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Fig. 1: Comparison of absorption and emission spectra of Fig. 2: Comparison of absorption and emission spectra
mononuclear Ru complex and dinuclear complex 1-(PFy)-. of mononuclear Ir complex and dinuclear 2-PF,.
Photoluminescence quenching caused by energy transfer Photoluminescence quenching caused by electron
(¢p. going from 13% to 0.05%). transfer (¢, going from 9.1% to 0.15%).
We use the bridging Iligand To force charge separation
phendt> providing a strong energy transfer Co(III) complexes  were
intermetallic electronic coopera- - isolated with Ru(II), Ir(III)
tivity. With respect to light- K 2 and Cu(II) photosensitizer
driven charge separation, (2-PF, and 3-BF,) showing
directional ligands with different appropriate excited state
coordination sites are very redox potentials.[3]
interesting. Therefore, dinu-
clear complexes are accessible
by a successive synthesis route.
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In the Ir complex 2* a presumed localization of the emissive state on the phendt bridging ligand acts with the Fig. 3: Redox potentials of the ground and the excited state of 2-PF,
additional charge as a barrier for the energy transfer. render an electron transfer from the photoescited Ir chromophor to
However, the Co(III) dithiolate moiety in complexes 2+ and 3+ has a strong affinity to act as electron acceptor the Co dithiolate moiety possible.
and force an effective electron transfer in 2* from the photoexcited Ir[ppy], to the Co(III) across phendt.
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Fig. 4: Qualitative energy diagram for charge transfer Fig. 5: Comparison of absorption and emission spectra of 2-PFe (red) and 3-BF, (blue) in CH;CN (0.15 M n-Bu,NPF,
states in 1-(PFg), upon excitation show effective energy mononuclear Cu complex and dinuclear complex 3-BF,. 100 mV/s). 2-PFs and 3-BF, show an additional reversible
transfer. Photoluminescence quenching in mononuclear complex potential at —0.8 V from the redox pair Co(IlI)/Co(Il).
caused by fast relaxation of the 3MLCT (¢pp, of 3-BF,: 0.16%). Moreover, the irreversible potential at about 0.60 V is in the

range of the potential of Co-dithiolate moiety.
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