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1. Tutorial on the lecture „Analysis and Numerics of Partial Differential Equations“

Problem 1.1:
Find all solutions of the following ordinary differential equations/systems:

a) y′(t) = 2

t
y(t) + 4t3

b) y′(t) =
1 + (y(t))2

t

c) x′(t) = y(t) + t, y′(t) = x(t)− 1

Problem 1.2:
Find all solutions u = u(x, y) of the partial differential equation

12uy −
1

2
uxy = 0.

Problem 1.3:
Let z = z(x, y) be an unknown function. Solve the following initial value problem:

2xzx + yzy = 0, z(1, y) = y2 + 5

Problem 1.4:
Let φ be twice differentiable and differentiable for all real x. Further be c ∈ R.

Show that

u(x, t) =
1

2
(φ(x+ ct) + φ(x− ct)) +

1

2c

∫ x+ct

x−ct

φ(s)ds

is a solution of utt = c2uxx.

Next show that this solution also satisfies the conditions u(x, 0) = φ(x);ut(x, 0) = φ(x) for all
x ∈ R.
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2. Tutorial on the lecture „Analysis and Numerics of Partial Differential Equations“

Problem 2.1:
Let f and g be arbitrary differentiable functions. Find the second order partial differential
equation which is independent of f and g and has the general solution

(a) u(x, y) = f(x) + g(y),

(b) u(x, y) = f(x) · g(y).

Problem 2.2:

Consider the 2D vector field −→v =
(

(x+ 1)y, x(y + 1)
)T

.

(a) Compute the integral curves of −→v .

(b) Determine the general solution z(x, y) of (x+ 1)yzx + x(y + 1)zy = 0.

Problem 2.3:
Solve the PDE

3yux − 2xuy = 0

and find the particular solutions that satisfy the initial condition

(a) u(x, y) = x2 on the line y = x resp.

(b) u(x, y) = 1− x2 on the line y = −x.

Problem 2.4:
Compute the integral curves of the following vector fields and find the curves that pass through
the point P = (1, 1, 1)

(a) −→v =





z

y

x



 , (b) −→v =





x

−y

y2(1− z)



 , (c) −→v =





y + z

z + x

x+ y



 .
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3. Tutorial on the lecture „Analysis and Numerics of Partial Differential Equations“

Problem 3.1:

(a) Find the integral surfaces of −→v = (x2, y2, (x+ y)z)T .

(b) Calculate the surface containing

(i) x = y, z = 1, (ii) x = y = z, (iii) x = 1, y = z.

Problem 3.2:
Calculate the integral curves with either the integral surfaces or using a system of ODEs to
get the parametric form.

(a) −→v =





x

x+ y

x+ y + z



 , (b) −→v =





x2 − 1
(y2 + 1)(x + 1)
xz + x− z − 1



 .

Problem 3.3:

(a) Find the integral surfaces of the vector field

−→v =





(x+ 1)y
y2 + 1
y(z − 1)



 .

(b) Compute the solution z = z(x, y) of the inhomogeneous PDE

(x+ 1)yzx + (y2 + 1)zy = y(z − 1).

(c) Further, solve the PDE

(x+ 1)yux + (y2 + 1)uy + y(z − 1)uz = 0

for u = u(x, y, z).

Problem 3.4:
Find the solution z = z(x, y) for the PDE

y
∂z

∂x
+ x

∂z

∂y
= −1, 0 < y < x

with the initial condition z(x, 0) = lnx for x > 0.
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4. Tutorial on the lecture „Analysis and Numerics of Partial Differential Equations“

Problem 4.1:

(a) Find the integral curves of −→v = (x, y, x+ y + z)T

(b) Calculate the general solution of xux + yuy + (x+ y + z)uz = 0, with u = u(x, y, z).

(c) Solve xzx + yzy = x+ y + z with z = z(x, y) unknown.

(d) Given is the initial value problem xzx + yzy = x + y + z, z(x, x) = g(x). Under which
conditions at g(x) is it solvable in a neighborhood of (x0, x0)? Find all solutions.

Problem 4.2:
Classify the following PDEs

(a) 4uxx + 4uxy + uyy = −4u,

(c) 8uxx+6uyy+4uzz+uxy+2uxz+uyz = 0,

(e)* 2uxy − 2uxz + 2uyz + 3ux − u = 0.

(b) x2uxx + 2uxy + y2uyy = 0,

(d) uxx(x, y) + cuxy(x, y) + uyy(x, y) = 0,
with c ∈ R,

Problem 4.3:
Classify the PDE

2uxx(x, y)− uxy(x, y)− uyy(y, y) + uy(x, y)− u(x, y) = 12 .

What is the principal part of this PDE? Solve the characteristic equation and find the charac-
teristic curves.

Problem 4.4:
Solve the characteristic equations for the following PDEs

(a) uxx − 4uxy + 4uyy + 2uy + u = 0

(b)* uxx + 2uxy − 3uyy + 3ux − u = 0

(c)* e
2yuxx − e

2xuyy = 0

Problem 4.5:
Transform uxx + 2uyy + uzz − 2uxz = 0 into the canonical. To this end compute a coordinate
transformation





ξ

η

ζ



 = A





x

y

z





with a 3× 3 matrix A.

∗Additional self-study exercise.
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5. Tutorial on the lecture „Analysis and Numerics of Partial Differential Equations“

Problem 5.1:
Consider the PDE

21uxx + 15uyy + 18uzz − 12uxz + 12uyz = 0.

(a) Classify the PDE.

(b) Transform it into canoncial form.

Problem 5.2:
Let u = u(x, y) and x, y 6= 0 be given as well as the PDE

2x2uxx + 5xyuxy + 2y2uyy + 8xux + 5yuy = 0.

(a) Classify the PDE.

(b) Calculate the characteristic curves.

(c) Transform the PDE into canoncial form.

(d) Find the general solution of the PDE.

Problem 5.3:
Let u = u(x, t) and k ∈ R \ {0} be given together with the PDE

uxx + 2kuxt + k2utt = 0.

(a) Find the characteristic curves of the PDE.

(b) Bring the PDE into canonical form.

(c) Find the solutions of the PDE.

Problem 5.4:

(a) Show that u(x, y) = ln(x2 + y2) is harmonic outside the origin.

(b) Show that u(x, y, z) = (x2 + y2 + z2)−1/2 is harmonic outside the origin.

(c)* If u and v and u2 + v2 are harmonic, then u and v must be constant.

∗Additional self-study exercise.
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6. Tutorial on the lecture „Analysis and Numerics of Partial Differential Equations“

Problem 6.1:
Let Ω = (−3, 1) × (−2, 2) and u : R2

→ R be the solution of the Cauchy-problem

∆u = 0 for x ∈ Ω

u(x) = ax1 − bx2 for x ∈ ∂Ω and a, b > 0

(a) Calculate the minimum and maximum of u(x).

(b) Give the points where the minimum and maximum are reached.

Problem 6.2:
Show that for the coordinate tansformation x = r cosϕ and y = r sinϕ holds

(a) ∆u(x, y) = urr +
1

r
ur +

1

r2
uϕϕ,

(b)* uy = ur
y

r
+ uϕ

x

r2
.

Problem 6.3:
Consider Ω to be a disc with Radius R = 1 and the center at the origin. Compute the solution
of the boundary value problem

∆u = 0 in Ω, u(x, y) = x2 − y2 − x on ∂Ω.

Problem 6.4:
Solve the one-dimensional wave equation utt − uxx = g(x, t) on (x, t) ∈ R× R+ for

(a) the homogeneous case g(x, t) = 0 and initial conditions u(x, 0) = e
x and ut(x, 0) = sin(x),

(b) g(x, t) = 0 and initial conditions u(x, 0) = ln(1 + x2) and ut(x, 0) = x− 4,

(c)* the inhomogeneous case g(x, t) = e
at and initial conditions u(x, 0) = ut(x, 0) = 0.

Note: For the inhomogeneous wave equation utt−uxx = g(x, t) with u(x, 0) = ut(x, 0) = 0
the solution is

u(x, t) =
1

2

∫ t

s=0

∫ x+(t−s)

y=x−(t−s)
g(y, s) dy ds.

Problem 6.5:
Solve the wave equation in the three-dimensional case with the initial conditions:

(a) u(x, 0) = 0, ut(x, 0) = x2

(b)* u(x, 0) = 0, ut(x, 0) = x1x2

∗Additional self-study exercise.
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7. Tutorial on the lecture „Analysis and Numerics of Partial Differential Equations“

Problem 7.1:
Compute the solution of the unbounded one-dimensional heat equation

ut − uxx = 0, x ∈ R, t > 0

for the initial condition

(a) u(x, 0) = e
3x,

(b) u(x, 0) = 1 if x > 0 and ϕ(x) = 3 if x < 0.

Problem 7.2:
Find the solution of the following initial-boundary value problem:

ut − uxx = 0, for 0 < x < 1, t > 0

u(0, t) = u(1, t) = 0

u(x, 0) = sin2(πx)

Problem 7.3:
Calculate numerical derivatives of

(a) f(x) = e
x at x = 0,

(b)* f(x) = ln(x) at x = 1,

(c)* f(x) = tan(x) at x = π

4

using forward, backward and central differences and the stepsize h = 0.1. Compare the results
to the exact values.

Problem 7.4:
Compute an approximation to ∆u for u(x, y) = sin(πx) cos(πy) at (x, y) = (0.4, 0.6) by the
5-point star using ∆x = ∆y = h = 0.2. Compare with the exact value.

∗Additional self-study exercise.
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8. Tutorial on the lecture „Analysis and Numerics of Partial Differential Equations“

Problem 8.1:
Calculate approximations to

√
2 by solving for x ∈ [1, 2] the Cauchy problem

y′(x) =
1

2y(x)
, y(1) = 1

with the following methods:

(a) explicit Euler,

(b) implicit Euler,

(c) Euler-Heun.

Assume a stepsize h = 0.2 and compare the results with
√
2.

Problem 8.2:
Solve the boundary value problem

−u′′(x) + vu′(x) = 1, u(0) = 1, u(1) = 2

(a) analytically,

(b) numerically, assuming the constant v ∈ {±0.1,±1,±10,±100} and the stepsize h = 0.1.
Use the finite difference method,

(c) try different methods for the first order term.

Problem 8.3:
Repeat Problem 8.2, but with the boundary condition u′(1) = 0 at the right boundary. The
rest remains unchanged.

Problem 8.4:
Use the 5-point star and hx = hy = 0.2 to approximate the solution of

−∆u(x, y) = 1 in Ω,

u(x, y) = |x|+ |y| on ∂Ω

on Ω = (0, 1)2.

∗Additional self-study exercise.
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9. Tutorial on the lecture „Analysis and Numerics of Partial Differential Equations“

Problem 9.1:
Let ut + 3ux = 0 be given.

(a) Write down an upwind scheme for the PDE using backward differences in x-direction and
forward differences in t-direction and discuss this scheme.

(b) Discuss the stability of the numerical solution with respect to the possible stepsizes.

Problem 9.2:
Consider again ut + 3ux = 0.

(a) Apply the Lax-Friedrich scheme and calculate U2,1 to Un−1,1, with

U0 = u(0, x) = max(0, 1 − |x|),

for x ∈ [0, 2] and stepsizes h = 0.4, k = 0.1.

(b)* Apply the Lax-Wendroff scheme and calculate U2,1 to Un−1,1 as in (a).

(c) Compare the results to the analytical solution.

Problem 9.3:
Let ut + xux = 0 be given.

(a) For which interval for x is the applied Lax-Friedrich scheme stable with k = h = 0.1?

(b) For x ∈ [0, 3] and h = 0.1 calculate the maximal time stepsize, for which Lax-Friedrich
is still stable.

(c) Would the Lax-Wendroff scheme converge for this problem?

Problem 9.4*:
Solve the following initial value problem numerically

ut + 0.2ux = −u, x ∈ Ω, t > 0,

u(x, 0) = max(0, 1 + cos(x))

(a) for Ω = [0, 2π] as well as

(b) for Ω = [π, 3π].

∗Additional self-study exercise.
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10. Tutorial on the lecture „Analysis and Numerics of Partial Differential Equations“

Problem 10.1:
Consider the boundary value problem

uxx + 3uxy − 7uyy − uy − u =3 in Ω,

u(x, y) =g(x, y) on ∂Ω

(a) Compute the difference stencil for the inner points with step sizes hx and hy.

(b) Give the system of linear equations for Ω = (0, 1)2, hx = hy = 0.25 and g(x, y) = |x− y|.

Problem 10.2:
Let the domain Ω = (0, 2) × (0, 1) ∪ (0, 1) × [1, 2) and the boundary value problem

uxx − uyy + 4uy − ux =1 in Ω,

u(x, y) =5 on ∂Ω

be given. Assume a uniform grid with step size hx = hy = 0.2.

(a) Sketch the domain and the grid and number the grid nodes.

(b) Write down the difference stencil.

(c) Determine the discretization matrix and the corresponding right-hand side.

(d) Compute and plot an approximation to the solution.

Problem 10.3:
Consider the domain

Ω = {(x, y) ∈ [0, 1) × (0, 1) : x+ y ≤ 1} ∪ {(x, y) ∈ (−1, 0) × (0, 1) : x2 + y2 ≤ 1}.

(a) Sketch the area of Ω.

(b)* How many boundary points are there for hx = hy = 0.1, when an elliptic PDE has to
be solved with the 5 point star?

Problem 10.4*:
Solve the boundary value problem

−uxx(x, y) + 3uyy(x, y) =1 in Ω,

u(x, y) =2|x|+ y on ∂Ω

with Ω = (−1, 1) × (−1, 1) and hx = hy = 0.2 for a uniform grid.

∗Additional self-study exercise.
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11. Tutorial on the lecture „Analysis and Numerics of Partial Differential Equations“

Problem 11.1:
Determine whether the following matrices are irreducible or not.

(a) A =









1 7 3 0
0 −1 2 0
9 0 0 5
0 3 0 8









(b) B =









3 −3 5 9
0 1 0 −2
9 3 7 2
0 7 0 6









(c)* The discretization matrix of ∆u = 0 for Ω = (0, 1)2 with h = 0.2.

Problem 11.2:
Let be given the following parabolic PDE with initial and boundary conditions:

ut − uxx = 3 in (0, 1) × (0, 20),

u(x, 0) =

{

2x, x ∈ (0, 0.5],

2(1 − x), x ∈ (0.5, 1),

u(0, t) = u(1, t) = 0.

Calculate the first time layer with h = 0.25 and k = 0.06.

(a) Use the explicit Euler-method

(b) Use the Crank-Nicolson-method.

(c)* Use the implicit Euler-method.

Problem 11.3:

(a) Are the solutions of Problem 11.2 stable?

(b) What are the conditions that the solutions are stable for h = 0.1?

Problem 11.4*:
Let the following initial boundary value problem be given

ut − uxx = 5 in (−1, 1) × (0, 10),

u(x, 0) = 10x2, for x ∈ (−1, 1),

u(−1, t) = u(1, t) = 10.

Calculate the first time layer with h = 0.25 and k = 0.01.

∗Additional self-study exercise.
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12. Tutorial on the lecture „Analysis and Numerics of Partial Differential Equations“

Problem 12.1:

Let the following parabolic initial-boundary value problem be given

ut(x, y, t) = 2∆u(x, y, t) for (x, y) ∈ Ω = (−1, 1)2, t ∈ (0, 10),

u(x, y, 0) = max
(

0, (1 − x2)(1 − y2)
)

for (x, y) ∈ Ω,

u(x, y, t) = 0 for (x, y) ∈ ∂Ω, t ∈ (0, 10).

Use the explicit Euler-method and set up the discretization matrix with hx = hy = 0.25 and

k = 0.03. Calculate the approximations for the first time layer.

Problem 12.2:

Solve the following hyperbolic initial-boundary value problem

utt(x, t) = 4uxx(x, t) for x ∈ Ω = (0, 1), t ∈ (0, 10),

u(x, 0) = exp
(

− 40(x − 0.5)2
)

for x ∈ Ω,

ut(x, 0) = 0 for x ∈ Ω,

u(0, t) = u(1, t) = 0 for x ∈ ∂Ω, t ≥ 0.

Use finite differences with hx = 0.2 and k = 0.05. Compare your approximation with the

analytical solution.

Problem 12.3:

What can be said about the numerical stability of problem 12.2? What is the maximal stepsize

in time direction regarding stability?

Problem 12.4:

Implement a code to approximate the solution of the initial-boundary value problem

utt −∆u = 0 for x ∈ Ω = (−1, 1)2 ,

u(x, y, 0) = exp
(

− 20(x2 + y2)
)

for x ∈ Ω,

ut(x, y, 0) = 0 for x ∈ Ω,

u(t, x) = 0 for x ∈ ∂Ω, t > 0.

Use a grid with N = 31 nodes in each direction. Compute approximations for t ∈ [0, 5] with

k = 0.05. Use a number of 100 eigen modes to approximate the initial displacement.

∗Additional self-study exercise.
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13. Tutorial on the lecture „Analysis and Numerics of Partial Differential Equations“

Problem 13.1:
Let the following parabolic initial-boundary value problem be given

ut − uxx = 5 in (−1, 1) × (0, 10)

u(x, 0) = 10x2, for x ∈ (−1, 1)

u(−1, t) = u(1, t) = 10.

Use the method of lines with stepsizes h = 0.5 and k = 0.01. To this end

(a) transform the PDE into an ODE system and

(b) use Heun’s method to find the solution for the first layer.

Problem 13.2:
Give a weak formulation of −

(

(x2 + 1)u(x)′
)

′

+ u(x) = x for Ω = (0, 1) with u(0) = u(1) = 0.

Problem 13.3:
Derive a weak formulation of the boundary value problem

−xuxx − uyy + uxy + 2ux + u = 1 on Ω = (0, 1)2, u|Ω = 0.

Problem 13.4*:
Transform the hyperbolic initial-boundary value PDE

utt = 4uxx, for x ∈ Ω = (0, 1), t > 0

u(x, 0) = exp(−40(x− 0.5)2) for x ∈ Ω̄

ut(x, 0) = 0 for x ∈ Ω̄

u(0, t) = u(1, t) = 0 for x ∈ ∂Ω, t ≥ 0

into an ODE system.

Problem 13.5*:
Show that the boundary value problem (clamped beam)

u(4)(x) = f(x) in Ω, u(x) = u′(x) = 0 on ∂Ω

with Ω = (0, 1) has the weak formulation

∫ 1

0
u′′(x)v′′(x) =

∫ 1

0
f(x)v(x) ∀v ∈

{

v ∈ C2(Ω) ∩ C(Ω̄) : v(0) = v(1) = v′(0) = v′(1) = 0
}

.

∗Additional self-study exercise.


