1. Tutorial on the lecture "Analysis and Numerics of Partial Differential Equations"

<u>Problem 1.1:</u> Find all solutions of the following ordinary differential equations/systems:

a) $y'(t) = \frac{2}{t}y(t) + 4t^3$ b) $y'(t) = \frac{1 + (y(t))^2}{t}$ c) x'(t) = y(t) + t, y'(t) = x(t) - 1

<u>Problem 1.2:</u> Find all solutions u = u(x, y) of the partial differential equation

$$12u_y - \frac{1}{2}u_{xy} = 0$$

<u>Problem 1.3:</u> Let z = z(x, y) be an unknown function. Solve the following initial value problem:

$$2xz_x + yz_y = 0, \quad z(1,y) = y^2 + 5$$

Problem 1.4:

Let ϕ be twice differentiable and differentiable for all real x. Further be $c \in \mathbb{R}$. Show that

$$u(x,t) = \frac{1}{2}(\phi(x+ct) + \phi(x-ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} \phi(s) ds$$

is a solution of $u_{tt} = c^2 u_{xx}$.

Next show that this solution also satisfies the conditions $u(x,0) = \phi(x)$; $u_t(x,0) = \phi(x)$ for all $x \in \mathbb{R}$.

2. Tutorial on the lecture "Analysis and Numerics of Partial Differential Equations"

Problem 2.1:

Let f and g be arbitrary differentiable functions. Find the second order partial differential equation which is independent of f and g and has the general solution

- (a) u(x,y) = f(x) + g(y),
- (b) $u(x,y) = f(x) \cdot g(y)$.

Problem 2.2:

Consider the 2D vector field $\overrightarrow{v} = ((x+1)y, x(y+1))^T$.

- (a) Compute the integral curves of \overrightarrow{v} .
- (b) Determine the general solution z(x, y) of $(x + 1)yz_x + x(y + 1)z_y = 0$.

Problem 2.3: Solve the PDE

$$3yu_x - 2xu_y = 0$$

and find the particular solutions that satisfy the initial condition

- (a) $u(x,y) = x^2$ on the line y = x resp.
- (b) $u(x, y) = 1 x^2$ on the line y = -x.

Problem 2.4:

Compute the integral curves of the following vector fields and find the curves that pass through the point P = (1, 1, 1)

(a)
$$\overrightarrow{v} = \begin{pmatrix} z \\ y \\ x \end{pmatrix}$$
, (b) $\overrightarrow{v} = \begin{pmatrix} x \\ -y \\ y^2(1-z) \end{pmatrix}$, (c) $\overrightarrow{v} = \begin{pmatrix} y+z \\ z+x \\ x+y \end{pmatrix}$.

3. Tutorial on the lecture "Analysis and Numerics of Partial Differential Equations"

Problem 3.1:

- (a) Find the integral surfaces of $\overrightarrow{v} = (x^2, y^2, (x+y)z)^T$.
- (b) Calculate the surface containing
 - (i) x = y, z = 1, (ii) x = y = z, (iii) x = 1, y = z.

Problem 3.2:

Calculate the integral curves with either the integral surfaces **or** using a system of ODEs to get the parametric form.

(a)
$$\overrightarrow{v} = \begin{pmatrix} x \\ x+y \\ x+y+z \end{pmatrix}$$
, (b) $\overrightarrow{v} = \begin{pmatrix} x^2-1 \\ (y^2+1)(x+1) \\ xz+x-z-1 \end{pmatrix}$.

Problem 3.3:

(a) Find the integral surfaces of the vector field

$$\overrightarrow{v} = \begin{pmatrix} (x+1)y\\y^2+1\\y(z-1) \end{pmatrix}.$$

(b) Compute the solution z = z(x, y) of the inhomogeneous PDE

$$(x+1)yz_x + (y^2+1)z_y = y(z-1).$$

(c) Further, solve the PDE

$$(x+1)yu_x + (y^2+1)u_y + y(z-1)u_z = 0$$

for u = u(x, y, z).

<u>Problem 3.4:</u> Find the solution z = z(x, y) for the PDE

$$y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = -1, \qquad 0 < y < x$$

with the initial condition $z(x, 0) = \ln x$ for x > 0.

Problem 4.1:

- (a) Find the integral curves of $\overrightarrow{v} = (x, y, x + y + z)^T$
- (b) Calculate the general solution of $xu_x + yu_y + (x + y + z)u_z = 0$, with u = u(x, y, z).
- (c) Solve $xz_x + yz_y = x + y + z$ with z = z(x, y) unknown.
- (d) Given is the initial value problem $xz_x + yz_y = x + y + z$, z(x, x) = g(x). Under which conditions at g(x) is it solvable in a neighborhood of (x_0, x_0) ? Find all solutions.

Problem 4.2:

Classify the following PDEs

(a) $4u_{xx} + 4u_{xy} + u_{yy} = -4u$, (b) $x^2u_{xx} + 2u_{xy} + y^2u_{yy} = 0$, (c) $8u_{xx} + 6u_{yy} + 4u_{zz} + u_{xy} + 2u_{xz} + u_{yz} = 0$, (d) $u_{xx}(x,y) + cu_{xy}(x,y) + u_{yy}(x,y) = 0$, with $c \in \mathbb{R}$,

Problem 4.3:

Classify the PDE

$$2u_{xx}(x,y) - u_{xy}(x,y) - u_{yy}(y,y) + u_y(x,y) - u(x,y) = 12$$

What is the principal part of this PDE? Solve the characteristic equation and find the characteristic curves.

Problem 4.4:

Solve the characteristic equations for the following PDEs

(a)
$$u_{xx} - 4u_{xy} + 4u_{yy} + 2u_y + u = 0$$

(b)* $u_{xx} + 2u_{xy} - 3u_{yy} + 3u_x - u = 0$
(c)* $e^{2y}u_{xx} - e^{2x}u_{yy} = 0$

Problem 4.5:

Transform $u_{xx} + 2u_{yy} + u_{zz} - 2u_{xz} = 0$ into the canonical. To this end compute a coordinate transformation

$$\begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} = A \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

with a 3×3 matrix A.

^{*}Additional self-study exercise.

Problem 5.1: Consider the PDE

 $21u_{xx} + 15u_{yy} + 18u_{zz} - 12u_{xz} + 12u_{yz} = 0.$

- (a) Classify the PDE.
- (b) Transform it into canoncial form.

Problem 5.2:

Let u = u(x, y) and $x, y \neq 0$ be given as well as the PDE

$$2x^2u_{xx} + 5xyu_{xy} + 2y^2u_{yy} + 8xu_x + 5yu_y = 0.$$

- (a) Classify the PDE.
- (b) Calculate the characteristic curves.
- (c) Transform the PDE into canoncial form.
- (d) Find the general solution of the PDE.

Problem 5.3:

Let u = u(x, t) and $k \in \mathbb{R} \setminus \{0\}$ be given together with the PDE

$$u_{xx} + 2ku_{xt} + k^2 u_{tt} = 0.$$

- (a) Find the characteristic curves of the PDE.
- (b) Bring the PDE into canonical form.
- (c) Find the solutions of the PDE.

Problem 5.4:

- (a) Show that $u(x, y) = \ln(x^2 + y^2)$ is harmonic outside the origin.
- (b) Show that $u(x, y, z) = (x^2 + y^2 + z^2)^{-1/2}$ is harmonic outside the origin.
- (c)* If u and v and $u^2 + v^2$ are harmonic, then u and v must be constant.

 $^{^*}$ Additional self-study exercise.

Problem 6.1:

Let $\Omega = (-3, 1) \times (-2, 2)$ and $u : \mathbb{R}^2 \to \mathbb{R}$ be the solution of the Cauchy-problem

$$\begin{aligned} \Delta u &= 0 \quad \text{for } x \in \Omega \\ u(x) &= a x_1 - b x_2 \quad \text{for } x \in \partial \Omega \text{ and } a, b > 0 \end{aligned}$$

- (a) Calculate the minimum and maximum of u(x).
- (b) Give the points where the minimum and maximum are reached.

<u>Problem 6.2:</u> Show that for the coordinate tansformation $x = r \cos \varphi$ and $y = r \sin \varphi$ holds

(a) $\Delta u(x,y) = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\varphi\varphi},$ (b)* $u_y = u_r\frac{y}{r} + u_{\varphi}\frac{x}{r^2}.$

Problem 6.3:

Consider Ω to be a disc with Radius R = 1 and the center at the origin. Compute the solution of the boundary value problem

$$\Delta u = 0$$
 in Ω , $u(x, y) = x^2 - y^2 - x$ on $\partial \Omega$.

Problem 6.4:

Solve the one-dimensional wave equation $u_{tt} - u_{xx} = g(x,t)$ on $(x,t) \in \mathbb{R} \times \mathbb{R}_+$ for

- (a) the homogeneous case g(x,t) = 0 and initial conditions $u(x,0) = e^x$ and $u_t(x,0) = \sin(x)$,
- (b) g(x,t) = 0 and initial conditions $u(x,0) = \ln(1+x^2)$ and $u_t(x,0) = x-4$,
- (c)* the inhomogeneous case $g(x,t) = e^{at}$ and initial conditions $u(x,0) = u_t(x,0) = 0$. Note: For the inhomogeneous wave equation $u_{tt} - u_{xx} = g(x,t)$ with $u(x,0) = u_t(x,0) = 0$ the solution is

$$u(x,t) = \frac{1}{2} \int_{s=0}^{t} \int_{y=x-(t-s)}^{x+(t-s)} g(y,s) \, \mathrm{d}y \, \mathrm{d}s$$

Problem 6.5:

Solve the wave equation in the three-dimensional case with the initial conditions:

(a) u(x,0) = 0, $u_t(x,0) = x_2$ (b)* u(x,0) = 0, $u_t(x,0) = x_1x_2$

^{*}Additional self-study exercise.

7. Tutorial on the lecture "Analysis and Numerics of Partial Differential Equations"

Problem 7.1:

Compute the solution of the unbounded one-dimensional heat equation

 $u_t - u_{xx} = 0, \quad x \in \mathbb{R}, \ t > 0$

for the initial condition

$$u_t - u_{xx} = 0$$
, for $0 < x < 1$, $t > 0$
 $u(0,t) = u(1,t) = 0$
 $u(x,0) = \sin^2(\pi x)$

<u>Problem 7.3:</u> Calculate numerical derivatives of

(a)
$$f(x) = e^x$$
 at $x = 0$,
(b)* $f(x) = \ln(x)$ at $x = 1$,
(c)* $f(x) = \tan(x)$ at $x = \frac{\pi}{4}$

using forward, backward and central differences and the stepsize h = 0.1. Compare the results to the exact values.

Problem 7.4:

Compute an approximation to Δu for $u(x,y) = \sin(\pi x)\cos(\pi y)$ at (x,y) = (0.4,0.6) by the 5-point star using $\Delta x = \Delta y = h = 0.2$. Compare with the exact value.

 $^{^{*}\}mathrm{Additional}$ self-study exercise.

8. Tutorial on the lecture "Analysis and Numerics of Partial Differential Equations"

Problem 8.1:

Calculate approximations to $\sqrt{2}$ by solving for $x \in [1,2]$ the Cauchy problem

$$y'(x) = \frac{1}{2y(x)}, \quad y(1) = 1$$

with the following methods:

- (a) explicit Euler,
- (b) implicit Euler,
- (c) Euler-Heun.

Assume a stepsize h = 0.2 and compare the results with $\sqrt{2}$.

<u>Problem 8.2:</u> Solve the boundary value problem

$$-u''(x) + vu'(x) = 1, \quad u(0) = 1, \quad u(1) = 2$$

- (a) analytically,
- (b) numerically, assuming the constant $v \in \{\pm 0.1, \pm 1, \pm 10, \pm 100\}$ and the stepsize h = 0.1. Use the finite difference method,
- (c) try different methods for the first order term.

Problem 8.3:

Repeat Problem 8.2, but with the boundary condition u'(1) = 0 at the right boundary. The rest remains unchanged.

Problem 8.4:

Use the 5-point star and $h_x = h_y = 0.2$ to approximate the solution of

$$\begin{aligned} -\Delta u(x,y) &= 1 & \text{in } \Omega, \\ u(x,y) &= |x| + |y| & \text{on } \partial \Omega \end{aligned}$$

on $\Omega = (0, 1)^2$.

^{*}Additional self-study exercise.

9. Tutorial on the lecture "Analysis and Numerics of Partial Differential Equations"

Problem 9.1:

Let $u_t + 3u_x = 0$ be given.

- (a) Write down an upwind scheme for the PDE using backward differences in *x*-direction and forward differences in *t*-direction and discuss this scheme.
- (b) Discuss the stability of the numerical solution with respect to the possible stepsizes.

Problem 9.2:

Consider again $u_t + 3u_x = 0$.

(a) Apply the Lax-Friedrich scheme and calculate $U_{2,1}$ to $U_{n-1,1}$, with

$$U_0 = u(0, x) = \max(0, 1 - |x|),$$

for $x \in [0, 2]$ and stepsizes h = 0.4, k = 0.1.

- (b)* Apply the Lax-Wendroff scheme and calculate $U_{2,1}$ to $U_{n-1,1}$ as in (a).
- (c) Compare the results to the analytical solution.

Problem 9.3:

Let $u_t + xu_x = 0$ be given.

- (a) For which interval for x is the applied Lax-Friedrich scheme stable with k = h = 0.1?
- (b) For $x \in [0,3]$ and h = 0.1 calculate the maximal time stepsize, for which Lax-Friedrich is still stable.
- (c) Would the Lax-Wendroff scheme converge for this problem?

<u>Problem 9.4*:</u> Solve the following initial value problem numerically

$$u_t + 0.2u_x = -u, \qquad x \in \Omega, \ t > 0,$$

 $u(x, 0) = \max(0, 1 + \cos(x))$

- (a) for $\Omega = [0, 2\pi]$ as well as
- (b) for $\Omega = [\pi, 3\pi]$.

 $^{^*}$ Additional self-study exercise.

Problem 10.1:

Consider the boundary value problem

$$\begin{aligned} u_{xx} + 3u_{xy} - 7u_{yy} - u_y - u &= 3 & \text{in } \Omega, \\ u(x,y) &= g(x,y) & \text{on } \partial\Omega \end{aligned}$$

- (a) Compute the difference stencil for the inner points with step sizes h_x and h_y .
- (b) Give the system of linear equations for $\Omega = (0, 1)^2$, $h_x = h_y = 0.25$ and g(x, y) = |x y|.

<u>Problem 10.2:</u> Let the domain $\Omega = (0, 2) \times (0, 1) \cup (0, 1) \times [1, 2)$ and the boundary value problem

$$u_{xx} - u_{yy} + 4u_y - u_x = 1$$
 in Ω ,
 $u(x, y) = 5$ on $\partial \Omega$

be given. Assume a uniform grid with step size $h_x = h_y = 0.2$.

- (a) Sketch the domain and the grid and number the grid nodes.
- (b) Write down the difference stencil.
- (c) Determine the discretization matrix and the corresponding right-hand side.
- (d) Compute and plot an approximation to the solution.

Problem 10.3:

Consider the domain

$$\Omega = \{ (x,y) \in [0,1) \times (0,1) : x+y \le 1 \} \cup \{ (x,y) \in (-1,0) \times (0,1) : x^2 + y^2 \le 1 \}.$$

- (a) Sketch the area of Ω .
- (b)* How many boundary points are there for $h_x = h_y = 0.1$, when an elliptic PDE has to be solved with the 5 point star?

<u>Problem 10.4*:</u> Solve the boundary value problem

$$\begin{aligned} -u_{xx}(x,y) + 3u_{yy}(x,y) = 1 & \text{in } \Omega, \\ u(x,y) = 2|x| + y & \text{on } \partial\Omega \end{aligned}$$

with $\Omega = (-1, 1) \times (-1, 1)$ and $h_x = h_y = 0.2$ for a uniform grid.

^{*}Additional self-study exercise.

Problem 11.1:

Determine whether the following matrices are irreducible or not.

	1	7	3	$0 \rangle$		(3	-3	5	9 \
(a) $A =$	0	-1	2	0	(b) <i>B</i> =	0	1	0	-2
	9	0	0	5		9	3	7	2
	$\sqrt{0}$	3	0	8/		$\setminus 0$	7	0	6 /

(c)* The discretization matrix of $\Delta u = 0$ for $\Omega = (0, 1)^2$ with h = 0.2.

Problem 11.2:

Let be given the following parabolic PDE with initial and boundary conditions:

$$u_t - u_{xx} = 3 \text{ in } (0, 1) \times (0, 20),$$
$$u(x, 0) = \begin{cases} 2x, & x \in (0, 0.5], \\ 2(1 - x), & x \in (0.5, 1), \end{cases}$$
$$u(0, t) = u(1, t) = 0.$$

Calculate the first time layer with h = 0.25 and k = 0.06.

- (a) Use the explicit Euler-method
- (b) Use the Crank-Nicolson-method.
- $(c)^*$ Use the implicit Euler-method.

Problem 11.3:

- (a) Are the solutions of Problem 11.2 stable?
- (b) What are the conditions that the solutions are stable for h = 0.1?

<u>Problem 11.4*:</u>

Let the following initial boundary value problem be given

$$u_t - u_{xx} = 5$$
 in $(-1, 1) \times (0, 10)$,
 $u(x, 0) = 10x^2$, for $x \in (-1, 1)$,
 $u(-1, t) = u(1, t) = 10$.

Calculate the first time layer with h = 0.25 and k = 0.01.

^{*}Additional self-study exercise.

12. Tutorial on the lecture "Analysis and Numerics of Partial Differential Equations"

Problem 12.1:

Let the following parabolic initial-boundary value problem be given

$u_t(x, y, t) = 2\Delta u(x, y, t)$	for $(x, y) \in \Omega = (-1, 1)^2, t \in (0, 10),$
$u(x, y, 0) = \max\left(0, (1 - x^2)(1 - y^2)\right)$	for $(x, y) \in \Omega$,
u(x,y,t)=0	for $(x, y) \in \partial \Omega$, $t \in (0, 10)$.

Use the explicit Euler-method and set up the discretization matrix with $h_x = h_y = 0.25$ and k = 0.03. Calculate the approximations for the first time layer.

Problem 12.2:

Solve the following hyperbolic initial-boundary value problem

$u_{tt}(x,t) = 4u_{xx}(x,t)$	for $x \in \Omega = (0, 1), t \in (0, 10),$
$u(x,0) = \exp(-40(x-0.5)^2)$	for $x \in \Omega$,
$u_t(x,0) = 0$	for $x \in \Omega$,
$u(0,t) = u(1,t) = 0$ for $x \in \partial\Omega$, $t \ge 0$.	

Use finite differences with $h_x = 0.2$ and k = 0.05. Compare your approximation with the analytical solution.

Problem 12.3:

What can be said about the numerical stability of problem 12.2? What is the maximal stepsize in time direction regarding stability?

Problem 12.4:

Implement a code to approximate the solution of the initial-boundary value problem

$u_{tt} - \Delta u = 0$	for $x \in \Omega = (-1, 1)^2$
$u(x, y, 0) = \exp\left(-20(x^2 + y^2)\right)$	for $x \in \Omega$,
$u_t(x, y, 0) = 0$	for $x \in \Omega$,
u(t,x) = 0	for $x \in \partial \Omega$, $t > 0$.

Use a grid with N = 31 nodes in each direction. Compute approximations for $t \in [0, 5]$ with k = 0.05. Use a number of 100 eigen modes to approximate the initial displacement.

^{*}Additional self-study exercise.

<u>Problem 13.1:</u>

Let the following parabolic initial-boundary value problem be given

$$u_t - u_{xx} = 5$$
 in $(-1, 1) \times (0, 10)$
 $u(x, 0) = 10x^2$, for $x \in (-1, 1)$
 $u(-1, t) = u(1, t) = 10$.

Use the method of lines with stepsizes h = 0.5 and k = 0.01. To this end

- (a) transform the PDE into an ODE system and
- (b) use Heun's method to find the solution for the first layer.

Problem 13.2:

Give a weak formulation of $-((x^2+1)u(x)')'+u(x)=x$ for $\Omega=(0,1)$ with u(0)=u(1)=0.

Problem 13.3:

Derive a weak formulation of the boundary value problem

$$-xu_{xx} - u_{yy} + u_{xy} + 2u_x + u = 1$$
 on $\Omega = (0, 1)^2, \ u|_{\Omega} = 0.$

Problem 13.4^* :

Transform the hyperbolic initial-boundary value PDE

$u_{tt} = 4u_{xx},$	for $x \in \Omega = (0, 1), t > 0$
$u(x,0) = \exp(-40(x-0.5)^2)$	for $x \in \overline{\Omega}$
$u_t(x,0) = 0$	for $x \in \overline{\Omega}$
u(0,t) = u(1,t) = 0	for $x \in \partial \Omega, t \ge 0$

into an ODE system.

<u>Problem 13.5*:</u> Show that the boundary value problem (clamped beam)

$$u^{(4)}(x) = f(x)$$
 in Ω , $u(x) = u'(x) = 0$ on $\partial \Omega$

with $\Omega = (0, 1)$ has the weak formulation

$$\int_0^1 u''(x)v''(x) = \int_0^1 f(x)v(x) \qquad \forall v \in \left\{ v \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\bar{\Omega}) : v(0) = v(1) = v'(0) = v'(1) = 0 \right\}.$$

 * Additional self-study exercise.