingereicht*.
- [10] M. Abe, Chem. Rev. 2013, 113, 7011–7088.
- [11] A. Schulz, *Dalton Trans.* **2018**, *47*, 12827–12837.
- [12] F. Bell, D. Casanova, M. Head-Gordon, J. Am. Chem. Soc. 2010, 132, 11314–11322.
- [13] T. Stuyver, B. Chen, T. Zeng, P. Geerlings, F. De Proft, R. Hoffmann, *Chem. Rev.* **2019**, *119*, 11291–11351.
- [14] D. Hegarty, M. A. Robb, *Mol. Phys.* **1979**, *38*, 1795–1812.
- [15] R. H. A. Eade, M. A. Robb, Chem. Phys. Lett. 1981, 83, 362–368.
- [16] H. B. Schlegel, M. A. Robb, Chem. Phys. Lett. 1982, 93, 43–46.
- [17] P. E. M. Siegbahn, Chem. Phys. Lett. 1984, 109, 417–423.

- [18] F. Bernardi, A. Bottoni, J. J. W. McDouall, M. A. Robb, H. B. Schlegel, Faraday Symp. Chem. Soc. 1984, 19, 137–147.
- [19] M. A. Robb, U. Niazi, Rep. Mol. Theory 1990, 1, 23–55.
- [20] M. Frisch, I. N. Ragazos, M. A. Robb, H. Bernhard Schlegel, *Chem. Phys. Lett.* 1992, 189, 524–528.
- [21] N. Yamamoto, T. Vreven, M. A. Robb, M. J. Frisch, H. Bernhard Schlegel, Chem. Phys. Lett. 1996, 250, 373–378.
- [22] M. Klene, M. A. Robb, M. J. Frisch, P. Celani, J. Chem. Phys. 2000, 113, 5653-5665.
- [23] H. Grützmacher, F. Breher, Angew. Chem. Int. Ed. 2002, 41, 4006–4011.
- [24] F. Breher, Coord. Chem. Rev. 2007, 251, 1007–1043.
- [25] S. González-Gallardo, F. Breher, in *Comprehensive Inorganic Chemistry II* (Eds.: J. Reedijk, K. Poeppelmeier), Elsevier, 2013, pp. 413–455.
- [26] S. Ito, *Tetrahedron Lett.* **2018**, *59*, 1–13.
- [27] D. Scheschkewitz, H. Amii, H. Gornitzka, W. W. Schoeller, D. Bourissou, G. Bertrand, *Science* 2002, 295, 1880–1881.
- [28] P. Henke, T. Pankewitz, W. Klopper, F. Breher, H. Schnöckel, *Angew. Chem. Int. Ed.* 2009, 48, 8141–8145.
- [29] X. Wang, Y. Peng, M. M. Olmstead, J. C. Fettinger, P. P. Power, J. Am. Chem. Soc.
 2009, 131, 14164–14165.
- [30] D. Rottschäfer, B. Neumann, H.-G. Stammler, R. S. Ghadwal, *Chem. Eur. J.* 2017, 23, 9044–9047.
- [31] Z. Li, X. Chen, D. M. Andrada, G. Frenking, Z. Benkö, Y. Li, J. R. Harmer, C.-Y. Su,
 H. Grützmacher, *Angew. Chem. Int. Ed.* 2017, *56*, 5744–5749.
- [32] T. Beweries, R. Kuzora, U. Rosenthal, A. Schulz, A. Villinger, *Angew. Chem. Int. Ed.* 2011, 50, 8974–8978.
- [33] S. L. Buchwalter, G. L. Closs, J. Am. Chem. Soc. 1975, 97, 3857–3858.
- [34] A. B. Evnin, D. R. Arnold, J. Am. Chem. Soc. 1968, 90, 5330–5332.
- [35] H. Steffenfauseweh, Y. V. Vishnevskiy, B. Neumann, H. Stammler, D. M. Andrada, R. S. Ghadwal, *Angew. Chem. Int. Ed.* 2022, *61*, e202207415.

- [36] D. Rottschäfer, B. Neumann, H. Stammler, T. Sergeieva, D. M. Andrada, R. S. Ghadwal, *Chemistry A European Journal* 2021, 27, 3055–3064.
- [37] D. Rottschäfer, T. Glodde, B. Neumann, H.-G. Stammler, D. M. Andrada, R. S. Ghadwal, Angew. Chem. Int. Ed. 2021, 60, 15849–15853.
- [38] H. Steffenfauseweh, D. Rottschäfer, Y. V. Vishnevskiy, B. Neumann, H.-G. Stammler,
 D. W. Szczepanik, R. S. Ghadwal, *Angew. Chem. Int. Ed.* 2023, e202216003.
- [39] A. Gärtner, L. Meier, M. Arrowsmith, M. Dietz, I. Krummenacher, R. Bertermann, F. Fantuzzi, H. Braunschweig, J. Am. Chem. Soc. 2022, 144, 21363–21370.
- [40] R. Jain, G. J. Snyder, D. A. Dougherty, J. Am. Chem. Soc. 1984, 106, 7294–7295.
- [41] D. R. Arnold, A. B. Evnin, P. H. Kasai, J. Am. Chem. Soc. 1969, 91, 784–785.
- [42] D. R. Arnold, A. B. Evnin, L. A. Karnischky, E. Strom, J. Am. Chem. Soc. 1970, 92, 6218–6231.
- [43] A. Hinz, A. Schulz, A. Villinger, Angew. Chem. Int. Ed. 2016, 55, 12214–12218.
- [44] L. Chojetzki, A. Schulz, A. Villinger, R. Wustrack, Z. Anorg. Allg. Chem. 2020, 646, 614–624.
- [45] K. Takeuchi, M. Ichinohe, A. Sekiguchi, J. Am. Chem. Soc. 2011, 133, 12478–12481.
- [46] S.-H. Zhang, H.-W. Xi, K. H. Lim, Q. Meng, M.-B. Huang, C.-W. So, *Chem. Eur. J.* 2012, 18, 4258–4263.
- [47] E. J. Stampf, J. D. Odom, J. Organomet. Chem. 1977, 131, 171–178.
- [48] C. B. Yildiz, K. I. Leszczyńska, S. González-Gallardo, M. Zimmer, A. Azizoglu, T. Biskup, C. W. M. Kay, V. Huch, H. S. Rzepa, D. Scheschkewitz, *Angew. Chem. Int. Ed.* 2020, 59, 15087–15092.
- [49] H. Beer, A. Linke, J. Bresien, A. Villinger, A. Schulz, *Inorg. Chem. Front.* 2022, 9, 2659–2667.
- [50] Y. Pilopp, J. Bresien, D. Gschwind, A. Villinger, D. Michalik, A. Schulz, *Chem. Eur. J.* 2023, DOI 10.1002/chem.202300764.
- [51] H. Beer, J. Bresien, D. Michalik, A.-K. Rölke, A. Schulz, A. Villinger, R. Wustrack, J. Org. Chem. 2020, 85, 14435–14445.
- [52] A. Hinz, R. Kuzora, U. Rosenthal, A. Schulz, A. Villinger, Chem. Eur. J. 2014, 20,

14659–14673.

- [53] A. Schulz, J. B. Priebe, A. Brückner, A. Villinger, A. Hinz, Angew. Chem. Int. Ed. 2015, 54, 7426–7430.
- [54] K. Drewelies, H. P. Latscha, Angew. Chem. Suppl. 1982, 1416–1423.
- [55] J. Chatt, W. Hussain, G. J. Leigh, H. M. Ali, C. J. Picket, D. A. Rankin, J. Chem. Soc., Dalton Trans. 1985, 296, 1131–1136.
- [56] D. J. Brauer, S. Hietkamp, H. Sommer, O. Stelzer, G. Müller, M. J. Romão, C. Krüger, J. Organomet. Chem. 1985, 296, 411–433.
- [57] F. Reiß, M. Reiß, A. Spannenberg, H. Jiao, W. Baumann, P. Arndt, U. Rosenthal, T. Beweries, *Chem. Eur. J.* 2018, 24, 5667–5674.
- [58] R. P. Alexander, H. Schroeder, *Inorg. Chem.* **1963**, *2*, 1107–1110.
- [59] Y. Ito, V. Y. Lee, H. Gornitzka, C. Goedecke, G. Frenking, A. Sekiguchi, J. Am. Chem. Soc. 2013, 135, 6770–6773.
- [60] A. Rodriguez, F. S. Tham, W. W. Schoeller, G. Bertrand, *Angew. Chem. Int. Ed.* 2004, 43, 4876–4880.
- [61] J. Carilla, L. Julia, J. Riera, E. Brillas, J. A. Garrido, A. Labarta, R. Alcala, J. Am. Chem. Soc. 1991, 113, 8281–8284.
- [62] A. Rana, Y. Hong, T. Y. Gopalakrishna, H. Phan, T. S. Herng, P. Yadav, J. Ding, D. Kim, J. Wu, Angew. Chem. Int. Ed. 2018, 57, 12534–12537.
- [63] S. Ito, J. Miura, N. Morita, M. Yoshifuji, A. J. Arduengo, Z. Anorg. Allg. Chem. 2009, 635, 488–495.
- [64] S. Ito, J. Miura, N. Morita, M. Yoshifuji, A. J. Arduengo, *Angew. Chem. Int. Ed.* 2008, 47, 6418–6421.
- [65] Y. Liao, M. Baskett, P. M. Lahti, F. Palacio, Chem. Commun. 2002, 2, 252–253.
- [66] W.-M. Yau, K. R. Thurber, R. Tycko, J. Magn. Reson. 2014, 244, 98–106.
- [67] R. B. Zaripov, I. T. Khairutdinov, G. M. Fazleeva, L. N. Islamova, V. P. Gubskaya, I.
 A. Nuretdinov, *Appl. Magn. Reson.* 2022, 53, 979–988.
- [68] G. Ulrich, P. Turek, R. Ziessel, Tetrahedron Lett. 1996, 37, 8755–8758.
- [69] A. Rajca, A. Olankitwanit, Y. Wang, P. J. Boratyński, M. Pink, S. Rajca, J. Am. Chem.

Soc. 2013, 135, 18205–18215.

- [70] B. Zhao, X. Peng, Z. Wang, C. Xia, K. Ding, Chem. Eur. J. 2008, 14, 7847–7857.
- [71] J. Bresien, D. Michalik, A. Schulz, A. Villinger, E. Zander, *Angew. Chem. Int. Ed.* 2021, 60, 1507–1512.
- [72] E. P. Kyba, S. T. Liu, R. L. Harris, Organometallics 1983, 2, 1877–1879.
- [73] G. B. Jong, N. Ortega, M. Lutz, K. Lammertsma, J. C. Slootweg, *Chem. Eur. J.* 2020, 26, 15944–15952.
- [74] E. P. Kyba, M. C. Kerby, S. P. Rines, Organometallics 1986, 5, 1189–1194.
- [75] E. Zander, L. Schweidt, S. Purschke, D. Michalik, A. Villinger, J. Bresien, A. Schulz, *ChemPlusChem* 2023, DOI 10.1002/cplu.202300072.
- [76] L. S. Chen, G. J. Chen, C. Tamborski, J. Organomet. Chem. 1980, 193, 283–292.
- [77] G. M. Burch, H. Goldwhite, R. N. Haszeldine, J. Chem. Soc. (Resumed) 1963, 1083–1091.
- [78] R. I. Yurchenko, E. E. Lavrova, O. M. Voitsekhovskaya, A. G. Yurchenko, Chem. Informationsdienst 1985, 16, 151.
- [79] N. Weferling, Z. Anorg. Allg. Chem. 1987, 548, 55–62.
- [80] A. Michaelis, F. Dittler, Ber. Dtsch. Chem. Ges. 1879, 12, 338–340.
- [81] E. Lindner, M. Schmid, J. Wald, J. A. Queisser, M. Geprägs, P. Wegner, C. Nachtigal, J. Organomet. Chem. 2000, 602, 173–187.
- [82] L. D. Field, M. P. Wilkinson, Tetrahedron Lett. 1997, 38, 2779–2782.
- [83] A. H. Cowley, R. A. Kemp, J. G. Lasch, N. C. Norman, C. A. Stewart, B. R. Whittlesey, T. C. Wright, *Inorg. Chem.* 1986, 25, 740–749.
- [84] H. Kischkel, G.-V. Röschenthaler, Chem. Ber. 1985, 118, 4842–4848.
- [85] M. A. Fox, D. A. Chandler, Adv. Mater. 1991, 3, 381–385.
- [86] S. A. Reiter, S. D. Nogai, H. Schmidbaur, Z. Anorg. Allg. Chem. 2005, 631, 2595– 2600.
- [87] N. Muller, P. C. Lauterbur, J. Goldenson, J. Am. Chem. Soc. 1956, 78, 3557–3561.
- [88] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.

- [89] J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* **1997**, *78*, 1396–1396.
- [90] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–305.
- [91] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378–6396.
- [92] C. A. Tolman, J. Am. Chem. Soc. 1970, 92, 2956–2965.
- [93] C. A. Tolman, Chem. Rev. 1977, 77, 313–348.
- [94] J. A. Bilbrey, A. H. Kazez, J. Locklin, W. D. Allen, J. Chem. Theory Comput. 2013, 9, 5734–5744.
- [95] S. Díez-González, S. P. Nolan, Coord. Chem. Rev. 2007, 251, 874–883.
- [96] A. Poater, B. Cosenza, A. Correa, S. Giudice, F. Ragone, V. Scarano, L. Cavallo, *Eur. J. Inorg. Chem.* 2009, 2009, 1759–1766.
- [97] F. Ragone, A. Poater, L. Cavallo, J. Am. Chem. Soc. 2010, 132, 4249-4258.
- [98] J. Bresien, J. M. Goicoechea, A. Hinz, M. T. Scharnhölz, A. Schulz, T. Suhrbier, A. Villinger, *Dalton Trans.* 2019, 48, 3786–3794.
- [99] J. E. McMurry, R. Swenson, *Tetrahedron Lett.* **1987**, *28*, 3209–3212.
- [100] P. Pyykkö, M. Atsumi, Chem. Eur. J. 2009, 15, 12770–12779.
- [101] S. Alvarez, *Dalton Trans.* 2013, 42, 8617–8636.
- [102] A. Mack, F. Tabellion, C. Peters, A. Nachbauer, U. Bergsträsser, F. Preuss, M. Regitz, *Phosphorus, Sulfur Silicon Relat. Elem.* 1999, 144, 261–264.
- [103] F. Tabellion, A. Nachbauer, S. Leininger, C. Peters, F. Preuss, M. Regitz, Angew. Chem. Int. Ed. 1998, 37, 1233–1235.
- [104] F. G. N. Cloke, P. B. Hitchcock, J. F. Nixon, D. J. Wilson, U. Schiemann, R. Streubel, *Chem. Commun.* 2000, 2, 1659–1660.
- [105] J. Bresien, T. Kröger-Badge, S. Lochbrunner, D. Michalik, H. Müller, A. Schulz, E. Zander, Chem. Sci. 2019, 10, 3486–3493.
- [106] C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, J.-P. Malrieu, J. Chem. Phys. 2001, 114, 10252–10264.
- [107] C. Angeli, R. Cimiraglia, J.-P. Malrieu, Chem. Phys. Lett. 2001, 350, 297–305.
- [108] C. Angeli, R. Cimiraglia, J.-P. Malrieu, J. Chem. Phys. 2002, 117, 9138-9153.

- [109] F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057–1065.
- [110] W. Heisenberg, Z. Phys. 1928, 49, 619-636.
- [111] P. A. M. Dirac, Proc. R. Soc. London, Ser. A 1926, 112, 661–677.
- [112] J. P. Malrieu, R. Caballol, C. J. Calzado, C. de Graaf, N. Guihéry, Chem. Rev. 2014, 114, 429–492.
- [113] N. Orms, A. I. Krylov, Phys. Chem. Chem. Phys. 2018, 20, 13127–13144.
- [114] F. Hayens, Edward, A. K. Q. Siu, 1971, 93, 2090–2091.
- [115] H. Fliegl, S. Taubert, O. Lehtonen, D. Sundholm, *Phys. Chem. Chem. Phys.* 2011, 13, 20500–20518.
- [116] D. Sundholm, H. Fliegl, R. J. F. Berger, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2016, 6, 639–678.
- [117] Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. von Ragué Schleyer, Chem. Rev. 2005, 105, 3842–3888.
- [118] P. von R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. van E. Hommes, J. Am. Chem. Soc. 1996, 118, 6317–6318.
- [119] H. Fallah-Bagher-Shaidaei, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Org. Lett. 2006, 8, 863–866.
- [120] R. Grande-Aztatzi, J. M. Mercero, J. M. Ugalde, Phys. Chem. Chem. Phys. 2016, 18, 11879–11884.
- [121] S. Ito, M. Kikuchi, H. Sugiyama, M. Yoshifuji, J. Organomet. Chem. 2007, 692, 2761– 2767.
- [122] H. Amii, L. Vranicar, H. Gornitzka, D. Bourissou, G. Bertrand, J. Am. Chem. Soc.
 2004, 126, 1344–1345.
- [123] X. Chen, C. Hu, X. Zhang, S. Liu, Y. Mei, G. Hu, L. L. Liu, Z. Li, C.-Y. Su, *Inorg. Chem.* 2021, 60, 5771–5778.
- [124] J. Rosenboom, L. Chojetzki, T. Suhrbier, J. Rabeah, A. Villinger, R. Wustrack, J. Bresien, A. Schulz, *Chem. Eur. J.* 2022, 28, e202200624.
- [125] A. Hinz, A. Schulz, W. W. Seidel, A. Villinger, Inorg. Chem. 2014, 53, 11682–11690.
- [126] V. V. Zhivonitko, H. Beer, D. O. Zakharov, J. Bresien, A. Schulz, ChemPhysChem

2021, *22*, 813–817.

- [127] M. K. Sharma, D. Rottschäfer, T. Glodde, B. Neumann, H. Stammler, R. S. Ghadwal, Angew. Chem. Int. Ed. 2021, 60, 6414–6418.
- [128] M. K. Sharma, F. Ebeler, T. Glodde, B. Neumann, H.-G. Stammler, R. S. Ghadwal, J. Am. Chem. Soc. 2021, 143, 121–125.
- [129] T. Sugahara, J.-D. Guo, D. Hashizume, T. Sasamori, N. Tokitoh, J. Am. Chem. Soc.
 2019, 141, 2263–2267.
- [130] S. B. Duckett, in *Encyclopedia of Spectroscopy and Spectrometry* (Eds.: J.C. Lindon, G.E. Tranter, D.W. Koppenaal), Elsevier, 2017, pp. 527–534.
- [131] B. J. Tickner, V. V. Zhivonitko, Chem. Sci. 2022, 13, 4670-4696.
- [132] V. V Zhivonitko, J. Bresien, A. Schulz, I. V. Koptyug, Phys. Chem. Chem. Phys. 2019, 21, 5890–5893.

6 Publikationen

In dem vorliegenden Kapitel sind die Originalpublikationen eingebunden, die im Rahmen der Promotionsarbeit verfasst wurden und in den vorangestellten Kapiteln diskutiert wurden. Darüber hinaus wurde in der Promotionszeit ein Buchkapitel zu Biradikalen veröffentlicht, das jedoch in seiner Funktion als Review-Artikel kein primärer Bestandteil der Promotionsarbeit ist.^[2]

Axel Schulz, mein Doktorvater, trug zur Doktorarbeit bei, indem er die Forschungsprojekte koordinierte und betreute, wissenschaftliche Fragen und Ergebnisse regelmäßig diskutierte, die Infrastruktur für diese Arbeit bereitstellte und die Manuskripte korrigierte.

Nachfolgend sind die Publikationen in thematischer Reihenfolge gelistet und die Beiträge aller Autoren aufgeführt.

 Synthesis of Benzene Derivatives with Multiple Dichlorophosphino Groups (E. Zander, L. Schweidt, S. Purschke, D. Michalik, A. Villinger, J. Bresien, A. Schulz, *ChemPlusChem* 2023, 88, e2023000.)

Ich habe die Publikation und die Hintergrundinformationen verfasst und einen Großteil der präparativen Arbeiten entweder selbst durchgeführt oder während der Bachelorarbeiten von Lea Schweidt und Simon Purschke angeleitet. Lea Schweidt führte hierbei die präparativen Arbeiten durch, die zur Synthese des 1,2-Bis(dichlorphosphino)benzols führten. Simon Purschke synthetisierte das 1,2,5-Tris(dichlorphophino)benzol und führte dessen Umsetzung mit TerNH₂ durch. Dirk Michalik war für die Messung der NMR-Spektren verantwortlich. Alexander Villinger löste die Einkristallröntgenstrukturdaten. Jonas Bresien trug zur Betreuung des Projektes bei und diskutierte wissenschaftliche Fragen und Ergebnisse. Alle Autoren trugen zur Überarbeitung des Manuskriptes bei und standen im Austausch zur Interpretation analytischer Daten. Mein Gesamtbeitrag zu der Publikation liegt bei ca. 70 %.

 Aza-diphospha-indane-1,3-diyls: A Class of Resonance-Stabilized Biradicals (J. Bresien, D. Michalik, A. Schulz, A. Villinger, E. Zander, *Angew. Chem. Int. Ed.* 2021, 60, 1507–1512.)

Ich habe große Teile der Publikation und der Hintergrundinformationen verfasst und die präparativen Arbeiten durchgeführt. Ein Teil der präparativen Arbeiten erfolgte jedoch schon während meiner Masterarbeit (ca. 70%). Außerdem habe ich einen Teil der quantenmechanischen Berechnungen durchgeführt. Jonas Bresien hat den Großteil der quantenmechanischen Berechnungen durchgeführt und die erhaltenen Daten interpretiert. Er trug zur Betreuung des Projektes bei und diskutierte wissenschaftliche Fragen und Ergebnisse. Zudem überarbeitete er den ersten Entwurf zu der Publikation. Dirk Michalik war für die verantwortlich. Alexander Messung der NMR-Spektren Villinger löste die Einkristallröntgenstrukturdaten. Alle Autoren trugen zur Überarbeitung des Manuskriptes bei und standen im Austausch zur Interpretation analytischer Daten. Mein Gesamtbeitrag zu der Publikation liegt bei ca. 50 %.

Anmerkung: Bis 08/21 erfolgte die Autorennennung in der Arbeitsgruppe Axel Schulz in alphabetischer Reihenfolge und spiegelt nicht den geleisteten Beitrag wider, sodass ich als Erstautor dieser Publikation an letzter Stelle stehe. In allen anderen Publikationen zu dieser Arbeit erfolgt die Autorenreihung gemäß DFG-Richtlinien.

 Rational Design of Persistent Phosphorus-Centered Singlet Tetraradicals and Their Use in Small-Molecule Activation (E. Zander, J. Bresien, V. V. Zhivonitko, J. Fessler, A. Villinger, D. Michalik, A. Schulz, J. Am. Chem. Soc. 2023, 145, 14484– 14497.)

Ich habe große Teile der Publikation und der Hintergrundinformationen verfasst und die präparativen Arbeiten durchgeführt. Außerdem habe ich einen Teil der quantenmechanischen Berechnungen durchgeführt. Jonas Bresien hat einen Großteil der quantenmechanischen Berechnungen durchgeführt und die erhaltenen Daten interpretiert. Er trug zur Betreuung des Projektes bei und diskutierte wissenschaftliche Fragen und Ergebnisse. Vladimir Zhivonitko führte die NMR-Experimente zur Aktivierung von H₂ und para-H₂ durch. Zudem schrieb er den Manuskriptteil zur para-H2-Aktivierung. Johannes Fessler führte die Versuche zur Wasserstoffaktivierung im Autoklaven durch. Alexander Villinger die löste Einkristallröntgenstrukturdaten und trug zur Planung der Wasserstoffaktivierungsexperimente bei. Dirk Michalik war für die Messung der NMR-Spektren verantwortlich und führte Hochtemperatur-NMR-Experimente durch. Alle Autoren trugen zur Überarbeitung des Manuskriptes bei und standen im Austausch zur Interpretation der Forschungsdaten. Mein Gesamtbeitrag zu der Publikation liegt bei ca. 40 %.

6.1 Synthesis of Benzene Derivatives with MultipleDichlorophosphino groups

Edgar Zander, Lea Schweidt, Simon Purschke, Dirk Michalik, Alexander Villinger, Jonas Bresien, Axel Schulz*

ChemPlusChem 2023, 88, e202300072

DOI: 10.1002/cplu.202300072

(Die DOI ist als Hyperlink eingefügt, der direkt zur Onlinepublikation führt.)

The paper was published Open Access under Creative Commons 4.0 license and can therefore be reprinted without further permission. The manuscript, Supporting Information and further license information can be found under www.doi.org/10.1002/cplu.202300072

© 2023 The Authors. ChemPlusChem published by Wiley-VCH GmbH

Synthesis of Benzene Derivatives with Multiple Dichlorophosphino Groups

Edgar Zander,^[a] Lea Schweidt,^[a] Simon Purschke,^[a] Dirk Michalik,^[a, b] Alexander Villinger,^[a] Jonas Bresien,^[a] and Axel Schulz^{*[a, b]}

The chlorination of 1,2-diphosphinobenzene with PCl₅ to 1,2bis(dichlorophosphino)benzene was performed with high yields (93%) despite the high number of P–H functions. The method was further applied to other phosphanes, enabling the first synthesis and complete characterization of 1,2,4tris(dichlorophosphino)benzene (89% yield) and 1,2,4,5-

Introduction

Aryldichlorophosphanes are of particular interest for ligand synthesis, transition metal and elemental organic chemistry.^[1,2] In the most common syntheses for the formation of E–P single bonds (E=N, O, S), chlorophosphanes are used as starting material.^[3] For example, P–C bonds can be formed by reactions of chlorophosphanes with organometallic compounds such as organolithium or Grignard reagents.^[4–6] The simplest aryldichlorophosphane, PhPCl₂ (1, Scheme 1) was described already in 1876.^[7] Since then, a variety of different synthesis methods have been developed, but most notable is the Friedel-Crafts analogous reaction of benzene with PCl₃ in the presence of AlCl₃, with subsequent removal of the AlCl₃ (e.g. with POCl₃).^[8]

Among all theoretically possible benzene derivatives with PCI_2 group, bis(dichloromore than one only phosphino)benzenes are known so far. Here, the para,^[9] meta,^[10] substituted^[10] ortho as well as the bis(dichlorophosphino)benzene has been described. For our own research, the ortho-isomer 1,2-bis(dichlorophosphino)benzene (2) is of special interest, since it can be used to build five-membered rings in the reaction with primary amines.^[11] For 2, a variety of

[a]	E. Zander, L. Schweidt, S. Purschke, Dr. D. Michalik, Dr. A. Villinger,
	Dr. J. Bresien, Prof. Dr. A. Schulz
	Institut für Chemie
	Universität Rostock
	Albert-Einstein-Straße 3a
	18059 Rostock (Germany)
	E-mail: axel.schulz@uni-rostock.de
[b]	Dr. D. Michalik, Prof. Dr. A. Schulz
	Leibniz-Institut für Katalyse e.V. an der Universität Rostock
	Albert-Einstein-Straße 29a
	18059 Rostock (Germany)
	Supporting information for this article is available on the WM/W/

- Supporting information for this article is available on the WWW under https://doi.org/10.1002/cplu.202300072
- Section 2 Special Collection: "From Light to Heavy: Advancing the Chemistry of Pnictogen Compounds"
- © 2023 The Authors. ChemPlusChem published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is noncommercial and no modifications or adaptations are made.

tetrakis(dichlorophosphino)benzene (91% yield), valuable precursors for example for binuclear complexes, coordination polymers, organic wires, or metal–organic frameworks. The application of the chlorophosphanes in base induced ring closure reactions with primary amines is demonstrated.

Scheme 1. PCI_2 substituted benzenes (of 2, the meta and para isomers are also known).

three-step synthesis routes were described, which are summarized in Scheme 2. According to route 1, the synthesis can be carried out starting from 1,2-dibromobenzene by stepwise introduction of the P atoms.^[11,12] Alternatively, a synthesis starting from 1,2-dichlorobenzene is possible (Scheme 2, route 2). Here, both P atoms are introduced in one reaction step by a photo-Arbuzov reaction with P(OMe)₃ upon formation of the phosphonate 3.^[13] For a synthesis of 2 starting from 3, a reduction from $P^{(+V)}$ to $P^{(+III)}$ as well as a chlorination has to occur. Here, the order of the reaction steps is irrelevant. Thus, in a first step, a chlorination to the dichlorophosphonate 4 with PCI₅ followed by the reduction with triphenylphosphane can be carried out to synthesize 2 (route 2a).^[14] Alternatively, 3 can be reduced to 1,2-diphosphinobenzene (5) with in situ generated AlH₃ and subsequently chlorinated with phosgene^[15] or triphosgene^[10] (route 2b). However, the listed synthesis routes have significant drawbacks which make it difficult to synthesize larger amounts of 2. For example, the first step of the synthesis according to route 1 must be carried out at very low temperatures (–110 $^\circ\text{C})$ to avoid benzyne formation. $^{^{[16]}}$ The chlorination with PCI₅ and subsequent reduction with PPh₃ (route 2a), however, requires high reaction temperatures (120°C for 4 and $230 \degree C$ for **2**)^[14]. In route 2b, the chlorination of **5** is problematic since phosgene as gas with high toxicity is difficult to handle.

A substitution of the chlorination reagent with triphosgene is possible, but relatively low yields were achieved with both chlorination reagents (phosgene: 54%,^[15] triphosgene: 44%^[10]).

Since synthesis route 2b is problematic just due to the chlorination step, we first tried to find an alternative chlorination method. We pursued this with the aim to find access to

Research Article doi.org/10.1002/cplu.202300072

Scheme 2. Reaction pathways for the synthesis of 1,2-bis(dichlorophosphino)benzene.

1,2,4-tris(dichlorophosphino)benzene 1,2,4,5-(6) and tetrakis(dichlorophosphino)benzene (7, Scheme 1). A synthesis by selective chlorination seemed particularly challenging here due to the large number of P-H functions to be transformed. The threefold substituted compound 6 allows additional functionalization of the aromatic ring and is also interesting with respect to coordination chemistry due to its P atoms in ortho-, meta- and para-positions to each other. This in turn means that when 6 is used as a ligand in, for example, a metalphosphane complex, there are multiple coordination possibilities for the metal centre with different intramolecular P-P and M-P distances, which could be important for phosphane-based catalytic processes. Furthermore, compound 7 allows sequential repetition of structure motifs synthesized from 2 (e.g. in binuclear complexes, coordination polymers, organic wires, or metal-organic frameworks).

Results and Discussion

The phosphanes, which are required for the synthesis of the target compounds (2, 6, 7), are literature known. The synthesis

of 1,2-diphosphinobenzene (5) has already been described above (Scheme 2) and 1,2,4-triphosphinobenzene (8) and 1,2,4,5-tetraphosphinobenzene (9) are accessible via a similar route (Scheme 3).^[17,18] Thus, starting from 1,2,4,5-tetrachlorobenzene, four phosphorus atoms can be introduced in a *photo*-Arbuzov reaction to form the phosphonate **10**. In the reduction with in situ generated AlH₃ (from LiAlH₄ and TMSCI), not only the tetraphosphane **9**, but also the triphosphane **8** is formed by C–P bond cleavage, resulting in release of one equivalent of PH₃. Both products (**8** and **9**) can be separated by distillation and used separately for chlorination.

A variety of different reagents have been used for the chlorination of primary phosphanes (e.g. Cl_2 ,^[19,20] C_2Cl_6 ,^[21] phosgene,^[15,22] diphosgene,^[23] triphosgene,^[24] PCl_3 ,^[25] and *N*-chlorosuccinimide^[26]). Weferling was the first who described the chlorination of primary phosphanes (e.g. PhPH₂) with PCl₃, affording the chlorinated phosphane species in high yields.^[21] In this reaction, one equivalent of PCl₅ was used for the substitution of each H atom, forming the P–Cl bond, HCl and PCl₃.

For the syntheses of **2**, **6** and **7**, we adapted the experimental procedures described by Weferling, since PCI_5 is

Scheme 3. Synthesis of the chlorophosphanes 2, 6 and 7 by chlorination of the corresponding phosphanes 5, 8 and 9 with PCI₅.

easy to handle and the PCI₃ and HCl formed in the reactions can be removed *in vacuo*. Thus, the chlorinations are carried out in benzene or toluene by addition of phosphane **5**, **8** or **9** to a suspension of PCI₅ at room temperature. The chlorination reactions can be followed easily by HCl evolution and a decrease in the amount of the poorly soluble PCI₅. The reactions are completed after addition of the phosphanes and further stirring overnight. The workup varies for the different products. The liquid chlorophosphanes **2** and **6** can be purified either by distillation (**2**) or by removing volatiles *in vacuo* (**6**). Since **7** is a solid, it is recrystallized from toluene. All chlorophosphanes can be isolated as highly moisture sensitive compounds in very good yields (**2**: 93 %, **6**: 89 %, **7**: 91 %).

The melting points of the chlorophosphanes correlate with the possibilities of the PCl_2 groups to interact with neighbouring molecules in the condensed phase (see below), which obviously leads to stronger intermolecular contacts (2: -20, 6: <-80, 7: 129 °C). Compound 2 is liquid at room temperature, but colourless single crystals suitable for SCXRD could be grown from dichloromethane at -40 °C (Figure 1). **2** crystallizes without co-crystallized solvent in the monoclinic space group $P2_{1/n}$ with four molecules in the unit cell. **6** could neither be crystallized from a solution in dichloromethane nor in pure form, remaining liquid at low temperatures down to -80 °C. In contrast to **2** and **6**, the chlorophosphane **7**, bearing four PCl₂ groups, is solid at room temperature (m.p.: 129 °C). It crystallizes from toluene without co-crystallized solvent in the triclinic space group $P\overline{1}$ with one molecule per unit cell and an inversion centre in the central benzene ring (Figure 1).

The structural parameters of **2** and **7** in the solid state are very similar (Table 1). Thus, the mean P–Cl distances (**2**: 2.057(6) Å; **7**: 2.047(2) Å) are in the range of a typical P–Cl single bond ($\Sigma r_{cov}(P-Cl) = 2.1$ Å)^[27]. The P–C distances do not vary significantly between the two compounds (**2**: 1.837(8) Å; **7**: 1.847(2) Å) and are consistent with the bond length expected for a P–C single bond ($\Sigma r_{cov}(P-C) = 1.86$ Å)^[27]. The different number of PCl₂ substituents does not lead to any significant distortion of the aromatic ring.

Figure 1. ORTEPs of the molecular structures of **2** (top) and **7** (bottom) in the crystal. A) and B): Single molecules of **2** and **7**. Selected parameters can be found in Table 1. C) and D): Side views that illustrate the different orientations of the PCl₂ groups in **2** and **7**. E): Centro-symmetric dimer in **2** formed by P1…Cl1' vander-Waals interaction. Symmetry code ('): (2-x, 1-y, 1-z). F): View along [100] in **7**. P1'…Cl3 intermolecular interactions in **7** resulting in the formation of a polymer structure. Symmetry code ('): (1-x, 1-y, 2-z). All ellipsoids are set at 50% probability (123 K).

Table 1. Selected bond lengths [Å] and angles [°] for 2 and 7 in the solid state.				
2		7		
P1C1	1.845(2)	P1C1	1.8459(9)	
P2C6	1.830(2)	P2C2	1.8486(9)	
P1–Cl1	2.0723(5)	P1–Cl1	2.0456(4)	
P1–Cl2	2.0477(5)	P1–Cl2	2.0485(4)	
P2–Cl3	2.0610(5)	P2–Cl3	2.0519(4)	
P2–Cl4	2.0503(5)	P2–Cl4	2.0431(4)	
C1–C6	1.409(2)	C1–C2	1.409(2)	
C1–C2	1.398(2)	C2–C3	1.397(2)	
C2–C3	1.387(2)	C3–C1′	1.396(2)	
C6-C1-P1	116.8(1)	C2–C1–P1	117.66(7)	
C1–C6–P2	115.7(1)	C1–C2–P2	116.85(6)	
P1-C1-C6-P2	-4.1(2)	P1C1C2P2	-0.7(1)	
CI1-P1-C1-C6	80.6(1)	CI1-P1-C1-C2	140.57(7)	
Cl2-P1-C1-C6	-177.4(1)	Cl2-P1-C1-C2	-117.39(7)	
Cl3-P2-C6-C1	-110.5(1)	Cl3–P2–C2–C1	-90.78(7)	
Cl4-P2-C6-C1	147.20 (9)	Cl4-P2-C2-C1	166.30(7)	

ChemPlusChem 2023, 88, e202300072 (3 of 7)

 $\ensuremath{^{\odot}}$ 2023 The Authors. ChemPlusChem published by Wiley-VCH GmbH

In contrast, clear differences between the compounds can be found in the twisting of the PCI_2 units in relation to the benzene ring (Figure 1: side views **C** and **D**), which can be explained by the different numbers of van-der-Waals interactions in the crystals of **2** and **7** (Figure 1: E and F).

A closer look at the intermolecular interactions of **2** shows that there are two short P1···Cl1' intermolecular distances (a = 3.6943(5) Å, Figure 1: E), which indicate van-der-Waals interactions between the chlorine and phosphorus atoms of the neighboring molecules ($\Sigma r_{vdW}(P) + r_{vdW}(Cl) = 3.58$ Å).^[28] These two interactions lead to the formation of a centrosymmetric dimer. The intramolecular P1···C2 distance is significantly shorter with b=3.4692(5) Å. Taking all these van-der-Waals interactions into account, the coordination around the P atom can be described as a [3+2] coordination mode (3 covalent bonds, 2 strong vander-Waals interactions).

In contrast to **2**, there are four short P1'...Cl3 intermolecular distances (a = 3.6943(5) Å) between neighboring molecules of **7** as depicted in Figure 1 (part F). The presence of these weak interactions leads to the formation of a layered structure. The arene moieties are arranged in slightly shifted but parallel stacks. Intramolecular P...Cl interactions as in **2** are not found in **7**. The layered structure of **7** might be the reason for the rather large difference in melting points compared to **2**, where only dimers are present in the solid state.

Both compounds, **2** and **7**, have only one group of chemically equivalent nuclei in the ³¹P NMR spectrum (δ (³¹P): **2**= 152.2 ppm, **7**=147.0 ppm), whose shifts are in the range of other known aryldichlorophosphanes (e.g. PhPCl₂: δ (³¹P)= 161.6 ppm)^[29]. In contrast, **6** can be considered as an *ABM* spin system with an extreme roof effect due to very similar ³¹P shifts (δ (³¹P): P_A=147.8 ppm; P_B=149.1 ppm; P_M=154.7 ppm) and a large coupling constant between P_A and P_B (*J*(P_A,P_B)=457 Hz, *cf.* compound **8**: *J*(P_A,P_B)=48 Hz). Between P_A and P_M as well as between P_B and P_M no couplings are observed (Figure 2).

Figure 3 shows the mass spectra of the chlorophosphanes 2, 6 and 7. In the spectra, the isotope pattern caused by the Cl isotopes is clearly visible. The pattern becomes more complex from three $([2-Cl]^+)$ or four $([2]^{\bullet+})$ over five $([6-Cl]^+)$ and six $([6]^{\bullet+})$ to seven $([7-Cl]^+)$ or eight $([7]^{\bullet+})$ Cl atoms. PCl₂-substituted benzenes can be described by the general molec-

Figure 2. Experimental and simulated ${}^{31}P{}^{1}H$ NMR spectrum of 6 (measured at 121.5 MHz).

Figure 3. Experimental and simulated EI mass spectra of 2, 6, 7.

ular formula $C_6H_{6-n}(PCI_2)_n$ (with n = 1-6) and thus a conversion between the chlorophosphanes **2**, **6** and **7** is formally possible by the substitution of a hydrogen atom by a PCI₂ unit, leading to the mass difference of exactly 100 m/z with respect to the most abundant isotopes (¹H vs. ³¹P³⁵CI₂).

It has already been shown that the base-induced reaction of 2 with primary amines can form fused ring systems such as 11R and the subsequent reduction can lead to biradicals.^[11] To demonstrate an exemplary application of the new chlorophosphanes, compound 6 was treated with one equivalent of Ter- NH_2 (Ter = 2,6-dimesity|phenyl) in the presence of the base NEt_3 in CH₂Cl₂. The selective reaction to the heterocyclic **12R** (R=Ter) with a remaining PCl₂ function shows that it is possible to use the different PCl₂ groups in 6 for individual substitution reactions (see Supporting Information for full characterization). The analogous reaction of 7 with two primary amines to give the tricyclic compound 13R is currently under investigation and will be published elsewhere. The dehydrochloride coupling reaction shown here, can be used to build 5-membered heterocycles starting from chlorophosphanes 2, 6, and 7 (Scheme 4) and is just one example of the wide range of applications of these compounds.

Conclusion

It has been demonstrated that PCI_5 is a suitable reagent for the chlorination of molecules with multiple PH_2 units, allowing the isolation of the resulting chlorophosphanes in high purity with very good yields $\geq 89\%$. This PCI_5 chlorination route is a

Scheme 4. Sample reactions for the conversion of $\mathbf{2}_{r}^{(11)}\mathbf{6}$ and $\mathbf{7}$ with primary amines.

valuable alternative for the synthesis of the widely used 1,2-bis(dichlorophosphino)benzene 2.

The broader application of this chlorination method of PH_2 groups attached to an aromatic was demonstrated with the synthesis of unknown 1,2,4-tris(dichlorophosphino)benzene (6) and 1,2,4,5-tetrakis(dichlorophosphino)benzene (7) starting from tri- and tetraphosphanes (8 and 9), respectively.

Aryl-phosphanes, such as **6** and **7**, might be valuable precursors as shown in the regioselective formation of **12Ter** or for example for binuclear complexes, coordination polymers, organic wires, or metal-organic frameworks. Currently, arylphosphanes **6** and **7** are used to build new PN heterocycles.

Experimental Section

General Remarks. If not stated otherwise, all manipulations were carried out under oxygen- and moisture-free conditions in an inert argon atmosphere using standard Schlenk or drybox techniques. All glassware was heated three times *in vacuo* using a heat gun (650 °C) and cooled under argon atmosphere. Solvents were transferred using syringes, which were purged three times with argon prior to use. Solvents and reactants were either obtained from commercial sources or synthesized as detailed in Table S1 or in detailed synthesis protocols in the Supporting Information

NMR spectra were recorded on Bruker spectrometers (AVANCE 250, AVANCE 300 or AVANCE 500) and were referenced internally to the deuterated solvent (¹³C: CD₂Cl₂ δ_{ref} = 54.0 ppm, CDCl₃ δ_{ref} = 77.0 ppm), to protic impurities in the deuterated solvent (¹H: CHDCl₂ δ_{ref} = 5.32 ppm, CHCl₃ δ_{ref} = 7.27 ppm) or externally (³¹P: 85% H₃PO₄ δ_{rel} = 0 ppm). All measurements were carried out at ambient temperature unless denoted otherwise. NMR signals were assigned using experimental data (e.g. chemical shifts, coupling constants, integrals where applicable). For NMR spectra simulation, the calculated and experimental ³¹P NMR spectra were transferred to gNMR.^[30] The full lineshape iteration procedure of gNMR was applied to match the calculated to the experimental spectrum. **Raman spectra** of crystalline and liquid samples were recorded using a LabRAM HR 800 Horiba Jobin YVON Raman spectrometer equipped with an Olympus BX41 microscope with variable lenses. The samples were excited by an infrared laser (785 nm, 100 mW, air-cooled diode laser) or a red laser (633 nm, 17 mW, air-cooled HeNe laser). All measurements were carried out at ambient temperature unless stated otherwise. **Elemental analyses** were obtained using an Elementar vario Micro cube CHNS analyser. For **IR spectra**, **Melting points**, **mass spectra** and crystallographic data as well as for information on the instruments used, see Supporting Information

Deposition Numbers 2239518 (for 2), 2239519 (for 7), 2251814 (12Ter) contain(s) the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.

Synthesis of compound 2: PCl₅ (54.5 g, 262 mmol) was suspended in benzene (125 mL) in a three-neck flask, equipped with a pressure relive valve. A solution of 1,2-diphosphinobenzene (9.30 g, 65.5 mmol) in benzene (150 mL) was added to the solution via dropping funnel at ambient temperature over a period of 50 min. Caution: HCl gas evolution! The reaction mixture was stirred over night, while a clear yellow solution was formed. Afterwards Ar gas was purged for 20 min through the set-up to remove HCl gas. The solution was concentrated in vacuo to approx. 250 mL and filtered to remove solid impurities. All volatile components from the filtrate were removed in vacuo $(1 \times 10^{-3} \text{ mbar})$ and the residual oil was dried in vacuo $(1 \times 10^{-3} \text{ mbar})$ for 20 min at 45 °C (oil bath). The colourless product was further purified by vacuum distillation $1 \times$ 10⁻³ mbar at 120°C (oil bath). Caution: The product reacts violently with water! Yield: 17.0 g (60.6 mmol, 93%). Single crystals suitable for X-ray diffraction were grown by cooling a solution of 2 (0.5 mL) in CH_2Cl_2 (5 mL) to -40 °C. The crystals melt above -20 °C and had to be selected at low temperatures.

CHN Not measured due to difficult sample handling. ³¹P{¹H} NMR (CD₂Cl₂, 202.5 MHz): $\delta = 152.1$ (s, *P*Cl₂). ¹H NMR (CD₂Cl₂, 300.1 MHz): $\delta = 7.77$ (m, 2 H, *CH*), 8.25 (m, 2 H, *CH*). ¹³C{¹H} NMR (CD₂Cl₂, 75.5 MHz): $\delta = 131.2$ (m, HC-CPCl₂), 134.2 (s, *CH*), 144.8 (m, CPCl₂). **Raman** (633 nm, 5 s, 30 scans, cm⁻¹): $\tilde{\nu} = 3147$ (1), 3115 (1), 3057 (1), 2986 (1), 2823 (1), 2552 (1), 1574 (2), 1556 (1), 1435 (1), 1277 (1), 1168 (1), 1134 (1), 1101 (2), 1039 (3), 958 (1), 874 (1), 753 (1), 714 (1), 662 (1), 652 (1), 514 (10), 471 (3), 458 (2), 435 (1), 394 (1), 319 (1), 279 (1), 242 (3), 203 (1), 156 (3).

Synthesis of compound 6: PCl₅ (14.1 g, 67.7 mmol) was suspended in benzene (30 mL) in a three-neck flask, equipped with a pressure relive valve. A solution of 1,2,4-triphosphinobenzene (2.00 g, 11.5 mmol) in benzene (30 mL) was added to the solution via dropping funnel at ambient temperature over a period of 20 min. *Caution: HCl gas evolution!* At the end of the reaction, a clear yellow solution had formed. Ar gas was purged for 20 min through the set-up to remove HCl gas. After stirring for 75 min at ambient temperature, all volatile components were removed *in vacuo* (1 × 10^{-3} mbar). The residual yellow oil was re-dissolved in benzene (10 mL). The solution was filtered using a Schlenk frit. The filtrate was concentrated *in vacuo* (1×10⁻³ mbar) until a yellowish oil remained, which was dried *in vacuo* (1×10⁻³ mbar) for two hours at 45 °C (water bath). *Caution: The product reacts violently with water!* Yield: 3.89 g (10.2 mmol, 89%).

CHN: Not measured due to difficult sample handling. ³¹P{¹H} NMR (CD₂Cl₂, 121.5 MHz): $\delta = 147.8$ (d, ³J(³¹P, ³¹P) = 457 Hz, 1 P, PCl₂), 149.1 (d, ³J(³¹P, ³¹P) = 457 Hz, 1 P, PCl₂), 154.7 (s, 1 P, 4-PCl₂). ¹H NMR (CD₂Cl₂, 300.1 MHz): $\delta = 8.23-8.31$ (m, 1 H, CH), 8.36–8.44 (m, 1 H, CH), 8.66–8.74 (m, 1 H, CH). ¹³C{¹H} NMR (CD₂Cl₂, 75.5 MHz): $\delta =$ 131.7 (m, CH), 132.5 (m, CH), 135.0 (d, J(¹³C, ³¹P) = 24 Hz, CH), 145.3 (dd, ¹J(¹³C, ³¹P) = 28.6, J(¹³C, ³¹P) = 7 Hz, quart. C), 147.3 (d, ¹J(¹³C, ³¹P) = 58 Hz, quart. C), 148.9 (d, ¹J(¹³C, ³¹P) = 28 Hz, quart. C). Raman

ChemPlusChem 2023, 88, e202300072 (5 of 7)

(633 nm, 20 s, 20 scans, cm⁻¹): $\tilde{\nu}$ = 135 (3), 162 (2), 188 (1), 205 (1), 236 (4), 261 (1), 272 (1), 320 (1), 334 (1), 392 (1), 436 (1), 473 (4), 508 (10), 666 (1), 674 (1), 715 (1), 787 (1), 825 (1), 896 (1), 1029 (2), 1095 (3), 1157 (1), 1254 (1), 1357 (1), 1435 (1), 1564 (4), 1649 (1), 2352 (1), 2517 (1), 2819 (1), 3037 (1), 3130 (1).

Synthesis of compound 7: In a 250 mL three-neck flask equipped with a pressure-relief valve, PCl₅ (36.68 g, 176.1 mmol) was suspended in toluene (80 mL). A solution of 1,2,4,5tetra(phosphinyl)benzene (4.546 g, 22.01 mmol) in toluene (80 mL) was added over a period of 45 min at ambient temperature. The reaction can be followed by the evolution of HCl gas and dissolution of PCl₅. The reaction mixture was stirred over night at ambient temperature. Ar gas was purged for 20 min through the set-up to remove HCl gas. The solvent and dissolved HCl were removed in vacuo. The residue was dissolved in toluene (30 mL). The solution was concentrated to incipient crystallization (approx. 10 mL). The crystals were re-dissolved by warming to approx. 80 °C (water bath) and the solution was cooled down to ambient yielding temperature overnight 1.2,4,5tetrakis(dichlorophosphino)benzene C₆H₂(PCl₂)₄ in form of slightly yellowish crystals. The supernatant was removed by syringe and was concentrated to receive a second fraction of crystals. The crystals were dried in vacuo $(1 \times 10^{-3} \text{ mbar})$ for 2 h at 45 °C (water bath). Yield: 8.40 g (17.4 mmol, 91%). Single crystals suitable for Xray diffraction were grown as described in the synthesis procedure.

CHN calc. (found) in %: C 14.95 (15.35), H 0.42 (0.46). ³¹P{¹H} NMR (CD₂Cl₂, 202.5 MHz): $\delta = 147.0$ (s). ¹H NMR (CD₂Cl₂, 500.1 MHz): $\delta = 9.05$ (m, 2 H, CH). ¹³C{¹H} NMR (CD₂Cl₂, 125.8 MHz): $\delta = 139.4$ (m, CH), 149.3 (t, ¹J(¹³C, ³¹P) = 16 Hz, CP). Raman (633 nm, 20 s, 20 scans, cm⁻¹): $\tilde{\nu} = 134$ (1), 147 (1), 211 (1), 241 (3), 248 (1), 283 (1), 320 (1), 328 (1), 365 (1), 408 (1), 447 (1), 491 (3), 495 (2), 520 (10), 542 (1), 689 (1), 724 (1), 837 (1), 903 (1), 1100 (1), 1121 (1), 1264 (1), 1487 (1), 1548 (1), 3038 (1).

Synthesis of compound 12Ter: To a solution of 6 (1.00 g, 2.64 mmol) in CH₂Cl₂ (10 mL) NEt₃ (7.25 mL, 52.3 mmol) was added at 0°C (ice bath). Afterwards a solution of TerNH₂ (871 mg, 2.64 mmol) in CH₂Cl₂ (10 mL) was added over a period of 5 min at 0°C. The ice bath was removed. After stirring over night at ambient temperature, all volatile components were removed in vacuo (1× 10^{-3} mbar) and the residue was dried in vacuo (1×10⁻³ mbar) for 2 h at 60 $^{\circ}$ C (water bath). Et₂O (50 mL) was added and the resulting suspension was extracted by repeated filtration and recondensation of the solvent (six times). Afterwards, the solvent of the filtrate was removed in vacuo (1 $\times 10^{-3}$ mbar). The residue was recrystallized from boiling PhF (7.5 mL), yielding colourless crystals. The supernatant was removed by syringe and was discarded. The crystals were dried in vacuo $(1 \times 10^{-3} \text{ mbar})$ at 45 °C (water bath) for 2 h. Yield 284 mg (0.45 mmol, 16%). Single crystals suitable for X-ray diffraction were grown as described in the synthesis procedure.

CHN calc. (found) in %: C 56.54 (56.28), H 4.43 (4.54), N 2.20 (2.16). ³¹P{¹H} NMR (CD₂Cl₂, 121.5 MHz): $\delta = 142.0$ (s, 1 P, PCl), 142.8 (s, 1 P, PCl), 158.0 (s, 1 P, PCl₂). ¹H NMR (CD₂Cl₂, 500.1 MHz): $\delta = 1.82-2.42$ (superimposed signals, 18 H, CH₃), 6.39–7.02 (m, 4 H, CH (Mes)), 7.15–7.22 (m, 2 H, m-CH (Ter)), 7.46 (m, 1 H, p-CH (Ter)), 7.63 (m, 1 H, CH (C₆H₃P₄)), 7.89 (m, 1 H, CH (C₆H₃P₄)), 7.97 ppm (m, 1 H, CH (C₆H₃P₄)). ¹³C{¹H} NMR (CD₂Cl₂, 125.8 MHz): $\delta = 21.3$ (s, p-CH₃ (Mes)), 22.0 (m, o-CH₃ Mes), 127.8 (dd, J(¹³C, ³¹P) = 36 Hz, J(¹³C, ³¹P) = 7 Hz, CH (C₆H₃P₃)), 128.0 (d, ²J(¹³C, ³¹P) = 7 Hz, CH (C₆H₃P₃)), 128.5 (dd, J(¹³C, ³¹P) = 36 Hz, J(¹³C, ³¹P) = 32 Hz, CH (C₆H₃P₃)), 128.7 (s, p-CH (Ter)), 128.8 (s, CH (Mes)), 130.7–131.6 (m, m-CH (Ter)), 132.0 (dd, J(¹³C, ³¹P) = = 30 Hz, J(¹³C, ³¹P) = 8 Hz, CH (C₆H₃P₃)), 135.7 (bs, *i*-C (Mes)), 137.0 (bs, o-C (Mes)), 138.1 (bs, p-C (Mes)), 142.3 (m, o-C (Ter)), 143.3 (dd, J(¹³C, ³¹P) = 56 Hz, J(¹³C, ³¹P) = 7 Hz, quart. C (C₆H₃P₃)), 151.4 (dd, J(¹³C, ³¹P) = 27 Hz, J(¹³C, ³¹P) = 6 Hz, quart. C (C₆H₃P₃)), 155.4 (d, J- $({}^{13}C, {}^{31}P) = 26$ Hz, quart. C (C₆H₃P₃)), *i*-C (Ter) could not be found. Raman (633 nm, 10 s, 5 scans, cm⁻¹): $\widetilde{\nu} = 116$ (10), 165 (1), 182 (1), 196 (2), 230 (3), 238 (4), 267 (1), 274 (2), 287 (1), 306 (1), 337 (3), 399 (10), 419 (2), 436 (4), 461 (1), 473 (5), 489 (1), 499 (1), 511 (3), 530 (1), 563 (2), 577 (4), 604 (1), 657 (1), 689 (2), 693 (1), 734 (1), 799 (1), 854 (1), 907 (1), 946 (1), 1008 (1), 1041 (1), 1078 (2), 1101 (1), 1126 (1), 1164 (1), 1187 (1), 1199 (1), 1288 (1), 1307 (3), 1376 (1), 1382 (1), 1413 (1), 1448 (1), 1573 (1), 1582 (1), 1613 (1), 2734 (1), 2856 (1), 2917 (2), 2947 (1), 3013 (1), 3036 (1), 3053 (1), 3071 (1).

Supporting Information

The Supporting Information (ESI) is available free of charge. Experimental section, preparation of starting materials and compounds, structure elucidation, additional spectroscopic details and computational details. Additional references cited within the Supporting Information.^[31-36]

Acknowledgements

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG; SCHU 1170/12-2). E.Z. wishes to thank the Fonds der Chemischen Industrie for financial support (Kekulé fellowship). Open Access funding enabled and organized by Projekt DEAL.

Conflict of Interests

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

Keywords: chlorine · chlorophosphane · halogenation · phosphorus

- F. R. Hartley, Ed., The Chemistry of Organophosphorus Compounds, John Wiley & Sons Ltd, Chichester, 1993.
- [2] P. C. J. Kamer, P. W. N. M. Van Leeuwen, Eds., Phosphorus (III) Ligands in Homogeneous Catalysis: Design and Synthesis, Wiley, Chichester, 2012.
- [3] M. Alajarín, C. Lòpez-Leonardo, J. Bernà, in Science of Synthesis 4: Compounds with Two Carbon-Heteroatom Bonds (Eds.: Ramsden, Bellus), Georg Thieme Verlag, Stuttgart, 2007.
- [4] E. Hey-Hawkins, A. A. Karasik, in Science of Synthesis 5: Compounds with One Carbon-Heteroatom Bonds (Eds.: Mathey, Trost), Georg Thieme Verlag, Stuttgart, 2009.
- [5] P. J. Murphy, H. Böckemeier, in *Science of Synthesis 4: Compounds with Two Carbon-Heteroatom Bonds* (Eds.: Ramsden, Bellus), Georg Thieme Verlag, Stuttgart, 2007.
- [6] R. Engel, J. I. Cohen, *Synthesis of Carbon Phosphorus Bonds*, CRC Press LLC, Boca Raton, **2004**.
- [7] A. Michaelis, Justus Liebigs Ann. Chem. 1876, 181, 265–363.
- [8] B. Buchner, L. B. Lockhart, Org. Synth. 1951, 31, 88.
- [9] E. M. Evleth, L. D. Freeman, R. I. Wagner, J. Org. Chem. 1962, 27, 2192– 2197.

1926506,

- [10] K. Drewelies, H. P. Latscha, Angew. Chem. Suppl. 1982, 1416–1423.
- [11] J. Bresien, D. Michalik, A. Schulz, A. Villinger, E. Zander, Angew. Chem.
- *Int. Ed.* **2021**, *60*, 1507–1512; *Angew. Chem.* **2021**, *133*, 1530–1535. [12] B. Zhao, X. Peng, Z. Wang, C. Xia, K. Ding, *Chem. Eur. J.* **2008**, *14*, 7847–7857.
- [13] E. P. Kyba, S. T. Liu, R. L. Harris, Organometallics **1983**, *2*, 1877–1879.
- [14] G. B. Jong, N. Ortega, M. Lutz, K. Lammertsma, J. C. Slootweg, *Chem. Eur.* J. **2020**, 26, 15944–15952.
- [15] E. P. Kyba, M. C. Kerby, S. P. Rines, Organometallics 1986, 5, 1189-1194.
- [16] L. S. Chen, G. J. Chen, C. Tamborski, J. Organomet. Chem. 1980, 193, 283–292.
- [17] M. A. Fox, D. A. Chandler, Adv. Mater. 1991, 3, 381-385.
- [18] S. A. Reiter, S. D. Nogai, H. Schmidbaur, Z. Anorg. Allg. Chem. 2005, 631, 2595–2600.
- [19] G. M. Burch, H. Goldwhite, R. N. Haszeldine, J. Chem. Soc. (Resumed) 1963, 1083.
- [20] R. I. Yurchenko, E. E. Lavrova, O. M. Voitsekhovskaya, A. G. Yurchenko, Chem. Informationsdienst 1985, 16, 151.
- [21] N. Weferling, Z. Anorg. Allg. Chem. 1987, 548, 55-62.
- [22] A. Michaelis, F. Dittler, Ber. Dtsch. Chem. Ges. 1879, 12, 338-340.
- [23] E. Lindner, M. Schmid, J. Wald, J. A. Queisser, M. Geprägs, P. Wegner, C. Nachtigal, J. Organomet. Chem. 2000, 602, 173–187.
- [24] L. D. Field, M. P. Wilkinson, Tetrahedron Lett. 1997, 38, 2779–2782.

- [25] A. H. Cowley, R. A. Kemp, J. G. Lasch, N. C. Norman, C. A. Stewart, B. R. Whittlesey, T. C. Wright, *Inorg. Chem.* **1986**, *25*, 740–749.
- [26] H. Kischkel, G.-V. Röschenthaler, Chem. Ber. 1985, 118, 4842–4848.
- [27] P. Pyykkö, M. Atsumi, Chem. Eur. J. 2009, 15, 12770–12779.
- [28] M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. A 2009, 113, 5806–5812.
- [29] N. Muller, P. C. Lauterbur, J. Goldenson, J. Am. Chem. Soc. 1956, 78, 3557–3561.
- [30] P. H. M. Budzelaar, gNMR for Windows, IvorySoft, 2006.
- [31] C. B. Fischer, S. Xu, H. Zipse, *Chem. Eur. J.* **2006**, *12*, 5779–5784.
- [32] F. Reiß, A. Schulz, A. Villinger, N. Weding, *Dalton Trans.* 2010, *39*, 9962.
 [33] J. Bresien, C. Hering-Junghans, A. Schulz, M. Thomas, A. Villinger, *Organometallics* 2018, *37*, 2571–2580.
- [34] G. M. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3–8.
- [35] G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3–8.
- [36] G. M. Sheldrick, SADABS Version 2, University of Göttingen, Germany, 2004.

Manuscript received: February 4, 2023 Revised manuscript received: March 30, 2023 Accepted manuscript online: April 3, 2023

6.2 Azadiphosphaindane-1,3-diyls: A Class of Resonance-Stabilized Biradicals

Jonas Bresien,* Dirk Michalik, Axel Schulz,* Alexander Villinger, Edgar Zander *Angew. Chem. Int. Ed.* **2021**, *60*, 1507–1512. (englische Version) *Angew. Chem.* **2021**, *133*, 1530–1535. (deutsche Version)

DOI: 10.1002/anie.202011886 (englische Version), 10.1002/ange.202011886 (deutsche Version)

(Die DOIs sind als Hyperlink eingefügt, der direkt zur Onlinepublikation führt.)

The paper was published Open Access under Creative Commons 4.0 license and can therefore be reprinted without further permission. The manuscript, Supporting Information and further license information can be found under www.doi.org/10.1002/anie.202011886.

© 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

GDCh

Heterocycles

 How to cite:
 Angew. Chem. Int. Ed. 2021, 60, 1507–1512

 International Edition:
 doi.org/10.1002/anie.202011886

 German Edition:
 doi.org/10.1002/ange.202011886

Azadiphosphaindane-1,3-diyls: A Class of Resonance-Stabilized Biradicals

Jonas Bresien,* Dirk Michalik, Axel Schulz,* Alexander Villinger, and Edgar Zander

Dedicated to Professor Thomas M. Klapötke on the occasion of his 60th birthday

Abstract: Conversion of 1,2-bis(dichlorophosphino)benzene with sterically demanding primary amines led to the formation of 1,3-dichloro-2-aza-1,3-diphosphaindanes of the type $C_6H_4(\mu$ -PCl)₂N-R. Reduction yielded the corresponding 2aza-1,3-diphosphaindane-1,3-diyls (1), which can be described as phosphorus-centered singlet biradical(oid)s. Their stability depends on the size of the substituent R: While derivatives with R = Dmp (2,6-dimethylphenyl) or Ter (2,6-dimesitylphenyl) underwent oligomerization, the derivative with very bulky R =^{tBu}Bhp (2,6-bis(benzhydryl)-4-tert-butylphenyl) was stable with respect to oligomerization in its monomeric form. Oligomerization involved activation of the fused benzene ring by a second equivalent of the monomeric biradical and can be regarded as formal [2+2] (poly)addition reaction. Calculations indicate that the biradical character in 1 is comparable with literature-known P-centered biradicals. Ring-current calculations show aromaticity within the entire ring system of 1.

Singlet biradical(oid)s are molecules with two electrons in two nearly degenerate orbitals.^[1-4] Although their spin density is zero at every point in space, biradicals can show extraordinary reactivity that ranges between monoradicals and closed-shell molecules.^[5] Starting with pioneering work by Niecke et al., who synthesized the 1,3-diphosphacyclobutane-2,4-diyl [Mes*P(μ -CCl)]₂ in 1995,^[6] stable main-group-centered biradicals came into focus of many further investigations.^[7-11] For example, our group performed comprehensive research on the phosphorus-centered biradical [P(μ -NTer)]₂ (**A**), which was synthesized from a chlorinated precursor by

Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a, 18059 Rostock (Germany) E-mail: jonas.bresien@uni-rostock.de axel.schulz@uni-rostock.de

Homepage: http://www.schulz.chemie.uni-rostock.de/

Dr. D. Michalik, Prof. Dr. A. Schulz

Leibniz-Institut für Katalyse e.V.

Albert-Einstein-Straße 29a, 18059 Rostock (Germany)

Supporting information and the ORCID identification number(s) for
 the author(s) of this article can be found under:

https://doi.org/10.1002/anie.202011886. © 2020 The Authors. Angewandte Chemie International Edition

© 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. reduction with elemental magnesium (Scheme 1).^[12] Biradical **A** is highly reactive towards polar and non-polar single, double, and triple bonds (e.g., H_2 , S_8 , O_2 , ketones, alkenes, alkynes, nitriles), typically resulting in addition products with tri- or penta-valent phosphorus atoms.^[13]

In contrast, $CO^{[14]}$ or isonitriles^[15] insert into the fourmembered ring system, leading to stable five-membered cyclic biradicals of type **B** (Scheme 1). Other pnictogenbased, five-membered cyclic biradicals (heterocyclopentane-1,3-diyls) are synthesized using the same approach, with varying substituents or pnictogen atoms.^[15,16] Yet, the activation chemistry of biradicals **B** is often limited by the reversibility of the CO or isonitrile insertion, as the utilization of biradicals **A** and **B** often leads to the same activation products (Scheme 2).^[14,15,17,18] Still, biradicals of the type **B** are worthwhile target molecules, as they can be reversibly photo-isomerized to a closed-shell housane-type isomer **B'** with a transannular P–P bond, leading to potential applications as molecular switches (Scheme 1).^[19,20]

To overcome the instability of **B** with respect to elimination of the CY moiety, we chose to investigate structurally related benzo-fused cyclopentane-1,3-diyls (i.e., heteroindanediyls **1**, Scheme 3), which might also provide aromatic stabilization of the biradical moiety.

Scheme 2. Due to elimination of CY, reactions with biradicals **B** often lead to the same reaction products as found for biradical $A^{[14, 15, 17, 18]}$

Angew. Chem. Int. Ed. 2021, 60, 1507-1512

© 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

^[*] Dr. J. Bresien, Dr. D. Michalik, Prof. Dr. A. Schulz, Dr. A. Villinger, E. Zander

Scheme 3. Ortho-quinodimethane^[21] (C) and heteroindane derivatives D,^[22-27] E,^[28] and F^[29, 30] with pnictogen atoms in 1,3-position.

An example of closely related, delocalized biradicals are *ortho*-quinodimethanes (**C**, Scheme 3), which are known as reactive intermediates in organic synthesis.^[21] Furthermore, isoelectronic heteroindane derivatives with Group-15 elements in 1,3-position were reported, such as a variety of stable benzo-2-chalco-1,3-diazoles^[22-27] (**D**), 2-substituted benzotriazoles^[28] (**E**), and 2-pnicta-1,3-diphosphaindenyl anions^[29,30] (**F**). The biradical character of these compounds (**D**–**F**) has not been evaluated yet.

As no reports about target compound 1 were found in the literature, we opted to synthesize different derivatives with differently sized subtituents (Dmp, Ter, and ^{tBu}Bhp) in order to investigate the kinetic stability of 1 towards di- or oligomerization (for descriptors of steric demand, see Supporting Information, p. S44 ff).^[17,31,32] In a first step, a suitable precursor for biradical 1 was synthesized: By analogy with the synthesis of A (Scheme 1), chlorinated azadiphosphaindanes (2) were prepared by reaction of primary amines with 1,2bis(dichlorophosphino)benzene^[33,34] (Scheme 4).^[66] For all substituents (Dmp, Ter, ^{tBu}Bhp), the cis isomer of 2 (cis with respect to the Cl atoms, Figures S1, S2) was obtained $(^{31}P \text{ NMR}: \delta = 147-149 \text{ ppm})$. Only in the case of **2Dmp** the *trans* isomer was observed as side product (³¹P NMR: $\delta =$ 171 ppm). DFT calculations showed that the *cis* isomers of 2 are energetically favored for all substituents ($\Delta G_r^{\circ} = 9$ - 20 kJ mol^{-1} , cf. SI).

The synthesis of heteroindanediyls **1** (R=Dmp, Ter, ^{*t*^{Bu}}Bhp) was achieved by reduction of **2** with elemental Mg analogous to the synthesis of **A**.^[12,19] During the reaction, the colorless solutions turned orange, indicating the formation of the desired product (Scheme 4). This could be confirmed by ³¹P NMR spectroscopy; all heteroindanediyls **1** (R=Dmp, Ter, ^{*t*Bu}Bhp) could be identified by a characteristic singlet resonance (δ =280–285 ppm), which compares well with related 1,2,5-azadiphospholes (*t*BuC)₂(µ-P)₂N*t*Bu (δ = 286 ppm).^[19] However, depending on the steric demand of R, different follow-up reactions were observed (Scheme 4). Biradical **1Dmp** fully converted to an insoluble red polymer within one day, as evidenced by ³¹P NMR spectroscopy (Figure S8). The polymer was isolated and analyzed by elemental analysis and vibrational spectroscopy (cf. SI, p. S27 ff).

In the case of **1Ter**, a selective trimerization to **3Ter** was observed. **3Ter** was formed via activation of the fused benzene ring of **1Ter** by two further equivalents of the monomeric biradical (time-dependent ³¹P NMR spectra cf. Figure S10). This self-activation process can be regarded as formal [2+2] addition reaction. The structural motif of **3Ter** is yet unknown and represents the first example of a six-membered carbon cycle substituted by six P atoms.

In the ³¹P{¹H} NMR spectrum, **3Ter** displays an AA'BB'XX' spin system (Figure 1) due to its C_2 symmetry in solution. The shift of the P_X nuclei (287 ppm) is comparable to the resonance of monomeric **1**. The three-valent P_A ($\delta = 82$ ppm) and P_B ($\delta = 89$ ppm) nuclei show a significant upfield shift, with well resolved J_{AB} (-31 Hz), J_{BX} (98 Hz), and J_{XX'} (-18 Hz) coupling constants. The absolute values of all other coupling constants are significantly smaller than 5 Hz, but essential for the coupling pattern. The experimental data agree well with calculated NMR shifts and coupling constants (cf. Table S3).

Crystallization of **3Ter** from benzene yielded colorless crystals. The solid-state structure was determined by single-crystal X-ray diffraction (Figure 2). **3Ter** crystallized in the triclinic space group $P\bar{1}$ with two molecules **3Ter** and eight

Figure 1. Experimental and simulated $^{[37]\ 31}P\{^1H\}$ NMR spectrum of 3Ter.

Scheme 4. Synthesis of differently substituted 2-aza-1,3-diphosphaindane-1,3-diyls **1**. Their stability depends on the sterical demand of the substituent R, as depicted on the right.

1508 www.angewandte.org © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH Angew. Chem. Int. Ed. 2021, 60, 1507-1512

Communications

5213773, 202

Figure 2. Molecular structure of **3Ter.**^[66] Ellipsoids are set at 50% probability (123 K). Selected bond lengths [Å] and dihedral angles [°]:C1-C2 = 1.509(5), C1-C6 = 1.397(5), C2-C3 = 1.559(5), C3-C4 = 1.554(5), C4-C5 = 1.558(5), C5-C6 = 1.505(5), N1-P1 = 1.698(3), N1-P2 = 1.698(3), P1-C6 = 1.698(3), P2-C1 = 1.719(3), P1-P2 = 2.921(3); C1-C2-C5-C4 = 178.6(4), N1-P2-P1-C6 = -179.7(3), P1-C6-C1-C2 = 175.4(3).

highly disordered benzene molecules per unit cell. The central condensed ring system is nearly planar (\measuredangle (N1-P2-P1-C6) = $-179.7(3)^\circ$, \measuredangle P1-C6-C1-C2) = 175.4(3)° and (\measuredangle (C1-C2-C5-C4) = 178.6(4)°). The P1–C6 and P2–C1 bond lengths (1.698-(3) and 1.719(3) Å) are almost identical and lie in the range of the sum of the covalent radii of a P=C double bond ($\Sigma r_{cov}(P-C) = 1.86$ Å, $\Sigma r_{cov}(P=C) = 1.69$ Å),^[38] while the C1–C6 bond (1.397(5) Å) is slightly longer than the value expected for a C=C double bond ($\Sigma r_{cov}(C-C) = 1.50$ Å, $\Sigma r_{cov}(C=C) = 1.34$ Å).^[38] These structural parameters indicate a dominant diene structure with localized P=C double bonds (see computations below). The transannular P1–P2 distance is 2.921(3) Å and therefore significantly longer than a P–P single bond ($\Sigma r_{cov}(P-P) = 2.22$ Å).^[38]

1^{*t*Bu}**Bhp**, the most sterically demanding derivative, was stable in benzene solution for several weeks, as verified by NMR spectroscopy. **1**^{*t*Bu</sub>**Bhp** is intensely yellow and shows absorption maxima at 407 and 424 nm in the UV/Vis spectrum (benzene solution). According to time-dependent density functional theory (TD-DFT) calculations, the main absorption at 424 nm can be attributed to the formal HOMO→LUMO transition (λ_{calcd} = 470 nm, PBE-D3/def2-TZVP).}

1^{*t*Bu}**Bhp** could be crystallized from toluene and was examined by single-crystal X-ray diffraction (Figure 3). It crystallized in the monoclinic space group $P2_1/n$ with four molecules per unit cell. Similarly to **3Ter**, the heteroindanediyl moiety is planar within the margin of error (\leq (N1-P1-P2-C37) = -179.4(2)°, \leq P1-C37-C42-C41) = -177.9(2)°,

 $\not($ C42-C41-C38-C39 $)=179.3(3)^{\circ})$. Yet, both P–C bonds (1.742(2) Å) are significantly elongated compared to **3Ter**, indicating a reduced P–C double bond character, and thus a delocalized π -bonding system (see computations below). The transannular P–P distance (2.9574(7) Å) is similar to **3Ter**

Figure 3. Molecular structure of 1^{HB} **Bhp**.^[66] Ellipsoids are set at 50% probability (123 K). Selected bond lengths [Å] and dihedral angles [°]: P1–N1 = 1.696(2), P1–C42 = 1.742(2), P2–N1 = 1.692(2), P2–C37 = 1.742(2), C37–C38 = 1.425(3), C37–C42 = 1.428(3), C38–C39 = 1.365(3), C39–C40 = 1.406(3), C40–C41 = 1.357(3), C41–C42 = 1.426(2); C42-C41-C38-C39 = 179.3(3), N1-P1-P2-C37 = -179.4(2), P1-C37-C42-C41 = -177.9(2).

and type **B** biradicals (Y = O: 2.961 Å^[14];Y = NDmp: 2.944 Å^[19]).

Theoretical investigations^[41–47] were carried out to quantify the biradical character of compounds **1**^{*f*Bu}**Bhp** and **3Ter**. CASSCF^[48–56] calculations were performed to obtain a correct description of the multireference character (cf. SI, p. S41 ff). The biradical character was quantified by the LUMO occupation number and β scale (defined as $\beta = 2c_2^2/(c_1^2 + c_2^2)$ by Xantheas et al.).^[3] First, simple CAS(2,2) calculations were performed, which ignore any dynamic correlation within the π -bonding system. In this simple picture, LUMO occupancy and β are identical by definition. The biradical character of **1**^{*f*Bu}**Bhp** amounts to 18%, which is slightly lower in comparison with other biradicals such as **A** and **B** (Table 1). In contrast, the biradical character of **3Ter** (12%) is significantly smaller, so it is better described as a diene. This is in accord with other literature reports.^[20]

Table 1: LUMO occupancy and biradical character $\beta^{[3]}$ for selected compounds. Further descriptors can be found in Table S16.^[39,40]

		Α	B ^[a]	1 ^{քвս} Bhp	3Ter
CAS(2,2)	LUMO occ. eta	0.28 0.28	0.28 0.28	0.18 0.18	0.12 0.12
full π CAS ^[b]	LUMO occ. eta	0.27 0.26	0.28 0.27	0.21 0.14	0.12 0.11

[a] with Y = NDmp. [b] All π -type electrons of the central ring fragment were included in the active space (**A**: CAS(6,4), **B**: CAS(8,6), **1**^{tBu}**Bhp**: CAS(10,9), **3Ter**: CAS(6,4)).

Secondly, CAS calculations including all π -type orbitals of the main ring fragment were performed, thus including nondynamic and dynamic correlation within the π -bonding system (Figure 4, Figures S15–S18). In case of **1**^{tBu}**Bhp**, this procedure led to significantly different values for LUMO occupancy and β , while these values hardly differed in case of **A**, **B**, and **3Ter** (Table 1). As β is based on only two

1509

Communications

Figure 4. Frontier orbitals of **1**^{tBu}**Bhp** (CAS(10,9)/def2-TZVP//PBE-D3/ def2-TZVP). Only the main contributions to the wave function are given. For an illustration of all molecular orbitals within the active space see Figure S17.

coefficients of the CAS wave function, whereas the LUMO occupancy reflects a sum over many determinants, large deviations indicate a strongly correlated wave function. Nonetheless, considering that all coefficients apart from c_1 and c_2 individually contributed about 1% or less to the CAS wave function, the difference between LUMO occupancy and β is primarily attributed to dynamic correlation.

In the localized orbital picture, it is apparent that biradical $1^{tBu}Bhp$ also possesses some zwitterionic character (approx. 80% covalent, 20% ionic), as evidenced by contributions of determinants Ψ_2 and Ψ_3 (Figure 4, right). The "biradical electrons" are mainly localized at the P atoms, but also somewhat delocalized across the fused benzene ring. This is, of course, a unique feature of the benzo-fused ring system in $1^{tBu}Bhp$ compared to biradicals **A** or **B** (Scheme 1).

All these apparent differences in their electronic structures prompted us to revisit the aromaticity of compounds **1**^{*t*Bu}**Bhp**, **A**, and **B**. One essential parameter is the magnetically induced ring current,^[57,58] which was estimated by GIMIC calculations^[57,59-62] using proton-substituted model systems (**1H**, **AH**, **BH**). Additionally, benzene, naphthalene, indole, and borazine were computed as reference molecules (cf. SI, p. S53 ff). The current density susceptibility of selected systems is visualized in Figure 5 by streamline representations. The typical aromatic compounds benzene and indole clearly display a distinct diatropic π ring current, which encircles the ring system above and below the ring plane. In **AH**, on the other hand, only atomic vortices are found, whereas the current density of biradical **1H** is again very similar to benzene and indole.

The net induced ring current susceptibility can be quantified by integration of the current density (Table 2). The net induced current of **1H** (five-membered ring: 11.2 nAT^{-1} ; six-membered ring: 13.5 nAT^{-1}) is very similar to the values of benzene and indole ($\geq 12.1 \text{ nAT}^{-1}$), whereas the values of **AH** (2.1 nAT^{-1}) and **BH** (3.4 nAT^{-1}) are significantly smaller. The NICS(1)_{zz} values (NICS = Nucleus-Independent Chemical Shifts, Table 2), ^[58,63,64] which can also be used to describe aromaticity, exhibit the same trends as the magnetically induced currents. Thus, biradical **1**^{rBu}**Bhp** can be regarded as an aromatic system, while **A** and **B** are non-aromatic, in accordance with earlier literature reports.^[65]

Table 2: Net induced currents and NICS(1)_{zz} values of selected model systems. For fused ring systems, values are given for the five-membered (() and six-membered part ((). Further information can be found in Table S16.

	C_6H_6	indole	AH	BH	ìН
Net induced current [nAT ⁻¹]	12.1	13.1 (6) 12.1 (5)	2.1	3.5	11.2 (⑥) 13.5 (⑤)
NICS(1) _{zz} [ppm]	-30.2	-30.6 (⑥) -30.3 (⑤)	-9.4	-7.2	-24.9 (⑥) -31.1 (⑤)

In conclusion, compound $1^{Hu}Bhp$ represents a new type of stable, P-centered biradicals. It is, to the best of our knowledge, the first stable heteroindane-1,3-diyl. The biradical character of $1^{Hu}Bhp$ is somewhat lower than the biradical character of other P-centered biradicals, which is due to its aromatic stabilization. The self-activation of **1Ter** yielding trimer **3Ter** demonstrates that this new substance class has potential for further activation chemistry, which was limited in case of previously reported five-membered cyclic biradicals **B** owing to elimination problems.^[13] Reactivity studies and the investigation of the photochemistry of $1^{Hu}Bhp$ are underway. Moreover, we plan to analyze the effect of substitutions in the aromatic backbone or replacement of P by heavier pnictogens on the reactivity and stability of the resulting biradicals.

Figure 5. Streamline plot of the current density susceptibility^[57] for benzene (a), indole (b), $[P(\mu-NH)]_2$ (**AH**) (c), and **1H** (d). For a color version see Figure S19.

202

Acknowledgements

We thank the University of Rostock for access to the cluster computer, and especially Malte Willert for his assistance with the queueing system and software installations. This research was supported by the Deutsche Forschungsgemeinschaft (DFG, SCHU 1170/12-2) and the Fonds der chemischen Industrie (FCI). Open access funding enabled and organized by Projekt DEAL.

Conflict of interest

The authors declare no conflict of interest.

Keywords: aromaticity · biradicals · heterocycles · molecule activation · phosphorus

- [1] L. Salem, C. Rowland, Angew. Chem. Int. Ed. Engl. 1972, 11, 92– 111; Angew. Chem. 1972, 84, 86–106.
- [2] W. T. Borden, Diradicals, Wiley-Interscience, New York, 1982.
- [3] E. Miliordos, K. Ruedenberg, S. S. Xantheas, Angew. Chem. Int. Ed. 2013, 52, 5736-5739; Angew. Chem. 2013, 125, 5848-5851.
- [4] G. Gryn'ova, M. L. Coote, C. Corminboeuf, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2015, 5, 440–459.
- [5] T. Stuyver, B. Chen, T. Zeng, P. Geerlings, F. De Proft, R. Hoffmann, Chem. Rev. 2019, 119, 11291-11351.
- [6] E. Niecke, A. Fuchs, F. Baumeister, M. Nieger, W. W. Schoeller, Angew. Chem. Int. Ed. Engl. 1995, 34, 555–557; Angew. Chem. 1995, 107, 640–642.
- [7] H. Grützmacher, F. Breher, Angew. Chem. Int. Ed. 2002, 41, 4006-4011; Angew. Chem. 2002, 114, 4178-4184.
- [8] F. Breher, Coord. Chem. Rev. 2007, 251, 1007-1043.
- [9] M. Abe, J. Ye, M. Mishima, Chem. Soc. Rev. 2012, 41, 3808.
- [10] M. Abe, Chem. Rev. 2013, 113, 7011-7088.
- [11] S. González-Gallardo, F. Breher, in *Compr. Inorg. Chem. II*, Vol. 1, Elsevier, Amstersdam, 2013, pp. 413-455.
- T. Beweries, R. Kuzora, U. Rosenthal, A. Schulz, A. Villinger, *Angew. Chem. Int. Ed.* 2011, 50, 8974–8978; *Angew. Chem.* 2011, 123, 9136–9140.
- [13] A. Schulz, Dalton Trans. 2018, 47, 12827-12837.
- [14] A. Hinz, A. Schulz, A. Villinger, Angew. Chem. Int. Ed. 2015, 54, 2776–2779; Angew. Chem. 2015, 127, 2815–2819.
- [15] A. Hinz, A. Schulz, A. Villinger, J. Am. Chem. Soc. 2015, 137, 9953–9962.
- [16] A. Hinz, A. Schulz, A. Villinger, Chem. Sci. 2016, 7, 745-751.
- [17] A. Hinz, R. Kuzora, U. Rosenthal, A. Schulz, A. Villinger, *Chem. Eur. J.* 2014, 20, 14659–14673.
- [18] A. Brückner, A. Hinz, J. B. Priebe, A. Schulz, A. Villinger, Angew. Chem. Int. Ed. 2015, 54, 7426–7430; Angew. Chem. 2015, 127, 7534–7538.
- [19] J. Bresien, T. Kröger-Badge, S. Lochbrunner, D. Michalik, H. Müller, A. Schulz, E. Zander, *Chem. Sci.* 2019, 10, 3486–3493.
- [20] J. Bresien, D. Michalik, H. Müller, A. Rölke, A. Schulz, A. Villinger, R. Wustrack, J. Org. Chem. 2020, https://doi.org/10. 1021/acs.joc.0c00460.
- [21] J. L. Segura, N. Martín, Chem. Rev. 1999, 99, 3199-3246.
- [22] R. M. Paton, in Science of Synthesis: Category 2. Hetarenes and Related Ring Systems, Vol. 13 (Eds.: Storr, Gilchrist), Georg Thieme Verlag, Stuttgart, 2004, pp. 185–218.
- [23] O. Hinsberg, Ber. Dtsch. Chem. Ges. 1889, 22, 862-866.
- [24] P. A. Koutentis, in Science of Synthesis: Category 2. Hetarenes and Related Ring Systems, Vol. 13 (Eds.: Storr, Gilchrist), Georg Thieme Verlag, Stuttgart, 2004, pp. 297–348.

- [25] O. Hinsberg, Ber. Dtsch. Chem. Ges. 1889, 22, 2895-2902.
- [26] M. Risto, R. W. Reed, C. M. Robertson, R. Oilunkaniemi, R. S. Laitinen, R. T. Oakley, *Chem. Commun.* 2008, 3278.
- [27] R. A. Aitken, in Science of Synthesis: Category 2. Hetarenes and Related Ring Systems, Vol. 13 (Eds.: Storr, Gilchrist), Georg Thieme Verlag, Stuttgart, 2004, pp. 777–822.
- [28] A. C. Tomé, in Science of Synthesis: Category 2. Hetarenes and Related Ring Systems, Vol. 13 (Eds.: Storr, Gilchrist), Georg Thieme Verlag, Stuttgart, 2004, pp. 415–602.
- [29] C. P. Butts, M. Green, T. N. Hooper, R. J. Kilby, J. E. McGrady, D. A. Pantazis, C. A. Russell, *Chem. Commun.* **2008**, 856–858.
- [30] F. García, R. J. Less, V. Naseri, M. McPartlin, J. M. Rawson, D. S. Wright, Angew. Chem. Int. Ed. 2007, 46, 7827–7830; Angew. Chem. 2007, 119, 7973–7976.
- [31] A. Schulz, Z. Anorg. Allg. Chem. 2014, 640, 2183–2192.
- [32] L. Falivene, Z. Cao, A. Petta, L. Serra, A. Poater, R. Oliva, V. Scarano, L. Cavallo, *Nat. Chem.* **2019**, *11*, 872–879.
- [33] E. P. Kyba, M. C. Kerby, S. P. Rines, Organometallics 1986, 5, 1189–1194.
- [34] B. Zhao, X. Peng, Z. Wang, C. Xia, K. Ding, Chem. Eur. J. 2008, 14, 7847–7857.
- [35] A. Mack, F. Tabellion, C. Peters, A. Nachbauer, U. Bergsträsser, F. Preuss, M. Regitz, *Phosphorus Sulfur Silicon Relat. Elem.* 1999, 144, 261–264.
- [36] F. Tabellion, A. Nachbauer, S. Leininger, C. Peters, F. Preuss, M. Regitz, Angew. Chem. Int. Ed. 1998, 37, 1233–1235; Angew. Chem. 1998, 110, 1318–1321.
- [37] P. H. M. Budzelaar, gNMR for Windows, IvorySoft, 2006.
- [38] P. Pyykkö, M. Atsumi, Chem. Eur. J. 2009, 15, 12770-12779.
- [39] M. Nakano, R. Kishi, T. Nitta, T. Kubo, K. Nakasuji, K. Kamada, K. Ohta, B. Champagne, E. Botek, K. Yamaguchi, *J. Phys. Chem.* A 2005, 109, 885–891.
- [40] K. Yamaguchi, Chem. Phys. Lett. 1975, 33, 330-335.
- [41] Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
- [42] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- [43] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396.
- [44] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- [45] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.
- [46] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297– 3305.
- [47] F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8, e1327.
- [48] M. A. Robb, U. Niazi, Rep. Mol. Theory 1990, 1, 23-55.
- [49] P. E. M. Siegbahn, Chem. Phys. Lett. 1984, 109, 417-423.
- [50] R. H. A. Eade, M. A. Robb, Chem. Phys. Lett. 1981, 83, 362– 368.
- [51] D. Hegarty, M. A. Robb, Mol. Phys. 1979, 38, 1795-1812.

Angew. Chem. Int. Ed. 2021, 60, 1507–1512 © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH www.angewandte.org

3, Downloaded from https://oinlinbitary.wiley.com/doi/10.1002/anie.202011886 by Universitated Rostock, Universitated Rostock, Wiley Online Library on [14/04/2023]. See the Terms and Conditions (https://oinlenbitary.wiley.com/etra-and-conditions) on Wiley Online Library for rules of use; OA articles are governed 1511 [#]

- [52] F. Bernardi, A. Bottoni, J. J. W. McDouall, M. A. Robb, H. B. Schlegel, *Faraday Symp. Chem. Soc.* **1984**, *19*, 137.
- [53] H. B. Schlegel, M. A. Robb, *Chem. Phys. Lett.* **1982**, *93*, 43–46.
 [54] M. Klene, M. A. Robb, M. J. Frisch, P. Celani, *J. Chem. Phys.* **2000**, *113*, 5653–5665.
- [55] M. Frisch, I. N. Ragazos, M. A. Robb, H. Bernhard Schlegel, *Chem. Phys. Lett.* **1992**, *189*, 524–528.
- [56] N. Yamamoto, T. Vreven, M. A. Robb, M. J. Frisch, H. Bernhard Schlegel, *Chem. Phys. Lett.* **1996**, 250, 373–378.
- [57] D. Sundholm, H. Fliegl, R. J. F. Berger, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2016, 6, 639-678.
- [58] Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. von Ragué Schleyer, *Chem. Rev.* 2005, 105, 3842–3888.
- [59] J. Jusélius, D. Sundholm, J. Gauss, J. Chem. Phys. 2004, 121, 3952–3963.
- [60] H. Fliegl, S. Taubert, O. Lehtonen, D. Sundholm, *Phys. Chem. Chem. Phys.* 2011, 13, 20500.
- [61] S. Taubert, D. Sundholm, J. Jusélius, J. Chem. Phys. 2011, 134, 054123.
- [62] M. Rauhalahti, S. Taubert, D. Sundholm, V. Liégeois, Phys. Chem. Chem. Phys. 2017, 19, 7124–7131.

- [63] P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. van E. Hommes, J. Am. Chem. Soc. 1996, 118, 6317–6318.
- [64] H. Fallah-Bagher-Shaidaei, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Org. Lett. 2006, 8, 863–866.
- [65] R. Grande-Aztatzi, J. M. Mercero, J. M. Ugalde, *Phys. Chem. Chem. Phys.* 2016, 18, 11879–11884.
- [66] Deposition Numbers 2024625 (for 2Dmp), 2024626 (for 2^{rBu}Bhp), 2024627 (for 1^{rBu}Bhp), and 2024628 (for 3Ter) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.

Manuscript received: August 31, 2020 Revised manuscript received: October 6, 2020 Accepted manuscript online: October 10, 2020 Version of record online: November 19, 2020

6.3 Rational Design of Persistent Phosphorus-Centered Singlet Tetraradicals and Their Use inSmall-Molecule Activation

Edgar Zander, Jonas Bresien,* Vladimir V. Zhivonitko, Johannes Fessler, Alexander Villinger, Dirk Michalik, Axel Schulz*

J. Am. Chem. Soc. 2023, 145, 14484-14497

DOI: 10.1021/jacs.3c03928

(Die DOI ist als Hyperlink eingefügt, der direkt zur Onlinepublikation führt.)

The paper was published Open Access under Creative Commons 4.0 license and can therefore be reprinted without further permission. The manuscript, Supporting Information and further license information can be found under www.doi.org/10.1021/jacs.3c03928.

© The Authors. 2023 American Chemical Society

Rational Design of Persistent Phosphorus-Centered Singlet Tetraradicals and Their Use in Small-Molecule Activation

Edgar Zander, Jonas Bresien,* Vladimir V. Zhivonitko, Johannes Fessler, Alexander Villinger, Dirk Michalik, and Axel Schulz*

Cite This: J. A	Am. Chem. Soc. 2023, 145, 14484-	-14497 Read Onlin	ne	
ACCESS	III Metrics & More	E Article Recommendation	is	Supporting Information
ABSTRACT: Bira bond formation biradicals have be tetraradicals, as the	adicals are important interme and breaking. While main- een thoroughly studied, muc eir very low stability has ham	ediates in the process of -group-element-centered ch less is known about pered their isolation and		H ₂ (6 bar) R HI

tetraradicals, as their very low stability has hampered their isolation and use in small-molecule activation. Herein, we describe the search for persistent phosphorus-centered tetraradicals. Starting from an *s*hydrindacenyl skeleton, we investigated the introduction of four phosphorus-based radical sites linked by an N–R unit and bridged by a benzene moiety. By varying the size of the substituent R, we finally succeeded in isolating a persistent P-centered singlet tetraradical, 2,6diaza-1,3,5,7-tetraphospha-*s*-hydrindacene-1,3,5,7-tetrayl (1), in good yields. Furthermore, it was demonstrated that tetraradical 1 can be

utilized for the activation of small molecules such as molecular hydrogen or alkynes. In addition to the synthesis of P-centered tetraradicals, the comparison with other known tetraradicals as well as biradicals is described on the basis of quantum mechanical calculations with respect to its multireference character, coupling of radical electrons, and aromaticity. The strong coupling of radical electrons enables selective discrimination between the first and the second activations of small molecules, which is shown by the example of H_2 addition. The mechanism of hydrogen addition is investigated with parahydrogen-induced hyperpolarization NMR studies and DFT calculations.

INTRODUCTION

Biradicals are molecules with two radical electrons in two nearly degenerate orbitals.¹⁻⁴ A classification of biradicals is possible, for example, on the basis of the electron exchange coupling constant (J),⁵ which describes the interaction between the two radical electrons (Figure 1, top). Molecular systems, in which the radical electrons do not interact with each other (I = 0), are called dis-biradicals and are in spectroscopic terms two-doublet species.^o When the electrons do interact with each other $(I \neq 0)$, a biradicaloid is formed where the electrons couple either antiferromagnetically (singlet species, J < 0) or ferromagnetically (triplet species J > 0).^{6,7} However, there is no exact value for *J*, which separates biradicaloids from dis-biradicals and closed-shell molecules. For simplicity, the term biradical is used in this article, and unless otherwise stated, it refers to biradicaloids. The same applies to the term tetraradical referring to tetraradicaloids.

Extending the biradical concept, tetraradicals are molecules with four radical electrons in four nearly degenerate orbitals. Here, the interaction between the four radical electrons can be completely described by six electron exchange coupling constants. To simplify such systems, the discussion is restricted here to symmetrical tetraradicals, in which two biradicals are connected by a linker and in which the interactions can be described by only two electron exchange coupling constants (Figure 1, J_1 = coupling within a biradical unit, J_2 = coupling between the two biradical units, where $|J_1| \ge |J_2|$).

With these restrictions, three different types of tetraradicals can be distinguished by considering the coupling constants (Figure 1, bottom): (a) Dis-tetraradicals, in which no interaction between the electrons occurs at all $(J_1 = J_2 = 0,$ four-doublet species); (b) bis(biradicaloids), in which there is no interaction between the two sets of biradicaloids $(J_2 = 0)$, and depending on the coupling within the biradical fragments either a singlet $(J_1 < 0)$ or a two-triplet species $(J_2 > 0)$ can be present; and (c) tetraradicaloids, in which there is an interaction between the electrons of both biradical units and the species either adopts a singlet $(J_1 \text{ and/or } J_2 < 0)$ or quintet state $(J_1 \text{ and } J_2 > 0)$.

Stable cyclic biradicals have been in the focus of preparative chemistry $^{7,9-12}$ since the synthesis of the first stable

 Received:
 April 18, 2023

 Published:
 June 14, 2023

Figure 1. Classification of symmetrical bi-⁶ and tetraradicals⁸ by means of electron exchange coupling constants J (antiferromagnetic coupling: negative J; ferromagnetic coupling: positive J). A green circle corresponds to an atom with one radical electron.

heterocyclobutene-1,3-diyl by Niecke and co-workers in 1995.¹³ Their unique reactivity with respect to bond activation is in between radicals and closed-shell molecules.¹⁴ For example, the activation of small molecules such as dihydrogen,^{15–20} chalcogens,^{21–23} halogenated alkanes,^{24–28} and molecules with double and triple bonds (e.g., CO,²³ HCCH^{28,29}) by cyclic main-group-element-centered biradicals has been demonstrated in many studies.^{57,10}

Heteroatom-centered cyclic tetraradicals, on the other hand, have been the subject of only a few publications so far (Scheme 1).^{28,30,31} Conceptually, tetraradicals can be constructed by linking two biradicals (vide supra), as illustrated in Scheme 1.

Scheme 1. Known Main-Group-Element-Centered Tetraradicals (B,²⁸ para-D³²), Synthesized by Linking Biradical Structural Motifs (A,²⁸ C,³⁰ and E⁴³)

For example, our group was able to synthesize the tetraradical B by bridging two P-centered heterocyclopentane-1,3-divls A with a methylenediphenyl linker.²⁸ Since the non-conjugated linker does not allow any interaction between the two biradical units, it has to be considered as a bis(biradicaloid), showing the same reactivity and properties as the single, uncatenated biradicaloid A. Bertrand and co-workers were able to link two boron-centered heterocyclobutane-1,3-diyls³⁰ C with a paraand meta-substituted benzene (Scheme 1). Interestingly, parasubstitution results in the formation of the tetraradical para-D, while the meta-substituted isomer, meta-D, forms a closed-shell species with transannular boron-boron bonds at ambient temperatures.³² It should be noted that also tetraradical para-D forms a closed-shell butterfly species with two boron-boron bonds at slightly elevated temperatures. DFT calculations of meta- and para-D showed that both biradical units interact significantly via the conjugated linker. The interaction in meta-D is smaller than in para-D, which was given as a possible reason for the exclusive observation of the closed-shell species meta-D.⁸ Besides main-group-element-centered tetraradicals B and *para-D*, some further—however less related—compounds like cluster-³¹ or organic aminoxyl-^{33–36} and aminyl-based³⁷ as well as C-centered^{31,38–42} tetraradicals are known.

We were intrigued by the idea to extend the structural motif of the recently published azadiphosphaindane-1,3-diyl (E, Scheme 1)⁴³ to the tetraradical 1, in which all radical electrons are part of a condensed, aromatic 14π electron ring system. Two questions were of interest in the synthesis: First, how bulky must the steric hindrance be to prevent dimerization or oligomerization of the tetraradical, because this would lead to closed-shell systems? And second, is it possible to use these tetraradicals for the stepwise activation of small molecules? Through the interaction between the radical sites, when using the benzene linker, we hoped to achieve a kinetic separation between the addition of a first and second equivalent of a small molecule to the formal biradical units in 1. For bis-(biradicaloids), no kinetic separation between the two activation steps is expected due to the missing interaction and large spatial separation, so that both biradical subunits react independently.

RESULTS AND DISCUSSION

Synthesis. To form a type 1 tetraradical, several aspects must be considered in the design. First, it needs sufficiently large steric protection, which can be tuned via the substituent at the nitrogen atom. Second, it needs suitable precursors for the construction of two PNP units connected to the central benzene ring. To this end, we identified 1,2,4,5-tetrakis-(dichlorophosphino)benzene 2 (Scheme 2) as suitable starting material. Tetraphosphane 2 was recently published by our group and is easily prepared in very good yield (91%) by complete chlorination of the corresponding tetraphosphane with PCl₅.⁴⁴

Synthesis of Starting Materials. With tetrakis-(dichlorophosphino)benzene 2 in hand, double ring closure on both sides of the benzene ring was attempted by reaction with two equivalents of a primary amine, H₂N-R, in a dehydrochlorination reaction (Scheme 2; R = Ter, ^{fBu}Bhp, Mes*, and EMind; Ter = 2,6-dimesitylphenyl,^{45,46} ^{fBu}Bhp = 2,6-bis(benzhydryl)-4-*tert*-butylphenyl,^{43,47} Mes* = 2,4,6-tri*tert*-butylphenyl,⁴⁸ and EMind = 1,1,7,7-tetraethyl-3,3,5,5tetramethyl-s-hydrindacenyl).^{49–51} In the case of the Ter and EMind substituents, this reaction led to the formation of the

^aTheir stability toward oligomerization depends on the steric demand of the substituent R (= Ter, EMind), as depicted on the right.

tricyclic, 4-fold chlorinated ring system **3R** in good yields (**3Ter:** 62%, **3EMind:** 78%), whereas the Mes* and ^{tBu}Bhp derivatives were only formed in low yields and/or could not be isolated in acceptable purity (cf. Supporting Information (SI), p S44 ff.).

Both **3Ter** and **3EMind** are thermally very stable up to about 360-380 °C. They dissolve well in CH₂Cl₂, from which colorless single crystals were obtained (Figure 2). Interestingly,

Figure 2. Molecular structures of 3Ter (top) and 3EMind (bottom) in the crystal (T = 203 K, ellipsoids at 50% probability). Selected bond lengths [Å] and angles [deg]: 3Ter: P1–Cl1 2.102(1), P1–P2 2.964(1), P1–C1 1.821(2), P2–Cl2 2.084(1), P2–C2 1.821(2), N1–P1–P2–C2–160.6(2), symmetry code: (') = 1–x, 1–y, 1–z; 3EMind: P4–Cl4 2.0981(8), P3–Cl3 2.1089(7), P2–Cl2 2.1066(7), P1–Cl1 2.0954(7), P4–C4 1.828(2), P3–C3 1.822(2), P2–C6 1.820(2), P1–C1 1.831(2), P3–P4 2.9733(7), P1–P2 2.9642(7), P1–N1–P2 119.57(7), P3–N2–P4 120.32(7), N1–P1–P2–C6–159.4(1), C3–P3–P4–N2–164.3(1).

for **3Ter**, the *trans* isomer is found (the two chlorine atoms on each side are *trans* to the two on the other side), while for **3EMind** all chlorine atoms are on one side of the three condensed rings, resulting in the formation of a *cis* isomer in the crystal. In both compounds, the central benzene ring remains planar, while the two outer five-membered rings are notably puckered (envelope conformation). This effect is much more pronounced in **3EMind**. The mean P-C (**3Ter**:

1.821(2), **3EMind**: 1.825(3) Å) and P–N bonds (**3Ter**: 1.706(3), **3EMind**: 1.715(4) Å) are in the typical range of polarized single bonds (cf. $\sum r_{cov.}(C-P) = 1.86$ Å, $\sum r_{cov.}(N-P) = 1.82$ Å).⁵² As expected, the ³¹P NMR spectra showed a

Article

singlet signal at 143 (3Ter) and 145 ppm (3EMind), respectively. Attempted Synthesis of 1Ter: Isolation of the Dimer 4Ter. The reduction of 3Ter with elemental zinc dust in

4Ter. The reduction of **3Ter** with elemental zinc dust in tetrahydrofuran (THF) did not lead to the desired tetraradical **1Ter** but selectively to a dimer (**4Ter**, Scheme 2) as unequivocally proven by single-crystal X-ray diffraction (SCXRD) (Figure 3).

Figure 3. Molecular structure of 4Ter in the crystal. Ellipsoids are set at 50% probability (123 K). Selected distances [Å]: P3-P4 2.943(1), P5-P6 2.928(1), P1-C10 1.945(3), P2-P5 2.3364(9), P7-C8 1.703(3), P8-C9 1.714(3), P5-C11 1.802(3), P6-C12 1.817(3), P6-C3 1.942(3), C6-C7 1.625(3).

Interestingly, the reaction mixture turned green at the start, the color of the targeted tetraradical (see below), but then slowly changed to brown. Yellow single crystals of **4Ter** could be isolated from this brown solution. It was not possible to isolate the green intermediate, which is probably **1Ter**, but it could be trapped by derivatization (vide infra). Dimer **4Ter** decomposes above 180 °C in the solid state and is long-term stable in solution at ambient temperatures, as shown by NMR experiments. In the ³¹P{¹H} NMR spectrum, **4Ter** features an AA'BB'XX'YY' spin system due to its C_2 symmetry (see Figure S19). However, the NMR spectrum is simplified by the fact that there is only one larger coupling constant (³*J*(P3,P6) = ³*J*(P1,P8) = 25 Hz, assignment as depicted in Figure 3). The divalent P atoms (δ (P4/P7) = 273 ppm; δ (P3/P8) = 280 ppm) are significantly deshielded in comparison to the trivalent P atoms (δ (P2/P5) = 120 ppm; δ (P1/P6) = 136 ppm), and their chemical shifts are similar to those of structurally related compounds (cf. E: 285 ppm in Scheme 1).⁴³ By means of temperature-dependent ³¹P{¹H} NMR measurements we investigated whether **4Ter** can dissociate into its tetraradical monomers (**1Ter**). Above 100 °C, decomposition of **4Ter** occurred, but formation of the monomeric **1Ter** was not observed (see Figure S20).

Yellow crystals of 4Ter crystallized in the triclinic space group $P\overline{1}$ with one molecule and three cocrystallized solvent molecules in the unit cell. As depicted in Figure 3, dimer 4Ter is generated by the formation of one P–P, two C–P, and one C-C single bond between the two monomeric units, the desired tetraradical 1Ter, thus forming a cage compound in a very unusual addition reaction. In cage compound 4Ter, two ethylene units are oriented orthogonally to each other and linked at four points via chains of two atoms. The parent hydrocarbon compound (tricyclo[5.5.0.0^{4,10}]dodeca-1(7),4-(10)-diene) corresponding to this structural motif has not been isolated so far.53 The bonds between the atoms connecting the monomeric units (d(P2-P5) = 2.3364(9) Å)d(P1-C10) = 1.945(3) Å, d(P6-C3) = 1.942(3), d(C6-C7)= 1.625(3) Å) are all elongated by approximately 0.1 Å, compared to the sum of the covalent radii for the corresponding single bonds ($\sum r_{cov.}(P-P) = 2.22$ Å, $\sum r_{cov.}(C-P) = 1.86$ Å, $\sum r_{cov.}(C-C) = 1.50$ Å).⁵² In addition, dimerization also removes the planarity of the monomer, since the three condensed rings are no longer aromatic (cf. planar structure of 1EMind, see below). Therefore, all rings involved in the dimerization (red and blue rings in Figure 3) are significantly puckered (red: 25.3(2)°, along P6…P5; blue: $37.2(2)^{\circ}$, along C7...C10), while the third ring remains nearly planar (green: 2.4(3)°, along P5…P8). The C-P bond lengths in this planar five-membered ring $(d(C-P) = 1.711(3)^{\circ} \text{\AA})$ indicate double bonds $(\sum r_{cov.}(P=C) = 1.69^{\circ} \text{\AA})^{.52}$ This new bonding situation that arises during dimerization is shown in Scheme 2. It is worthy to note that a comparable type of trimerization was previously observed in the attempted synthesis of the Ter derivative of biradical E.⁴³ Thus, the steric demand of the Ter substituent is apparently not sufficient to stabilize these bi/tetraradical structures.

Trapping of Tetraradical 1Ter. Since we observed the *in* situ formation of tetraradical **1Ter** at the beginning of the reaction (green color, ³¹P NMR shift at 287 ppm), we investigated the possibility of trapping it by adding an alkyne during the reduction process of **3Ter** with zinc dust. In previous studies, we have shown that cyclic four- and five-membered P-centered biradicals can readily add alkynes such as tolan.^{6,7,22} For example, it was demonstrated that tolan is a suitable trapping reagent for unstable biradicals of the type $[^{\bullet}E(\mu-NTer)]_2$ (E = Sb, Bi),⁵⁴ bridging two radical centers in a formal [2+2] addition. Indeed, *in situ* generated **1Ter** is also capable of activating tolan. When zinc is added to the chlorinated species **3Ter** (Scheme 3), a new compound is slowly formed as observed by ³¹P NMR experiments ($\delta(^{31}P) = 100$ (s)), which, after recrystallization from THF, leads to the

deposition of colorless crystals. SCXRD revealed the formation of the double addition product **5Ter** (Figure 4). Although

Figure 4. Molecular structure of **5Ter** in the crystal. Ellipsoids are set at 50% probability (123 K). Selected distances [Å] and angles [deg]: P1-C1 1.857(2), P1-C7 1.885(2), P2-C2 1.845(2), P1-P2 2.7877(7), P2-C8 1.879(2), P3-C4 1.865(2), P3-C22 1.878(2), C7-C8 1.344(3), C22-C21 1.347(3), P2-C8-C7 114.0(2), P3-C22-C21 111.4(1).

evidence (green color, ³¹P NMR data, vide infra) for in situ generation of **1Ter** is available, we do want to stress that the synthesis of **5Ter** is not direct proof of the presence of **1Ter**, as it is also conceivable that the reduction of the P–Cl units proceeds stepwise, forming only a biradical in the first step, followed by direct addition of tolan.

The tolan addition product **STer** is thermally stable up to over 360 °C and then decomposes. No reversible elimination of tolan was observed. The molecular structure of **STer** in the crystal proves that the two outer five-membered rings are strongly bent upon addition of tolan and incorporate only single bonds (Figure 4). The central six-membered ring remains planar and the former C–C triple bonds of the two added tolan molecules are now in the region of double bonds (C7–C8: 1.344(3), C22–C21: 1.347(3), cf. $\sum r_{cov.}$ (C=C) = 1.34 and $\sum r_{cov.}$ (C=C) = 1.2 Å).⁵²

Synthesis of Tetraradical 1EMind. The synthesis of the tetraradical **1EMind** was achieved by reduction of **3EMind** with elemental zinc dust in THF at ambient temperatures in a rather slow reaction. Upon addition of the reducing agent, the colorless solution of **3EMind** immediately turned green (Figure 5).

However, complete conversion was detected only after 6 days according to ³¹P NMR studies. The course of the reduction process could easily be traced by ³¹P NMR spectroscopy, where the singlet signal of **3EMind** slowly disappeared at 145 ppm, while a new singlet signal at 289 ppm appeared and became more intense. Crystallization of **1EMind** from benzene after separation of ZnCl₂ yielded remarkably

Figure 5. Addition of elemental zinc powder to a solution of **3EMind** leads to the formation of the intensively green colored tetraradical **1EMind.** The reduction was carried out in the glovebox in an argon atmosphere.

temperature stable ($T_{dec.} = 365 \text{ °C}$) green crystals in gram scale in good yields ($\eta = 67\%$). The UV–vis spectrum of **1EMind** showed two absorption bands in the visible region ($\lambda_{max} = 396$ and 667 nm), which explain the green color (Figure 5). In the ³¹P{¹H} NMR spectrum, **1EMind** shows a single sharp resonance at 289 ppm (cf. biradical E: 285 ppm)⁴³ and is EPR silent, suggesting a singlet ground state (see Electronic Structure section).

The solid-state structure was determined by SCXRD (Figure 6). **1EMind** crystallized in the triclinic space group $P\overline{1}$ with

Figure 6. Molecular structure of **1EMind** in the crystal. Ellipsoids are set at 50% probability (123 K). Selected bond lengths [Å] and angles [deg]: P2–P1 2.9702(9), P2–C2 1.751(2), P1–C1 1.752(2), N1–P1 1.694(2), N1–P2 1.698(2), C1–C2 1.449(3), C2–C3 1.400(3), C3'–C1 1.400(3), P1–N1–P2 122.3(1), C1–P1–N1 93.14(9), C2–P2–N1 93.11(9), C2–C1–P1 115.8(1), C1–C2–P2 115.7(1), N1–P1–P2–C2 179.9(1), P1–C1–C2–C3 179.8(2). Symmetry code ('): (1-x, 1-y, 2-z).

one centrosymmetric molecule and four cocrystallized benzene molecules in the unit cell (Figure 6). There are no significant intermolecular interactions in the solid-state structure. In contrast to 4**Ter**, the annulated tricyclic ring system is planar. The EMind substituents are oriented almost orthogonally to the tricyclic ring system ($\angle = 83.1(4)^\circ$). All C–C bond lengths are in the range between 1.400(3) (C1–C3') and 1.449(3) Å (C1–C2), indicating partial double bond character (cf. $\sum r_{\rm cov.}(C-C) = 1.50$, $\sum r_{\rm cov.}(C=C) = 1.34$ Å).⁵² The P–C bonds (d(P1-C1) = 1.752(2) and d(P2-C2) = 1.751(2) Å) are slightly longer than a typical P–C double bond (cf. $\sum r_{\rm cov.}(P=C) = 1.69$ Å)⁵² but significantly shorter than a single bond (cf. $\sum r_{\rm cov.}(P-C) = 1.86$ Å), indicating some double-bond character, in agreement with the Lewis resonance scheme of 1 (see Electronic Structure section). The transannular P1…P2 distance amounts to 2.9702(9) Å, which is much too long for a covalent P–P interaction (cf. $\sum r_{\rm cov.}(P-P) = 2.2$ Å),⁵² but significantly shorter than the sum of the van der Waals radii (cf. $\sum r_{\rm vdW}(P\cdots P) = 3.8$ Å).⁵⁵ Together with the computed electronic structure of 1 (see Electronic Structure section), this is indicative of a singlet biradical-type interaction

between each pair of P atoms, as expected for a tetraradical of type 1.

THEORETICAL ASPECTS OF TETRARADICAL VS DIMER FORMATION

To gain access to the desired stable tetraradical 1R, the sterically demanding substituent at the nitrogen had to be modified, since in the case of R = Ter we could only isolate the dimer (see above, section on Synthesis). The steric requirement of a suitable candidate must be large enough to stabilize the tetraradical against dimerization, but small enough to allow activation of small molecules (see below, section on H_2 Activation). Varying the substituent is very time consuming from a preparative point of view, so we decided to perform quantum mechanical calculations at the PBE-D3/def2- TZVP^{56-58} level of theory to select a suitable substituent for synthesis after we found that 1Ter dimerizes, making isolation of 1Ter impossible. For this reason, we examined theoretically four different bulky substituents (R = Ter, EMind, Mes*, and Oma; Scheme 4) in more detail in terms of steric requirements and thermodynamics of dimerization.

Scheme 4. Gibbs Free Energies $(\Delta_R G^\circ)$ in Toluene (SMD Solvation Model)⁵⁹ for the Dimerization of 1R to 4R, Calculated at PBE-D3/def2-TZVP Level of Theory

R = EMind

+5.6

Steric Influence. Good measures of the bulkiness of a substituent are the cone angle^{60–62} and the concept of buried volume, ^{63–65} which can be used to rationalize and illustrate steric hindrance of the substituent in **1R**. The calculated come angles⁶⁶ in **1R** (computed at the optimized N–C distance, see SI) increase along the series R = Ter (222°) < EMind (246°) < Mes* (265°) = Oma (265°). A similar situation was found for the buried volumes. When the center of the transannular P–P axis is chosen as the spherical center in the computation of the buried volume, the radical centers (region between 2 and 3 Å) are best sterically shielded in **1R** for R = Oma (32.6%) > Mes* (30.9%) > EMind (27.5%) > Ter (24.2%).

R = Mes'

+45.3

R = Oma

+60.9

Interestingly, this order changes with increasing spherical radius, as can be seen in Figure 7 (see also SI, Table S8). At a large radius > 4 Å, the steric shielding of the terphenyl substituent becomes significantly larger compared to the other three substituents, which now have similar values (see SI, Table S7). However, the steric shielding at large sphere radii seems to be of secondary importance for the stability of the tetraradicals **1R** with respect to dimerization.

R = Ter

75.1

Figure 7. Buried volume as a function of the sphere radius in 1R (R = Ter, EMind, Mes*, and Oma).

Thermodynamics of Dimerization. In agreement with experiment, the dimerization of **1Ter** to **4Ter** in toluene (SMD solvation model)⁵⁹ is considerably exergonic at the level of theory applied ($\Delta_R G^\circ = -75.1$ kJ/mol, Scheme 4). However, for all three other substituents, the monomer is energetically preferred over the dimer. From these thermodynamic considerations in combination with the studies on steric influences, we decided to use the EMind substituent for the preparation of 1 since the starting materials, in particular the amine EMindNH₂, can be easily prepared (see SI, p S34 ff).

ELECTRONIC STRUCTURE OF TETRARADICAL 1

The electronic structure of the tetraradical was studied using both a proton-substituted model system (1H) as well as the actual system 1EMind (optimized at the PBE-D3/def2-TZVP⁵⁶⁻⁵⁸ level of theory). As the EMind substituent is oriented orthogonally to the ring plane of the central annulated ring system and therefore does not allow delocalization of the π electron system into the substituent, the results obtained for 1H and 1EMind do not deviate significantly. Thus, for reasons of clarity, we will discuss only the results for the model system here; further information about 1EMind can be found in the SI (p S77 ff).

NBO Picture. NBO analysis finds Lewis representation I (Scheme 5) as the energetically most favorable Lewis structure

Scheme 5. Formal Lewis Representations of 1H Derived from NBO/NLMO Analysis a

^{*a*}Lone pairs are omitted for clarity. Only one Lewis structure per type is shown. Due to symmetry there are two type **I**, eight type **II**, and two type **III** structures. The radical electrons are localized in a π^* -type orbital, which is indicated by the dotted lines.

for 1H. Structure I describes a P-centered tetraradical with a benzene linker that has six delocalized π electrons. Together with one lone pair of electrons on both nitrogen atoms and the four radical electrons at the P atoms, all of which are localized in p-atomic orbitals, this results in a total of 14 π electrons. No formal charges are needed. The formal radical electrons are localized in two $\pi^*(P-P)$ NBOs (Figure S30), in agreement with the CASSCF wave function (vide infra). The biradical subunits in 1H may therefore be classified as type-II biradicals according to the scheme of Abe,⁵ analogously to other known P-centered biradicals.^{16,23,28,43,67} Other important Lewis structures are those in which one five-membered ring is a

formal biradical, whereas the remaining two rings are described using C=C, P=C, or P=N double bonds (Lewis formulas of type II and III; for a depiction of the corresponding NLMOs = Natural localized molecular orbital, see Figure S30). The delocalization of the lone pair on the N atom leads to formal charges and thus to zwitterionic character.

MO Picture. First, we investigated the order of electronic spin and excited states of the tetraradical to verify the singlet ground state postulated on the basis of the sharp NMR resonances of **1EMind** and absence of signals in the EPR spectrum. In general, for a system with four electrons in four (frontier) orbitals, there are 20 possible singlet as well as 15 triplet states and one quintet state. For the description of **1H** we performed NEVPT2^{68–70}/CAS(14,12)^{71–79}/def2-TZVP^{58,80} calculations, which take into account all π -orbitals of the central ring system. According to these calculations, **1H** possesses a singlet ground state. The first excited state is the triplet state with $\Delta E_{ST} = E_S - E_T = -93$ kJ/mol (**1EMind**: -92 kJ/mol), which is significantly lower than in E^{tBu}Bhp ($\Delta E_{ST} = -126$ kJ/mol).⁴³ Table 1 contains the first 10 excited states

Table 1. Exited States of Model System 1H (NEVPT2/ CASSCF(14,12)/def2-TZVP)

excited state	term symbol	$\Delta E [eV]$	$\Delta E [kJ/mol]$
ground state	${}^{1}A_{g}$	0.00	0
1	${}^{3}B_{2u}$	0.97	93
2	${}^{3}B_{3g}$	1.59	154
3	${}^{1}B_{2u}$	1.95	188
4	${}^{1}A_{g}$	2.66	256
5	${}^{3}B_{1u}$	2.84	274
6	${}^{3}B_{3g}$	3.00	290
7	${}^{1}B_{3g}$	3.11	300
8	${}^{3}B_{2u}$	3.11	300
9	${}^{1}B_{3g}$	3.16	305
10	${}^{5}A_{g}$	3.22	311

of **1H** including the quintet state in their energetic order. The quintet state is clearly above the ground state with $\Delta E_{SQ} = -311 \text{ kJ/mol}$ (**1EMind**: -313 kJ/mol). This clearly differs from an ideal tetraradical (or dis-tetraradical), in which the first six states (2× singlet, 3× triplet, 1× quintet) are degenerate, and indicates that the radical electrons of **1H** are rather strongly coupled. The interaction of two radical electrons (*i*, *j*) in polyradicals can be described by the electron-exchange coupling constants J_{ij} , which result from the phenomenological Heisenberg–Dirac–van Vleck Hamiltonian^{81,82} ($\hat{S} = \text{spin}$ operator):

$$\hat{H}_{\rm HDvV} = -\sum_{i < j} J_{ij} \hat{S}_i \hat{S}_j \tag{1}$$

The larger the value of J, the stronger the interaction between two electrons. A positive value indicates a ferromagnetic coupling, while a negative value indicates antiferromagnetic coupling. To describe systems of four electrons, a maximum of six coupling constants is needed. However, **1H** can be described by only three coupling constants due to its D_{2h} symmetry (vide supra).

In general, compound **1H** can be understood as a benzene, formally substituted by four radical units. By analogy with the work of Head-Gordon, Casanova, and co-workers,^{8,83} the coupling constant between the radical centers in *ortho* position

to each other is called σ (short), in *meta* position μ (medium), and in *para* position λ (long-range coupling). The relationship between the energies of the excited states (Table 1) and the coupling constants can be derived from eq 1 and is shown in Table 2 (a derivation can be found in the SI, p S89 ff). Using a

Table 2. Energetic Dependency of the Electron Exchange Coupling Constants σ , μ , and λ

state	symbol	$E_{\rm rel.} =$
Q ₄	A_g	$-\sigma/2 - \mu/2 - \lambda/2$
T ₃ S.	B_{1u}	$-\sigma/2 + \mu/2 + \lambda/2$ $-\sigma/2 + \mu + \lambda$
T ₂	B_{3g}	$+\sigma/2 + \mu/2 - \lambda/2$
T_1	B_{2u}	$+\sigma/2 - \mu/2 + \lambda/2$
S ₀	A_g	$+3/2\sigma$

least-square fit, the coupling constants for **1H** can be obtained (Figure 8). They can be compared to the respective *ortho-*, *meta-*, and *para*-couplings of other bi- and tetraradically substituted benzenes.

In 1H, $\sigma = -149.9$ kJ/mol (1EMind: -150.8 kJ/mol), which shows a strong antiferromagnetic coupling between the radical electrons within each of the five-membered rings, similar to that in the five-membered biradical $E^{tBu}Bhp$ (-126.2 kJ/mol) and also on the same order of magnitude as found in the four-membered rings of the tetraradicals meta-D (-97.5 kJ/mol) and para-D (-94.4 kJ/mol). The meta-coupling μ = 13.8 kJ/mol (1EMind: 14.4 kJ/mol) is the only ferromagnetic coupling in 1H and similar to the meta-coupling in meta-D (5.0 kJ/mol). The *para*-coupling $\lambda = -46.5$ kJ/mol (**1EMind**: -49.9 kJ/mol) shows a significant antiferromagnetic interaction between the electrons of the two formal biradicals and is slightly larger than in para-D (-31.1 kJ/mol). Thus, it can be concluded that there are significant couplings between all radical electrons of 1H, and these couplings are similar to analogous coupling pathways in E^{tBu}Bhp, meta-D, and para-D.

Excursus: How to Understand the Tetraradical Character. Another way to characterize tetraradicals and, in particular, quantify the polyradical character is to examine the occupancy of the LUNO (biradical character; LUNO = lowest unoccupied natural orbital) and LUNO+1 (tetraradical character). Before we come to discuss these values for 1H, however, we want to explain the relationship between the two values by using a simple model system of four hydrogen atoms in $D_{\infty h}$ symmetry. It should be noted that the model is only loosely connected to the tetraradical 1H (D_{2h} symmetry), but it is an intuitive model for tetraradicals in general, especially if they are to be understood as molecules with two biradical

subunits. The system is defined by two variables, *a*, the distance between an outer H atom and its neighboring H atom, and *b*, the distance between the inner H atoms (Figure 9). Variation of *a* and *b* changes the interaction between the hydrogen atoms and thus n(LUNO) and n(LUNO+1). The occupancies were determined by simple CASSCF(4,4) calculations and are illustrated in Figure 9 as a function of *a* at three distances *b* (*b* = 0.8, 2.2, 5.0 Å).

The following conclusions and trends can be derived from this: (i) Smalla and b: closed-shell system with minimal biand tetraradical character. (ii) **Increasing** a at small b (0.8 Å): H₂ molecule in the middle, with radical hydrogen atoms on the outside, moving away from each other; the biradical character increases to perfect biradical; the tetraradical character remains small due to the strong interaction between the inner H atoms. (iii) Increasing *a* at medium *b* (2.2 Å): The initial situation describes two H₂ molecules with medium distance to each other (minimal bi- and tetraradical character); with increasing a, the bi- and tetraradical character increase together, but the tetraradical character is limited at larger *a* by the interaction of the central H atoms; the final state describes two biradicals with significant interaction between each other. (iv) Increasing *a* at large *b* (5.0 Å): Parallel dissociation of two separated H₂ molecules, biradical character = tetraradical character due to missing interaction between the biradical units. (v) Large aand b: maximum bi- and tetraradical character; no interaction between the H atoms, all valence orbitals are degenerate.

From these simple considerations it follows that the biradical character limits the tetraradical character, so discussing both values independently is not meaningful. The system of four H atoms can be transferred to the systems described in the Introduction, in which there are two sets of biradicals whose interaction depends on the type of linker (e.g., length, conjugation of the electrons, etc.).

Tetraradical Character of 1. In order to describe the biand tetraradical character of 1H, a CASSCF(4,4) calculation, which does not take into account the dynamic correlation within the π -system, was performed. The orbitals of the active space are shown in Figure 10. HONO and HONO-1 (HONO = highest occupied natural orbital) describe a transannular antibonding situation between the P atoms within each five-membered ring, while LUNO and LUNO+1 are transannular bonding. The LUNO has an occupancy of 0.26 (26% biradical character, Table 3); the LUNO+1, of 0.19 (19% tetraradical character). The biradical character is significantly increased compared to E^{tBu}Bhp (18%, CASSCF-(2,2)),⁴³ which shows that the ring extension to 1H has a clear influence on the multireference character. This would not be the case if two biradicals were linked to form a bis-

Figure 8. Electron exchange coupling constants in 1H, E^{rBu}Bhp, meta-D, and para-D in kJ/mol. 1H: NEVPT2/CASSCF(14,12)/def2-TZVP, E^{rBu}Bhp: value taken from ref 43, meta-D and para-D: values taken from ref 8.

Figure 9. Bi- [n(LUNO)] and tetraradical character [n(LUNO+1)] in a chain of four H atoms in $D_{\infty h}$ symmetry at different distances a and b.

Figure 10. Delocalized and localized frontier orbitals of 1H (CASSCF(4,4)/def2-TZVP).

Table 3. Occupation Numbers n of the LUNO, LUNO+1, and LUNO+2 to Quantify the Bi- and Tetraradical Character for 1H in Comparison with E

compound	active space	n(LUNO)	n(LUNO+1)	n(LUNO+2)
E ^a	CASSCF(2,2)	0.18		
	CASSCF(10,9)	0.21	0.09	0.09
1H	CASSCF(4,4)	0.26	0.19	
	CASSCF(14,12)	0.32	0.19	0.09
^{<i>a</i>} Values tak	en from ref 43.			

(biradicaloid). The amount of biradical character is similar to nonaromatic P-centered biradicals such as $[P(\mu-NTer)]_2$ (28%) or A (28%, Scheme 1)⁴³ By linear combination of the delocalized CASSCF(4,4) orbitals φ , localized orbitals χ are obtained (Figure 10), which show that the radical electrons are mainly localized at the P atoms, so that it is justified to speak of a P-centered tetraradical.

Additionally, the occupation numbers n(LUNO) and n(LUNO+1) of **1H** were determined using a CASSCF(14,12) calculation that describes all π -orbitals of the central ring system and the electrons contained therein (Table 3). In contrast to the CASSCF(4,4) calculation, dynamic and nondynamic correlation in the π -system are thus considered. The dynamic correlation leads to a significant increase in the occupation of the LUNO, while the occupation of LUNO+1 remains unaffected. The small LUNO+2 occupation (<10%) shows that a description of the system as tetraradical is sufficient due to the negligible hexaradical character, which is mainly attributable to dynamic correlation.

Aromaticity of 1. The influence of the π -system on the multireference character as well as the strong antiferromagnetic coupling of the radical electrons prompted us to investigate the aromaticity of 1H, which we would like to discuss on the basis of magnetic parameters (magnetically induced ring current,^{84,85} NICS values^{86–88}). Benzene and EH are used as comparison in this discussion (data of further compounds see SI p S98 f).^{43,89} The current density susceptibilities of benzene, EH, and 1H are visualized in Figure 11 by streamline plots. All compounds show a clear diatropic ring current surrounding the ring systems above and below the ring plane, which is typical for aromatic compounds. By integration of the current density along vertical ring sections to the respective ring center, the net induced ring current can be derived (Table 4).^{84,85,90,91}

Table 4. Net Induced Currents and $NICS(1)_{zz}$ Values of Benzene, EH, and $1H^a$

	C_6H_6	EH	1H
net induced current $\left[nA/T\right]$	12.1	13.5 (♠)	13.2 (♠)
		11.2 (♠)	13.5 (♠)
NICS(1) _{zz} [ppm]	-30.2	-31.1 (●)	-29.5 (●)
		-24.9 (•)	-29.4 ()

^{*a*}For fused ring systems, values are given for the five-membered (\spadesuit) and six-membered part (\blacklozenge). Further information can be found in the SI, p S98 f.^{43,89}

Figure 11. Streamline plot of the current density susceptibility 84 for benzene (a), EH (b), and 1H (c).

Scheme 6. Activation of One Equivalent of H_2 by the Tetraradical 1 Led to the Formation of 6; Additionally, the Diadducts syn-7 Were Formed Depending on the Reaction Temperature and Pressure of H_2

According to these computations, the ring currents are very similar (>11 nA/T) and positive in all rings, which means that the diatropic part prevails over the paratropic one.⁸⁴ The opposite is true for antiaromatic compounds (negative sign), while nonaromatic compounds have ring currents around 0 nA/T. The determined NICS(1)_{zz} values between -24.9 and -31.1 also indicate the aromaticity of the compounds considered (Table 4; for NICS(0), NICS(0)_{zz}, and NICS(1) see SI, p S98).⁴³

■ H₂ ACTIVATION

Theoretical Aspects. Metal-free activation of molecular hydrogen is an important challenge in molecular chemistry and succeeded in seminal works, for example, by conversion with FLPs,⁹² CAACs,⁹³ or multiple bonds of heavy elements.⁹⁴ For **1EMind**, first reactivity studies toward molecular hydrogen were carried out, with the aim to chemically prove the existence of the interactions between the two biradical units discussed above. We began our investigations with calculations in which the H₂ activation occurs analogously to known four-,^{15–17} five-,¹⁷ and six-membered^{18–20} biradicals via the addition of H₂ to the radical centers. In contrast to these biradicals, tetraradical **1EMind** enables not only the activation of one equivalent of H₂ under the formation of H₂ (*syn*-7H and *anti*-7H, Scheme 6).

The calculations for the model system 1H show (Table 5) that the addition of the first equivalent of H_2 is strongly

Table 5. $\Delta_R G^{\ddagger}$ and $\Delta_R G^{\circ}$ (DLPNO-CCSD(T)/def2-TZVP) for the Activation of H₂ by 1EMind and 6EMind (Values in Parentheses for 1H and 6H, Respectively)

reac	tion		
from	to	$\Delta_{\rm R}G^{\ddagger}$ [kJ/mol]	$\Delta_{\rm R}G^{\circ}$ [kJ/mol]
$1 + H_2$	6	100.9 (80.0)	-37.7 (-52.2)
6 + H ₂	syn-7	118.1 (104.3)	-2.4 (-12.4)
6 + H ₂	anti-7	119.5 (103.6)	-1.3 (-12.7)

exergonic ($\Delta_R G^\circ = -52.2 \text{ kJ/mol}$), whereas the addition of the second equivalent is only slightly exergonic ($\Delta_{\rm R}G^{\circ}$: syn-7H = -12.4, anti-7H = -12.7 kJ/mol). The activation barrier for the first activation step is 80.0 kJ/mol, while that for the second reaction step is significantly higher ($\Delta_{\rm R}G^{\ddagger}$: syn-7H = 104.3, anti-7H = 103.6 kJ/mol). The differences in the energy profiles for the first and second activation steps indicate that there is a significant interaction between the radical centers of 1H. The formal removal of a biradical unit reduces the biradical character from 26% in 1H (CASSCF(4,4), cf. Table 3) to 17% in 6H (CASSCF(2,2), see SI p S90) and thus the reactivity toward molecular hydrogen. In contrast, for a bis(biradicaloid), the energy profiles for the first and the second activation would be identical. In the model system, steric effects are reduced as much as possible due to the smallest possible substituent (R =H) and the smallest possible molecule to be activated (H_2) .

The calculations for the EMind-substituted tetraradical (**1EMind**) show larger activation barriers and decreased energy gains, indicating that hydrogen activation is made more difficult upon introduction of bigger substituents. This is due to bending of the ring system during H₂ addition, which leads to an energetically disfavored spatial proximity of the two EMind substituents. The reactions are predicted to proceed in a concerted mechanism as [2+2] cycloadditions, which may be nicely rationalized by the HOMO–LUMO interactions shown in Figure 12, analogous to the H₂ activation with $[P(\mu-NTer)]_2$.¹⁵

Figure 12. Schematic representation of the interaction of the frontier MOs of the model system **1H** (D_{2h} symmetry) and H₂ ($D_{\infty h}$).

Experimental Aspects. To validate the calculations (e.g., with regard to the postulated mechanism) and to select suitable reaction conditions for the synthesis of **6EMind** and **7EMind**, NMR investigations were carried out. First, an NMR tube with a solution of **1EMind** was pressurized with 5 bar H₂ at 67 °C for 20 min. The ³¹P and ¹H NMR spectra of the experiment showed a 75% conversion to **6EMind** (Figure 13), with ³¹P resonances at 287 ppm (P_Y) and 58 ppm (P_X). The subsequent increase in the temperature to 87 °C led to an almost complete conversion after 10 min time. The

Figure 13. Experimental and simulated ¹H and ³¹P NMR spectra of 6EMind. The resonances of P_Y and $P_{Y'}$ appear as a singlet and are not shown here.

corresponding ¹H and ³¹P NMR spectra fit well to an AA'BB'XX'YY' spin system (A, B = ¹H; X, Y = ³¹P) based on calculated values (PBE-D3/def2-TZVP). Coupling constants > 110 Hzl can be found between H_A-P_X (183 Hz) and P_X...P_{X'} (-26 Hz; for all exptl. and calcd. parameters see SI, p 68 ff).

The hydrogen activation was then repeated with parahydrogen (para- H_2), the spin-0 isomer of H_2 , inside a 9.4 T NMR spectrometer. In this case, a concerted activation would lead to a several orders of magnitude signal enhancement of the NMR resonances (¹H and ³¹P) due to the strong nuclear spin hyperpolarization. This phenomenon,^{95–97} generally known as parahydrogen-induced polarization (PHIP),98,99 has already been used by us to verify concerted reaction mechanisms for the activation of H₂ by other biradicals (e.g., $[P(\mu-NTer)]_2$, A).^{17,100} Figure 14 shows ³¹P NMR spectra of the resulting hyperpolarized species after para-H₂ activation (5 bar) by 1EMind and 6EMind at 67 and 97 °C, respectively. At 67 °C, only the resonances of hyperpolarized 6EMind* are visible (Figure 14a). For comparison, a simulated thermal spectrum is also presented in the figure to highlight qualitative amplitude alternations in the XX' ³¹P NMR multiplet of

Figure 14. ³¹P NMR spectra measured during para-H₂ activation by (a) **1EMind** and (b) **6EMind** at 67 and 97 °C, respectively. A 5 bar para-H₂ pressure was used in the experiments. (a) The formation of hyperpolarized **6EMind*** was observed in the reaction of **1EMind** and para-H₂. A simulated thermal spectrum of **6EMind** is depicted to show the qualitative alternation of the XX' ³¹P multiplet (see Figure **13**) with the hyperpolarization. (b) The reaction of **6EMind** and para-H₂ resulted in hyperpolarized *syn*-**7EMind*** and *anti*-**7EMind*** species. In addition, **6EMind** itself became slightly hyperpolarized. The resonances of *syn*-**7EMind** and *anti*-**7EMind** drifted apart under cooling to 25 °C, likely indicating the chemical exchange between the isomers. For the sake of simplicity, "EMind" was omitted from the endings of the compound names in the figure. Asterisk (*) denotes hyperpolarized species, HP = hyperpolarized, TH = thermal.

6EMind (see Figure 13 for the notation). The observation of PHIP-enhanced resonances in this experiment proves the concerted reaction mechanism of H₂ activation by 1EMind. In turn, the experiment at 97 °C showed that 6EMind also activates H_2 in a concerted manner, since the two isomers of the double addition product, syn-7EMind and anti-7EMind, were also hyperpolarized by PHIP (Figure 14b). As from the NMR point of view both species have the same symmetry, it cannot be elucidated directly from the NMR spectra which of the two sets of XX' ³¹P NMR resonances centered at 58.4 and 57.9 ppm corresponds to which isomer of 7EMind. The tentative assignment of signals in Figure 14 is based on calculated shifts (see SI, p S72 ff). It is worth noting, however, that syn-7EMind and anti-7EMind most likely interconvert into each other since their resonances drifted apart (ca. 0.5 ppm) when the sample was cooled to room temperature, indicating the presence of dynamic exchange at 97 °C. In addition, this para-H₂ experiment revealed a significant distortion of the thermal signal multiplet corresponding to 6EMind, implying that some portion of this compound was converted into the hyperpolarized form, 6EMind*, via the reversible dissociation into 1Emind and H₂ at 97 °C.

The conditions for the attempted synthesis and isolation of **6EMind** and **7EMind** were chosen on the basis of the NMR experiments. Thus, **6EMind** is formed exclusively at moderate H_2 pressures and low temperatures, whereas **7EMind** is present only in small amounts at high temperatures, so that the pressure of H_2 must be increased significantly to achieve a higher reaction conversion.

6EMind was therefore synthesized in the reaction of **1EMind** in toluene with H_2 (10 bar) at 65 °C within 2.5 h (alternatively with 1 atm H_2 at ambient temperature within 4 weeks) and was crystallized as yellow crystals from 1,2-dichlorobenzene. The solid-state structure was determined by SCXRD. **6EMind** crystallized in the triclinic space group *P*I with two molecules and two cocrystallized solvent molecules in the unit cell (Figure 15). Compared to the structure of

Figure 15. Molecular structure of **6EMind** in the crystal. Ellipsoids are set at 50% probability (173 K). Selected bond lengths [Å] and angles [deg]: C1–P1 1.825(1), C6–P2 1.832(1), C3–P3 1.737(1), C4–P4 1.739(1), P1–P2 2.9350(6), P3–P4 2.9566(6), C1–P1–P2–N1 150.06(9), C3–P3–P4–N2 179.6(1).

1EMind, the H₂-substituted five-membered ring in **6EMind** is strongly altered, while the unsubstituted ring remains almost unchanged. The first ring is bent along the P atoms (along P1…P2: 30.6°), and the C–P distances are in the range of single bonds (d(C1-P1) = 1.825(1), d(C6-P2) = 1.832(1) Å, cf. Σr_{cov} .(C–P) = 1.86 Å),⁵² whereas the second still biradical ring is almost planar (along P3…P4: 0.7(5)°) and the C–P distances are in the range of a double bond (d(C3-P3) = 1.737(1), d(C4-P4) = 1.739(1) Å, cf. $\sum r_{cov.}(P=C) = 1.69$ Å).⁵² Furthermore, the H₂ addition leads to a shortening of the transannular P–P distance (d(P1-P2) = 2.9350(6) vs d(P3-P4) = 2.9566(6) Å).

The formation of **6EMind** is reversible, in agreement with the para-H₂ NMR experiments. Thus, **6EMind** turned green in the solid at 120 °C, the color of **1EMind**. An analysis of a sample of **6EMind** heated to 120 °C for 1 h in a vacuum showed a significant re-formation of the tetraradical **1EMind** as evidenced by ³¹P NMR spectroscopy.

Our attempts to isolate the doubly substituted compounds *syn*-7EMind and *anti*-7EMind were not successful. The hydrogenation of 1EMind (50 bar H₂, 100 °C in toluene) over a period of 3 h resulted in the formation of a mixture of 6EMind (76%), *syn*-7EMind (12%), and *anti*-7EMind (12%, determined by ³¹P{¹H} NMR spectroscopy). The ratio of the diadducts (7EMind) could not be increased by extending the reaction time to 48 h, so the reaction was already in equilibrium after 3 h.

CONCLUSION

In summary, we report the successful synthesis of 1R, an isolable singlet tetraradicaloid species with radical centers localized at the four P atoms. Theoretical and experimental investigations of different substituents show that EMind is a suitable substituent for the stabilization of 1R, whereas the Ter-substituted derivative dimerizes to the unusual cage compound 4Ter. The tetraradical 1EMind is a compound stable at high temperatures ($T_{dec.}$ = 365 °C) and can be synthesized in gram scale. Theoretical studies indicate that the radical electrons interact with each other to a considerable extent. Despite the coupling of the radical electrons, 1EMind has a significant bi- (26%) and tetraradical character (19%) according to CASSCF(4,4) calculations and is aromatic. The interaction of the radical electrons additionally affects the reactivity of 1EMind. In the reaction with H₂, the addition of the first equivalent is much quicker than the second. The hydrogen activation proceeds in a concerted [2+2] cycloaddition, which has been proven by PHIP-NMR studies.

EXPERIMENTAL SECTION

Experimental section, preparation of starting materials and compounds, structure elucidation, additional spectroscopic details, and computational details can be found in the Supporting Information.

Computations were carried out using Gaussian09,¹⁰¹ ORCA 4.2.1¹⁰² or ORCA 5.0.3,¹⁰³ and the standalone version of NBO $6.0.^{104-107}$

ASSOCIATED CONTENT

③ Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.3c03928.

Additional experimental information, computational details (PDF)

Accession Codes

CCDC 2251386–2251393 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

Jonas Bresien – Institut für Chemie, Universität Rostock, 18059 Rostock, Germany; Oorcid.org/0000-0001-9450-3407; Email: jonas.bresien@uni-rostock.de

Axel Schulz – Institut für Chemie, Universität Rostock, 18059 Rostock, Germany; Leibniz-Institut für Katalyse e.V., 18059 Rostock, Germany; oorcid.org/0000-0001-9060-7065; Email: axel.schulz@uni-rostock.de

Authors

- Edgar Zander Institut für Chemie, Universität Rostock, 18059 Rostock, Germany; orcid.org/0000-0003-3396-7456
- Vladimir V. Zhivonitko NMR Research Unit, University of Oulu, 90014 Oulu, Finland; orcid.org/0000-0003-2919-8690
- Johannes Fessler Leibniz-Institut für Katalyse e.V., 18059 Rostock, Germany

Alexander Villinger – Institut für Chemie, Universität Rostock, 18059 Rostock, Germany; © orcid.org/0000-0002-0868-9987

Dirk Michalik – Institut für Chemie, Universität Rostock, 18059 Rostock, Germany; Leibniz-Institut für Katalyse e.V., 18059 Rostock, Germany

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.3c03928

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the University of Rostock for access to the cluster computer and especially Malte Willert for his assistance with the queueing system and software installations. We would like to thank Dr. Kathrin Junge and Prof. Matthias Beller for giving us access to the high-pressure equipment and Florian Taube for the measurement of EPR spectra. E.Z. wishes to thank the Fonds der Chemischen Industrie for financial support (Kekulé fellowship) and Prof. Dr. Frank Breher as well as Dr. Alexander Hinz for many helpful discussions. V.V.Z. acknowledges the financial support from the Academy of Finland (grant 323480) and the University of Oulu (Kvantum Institute). This research was supported by the Deutsche Forschungsgemeinschaft (DFG, SCHU 1170/12-2).

REFERENCES

(1) Salem, L.; Rowland, C. The Electronic Properties of Diradicals. *Angew. Chem., Int. Ed.* **1972**, *11* (2), 92–111.

(2) Diradicals; Borden, W. T., Ed.; John Wiley & Sons Ltd: New York, 1982.

(3) Miliordos, E.; Ruedenberg, K.; Xantheas, S. S. Unusual Inorganic Biradicals: A Theoretical Analysis. *Angew. Chem., Int. Ed.* **2013**, 52 (22), 5736–5739.

(4) Gryn'ova, G.; Coote, M. L.; Corminboeuf, C. Theory and Practice of Uncommon Molecular Electronic Configurations. *Wiley Interdiscip. Rev.: Comput. Mol. Sci.* **2015**, *5* (6), 440–459.

(5) Abe, M. Diradicals. Chem. Rev. 2013, 113 (9), 7011-7088.

(6) Schulz, A. Group 15 Biradicals: Synthesis and Reactivity of Cyclobutane-1,3-Diyl and Cyclopentane-1,3-Diyl Analogues. *Dalton Trans.* **2018**, 47 (37), 12827–12837.

(7) Bresien, J.; Eickhoff, L.; Schulz, A.; Zander, E. Biradicals in Main Group Chemistry: Synthesis, Electronic Structure, and Application in Small-Molecule Activation. In *Comprehensive Inorganic Chemistry III*; Reedijk, J., Poeppelmeier, K. R., Eds.; Elsevier, 2023; pp 165–233, DOI: 10.1016/B978-0-12-823144-9.00029-7.

(8) Bell, F.; Casanova, D.; Head-Gordon, M. Theoretical Study of Substituted PBPB Dimers: Structural Analysis, Tetraradical Character, and Excited States. J. Am. Chem. Soc. **2010**, 132 (32), 11314–11322.

(9) Grützmacher, H.; Breher, F. Odd-Electron Bonds and Biradicals in Main Group Element Chemistry. *Angew. Chem., Int. Ed.* **2002**, *41* (21), 4006–4011.

(10) Breher, F. Stretching Bonds in Main Group Element Compounds—Borderlines between Biradicals and Closed-Shell Species. *Coord. Chem. Rev.* **2007**, *251* (7–8), 1007–1043.

(11) González-Gallardo, S.; Breher, F. Main Group Biradicaloids. In *Comprehensive Inorganic Chemistry II*; Reedijk, J., Poeppelmeier, K., Eds.; Elsevier, 2013; Vol. 1, pp 413–455, DOI: 10.1016/B978-0-08-097774-4.00118-2.

(12) Kostenko, A.; Tumanskii, B.; Kobayashi, Y.; Nakamoto, M.; Sekiguchi, A.; Apeloig, Y. Spectroscopic Observation of the Triplet Diradical State of a Cyclobutadiene. *Angew. Chem., Int. Ed.* **2017**, *56* (34), 10183–10187.

(13) Niecke, E.; Fuchs, A.; Baumeister, F.; Nieger, M.; Schoeller, W. W. A P_2C_2 Four-Membered Ring with Unusual Bonding—Synthesis, Structure, and Ring Opening of a 1,3-Diphosphacyclobutane-2,4-Diyl. *Angew. Chem., Int. Ed.* **1995**, 34 (5), 555–557.

(14) Stuyver, T.; Chen, B.; Zeng, T.; Geerlings, P.; De Proft, F.; Hoffmann, R. Do Diradicals Behave Like Radicals? *Chem. Rev.* 2019, 119 (21), 11291–11351.

(15) Hinz, A.; Schulz, A.; Villinger, A. Metal-Free Activation of Hydrogen, Carbon Dioxide, and Ammonia by the Open-Shell Singlet Biradicaloid $[P(\mu-NTer)]_2$. Angew. Chem., Int. Ed. **2016**, 55 (40), 12214–12218.

(16) Li, Z.; Chen, X.; Andrada, D. M.; Frenking, G.; Benkö, Z.; Li, Y.; Harmer, J. R.; Su, C.-Y.; Grützmacher, H. $(L)_2C_2P_2$: Dicarbondiphosphide Stabilized by N-Heterocyclic Carbenes or Cyclic Diamido Carbenes. *Angew. Chem., Int. Ed.* **2017**, *56* (21), 5744–5749.

(17) Zhivonitko, V. V.; Beer, H.; Zakharov, D. O.; Bresien, J.; Schulz, A. Hyperpolarization Effects in Parahydrogen Activation with Pnictogen Biradicaloids: Metal-free PHIP and SABRE. *ChemPhysChem* **2021**, *22* (9), 813–817.

(18) Sharma, M. K.; Ebeler, F.; Glodde, T.; Neumann, B.; Stammler, H.-G.; Ghadwal, R. S. Isolation of a Ge(I) Diradicaloid and Dihydrogen Splitting. *J. Am. Chem. Soc.* **2021**, *143* (1), 121–125.

(19) Sharma, M. K.; Rottschäfer, D.; Glodde, T.; Neumann, B.; Stammler, H.; Ghadwal, R. S. An Open-Shell Singlet Sn^1 Diradical and H₂ Splitting. *Angew. Chem., Int. Ed.* **2021**, 60 (12), 6414–6418.

(20) Sugahara, T.; Guo, J.-D.; Hashizume, D.; Sasamori, T.; Tokitoh, N. Reversible Isomerizations between 1,4-Digermabenzenes and 1,4-Digerma-Dewar-Benzenes: Air-Stable Activators for Small Molecules. J. Am. Chem. Soc. **2019**, 141 (6), 2263–2267.

(21) Ito, S.; Kikuchi, M.; Sugiyama, H.; Yoshifuji, M. Synthesis and Properties of Air-Stable 1,3-Diphosphacyclobutane-2,4-Diyls and the Related Compounds. *J. Organomet. Chem.* **2007**, *692* (13), 2761–2767.

(22) Hinz, A.; Kuzora, R.; Rosenthal, U.; Schulz, A.; Villinger, A. Activation of Small Molecules by Phosphorus Biradicaloids. *Chem.*—*Eur. J.* **2014**, *20* (45), 14659–14673.

(23) Hinz, A.; Schulz, A.; Villinger, A. Stable Heterocyclopentane-1,3-Diyls. Angew. Chem., Int. Ed. 2015, 54 (9), 2776–2779.

(24) Amii, H.; Vranicar, L.; Gornitzka, H.; Bourissou, D.; Bertrand, G. Radical-Type Reactivity of the 1,3-Dibora-2,4-Diphosphoniocyclobutane-1,3-Diyl. J. Am. Chem. Soc. **2004**, 126 (5), 1344–1345.

(25) Takeuchi, K.; Ichinohe, M.; Sekiguchi, A. Access to a Stable Si_2N_2 Four-Membered Ring with Non-Kekulé Singlet Biradical Character from a Disilyne. *J. Am. Chem. Soc.* **2011**, *133* (32), 12478–12481.

(26) Chen, X.; Hu, C.; Zhang, X.; Liu, S.; Mei, Y.; Hu, G.; Liu, L. L.; Li, Z.; Su, C.-Y. Reversible Stereoisomerization of 1,3-Diphosphetane Frameworks Revealed by a Single-Electron Redox Approach. *Inorg. Chem.* **2021**, *60* (8), 5771–5778. (27) Rosenboom, J.; Chojetzki, L.; Suhrbier, T.; Rabeah, J.; Villinger, A.; Wustrack, R.; Bresien, J.; Schulz, A. Radical Reactivity of the Biradical $[\cdot P(\mu - NTer)_2P \cdot]$ and Isolation of a Persistent Phosphorus-Cantered Monoradical $[\cdot P(\mu-NTer)_2P$ -Et]. *Chem.—Eur. J.* **2022**, 28 (36), No. e202200624.

(28) Hinz, A.; Schulz, A.; Villinger, A. Tunable Cyclopentane-1,3-Diyls Generated by Insertion of Isonitriles into Diphosphadiazanediyls. J. Am. Chem. Soc. **2015**, 137 (31), 9953–9962.

(29) Hinz, A.; Schulz, A.; Seidel, W. W.; Villinger, A. A New Class of Azadipnictiridines Generated by an Unusual Rearrangement Reaction. *Inorg. Chem.* **2014**, 53 (21), 11682–11690.

(30) Scheschkewitz, D.; Amii, H.; Gornitzka, H.; Schoeller, W. W.; Bourissou, D.; Bertrand, G. Singlet Diradicals: From Transition States to Crystalline Compounds. *Science* **2002**, *295* (5561), 1880–1881.

(31) Ito, Y.; Lee, V. Y.; Gornitzka, H.; Goedecke, C.; Frenking, G.; Sekiguchi, A. Spirobis(Pentagerma[1.1.1]Propellane): A Stable Tetraradicaloid. J. Am. Chem. Soc. **2013**, 135 (18), 6770–6773.

(32) Rodriguez, A.; Tham, F. S.; Schoeller, W. W.; Bertrand, G. Catenation of Two Singlet Diradicals: Synthesis of a Stable Tetraradical (Tetraradicaloid). *Angew. Chem., Int. Ed.* **2004**, *43* (37), 4876–4880.

(33) Liao, Y.; Baskett, M.; Lahti, P. M.; Palacio, F. Structure and Exchange in Silicon-Linked Tetraradicals. *Chem. Commun.* **2002**, *2* (3), 252–253.

(34) Yau, W.-M.; Thurber, K. R.; Tycko, R. Synthesis and Evaluation of Nitroxide-Based Oligoradicals for Low-Temperature Dynamic Nuclear Polarization in Solid State NMR. *J. Magn. Reson.* **2014**, *244*, 98–106.

(35) Zaripov, R. B.; Khairutdinov, I. T.; Fazleeva, G. M.; Islamova, L. N.; Gubskaya, V. P.; Nuretdinov, I. A. EPR Study of New Bis-Methano[60]Fullerenes in Liquid. *Appl. Magn. Reson.* **2022**, *53* (7–9), 979–988.

(36) Ulrich, G.; Turek, P.; Ziessel, R. Nitroxo Spin-Labelled Calix[4]Arene Podands and Cryptands: Allosteric Regulation of Spin-Spin Exchange Interaction. *Tetrahedron Lett.* **1996**, 37 (48), 8755–8758.

(37) Rajca, A.; Olankitwanit, A.; Wang, Y.; Boratyński, P. J.; Pink, M.; Rajca, S. High-Spin S = 2 Ground State Aminyl Tetraradicals. J. Am. Chem. Soc. **2013**, 135 (48), 18205–18215.

(38) Carilla, J.; Julia, L.; Riera, J.; Brillas, E.; Garrido, J. A.; Labarta, A.; Alcala, R. The First Isolated Carbon Tetraradical with a Pair of Triplets. J. Am. Chem. Soc. **1991**, 113 (22), 8281–8284.

(39) Rana, A.; Hong, Y.; Gopalakrishna, T. Y.; Phan, H.; Herng, T. S.; Yadav, P.; Ding, J.; Kim, D.; Wu, J. Stable Expanded Porphycene-Based Diradicaloid and Tetraradicaloid. *Angew. Chem., Int. Ed.* **2018**, 57 (38), 12534–12537.

(40) Ito, S.; Miura, J.; Morita, N.; Yoshifuji, M.; Arduengo, A. J. Catenation of 1,3-Diphosphacyclobutane-2,4-Diyl Units Having 2,4,6-Tri-Tert -Butylphenyl Protecting Groups and a P-Sec -Butyl Group in the Ring. *Z. Anorg. Allg. Chem.* **2009**, *6*35 (3), 488–495.

(41) Ito, S.; Miura, J.; Morita, N.; Yoshifuji, M.; Arduengo, A. J. Poly(Biradicals): Oligomers of 1,3-Diphosphacyclobutane-2,4-Diyl Units. *Angew. Chem., Int. Ed.* **2008**, *47* (34), 6418–6421.

(42) Miyazawa, Y.; Wang, Z.; Hatano, S.; Takagi, R.; Matsuoka, H.; Amamizu, N.; Kitagawa, Y.; Kayahara, E.; Yamago, S.; Abe, M. Generation and Characterization of a Tetraradical Embedded in a Curved Cyclic Paraphenylene Unit. *Chemistry – A European Journal* **2023**, 279 (24), 4510–4524.

(43) Bresien, J.; Michalik, D.; Schulz, A.; Villinger, A.; Zander, E. Azadiphosphaindane-1,3-diyls: A Class of Resonance-Stabilized Biradicals. *Angew. Chem., Int. Ed.* **2021**, *60* (3), 1507–1512.

(44) Zander, E.; Schweidt, L.; Purschke, S.; Michalik, D.; Villinger, A.; Bresien, J.; Schulz, A. Synthesis of Benzene Derivatives with Multiple Dichlorophosphino Groups. *ChemPlusChem.* **2023**, *88* (5), e2023000.

(45) Reiß, F.; Schulz, A.; Villinger, A.; Weding, N. Synthesis of Sterically Encumbered 2,4-Bis-m-Terphenyl-1,3-Dichloro-2,4-Cyclo-Dipnictadiazanes [μ -TerNPnCl]₂, (Pn = P, As). *Dalton Trans.* **2010**, 39 (41), 9962.

(46) Bresien, J.; Hering-Junghans, C.; Schulz, A.; Thomas, M.; Villinger, A. Reactivity of TerN(SiMe₃)BiCl₂ —Synthesis of an Aminobismuthenium Cation and TerN(SiMe₃)Bi(N₃)₂. Organometallics **2018**, 37 (15), 2571–2580.

(47) Bresien, J.; Goicoechea, J. M.; Hinz, A.; Scharnhölz, M. T.; Schulz, A.; Suhrbier, T.; Villinger, A. Increasing Steric Demand through Flexible Bulk – Primary Phosphanes with 2,6-Bis-(Benzhydryl)Phenyl Backbones. *Dalton Trans.* **2019**, *48* (11), 3786–3794.

(48) Burford, N.; Clyburne, J. A. C.; Losier, P.; Parks, T. M. Phosphorus, Arsenic, Antimony and Bismuth. In *Synthetic Methods of Organometallic and Inorganic Chemistry*; Karsch, H. H., Ed.; Georg Thieme Verlag: Stuttgart, 1996, DOI: 10.1055/b-0035-114091.

(49) Matsuo, T.; Suzuki, K.; Fukawa, T.; Li, B.; Ito, M.; Shoji, Y.; Otani, T.; Li, L.; Kobayashi, M.; Hachiya, M.; Tahara, Y.; Hashizume, D.; Fukunaga, T.; Fukazawa, A.; Li, Y.; Tsuji, H.; Tamao, K. Synthesis and Structures of a Series of Bulky "Rind-Br" Based on a Rigid Fused-Ring s-Hydrindacene Skeleton. *Bull. Chem. Soc. Jpn.* **2011**, *84* (11), 1178–1191.

(50) Tsimerman, M.; Mallik, D.; Matsuo, T.; Otani, T.; Tamao, K.; Organ, M. G. Sterically Demanding Imidazolinium Salts through the Activation and Cyclization of Formamides. *Chem. Commun.* **2012**, *48* (83), 10352–10354.

(51) Zhang, S.; Wang, W.; Liu, S.; Sui, Y.; Zhang, Z.; Tan, G.; Sun, Q.; Wang, X. Putting Aniline Radical Cations in a Bottle. *Science China Chemistry* **2017**, *60* (11), 1439–1443.

(52) Pyykkö, P.; Atsumi, M. Molecular Double-Bond Covalent Radii for Elements Li-E112. *Chem.—Eur. J.* **2009**, *15* (46), 12770–12779. (53) McMurry, J. E.; Swenson, R. An Attempted Synthesis of Tricyclo[8.21,10.01,7.04,10]-1(7),4(10)-Dodecadiene. *Tetrahedron Lett.* **1987**, *28* (28), 3209–3212.

(54) Bresien, J.; Hinz, A.; Schulz, A.; Villinger, A. Trapping of Transient, Heavy Pnictogen-Centred Biradicals. *Dalton Trans.* 2018, 47 (13), 4433–4436.

(55) Alvarez, S. A Cartography of the van Der Waals Territories. Dalton Trans. 2013, 42 (24), 8617–8636.

(56) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, 77 (18), 3865– 3868.

(57) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1997**, 78 (7), 1396–1396.

(58) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* **2005**, 7 (18), 3297–3305.

(59) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* **2009**, *113* (18), 6378–6396.

(60) Tolman, C. A. Phosphorus Ligand Exchange Equilibriums on Zerovalent Nickel. Dominant Role for Steric Effects. J. Am. Chem. Soc. **1970**, 92 (10), 2956–2965.

(61) Tolman, C. A. Steric Effects of Phosphorus Ligands in Organometallic Chemistry and Homogeneous Catalysis. *Chem. Rev.* **1977**, 77 (3), 313–348.

(62) Bilbrey, J. A.; Kazez, A. H.; Locklin, J.; Allen, W. D. Exact Ligand Solid Angles. J. Chem. Theory Comput. 2013, 9 (12), 5734–5744.

(63) Díez-González, S.; Nolan, S. P. Stereoelectronic Parameters Associated with N-Heterocyclic Carbene (NHC) Ligands: A Quest for Understanding. *Coord. Chem. Rev.* **200**7, *251* (5–6), 874–883.

(64) Poater, A.; Cosenza, B.; Correa, A.; Giudice, S.; Ragone, F.; Scarano, V.; Cavallo, L. Samb V ca: A Web Application for the Calculation of the Buried Volume of N-Heterocyclic Carbene Ligands. *Eur. J. Inorg. Chem.* **2009**, 2009 (13), 1759–1766.

(65) Ragone, F.; Poater, A.; Cavallo, L. Flexibility of N-Heterocyclic Carbene Ligands in Ruthenium Complexes Relevant to Olefin Metathesis and Their Impact in the First Coordination Sphere of the Metal. J. Am. Chem. Soc. 2010, 132 (12), 4249-4258.

(66) Schulz, A. On The Steric Hindrance of Bulky Substituents - Determination of Their Cone Angles. Z. Anorg. Allg. Chem. **2014**, 640 (11), 2183–2192.

(67) Beweries, T.; Kuzora, R.; Rosenthal, U.; Schulz, A.; Villinger, A. $[P(\mu-NTer)]_2$: A Biradicaloid That Is Stable at High Temperature. *Angew. Chem., Int. Ed.* **2011**, *50* (38), 8974–8978.

(68) Angeli, C.; Cimiraglia, R.; Evangelisti, S.; Leininger, T.; Malrieu, J.-P. Introduction of n -Electron Valence States for Multireference Perturbation Theory. *J. Chem. Phys.* **2001**, *114* (23), 10252–10264.

(69) Angeli, C.; Cimiraglia, R.; Malrieu, J.-P. N-Electron Valence State Perturbation Theory: A Fast Implementation of the Strongly Contracted Variant. *Chem. Phys. Lett.* **2001**, *350* (3–4), 297–305.

(70) Angeli, C.; Cimiraglia, R.; Malrieu, J.-P. N -Electron Valence State Perturbation Theory: A Spinless Formulation and an Efficient Implementation of the Strongly Contracted and of the Partially Contracted Variants. J. Chem. Phys. **2002**, 117 (20), 9138–9153.

(71) Hegarty, D.; Robb, M. A. Application of Unitary Group Methods to Configuration Interaction Calculations. *Mol. Phys.* **1979**, 38 (6), 1795–1812.

(72) Eade, R. H. A.; Robb, M. A. Direct Minimization in Mc Scf Theory. the Quasi-Newton Method. *Chem. Phys. Lett.* **1981**, *83* (2), 362–368.

(73) Schlegel, H. B.; Robb, M. A. MC SCF Gradient Optimization of the $H_2CO \rightarrow H_2 + CO$ Transition Structure. *Chem. Phys. Lett.* **1982**, 93 (1), 43–46.

(74) Siegbahn, P. E. M. A New Direct CI Method for Large CI Expansions in a Small Orbital Space. *Chem. Phys. Lett.* **1984**, *109* (5), 417–423.

(75) Bernardi, F.; Bottoni, A.; McDouall, J. J. W.; Robb, M. A.; Schlegel, H. B. MCSCF Gradient Calculation of Transition Structures in Organic Reactions. *Faraday Symp. Chem. Soc.* **1984**, *19* (4), 137– 147.

(76) Robb, M. A.; Niazi, U. The Unitary Group Approach to Electronic Structure Computations. *Rep. Mol. Theory* **1990**, *1*, 23–55.

(77) Frisch, M.; Ragazos, I. N.; Robb, M. A.; Bernhard Schlegel, H. An Evaluation of Three Direct MC-SCF Procedures. *Chem. Phys. Lett.* **1992**, *189* (6), 524–528.

(78) Yamamoto, N.; Vreven, T.; Robb, M. A.; Frisch, M. J.; Bernhard Schlegel, H. A Direct Derivative MC-SCF Procedure. *Chem. Phys. Lett.* **1996**, 250 (3–4), 373–378.

(79) Klene, M.; Robb, M. A.; Frisch, M. J.; Celani, P. Parallel Implementation of the CI-Vector Evaluation in Full CI/CAS-SCF. *J. Chem. Phys.* **2000**, *113* (14), 5653–5665.

(80) Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8 (9), 1057-1065.

(81) Heisenberg, W. Zur Theorie Des Ferromagnetismus. Z. Phys. 1928, 49 (9–10), 619–636.

(82) Dirac, P. A. M. On the Theory of Quantum Mechanics. *Proc. R. Soc. London, Ser. A* **1926**, *112* (762), 661–677.

(83) Casanova, D. How Much Tetraradical Character Is Present in the Si_6Ge_9 Cluster? J. Comput. Chem. 2014, 35 (12), 944–949.

(84) Sundholm, D.; Fliegl, H.; Berger, R. J. F. Calculations of Magnetically Induced Current Densities: Theory and Applications. *Wiley Interdiscip. Rev.: Comput. Mol. Sci.* **2016**, *6* (6), 639–678.

(85) Fliegl, H.; Taubert, S.; Lehtonen, O.; Sundholm, D. The Gauge Including Magnetically Induced Current Method. *Phys. Chem. Chem. Phys.* **2011**, 13 (46), 20500–20518.

(86) Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; von Ragué Schleyer, P. Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion. *Chem. Rev.* **2005**, *105* (10), 3842–3888.

(87) Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N. J. R. v. E. Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe. *J. Am. Chem. Soc.* **1996**, *118* (26), 6317–6318.

Journal of the American Chemical Society

(88) Fallah-Bagher-Shaidaei, H.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. Which NICS Aromaticity Index for Planar π Rings Is Best? *Org. Lett.* **2006**, *8* (5), 863–866.

(89) Pilopp, Y.; Bresien, J.; Gschwind, D.; Villinger, A.; Michalik, D.; Schulz, A. Access to Benzo- and Naphtho-Azaphospholes via C–H Bond Activation of Aryl-Substituted Isonitriles. *Chem.—Eur. J.* **2023**, No. e202300764.

(90) Jusélius, J.; Sundholm, D.; Gauss, J. Calculation of Current Densities Using Gauge-Including Atomic Orbitals. *J. Chem. Phys.* **2004**, 121 (9), 3952–3963.

(91) Taubert, S.; Sundholm, D.; Jusélius, J. Calculation of Spin-Current Densities Using Gauge-Including Atomic Orbitals. *J. Chem. Phys.* **2011**, *134* (5), No. 054123.

(92) Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W. Reversible, Metal-Free Hydrogen Activation. *Science* 2006, 314 (5802), 1124–1126.

(93) Frey, G. D.; Lavallo, V.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. Facile Splitting of Hydrogen and Ammonia by Nucleophilic Activation at a Single Carbon Center. *Science* **2007**, *316* (5823), 439–441.

(94) Spikes, G. H.; Fettinger, J. C.; Power, P. P. Facile Activation of Dihydrogen by an Unsaturated Heavier Main Group Compound. *J. Am. Chem. Soc.* **2005**, *127* (35), *12232–12233*.

(95) Bowers, C. R.; Weitekamp, D. P. Parahydrogen and Synthesis Allow Dramatically Enhanced Nuclear Alignment. J. Am. Chem. Soc. **1987**, 109 (18), 5541–5542.

(96) Bowers, C.; Weitekamp, D. P. Transformation of Symmetrization Order to Nuclear-Spin Magnetization by Chemical Reaction and Nuclear Magnetic Resonance. *Phys. Rev. Lett.* **1989**, 57 (21), 2645– 2648.

(97) Duckett, S. B. Para-Hydrogen-Enhanced Magnetic Resonance. In *Encyclopedia of Spectroscopy and Spectrometry*; Lindon, J. C., Tranter, G. E., Koppenaal, D. W., Eds.; Elsevier, 2017; pp 527–534, DOI: 10.1016/B978-0-12-409547-2.12126-2.

(98) Natterer, J.; Bargon, J. Parahydrogen Induced Polarization. Prog. Nucl. Magn. Reson. Spectrosc. **1997**, 31 (4), 293-315.

(99) Tickner, B. J.; Zhivonitko, V. V. Advancing Homogeneous Catalysis for Parahydrogen-Derived Hyperpolarisation and Its NMR Applications. *Chem. Sci.* **2022**, *13* (17), 4670–4696.

(100) Zhivonitko, V. V.; Bresien, J.; Schulz, A.; Koptyug, I. V. Parahydrogen-Induced Polarization with a Metal-Free P–P Biradicaloid. *Phys. Chem. Chem. Phys.* **2019**, *21* (11), 5890–5893.

(101) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision E.01; Gaussian, Inc.: Wallingford, CT, 2013.

(102) Neese, F. Software Update: The ORCA Program System, Version 4.0. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8 (1), No. e1327.

(103) Neese, F. Software Update: The ORCA Program System— Version 5.0. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2022, 12 (5), No. e1606.

(104) Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Landis, C. R.; Weinhold, F. *NBO* 6.0; Theoretical Chemistry Institute, University of Wisconsin: Madison, 2013.

(105) Carpenter, J. E.; Weinhold, F. Analysis of the Geometry of the Hydroxymethyl Radical by the "Different Hybrids for Different Spins" Natural Bond Orbital Procedure. *J. Mol. Struct.: THEOCHEM* **1988**, 169, 41–62.

(106) Weinhold, F.; Carpenter, J. E. The Natural Bond Orbital Lewis Structure Concept for Molecules, Radicals, and Radical Ions. In *The Structure of Small Molecules and Ions*; Naaman, R., Vager, Z., Eds.; Springer: Boston, MA, 1988; pp 227–236, DOI: 10.1007/978-1-4684-7424-4 24.

(107) Weinhold, F.; Landis, C. R. Valency and Bonding. A Natural Bond Orbital Donor-Acceptor Perspective; Cambridge University Press, 2005.

Lebenslauf

Bildungsweg

Seit 2019	Promotionsstudium an der Universität Rostock, Arbeit zu Pnictogen-zentrierten Bi- und Tetraradikalen im Arbeitskreis von Prof. Dr. Axel Schulz
2017 – 2019	Masterstudium Chemie an der Universität Rostock, Abschlussnote 1,0, Abschlussarbeit über fünfgliedrige Biradikale im Arbeitskreis von Prof. Dr. Axel Schulz
2014 – 2017	Bachelorstudium Chemie an der Universität Rostock, Abschlussnote 2,0, Abschlussarbeit über schaltbare Biradikale im Arbeitskreis von Prof. Dr. Axel Schulz
2002 – 2014	Grundschule und Gymnasium an der Werkstattschule in Rostock, Abiturnote: 1,4

Tagungen

2022	Wöhlertagung in Marburg, Posterbeitrag
2022	EWPC-18 in Rostock, Posterbeitrag
2022	IRIS-16 in Graz, Vortrag und Posterbeitrag
2021	OWPC (Onlinetagung), Posterbeitrag
2020	EWPC-17 in Rennes, Vortrag
2019	17th Ferrocene Colloquium in Rostock
2018	JCF Posterparty in Rostock, Posterbeitrag
2017	AGICHEM 2017 in Göttingen, Posterbeitrag

Auszeichnungen und Preise

2016	Umweltpreis der Hansestadt Rostock
------	------------------------------------

- 2015 Sonderpreis BundesUmweltWettbewerb
- 2015 Landessieg und Sonderpreis, Jugend forscht Landeswettbewerb Mecklenburg-Vorpommern
- 2014 Sonderpreis Jugend forscht, Bundeswettbewerb
- 2014 Landessieg und zwei Sonderpreise, Jugend forscht Landeswettbewerb Mecklenburg-Vorpommern
- 2014 Abiturientenpreis der GDCh

Stipendien

2022	Reisestipendium der GDCh
2020-2022	Kekulé-Stipendium des Fonds der Chemischen Industrie, Promotionsstipendium
2020	Reisestipendium der GDCh

Weitere Qualifikationen

Englisch	Fortgeschrittene Kenntnisse (C1)
Quantenmech. Berechnungen	Gaussian, ORCA

Publikationen

E. Zander, J. Bresien, V. V. Zhivonitko, J. Fessler, A. Villinger, D. Michalik, A. Schulz, *J. Am. Chem. Soc.* **2023**, *145*, 14484–14497.

E. Zander, L. Schweidt, S. Purschke, D. Michalik, A. Villinger, J. Bresien, A. Schulz, *ChemPlusChem* **2023**, *88*, e2023000.

J. Bresien, L. Eickhoff, A. Schulz, E. Zander, in *Comprehensive Inorganic Chemistry III* (Eds.: J. Reedijk, K.R. Poeppelmeier), Elsevier, **2023**, pp. 165–233.

K. Lindenau, E. Zander, C. Schünemann, A. Spannenberg, M. V. Andreev, V. V. Burlakov, F. Reiß, T. Beweries, *Organometallics* **2021**, *40*, 3177–3184.

A. Schulz, J. Bresien, D. Michalik, A. Villinger, E. Zander, *Angew. Chem., Int. Ed.* **2020**, *60*, 1507–1512.

J. Bresien, T. Kröger-Badge, S. Lochbrunner, D. Michalik, H. Müller, A. Schulz, E. Zander, *Chem. Sci.* **2019**, *10*, 3486–3493.