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Abstract

Spectral data preprocessing is an integral and sometireesdble part of chemometric analyses. For Nuclear Mag-
netic Resonance (NMR) spectra a possible first preproaestp is a phase correction which is applied to the Fourier
transformed free induction decay (FID) signal. This prepssing step can be followed by a separate baseline cor-
rection step. Especially if series of high-resolution $peare considered, then automated and computationatly fas
preprocessing routines are desirable.

A new method is suggested that applies the phase and theéneaselrections simultaneously in an automated
form without manual input, which distinguishes this wordrfr other approaches. The underlying multi-objective op-
timization or Pareto optimization provides improved résabmpared to consecutively applied correction steps. The
optimization process uses an objective function which iaptrong penalty constraints and weaker regularization
conditions. The new method includes an approach for thectieteof zero baseline regions. The baseline correction
uses a modified Whittaker smoother. The functionality ofribey method is demonstrated for experimental NMR
spectra. The results are verified against gravimetric ddta.method is compared to alternative preprocessing tools.
Additionally, the simultaneous correction method is conepldo a consecutive application of the two correction steps

Key words: NMR data preprocessing, automated phase correction, atedrbaseline correction, multi-objective
minimization, Whittaker smoother.

1. Introduction

NMR spectroscopy is of extraordinary importance for margeegch fields in science and medicine. The Nobel
lectures of Richard R. Ernst (1991), K. Withrich (2002) @h@. Lauterbur and P. Mansfield (2003) provide an
excellent overview on the development of NMR spectroscapy its significance for various fields of application
[10, 27, 17].

This paper focuses on NMR spectroscopy in chemistry or ctedrangineering and the problem that NMR spectra
often sufer from various types of misadjustment, distortions and&oiThe zero-order misadjustment refers to the
phase dierence of the reference phase and the phase which is useé ByDtsignal recording detector [4]. The
first-order misadjustment can be caused Hjedént sources, e.g., by the delay between excitation amdtiat or
by phase shifts induced by noise-reducing filters [6]. NMBcim also stlier from baseline distortions which can be
caused for example by the nonlinearity of the filter-phaspoease, instrumental instabilities, background signals o
the discrete nature of the Fourier transformation, see [AB]efficient and reliable correction of the zero- and first-
order misadjustments (phase correction) and a correcfitredaseline are prerequisites to facilitate the acqaisit
of quantitative results from the NMR spectrum [18]. Espkitne application of NMR spectroscopy for reaction
and process monitoring or process control, which has gaim@drtance over the last years not only due to the
development of benchtop NMR spectrometer [16], necessitatomatic and robust correction algorithms that can
handle large data sets [3, 19].
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In this paper we present a new preprocessing approach for sipéRtral data which allows to correct the zero-
and first-order misadjustments in a simultaneous way tegetith the baseline by means of a multi-objective opti-
mization. The simultaneous optimization is a characteristit of this new approach.

1.1. Organization of the paper

The paper is organized as follows. Sec. 2 introduces thengg#tion-based preprocessing approach. To this
end, an objective function is suggested which includes Ipeaad regularization terms. Its minimization amounts
to a simultaneous phase and baseline correction. In Secsl 8 we discuss the step-by-step methods for the phase
correction and for the baseline correction. The simultasemrrection method is presented in Sec. 5. The new
method is tested for experimental NMR spectra in Sec. 6. rEsiglts are compared to the outcome of a computation
in which the two correction steps are applied in consecutigener. Finally, the results are compared to other phase
correction methods.

1.2. Notation

We use the following notation for the NMR signal functions.
dt denotes a complex valued raw NMR spectrum gained by a Fduaigsformation of the
free induction decay (FID).
dP"@ is a complex NMR signal after a phase correction step. Howyewdy its real part is considered
as the NMR spectrum.
d™  is a real-valued NMR signal either after step-wise or siangbus phase and baseline correction.
d stands for a general real-valued NMR signal with or withaudpapplication of correction steps.

2. Optimization-based data preprocessing

The focus of this paper is on a simultaneous and automatedatimn of the phase and the baseline of NMR
spectra. To this end we use a multi-objective optimizatidnclv is a common approach for the implementation of
competing constraints, see for example [4] where an entntipimization approach is used for phase corrections of
NMR spectra. It is a well-known fact that a multi-objectivationization problem with competing or even conflicting
objective functions often has no single solution whichimjities each constraint. In such cases, the objective furgtio
are called conflicting and the solution of the simultanequtintization (also known as multi-objective optimization
or Pareto optimization) represents a tradiebetween the conflicting constraints.

Here we consider an objective function which is a weighted sfipenalty functions and regularizing conditions.
This approach makes possible a simultaneous optimizaliail. but one of the weight factors are set to zero, then
the optimization is applied only to a single constraint. Blaive constraint can be changed and then the optimization
can be restarted. The constraint functions either penaégative entries of the spectra or are used to regularize the
resulting spectra, e.g., in the sense of a small integréleosmoothness of the spectrad ¥ R" denotes a real-valued
(discrete) spectrum, then the objective functforR” — R reads

3
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For the functiorg; we use a relative large weight factpr so thatg; can be considered as a penalty function. For the
functionsg, andgs we take smaller weight factors which results in a regulag=atect in the optimization process.
The functiong; is applied in order to enforce nonnegative results in thexdpation processThe constraint function
01 is constructed in a way that only negative portionglafhich are smaller thare; are square-summed up and
are used for penalization. In other words, small negatitéesnwhose absolute values are smaller thaare not
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penalized.The functiong, is used in order to find a solution with a small integral (cafsgharp and isolated peaks).
More precisely, the functiog, accesses the discrete integral in terms of sums of squiaressimilar way tog; all
entries of|d| which are smaller than, do not contribute to this constraint. Thascan be considered as a level of
accepted deviation of the baseline from the ideal zerotinesé&inally, the functiorgz sums up the squares of discrete
second derivatives of the data. In this way non-smoothsuisitare penalized and smooth solutions are favored in the
usual way of Tikhonov regularization¥he relationg; > y»,ys for the weight factors guarantee that nonnegativity
is a stronger constraint (penalization) whereas a smaljal and smoothness of the solutions are weaker constraint
(regularizations). For the case of weakly perturbed speatd if sharp peaks (small integral with low smoothness)
are desired, then we use = 10,y, = 1072 andys = 0 as typical values for the weight constantsy4fis increased,
e.g.ys = 0.1 together withy; = 10,7y, = 1072, then somewhat wider peaks with a slightly increased srmasthare
favored.

The control parameter; > 0 in the penalty functiom; is used in order to weaken the nonnegativity constraint
in a way that only negative components which are smaller thgncontribute to the sum of squares. The control
parametee; > 0 in g, has a similar fect. Only components af with |dj| > &, are taken into consideration for the
sum of squares. Thus is used to ignore the influence of small entries of the spectuhich are close to zero and
which potentially can be traced back to noise or other pediions. However, evesy = > = 0 leads in many cases
to useful results. In (1) the functioms are applied to normalized specttf|d|max. Hencee; ande, can be defined
in a scaling-independent way. Otherwise, the magnitudéisesfe control parameters must be adapted to the signal
intensity of the spectrurd. If the spectrum includes large perturbations or otheresystic biases, then additional
functionsg; can be added and further control parametgrsan be introduced in order to control or to remove the
influence of these perturbations.

For the numerical minimization of we use a combination of a genetic optimization algorithitih population
sizes of 20 with 20 generatioasnd an adaptive nonlinear least-squares solver, nameAGMeroutine NL2SOL [8].

Our computationally fast program code is written in C and FERN. An implementation in MATLAB by using the
routinesfminsearch, a gradient-free simplex minimization algorithm, lsgnonlin, a nonlinear least-squares solver
which uses a subspace trust-region method, is also possibie optimization-based phase correction, see Sec. 3,
and the baseline correction, see Sec. 4, result in premedd@sMR spectra which fulfill to some extent the various
constraints depending on the weight factors. The optirtrgirocess can implicitly determine further parameters
which belong to the optimal solution. Examples are the ogkjphase parametegg andy; which are optimized in the
phase correction, see Sec. 3. The correction steps can bedappnsecutively, see Secs. 3 and 4, or simultaneously,
see Sec. 5.

3. The automated phase correction

This section recapitulates in short form the step of an aatethphase correction for the Fourier transformed
spectrum. This phase correction is well-understood, seextample [25, 4, 7, 1]. In Sec. 5 this correction procedure
is a building block of the new simultaneous correction schefhe phase correction fixes two misadjustments of
zero- and of first-order by solving an optimization problemthe objective functiorf given in (1).

3.1. Misadjustments and automated phase correction

Letd™ € C" be the Fourier-transformed FID signal. The aim is to cortieetmisadjustments of zero-order and of
first-order [4, 6]. The fundamental relationshipdifto the real and imaginary parts of the phase-corrected spact
dPhae CMis dPha = (d, &) with the Euclidean produgt,-) so that the real and imaginary parts are

Re(d™™) = Re(d") cog(¢;) - Im(d™) sin(¢;).

pha, ft fty (2)
Im(dj ) = Im(dj )COi(ﬁj) + Re(d] )Sln(¢j)
for j=1,...,n, see[25, 1]. The vectar depends on the two real-valued adjustment paramegeandp;
-1 .
¢j:990+90lJT, j=1,...,n. (3)
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The optimal phase anglgj and phase parametgf minimize the objective functior by (1) in a way that

f(Re(d™Xp5.¢1))) = min  f(Re(cd”(po.¢1)))

poe[-m, ),
p1€[—nm, nr)

and result in the phase corrected spectrum.

3.2. Ambiguity of the phase correction angles

Nonnegativity of the real part ReéP"?) is not a sifficient constraint for getting unique phase correction patans
o andg;. A formal mathematical argument shows that uniquenessatdrenexpected: An ideal NMR spectrum is
strictly positive since it is a linear combination with n@yative co#ficients of the (strictly positive) Lorentz profiles
[15]. Additionally the relations (2) and (3) are continuauappings. Thus nonnegativity of R#"®) is guaranteed
at least in a small neighborhood of any péjn, ¢1) which represents a positive function (®€"3). This yields a
continuum of feasible solutions. Similar regions of feésifolutions with respect to the nonnegativity constraint
are well-known from other fields of chemometrics; see e.g3, P13, 14, 24] for the area of feasible solutions in
multivariate curve resolution. However, the ambiguityggfande; is often not very large and uniqueness can be
enforced if an additional regularization as tyor gs is switched on or if for example an entropy regularization is
used [4].

4. The automated baseline correction

The automated baseline correction consists of two stepthelfirst step, intervals on the chemical shift axis are
detected in which the baseline dominates in the sense teatithR signals by the chemical sample are of minor
importance. In a second step a smooth baseline functioneoodimplete chemical shift axis is fitted to the already
identified “pure baseline intervals”. The first step is therendifficult one. The correctness of the complete baseline
sensitively depends on the correct detection of the purelipasintervals. In this section we always assume that the
NMR spectrundP"has already undergone (a more or less successful) phasetimmt Moreover, we consider while
referring tod°"@ only its real part.

4.1. Detection of pure baseline intervals

In this section we call a chemical shift value (on the absc@afsan NMR spectrum) pure-baseline valud its
associated signal intensity cannot be assigned to chasictdlMR signals of the chemical sample. Neighboring
pure baseline values can be aggregated to pure baselimeaisteBefore running the baseline detection procedure,
a Savitzky-Golay filter [22, 21] is applied to the NMR speatrd®™® The Savitzky-Golay filter is well-known to
increase the signal-to-noise ratio and to preserve thecteistic form of the signal. The degree of the approxintati
polynomial is¢ and the width of the moving window is2 + 1. Thus 2n; + 1 consecutive components of the vector
dPhaare filtered by polynomial approximations with the polynahdiegree of at mogt If dP"2e R", then the Savitzky-
Golay filter computes for each integer numbermy +1,my + 2, ..., n—m a polynomialp; of degree’ (or less) which
approximates the points (of the moving window)

(x ™), j=iomy iy,

in the least-squares sense. Tkeare the discrete values on the abscissa. The least-squapeximationp; is
evaluated within the moving window and yields the smoothadd ¢ R" as

ai:pi(xi), j:i—m]_,...,i+ml5

andd = d; for all remaining indices which do not belong to the movingigéw. For the remaining abscissa values
with i < my respectively > n-my the points(x,—,d?ha) with j=1,...,2m + 1 respectivelyj = n— 2my,...n are used
for computingp;. The smoothed approximations are given again in the tﬁ;rmpi(xi).



The next step is to detect abscissa values of the smootheal digshose signal intensities are close to their local
mean values. To this end we compute the quantities

i+mp - i+mp 2

- 8 (a5 ). @
j=i-m, j=i-m,

which is the sum of the squares of the deviationd;dfom its mean in a window of the widthi + 1 and where the

outer sum runs again through thex2+ 1 indices of the window which is centeredxat Thez are computed for the

indicesi=my+1,my+2,...,n— .

Remark 4.1. Only the components withi=my +1,my +2,...,n—np are defined. We setzOfori=1,...,m
andi=my+1,...,n—my in order to work (for convenience) only with n-dimensionedtors. The baseline detection
procedure only needs the componentszn, +1,...,n—m,.

Next the indices are determined for which the (nonnegatiee)ponents of are smaller than a given threshold
value. By (4) a component @fvanishes if a consecutive series of componentsinfa window with the width 2, + 1
satisfy a linear relation. We assume such a linear behavioctur in pure baseline intervals. The selection criterion
is as follows: With the control parametersi: € (0, 1) andécic > O we define the set of indices which belong to
baseline values as

Mpi = {i : Zi/zthresS 5crit} .

Thereinznesis a threshold value which is computed as follows: Firstihe2m, real numbergmy, .1, ..., Z-m, are
sorted in ascending order. Then we take [ilgi(n — 2m,) |th value of this sequence of sorted numbers. Thergin
denotes the ceiling function which is the nearest integéneécargument of the ceiling function which is greater than
or equal to its argument. In simple words, thedgt contains all indices which belong to windows of the indexii
2m, + 1 in which the components behave linearly or nearly linearly

Appropriate control parameters amg = 20, ", = 40, aqit = 0.95 anddqir = 1.1 for the case a step-by-step
correction of the phase and the baseline. Appropriate sdtresimultaneous correction steps arg= 20, mp, = 40,
agit = 0.5 and&cm =1.1.

4.2. Baseline computation

The requirements for the baseline are as follows: On the and the baseline should be a smooth function and
on the other hand the baseline should fit the df# for all indices in the seMy. For experimental and noisy
data these requirements can be somewhat contradictaRf&sith respect taVip; may be non-smooth. We use the
baseline recognition process suggested in [9, 5], whickeig gimilar to the Whittaker smoother [26]. The idea is
to consider a baselinewhich is given by the vectan € R". Hence the baseline is a continuous function which for
eachi = 1,...,n- 1 is given by the linear interpolation of andu;,1 on the intervalx;, x,1]. The aim is that the
U; approximate the given valu«=.t§ha for i € My and which is as smooth as possible. Then the associatedrigegra
function reads

Uir1 — Uj )2
Xis1 =%/
Thereinsi w, is the Kronecker delta antthe Lagrange multiplier. The first summand is the error otihygroximation
of dipha by u only for indices inMp and the second summand is a measure for the smoothness dddtkwige linear
baseline.

The necessary condition for an extremumygL = 0 yields the linear system of equations

n-1
uuA)ZEZ&Mmm?“-qf+a(
i=1

(M + AB)u = MdP" (5)

ThereinM ¢ R™" is a diagonal matrix with the diagonal elements
o 1, if ic Mb|,
M"‘{a i ¢ My
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andB ¢ R™" is the tridiagonal matrix

-1 2 -1
-1 1

Remark 4.2. The system of linear equations (5) is symmetric and trilindacan be solved by a direct solver with
low costs which increase only linearly in the dimension n.

~ Having found the baseline, we compute the baseline corrected spectdifdl by a subtraction of the baseline
dfinal = gPha_ . The choice of the Lagrange multiplier is still a degree ekftom;1 = 1000 is a reasonable choice.

4.3. Incompleteness ofyvi

An appropriate construction of the 9é4, is decisive for a successful baseline identification. Itagonoblem if
single or even several indexes of pure-baseline regionsariacluded inMy,, as the baseline construction algorithm
uses a linear interpolation over these missing points. Thera@ase, namely that indices belongMg which are
associated with the true NMR signals of the chemical comptmés very annoying. Then the baseline contains parts
of the spectrum and the baseline subtraction distorts teetspm. Therefore our index selection algorithm works in
a defensive manner. Only those indexes are add&thtavhich belong to pure baseline regions of the spectrum.

4.4. Simplicity of the phase and baseline correction

The various steps of the phase and the baseline correctigi appear to be technical. However, all computa-
tional steps are very simple, can easily be programmed andreslow computation times. The algorithm should be
as robust, stable and general as possible and should wozkialp for experimental NMR spectra. The method in
[4] is a prominent example of a simple and stable method.

4.5. The problem of data-overfitting

Ideally NMR spectra can be assumed to consist of finite sunhontz profiles [15]. Lorentz profiles decay
much more slowly than Gauss profiles. These facts seem toactictt our approach for the baseline detection. It
identifies regions in which signal contributions from thesgtical sample are ignored. In these regions the baseline
subtraction forces the spectrum to zero whereas LorerstAem always nonzero. Thus our baseline approach can
lead to small inconsistencies for simulated NMR spectra, dglobal or interval-wise integration of the spectrum is
applied and if these integrals are compared with the integfahe preprocessed data. However, we cannot confirm
comparable small inconsistencies of experimental NMR tspesee the results in Sec. 6 on the ratios of integrals of
different peaks which represent concentration data on some oh#mical components.

4.6. Algorithmic variations

The suggested approach for the baseline correction opeasietywof possibilities for improvements. Other
strategies for the detection &y, and for the baseline regularization can be used. Furthehdiseline detection can
use a wavelet-based smoothing instead of the SavitzkyyGitilring. See also [5, 29, 28].

5. Simultaneous automated phase and baseline correction

This section explains how the automated phase correcéenSec. 3, and the automated baseline correction, see
Sec. 4, can be integrated into a simultaneous optimizatiocgulure. Such a simultaneous optimization, which is also
called a multi-objective optimization or Pareto-optiniea, is well known to produce better solutions of optimiaat
problems with competing or even conflicting objective fuoies [20]. The key observation is that the optimal solution
with respect to one constraint is usually not optimal witbpect to the other constraints and vice versa. Therefore,
the optimal solution of the multi-objective optimizaticgpresents a tradeffdetween the conflicting constrainiale
call our program code SINC, which stands $omultaneous\MR (signal)correction.
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Figure 1: The Fourier transformetH-spectra for the two chemical sample mixtures 1 and 2, see &#, prior to any phase and baseline
corrections. The spectra are plotted only for the relevant{ntervals.

5.1. Idea of the approach

For the simultaneous optimization we use again the obgétiictionf of Equation (1). In contrast to applying
consecutive preprocessing steps, now the spectrum isaggdlby a minimization of not until the baseline cor-
rection is applied. The optimization with respect to thealalesyg andy; includes baseline corrections as internal
computations. We fix the index skty, which specifies the pure baseline regions of the spectryméans of an
initial baseline step . There is no benefit to re-computg in each cycle of the simultaneous optimization as its
changes are expected to be marginal, but may cause inssbili

5.2. The algorithm of SINC

The algorithm of the simultaneous phase and baseline ¢mmgSINC) starts with a given Fourier transformed
FID signald™ ¢ C" and reads:

1. Aninitial phase correction is applied doaccording to Sec. 3. The result is denotediBif.

2. The set of baseline indicééy is computed fodP"

3. The simultaneous optimization for the parametgrand¢; is started by minimizing the objective function
f (@0, 1)

(@) Compute the phase corrected spectdiii= Re(¢o, ¢1).
(b) Compute the baselinefor d°"@with respect to the fixed index sbty,.
(c) Evaluate the objective valugd— u).

Remark 5.1. The functions gin (1) are applied to normalized spectrd [(Hl| max. Further, the automatic detection of
the baseline intervals is independent of the normalizatibd®"® The resulting baseline correction step is homoge-
neous of order 1 with respect to the input data. Thus the tiegudlgorithm of the automated and simultaneous phase
and baseline correction is independent of the signal sgalifhus the weighting parameteysin (1) do not have to

be scaled with a changing amplitude of the data.



5.3. Impact and selection of the control parameters

The SINC algorithm works with various control parametensthie objective function (1) the Lagrange multipliers
v1, y2 andys determine the relative weighting of the constraint funasioMost important is the nonnegativity of the
data so thay; has to be larger thayp,y3. Reasonable values are given in Section 2. The parameterg; is the
acceptance level for relative negative entries. For medipro large noise levels a maximal valuesaf= 0.05 is
suggested in order to allow for larger negative (noiser)esit A similar parametrization is suggested #gr which
controls noisy or shifted baselines in the regularizatiorctiongs.

The baseline detection is a crucial part of the SINC methda: degree of the polynomial used by the Savitzky-
Golay filter should be small, e. ¢¢ € {1, 3}. The band-width parameten depends mainly on the numberof
channels but also on the width of the peaks. Typical vaines {10,...,30} are suggested if is large. For small
n we usemy < 10. The valuamn, controls the band width for the comparison process in omeietide whether or
not a channel belongs to a pure baseline interval. A typicaiae form, is m, = 2my. Further decisive parameters
for the detection of pure baseline intervals atg anddgit. If acrit is large, then more channels are considered for
the baseline correction. i, = 1, then all channels are declared as pure baseline intemad$ is not acceptable.
The other extreme igit = 0 which means that no baseline correction can be appliedd#tarincluding low up to
medium noise levels we usg; € {0.3, 0.95}. For a higher noise level we suggesti < 0.7. The parametef is
closely linked taxgii. A large value ob; increases the length of pure baseline intervals. For datading a low or
a medium noise level we usgi; € {1.0, 2.0}. For a higher noise level we suggést; < 1.25.

The actual correction of the baseline is controlled by thgraage multiplierd. If the pure baseline intervals
are determined properly, then we use [1072, 10°] and observe only a minor impact of the choicelobn the
computational results.

6. Numerical resultsfor experimental NMR spectra

Next the new method is tested for experimental NMR spectra.cémpare the results of the new simultaneous
preprocessing not only with the results of consecutive @hasl baseline corrections, but also with an exclusive phase
correction. We also compare the results with the entropyimization approach [4] and the two-stages-tuning as
introduced in [1]. The program codes of these two methodsamgined with the adaptive iteratively re-weighted
penalized least squares approach from [9, 11]. We haveagbtiiese methods with and also without their baseline
correction algorithmsAdditonally we have applied the software package Mnova bgtkédab.

6.1. Experimental NMR spectra

The®H NMR spectra of the first two sample mixtures are taken with dioma field NMR spectrometer (Spinsolve
Carbon, Magritek, WellingtgiNew Zealand) using a 1 Tesla permanent magnet so that thendratmor frequency
equals 45 MHz. The spectra are taken with a flip angle of 9®repetition time of 30s, a number of 32 scans and an
acquisition time of & s. The Fourier transformed FID contains a numbere65 536 data pointsThe!*C spectrum
for sample mixture 3 is taken with a Bruker Ascend 400 MHz &ma Avance 3 HD 400, probe CyroProbe Prodigy,
Bruker Biospin, Rheinstettg@ermany) NMR spectrometer using & Jesla vertical superconducting magnet with a
proton Larmor frequency of 4085 MHz. The spectrum is taken with'2C inverse gated pulse sequence, a flip angle
of 60°, a relaxation delay of 100s, a number of 512 scans, and arisitamutime of 136 s.

Sample mixture 1. The'H NMR spectrum is taken from a sample containg6 gof 2-propanol (Sigma-Aldrich,
anhydrous> 99.5 mass-%) and.266 gof toluene (Merck, Uvasok 99.9 mass-%). The resulting mole fractions
of 2-propanol (PrOH) and toluene (Tol) in the mixture args,on = 0.7918+ 0.0007 mofmol and X, = 0.2082+
0.0007 mofmol, respectively. The real and the imaginary parts of the Feiutiansformed spectrum are presented in
the left subplot of Fig. 1.

Sample mixture 2. The'H NMR spectrum is taken from a sample containif§94 g of ethyl acetate (Sigma-
Aldrich, > 99.5 mass-%) an@.428 gof toluene (Merck, Uvasot, 99.9 mass-%). The resulting mole fractions of ethyl
acetate (EtAc) and toluene in the mixture &kgac = 0.5921+ 0.0008 mofmol and Xy, = 0.4079+ 0.0008 mofmol,
respectively. The real and the imaginary parts of the Faur@nsformed spectrum are shown in the right subplot of
Fig. 1.
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Figure 2: NMR spectra for the binary mixture of 2-propanotl doluene, see the sample mixture 1, after application afetforms of data

preprocessing. Left: the NMR spectrum on the relevant J-gpin range. Right: zoom along the ordinate-direction. Tlue Bpectrum results
from exclusive application of the phase correction, andgtteen spectrum is the outcome of a consecutive applicafitmeghase and baseline
correction steps. The new simultaneous phase and basefireetion algorithm yields the red spectrum. Obviouslyltket spectrum results from
the simultaneous correction algorithm.

Sample mixture 3. The3C NMR spectrum is taken from a sample containd@9040+ 0.0001 mofmol of N-
Methyldiethanolamine (Sigma-Aldrich, 99 mass-%),0.0099+ 0.0001 mo}mol of sodium carbonate (Th. Geyer,
> 99.8 mass-%),15.0083 gof water (deionized and purified with a water purificationteys (Milli-Q Reference A
System, Merck Millipore, BillerighlS-MA)). Sodium carbonate was dried for 12 h at 120 °C befasiagiand all
other chemicals were used without further purification. Betails on the sample see [2].

The uncertainties of all mole fractions of the componenth@two sample mixtures are estimated from the given
accuracy of the laboratory balance and the uncertaintidgeqgfurities of the samples.

6.2. Application of the phase and baseline corrections

The NMR spectra for the two mixtures as described in the samptture 1 and 2 are subjected to threffatient
preprocessing methods. The control parameters for thespuations, namely the weight factorsand the trun-
cation parameters, are already given in Sec. 2. The preprocessed NMR spedralatted in Figs. 2 and 3. The
blue spectrum results from an application of only the phaseection to either the NMR spectrum of the 2-propanol
mixture with toluene, see Fig. 2, or to the NMR spectrum ofetieyl acetate mixture with toluene, see Fig. 3. Espe-
cially for the largest peaks some positive dispersion Isstsent. The green spectra in these two figures represent
the results of a consecutive application of the phase arglibasorrection steps. The new simultaneous phase and
baseline correction algorithm yields in Fig. 2 and in Figh& ted spectrum. The Pareto optimal solution of the
simultaneous correction is always the best correction.

Fig. 4 shows the pure baseline regions in blue color alongtimeplete chemical shift axis for the two sample
mixtures. As explained in Sec. 4.3 it is of crucial importaricat the index sets are not too large. It is much better to
omit some data points of pure baseline regions (which arefiled by linear interpolation) than to assign data points
at peak flanks incorrectly to the baseline. This would raaudignificant distortions of the spectrum, see Sec. 4.4.

Fig. 5 shows a comparison of the four preprocessing methmdsample mixture 3. These methods are the
simultaneous phase and baseline correction (SINC), thie@nminimization approach [4] including a simple base-
line correction and the two-stages tuning [1] includingraggie baseline correction. We also corrected the spectrum
with standard algorithms provided in the software package¥a (Mestrelab, Santiago de Compostela, Spain). For
brevity, this method will be called Mnova in the followingh Mnova we applied for the phase correction the automatic
consecutive algorithms "Global”, "Minimum Entropy”, "Sadtive”, "Baseline Optimization”, "Metabonomics”, "Re-
gion Analysis”, and "Whitening”. We also used the settingdltér: Autodetect” and "Smooth Factor: Autodetect”
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Figure 3: NMR spectra for the ethyl acetate mixture with ¢ole, see the sample mixture 2, after application of threadaf data preprocessing.
Left: the NMR spectrum on the relevant 8.5—(-1.5) ppm rafijght: zoom along the ordinate-direction. The blue spectresults from exclusive
application of the phase correction, and the green spedgtine outcome of a consecutive application of the phase aselibe correction steps.
The new simultaneous phase and baseline correction &goyields the red spectrum. As in Fig. 2 the best results aséradd by the simultaneous
correction algorithm.

for the consecutive baseline correction. The results gidiyeSINC and Mnova are almost identical. A detail enlarge-
ment of the peak close to 1®7ppm shows small deviations of the results of these two nastbompared to entropy
minimization and two-stages tuning.

Remark 6.1. The SINC method, the entropy minimization approach and talsdawo-stages-tuning method use the
Fourier transformed FID signal as the data input for the theispective preprocessing steps. In contrast to this,
the highly elaborated and powerful Mnova software typicatikes the raw FID signal as input and additionally
applies FID preprocessing steps as drift correction, agation, zero filling, linear prediction and further stepsrF
the purpose of comparison we imported the Fourier transéatalD signal to Mnova and applied its preprocessing
steps. We are aware that this does not capitalize the fudhgfth of data preprocessing implemented in Mnova.

6.3. Verification of the results

The gravimetric values on the portions of NMR-resonant bgen nuclei in the sample mixtures 1 and 2 are used
in order to verify the results of the new method, cf. [18]. hstend we have to know which peaks belong to which of
the two chemical compounds in the respective mixture. Thelirtegrals for the single peaks as well as their relations
are computed. Finally the deviations to the expected gratrimvalues are calculated. These integral calculations
are also executed for the spectra which result from an exelapplication of the phase correction and also for the
spectra which result from a consecutive application of these and baseline correction steps. Additionally, we apply
this comparative gravimetric analysis to the spectra whrehattained by the entropy minimization approach [4], the
two-stages-tuning method [&hd Mnova

The gravimetric analysis is first applied to the sample nmixtll. We consider only the peaks or peak group
which are centered at®6, 17, 35, 46 and 66 ppm. The second and the fifth peak group belong to toluen¢hend
remaining ones belong to 2-propanol. The numbers of theceged protons are = 6, 3, 1, 1, 5]. The following
chemical shift intervals are used for the integration:

u1=[0.3,09]ppm wp=[15 19]ppm puz=[2.8 4.0]ppm pus=[4.2,50]ppm us=[6.0,7.1]ppm

For the sample mixture 1 we consider six verification valgjes x"MR — xro fori = 1,...,6. The index represents

the diferent combinations of peak areasthat can be applied to calculate the mole fractiMR. The indexj runs

10
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Figure 4: The automatically detected pure baseline inkeae colored blue (along the ordinate) for the two sampldures 1 and 2.
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Figure 5: The four preprocessing methods are comparedéaseample mixture 3. The color code is as follows: the new StheEhod (blue), the
entropy minimization approach [4] including a simple bamelcorrection (green), the two-stages-tuning methodritluiding a simple baseline
correction (cyan) and Mnova (red). Mnova is directly apglie the Fourier transformed FID signal, see Remark 6.1. SiNCMnova yield nearly
the same results, whereas the other two methods show smi@tides especially for the peak close to 1Bppm.

through the five chemical shift intervals. We calculate titofving combinations of the mole fraction of toluene:

= Ao/ (AL + A), MR = Ao/ (Ag + A2), XgUR = Ao/ (Ag + A2),
= As/(Ar+ As), x5 = As/(Ag + As), X = As/(Aa+ As).
Therein theA; areA; = 1 (d™(4;))/pj,i = |,...,5, wherel (d" (1)) is a numerical approximation of the peak area

in spectrumd™? on the integration interval; which is divided by the number of the associated | profans
The gravimetric analysis is also applied to the sample mi@uwith the six verification values = X, "MR - Xy,
For this example the selected peak groups are contained ichétmical shift intervals

f1=1[0.2,08]ppm > =[09, 1L4]ppm [z =[15 1.8]ppm [is=[3.0,3.8]ppm [is = [6.0, 7.0] ppm

The associated numbers of protons for these five peak greags=a[3, 3, 3, 2, 5]. The peaks in the intervajg,
T andfi belong to ethyl acetate, and the peak&irandfis belong to toluene. Th& NMR for this mixture are as

follows:
MR = Ag/ (AL + Ag) MR = Ag/ (A + Ag), QMR = A/ (A4 + Ag),
~NMR =As/(AL+ As), ~NMR =As/(Ax+ As), YGNMR As/(Ag+As).
11



verif. New method (multi-objective opt.) | min. entropy approach [4] two-stages-tuning [1] Mnova

value no baseline corr. consec. opt. simult. op  no baseline sep. baseling] no baseline sep. baseling incl. baseline
51 13-10° 34-10° 40-10° | 13-10° 64-10° | -19-10° 73.10°% | -1.2-10°
52 50-10°% -86.-10* 33-10* | 50.10° 54.10°° 84-10° 87-10° | 7.0.-10°
53 -26-10°% -16-10° 27-10* | -26-10° 11-10° 56-10° 53-10° | —2.0-10°°
84 54.107° 73-10° 41-10° | 54-10° 12-102 | -82-10°% 22.10° | 22.10°
55 9.2.10°° 30-10° 38.10* | 92.10° 11-1072 19-10° 36-10° | 11-102
36 14-10°° 22-10° 32-10% | 14-10° 70-10° | -84-10* 20-10* | 13.10°

Iyls] | 418-10° 3.05-10° 157-10° | 418-10° 7.28-10° | 448-10° 455.10° | 405-10°

Table 1: The table lists the verification valugsi = 1,..., 6, which are the deviations from the numerical integratippraximations from the
gravimetric value 2082 mofmol. Eightdifferent preprocessing techniques are considered. The neai®ous multi-objective optimization in
the fourth column gains in most instances the smallest.€eTioe last row contains the mean values of the absolute \aidit values.Mnova is
directly applied to the Fourier transformed FID signal,Rémark 6.1.

verif. New method (multi-objective opt.) | min. entropy approach [4] two-stages-tuning [1] Mnova

value no baseline corr. consec. opt. simult. opt| no baseline sep. baseling] no baseline sep. baseling incl. baseline
o1 -79.10° -39-10° 12-10% | -79-10° -20-10° | -20-10% -11.-10% ]| -74.10°
52 -55.10° -41-10° 16-10% | -56-10° -34-10° | -1.2-102% -14.102% | -4.0-10°°
53 -79.10% -34-10° -11-10°| -80-10% -25.10% | -13.102%2 -24.-10°%| 50-10°
54 -30-10°% 19.10° 41-10% | -30-10°% 58.-10° | -93-10° 1.0-10°' | -99-10°
35 -6.3-10 17-10° 45.10*% | -65-10% 44.10° | -12-10° 1.0-10' | -65-10°°
56 41-10° 24-10° -80-10* | 41-10° 76-10° | -18-10° 11.-10°% | 24.10°

I>f6i| | 366-10° 290-10° 503-10° | 368-10° 392.10° | 9.70-10° 578-10° | 587-10°

Table 2: The table lists the verification valugsi = 1, ..., 6, which are the deviations from the numerical integratippreximations from the the
gravimetric value 81079 mofmol. Eightdifferent preprocessing techniques are considered. The neai®ous multi-objective optimization in
the fourth column gains in most instances the smallest.€eTioe last row contains the mean values of the absolute \aidit values.Mnova is
directly applied to the Fourier transformed FID signal,Rémark 6.1.

Remark 6.2. Some entries of the preprocessed spectra can be negatei@ibpif only a phase correction is applied,
see e.g. the blue spectrain Figs. 2 and 3. All negative engiie set to zero prior to the numerical integration process
in order to avoid major errors - but there is no necessity fustcut-gf of negative entries.

Table 1 lists the verification values for the sample mixtur@rleight different preprocessing techniques. The
analogous values for the sample mixture 2 are given in Tabl&igure 6 is a semi-logarithmic plot of all these
verification values. The final conclusion is:

1. The phase correction approach as used here is very similae one presented in [4] on the basis of an entropy
minimization (see the columns 1 and 4 in the Tables 1 and 2).

2. The simultaneous phase and baseline correction by ohjkictive optimization produces the best results for
the given experimental NMR spectra. The separate basadimeation step improves in all cases the results
for previous phase correction steps. The smallest dewsmiio the gravimetric analysis are observed for the
simultaneous correction scheme.

7. Conclusion

Competing or even conflicting objectives arise in many oféation problems. In most cases such optimization
problems cannot successfully be solved by optimizing e&@batives in a step-by-step manner as no single solution
can be found which simultaneously optimizes all constsaifhistead, a tradefliois needed between the objectives.
The new algorithm for the phase and baseline correction oRNidectra demonstrates how the multi-objective opti-
mization methodology improves the data preprocessing fdRNlata. A characteristic trait of the suggested algorithm
is that the detection of pure baseline regions is done ordyimitial phase.
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Semi-logarithmi® values for the sample mixture 1 Semi-logarithmi@ values for the sample mixture 2
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Figure 6: The deviationg; from the gravimetric values.2082 mofmol and the deviations; from 0.4079 mofmol for theeight different pre-
processing methods. The numerical values are listed ire$abland 2. The color code is as follows) for the new method but only with a
phase correction,x( for consecutive phase and baseline corrections by the netlvad, and ) for the simultaneous phase correction by the
multi-objective optimization. Furtherp§ represent only the phase correction by minimum entropyaga, () for the minimum entropy ap-
proach with a separate baseline correction stepfdr only the phase correction by the two-stages-tuning@ggh, ( ) for the two-stages-tuning
approach with a separate baseline correction atepgy) for the phase and baseline correction by Mndvaova is directly applied to the Fourier
transformed FID signal, cf. Remark 6.1.

The new method is tested for two NMR spectra and shows cleamowements compared to a consecutive op-
timization. In a following paper we plan to present an exiemand systematic comparison for various data sets.
Further algorithmic variations, e.g. the use of waveletgte detection of the pure baseline regions, are possildle an
the topic of future research.
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