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SHARP RITZ VALUE ESTIMATES

FOR RESTARTED KRYLOV SUBSPACE ITERATIONS

MING ZHOU∗ AND KLAUS NEYMEYR∗

Abstract. Gradient iterations for the Rayleigh quotient are elemental methods for computing the
smallest eigenvalues of a pair of symmetric and positive definite matrices. A considerable convergence
acceleration can be achieved by preconditioning and by computing Rayleigh-Ritz approximations from
subspaces of increasing dimensions. An example of the resulting Krylov subspace eigensolvers is the
generalized Davidson method.

Krylov subspace iterations can be restarted in order to limit their computer storage requirements.
For the restarted Krylov subspace eigensolvers, a Chebyshev type convergence estimate was presented
by Knyazev in [Russian J. Numer. Anal. Math. Modelling, 2:371-396, 1987]. This estimate has been
generalized to arbitrary eigenvalue intervals in [SIAM J. Matrix Anal. Appl., 37(3):955-975, 2016]. The
generalized Ritz value estimate is not sharp as it depends only on three eigenvalues. In the present paper,
we extend the latter analysis by generalizing the geometric approach from [SIAM J. Matrix Anal. Appl.,
32(2):443-456, 2011] in order to derive a sharp Ritz value estimate for restarted Krylov subspace iterations.

Key words. Krylov subspace, Rayleigh quotient, Rayleigh-Ritz procedure, polynomial interpolation,
multigrid, elliptic eigenvalue problem.

1. Introduction. Gradient iterations for the Rayleigh quotient

ρ : Rn\{0} → R, ρ(x) = (x,Ax)/(x,Mx)(1.1)

serve to compute a moderate number of the extreme eigenvalues and the associated
eigenspaces of a pair of symmetric and positive definite matrices A,M ∈ R

n×n. In typical
applications A and M are finite element discretization matrices of self-adjoint and ellip-
tic partial differential operators. For a sufficiently fine discretization these matrices are
large and sparse. Thus the smallest eigenvalues of (A,M) and the associated eigenvectors
should not be computed by (classical) matrix transformations [2, 6, 20, 23]. Instead, one
prefers a gradient iteration for (1.1) of the basic form x(ℓ+1) = x(ℓ) − ω∇ρ(x(ℓ)), since
the minimizers of the Rayleigh quotient are the eigenvectors associated with the smallest
eigenvalue of (A,M).

Replacing the Euclidean gradient ∇ρ(·) by the A-gradient ∇Aρ(·) = A−1∇ρ(·) can
result in a considerable convergence acceleration [4, 12, 16]. Practically, the A-gradient it-
eration can be implemented by the Rayleigh-Ritz procedure applied to the two-dimensional
subspace spanned by x and A−1∇ρ(x). A further acceleration can be achieved by extend-
ing this subspace with previous iterates. The generalized Davidson method belongs to
this class of A-gradient iterations if it uses the exact inverse A−1 for preconditioning. We
call this case an “exact-inverse preconditioning”. The iterative scheme (which starts with
an iterate x(ℓ) and results in a Ritz vector x(ℓ+1) from an at most k-dimensional subspace
V) reads as follows

(1.2)





v(1) = x(ℓ), V = span{v(1)},

V ← span{V , A−1∇ρ(v(i))}, v(i+1) ← RRmin(V), for i = 1, . . . , k − 1,

x(ℓ+1) = v(k).

Therein the Rayleigh-Ritz procedure RRmin(V) returns a Ritz vector associated with the
smallest Ritz value of (A,M) in V . Knyazev [8] has analyzed the convergence behavior
of (1.2) by estimating ρ(x(ℓ+1)). A more general estimate is presented in the recent work
[19]. This estimate improves a classical estimate for Krylov subspaces by Kaniel, Saad
and Parlett [7, 21, 20]. Numerical examples show that even the improved estimate is only
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sharp for k = 2. In fact, the special form of the estimate for the two-dimensional case
coincides with the estimate for the A-gradient iteration analyzed in [16]; there the analytic
theory is mainly based on geometric arguments. A partial generalization of this geometric
analysis is presented in [19] in order to prove an estimate for the angle enclosed by x(ℓ)

and the eigenspace associated with the smallest eigenvalue. This estimate is sharp for
Krylov subspaces of arbitrary dimensions k ≥ 2. In the present paper, we complete this
generalization in order to derive a sharp Ritz value estimate for the general cases k > 2.
The new result is a first step toward a convergence analysis of (1.2) for the case that A−1

is substituted by general preconditioners B−1 ≈ A−1; cf. the analysis in [16] which has
been generalized in [15] to preconditioned gradient iterations.

1.1. The A-gradient and restarted Krylov subspace iterations. The A-gra-
dient of (1.1) reads

A−1∇ρ(x) =
(
2/(xTMx)

)(
x− ρ(x)A−1Mx

)
∈ span{x,A−1Mx}.

Hence the restarted iteration (1.2) works in subspaces V of the Krylov subspace

Kk(x(ℓ)) = span{x(ℓ), A−1Mx(ℓ), . . . , (A−1M)k−1x(ℓ)}.

We consider the nontrivial case that the dimension of V increases by 1 in each step so
that Kk(x(ℓ)) = k. All this allows us to consider the iteration (1.2) as a restarted Krylov
subspace iteration

(1.3) x(ℓ+1) ← RRmin

(
Kk(x(ℓ))

)
.

Alternatively, the iteration can be interpreted as an Invert-Lanczos process [14]. The
required matrix-vector products A−1w are computed by solving linear systems in A [9,
10, 11]. An approximate solution of these linear systems amounts to an inexact-inverse
preconditioning. Block versions of (1.3) serve for the simultaneous computation of several
eigenvalues; cf. the block Lanczos algorithm [3, 5].

Classical convergence estimates for eigenvalue and eigenvector approximations in Kry-
lov subspaces have been presented by Kaniel, Saad and Parlett [7, 21, 20]. A generalization
of Theorem 12.4.1 in [20] to the generalized eigenvalue problem for (A,M) provides an
upper bound for the approximation error of the smallest Ritz value in Kk(x(ℓ)) which
depends on differences of eigenvalues and angles between x(ℓ) and certain invariant sub-
spaces. This generalization also provides upper bounds for angles between eigenvectors
and Kk(x(ℓ)). However, these estimates cannot be applied recursively in order to formu-
late a priori estimates for multiple steps of the restarted Krylov subspace iteration (1.3).
For instance, in order to estimate ρ(x(ℓ+2)) in terms of x(ℓ), the classical results cannot
provide suitable intermediate estimates on x(ℓ+1) and x(ℓ); cf. [19, Section 2].

For the derivation of an a priori estimate for (1.3), we prefer to work with the con-
vergence measure

(1.4) ∆i,i+1(θ) =
(
θ − λi

)
/
(
λi+1 − θ

)

which describes the relative position of an eigenvalue approximation θ with respect to two
neighboring eigenvalues λi < λi+1 of (A,M). The ratio (1.4) has been used in various
papers on sharp convergence estimates for gradient type eigensolvers [8, 16, 15, 18, 17, 1].
Especially, [8] provides for (1.3) the Ritz value estimate

(1.5) ∆1,2

(
ρ(x(ℓ+1))

)
≤ T−2

k−1(1 + 2γ1)∆1,2

(
ρ(x(ℓ))

)
.

The convergence factor contains a Chebyshev polynomial of degree k−1 and an eigenvalue
gap ratio γ1, and it does not depend on the iterate x(ℓ). Thus, the a priori estimate
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∆1,2

(
ρ(x(ℓ))

)
≤ T−2ℓ

k−1(1 + 2γ1)∆1,2

(
ρ(x(0))

)
holds. Furthermore, the estimate (1.5) gives

a tighter bound in comparison to the classical Ritz value estimate from [20]. This fact has
been illustrated in [19, Section 2.1] by a numerical example. A generalization concerning
arbitrary eigenvalue intervals is given by [19, Theorem 3.5]. This result generalizes the
estimate (1.5) to the case that ρ(x(ℓ)) is contained in an arbitrary interval (λi, λi+1) with
i ≥ 1:

(1.6) ∆i,i+1

(
ρ(x(ℓ+1))

)
≤ T−2

k−1(1 + 2γi)∆i,i+1

(
ρ(x(ℓ))

)
.

The convergence factor T−2
k−1(1+2γi) shows that a larger dimension k or a larger distance

between λi and λi+1 results in a faster convergence. However, the numerical examples in
[19] show that the Ritz value estimate (1.6) is not sharp for k > 2. The simple explanation
is that the convergence factor T−2

k−1(1 + 2γi) depends only on three eigenvalues λi, λi+1,
λm for arbitrary k > 2. Here, our focus is on deriving a sharp Ritz value estimate which
depends for increasing k on an increasing number of eigenvalues of (A,M). Our conver-
gence analysis can considerably be simplified by using an A-geometry representation as in
[19], i.e., the generalized eigenvalue problem Ax = λMx is represented by the standard
eigenvalue problem Hy = λ−1y by considering y = A1/2x and H = A−1/2MA−1/2. Thus,
we can start with the settings of the following Theorem which contains the main results
of [19].

Theorem 1.1. Let µ1 > µ2 > · · · > µm be the distinct eigenvalues of the symmetric
and positive definite matrix H ∈ R

n×n and let µ(·) be the Rayleigh quotient with respect
to H. Consider a Ritz vector y′ associated with the largest Ritz value of H in the Krylov
subspace K := Kk

H(y) = span{y,Hy, . . . , Hk−1y} with y ∈ R
n\{0} and k ≥ 2. If µ(y) ∈

(µi+1, µi), then it holds that

(1.7)
µi − µ(y′)

µ(y′)− µi+1
≤ T−2

k−1(1 + 2γi)
µi − µ(y)

µ(y)− µi+1

with the Chebyshev polynomial Tk−1 and the gap ratio γi := (µi − µi+1)/(µi+1 − µm). If
y is not H-orthogonal to the eigenspace W1 associated with µ1, then

(1.8) tan∠H(y′,W1) ≤

k−1∏

j=1

µ2 − µm+1−j

µ1 − µm+1−j
tan∠H(y,W1).

Therein ∠H denotes an angle with respect to the inner product induced by H.

1.2. Relation to the analyses by Saad and Knyazev. This paper aims at im-
proving the Ritz value estimate (1.7) for the restarted Krylov subspace iteration (1.3). We
extend the ellipsoid analysis from [19] in order to generalize the two-dimensional ellipse
analysis from [16]. The new estimate depends on an interpolating polynomial generated
by k eigenvalues; see Lemma 3.2. In comparison to the Chebyshev polynomials used in
the classical theory on Krylov subspaces, this polynomial is not derived from an opti-
mization with respect to the representation of a Krylov subspace by polynomials, but is
derived from geometry-based arguments. Therefore, our analysis can hardly be compared
to the Chebyshev type analysis by Saad [22, Eq.(6.45),(6.53)]. However, a proof technique
suggested by Knyazev [8] for deriving (1.5) (cf. [8, Eq.(1.9),(1.18)]) is used in the proof
of Theorem 3.6, but the argument is applied to an interpolating polynomial instead of a
Chebyshev polynomial. Among the k supporting eigenvalues the smallest and the largest
eigenvalue are given explicitly and the monotonicity of our polynomial is described by the
interpolation conditions. So the speed of convergence depends on the distance between
two neighboring eigenvalues µi and µi+1. The improved quality of the new estimate in
comparison to the Chebyshev type estimates (1.7), (1.6) is demonstrated in Figure 3.2 for
a model problem and in Tables 2 and 3 for a high-dimensional PDE eigenproblem.



4 M. Zhou and K. Neymeyr

1.3. Overview of the paper. The remaining part of the paper is structured as
follows: Section 2 shows the drawback of the dimension reduction technique from [16]
applied to Krylov subspaces of dimension k > 2. Then a short review is given on the
analytic arguments from [19] which are required here to extend the ellipsoid analysis. The
main convergence analysis in section 3 provides first an implicit sharp Ritz value estimate
in terms of the settings from Theorem 1.1. Monotonicity arguments show that the slowest
convergence is attained in a (k + 1)-dimensional invariant subspace. This allows us to
derive explicit convergence estimates. Especially for k = 3, an explicit sharp estimate is
compared with the Chebyshev type estimate (1.7) for some numerical examples. Finally
in section 4, the iteration (1.3) is numerically tested by an adaptive multigrid eigensolver
for elliptic operator eigenvalue problems. The improvement of the estimates is pointed
out by numerical tests.

2. Auxiliary arguments on Krylov subspaces. In the case k = 2, the estimates
(1.6) and (1.7) are sharp and coincide with the estimates for the steepest descent/ascent
iteration as presented in [16]. A natural way to gain a sharp estimate also for k > 2 is to
use the same framework and to generalize the arguments to higher-dimensional subspaces.
In [16] the analysis starts by deriving necessary conditions on the slowest convergence by
differentiating smooth curves on a level set of the Rayleigh quotient. The generalization
of this analysis to restarted Krylov subspace iterations shows that the slowest convergence
is attained in invariant subspaces which are associated with 2k−1 distinct eigenvalues. In
contrast to this, the sharp Ritz vector estimate (1.8) in Theorem 1.1 depends on only
(k+1) eigenvalues and suggests to use a (k+1)-dimensional auxiliary subspace. For this
reason, we prefer the analysis framework which has been used in [19] for proving the
estimate (1.8).

We begin with the settings from Theorem 1.1. If K is H-invariant, then µ(y′) is an
eigenvalue of H and fulfills µ(y′) ≥ µ(y) > µi+1. This means µ(y′) ≥ µi so that the left-
hand side of (1.7) is non-positive; the estimate holds trivially. If K is not H-invariant, we
first consider the case µ(y) ∈ (µ2, µ1), since the auxiliary arguments for (1.8) are related
to the extremal eigenvalues. Let y =

∑m
j=1 wj be the eigenspace expansion of y, i.e., wj is

the orthogonal projection of y to the eigenspace associated with µj for each j with respect
to the Euclidean inner product and also with respect to the inner product induced by H .
Therein w1 is nonzero, since otherwise µ(y) ≤ µ2. Then the auxiliary subspace

(2.1) U := span{w1,K} = span{w1, y,Hy, . . . , Hk−1y}

can be used for a mini-dimensional analysis. Next we collect some basic properties of U .
Lemma 2.1. With the settings of Theorem 1.1 and µ(y) ∈ (µ2, µ1) let U be an

orthonormal matrix whose column space equals U by (2.1). We further define the U-
representations

Ĥ := UTHU, ŷ := UT y.

If K is not H-invariant, then
(a) left multiplication of K with UT results in the Krylov subspace

K̂ := span{ŷ, Ĥŷ, . . . , Ĥk−1ŷ}.

The pair (θ, v) is a Ritz pair of H in K if and only if (θ, v̂) with v̂ := UT v is a

Ritz pair of Ĥ in K̂.
(b) U has the dimension k + 1. Thus, there are k+1 Ritz values of H in U . These

are denoted by α1 ≥ · · · ≥ αk+1. The αi are the eigenvalues of Ĥ and are strictly
interlaced by the Ritz values θ1 ≥ · · · ≥ θk of H in K, i.e.,

(2.2) α1 > θ1 > α2 > · · · > αk > θk > αk+1.
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Further, the eigenspace of Ĥ associated with the eigenvalue α1 = µ1 is the column
space of UTw1.

(c) the eigenvalues α1, . . . , αk+1 of Ĥ are simple due to (2.2). Let û1, . . . , ûk+1 be the
associated orthonormal eigenvectors and µ̂(·) be the Rayleigh quotient with respect

to Ĥ. Then the affine space

Û := û1 + span{û2, . . . , ûk+1}

contains a vector

ỹ := û1 +

k+1∑

j=2

βj ûj,

for which Uỹ is collinear to y. The H-invariance of K guarantees that all coeffi-
cients βj are nonzero. There exists a further vector ỹ ′ in Û , for which (θ1, U ỹ ′)

is a Ritz pair of H in K. The level set {û ∈ Û ; µ̂(û) = θ1} forms an ellipsoid,

namely, the coefficients β̂j in the representation û = û1 +
∑k+1

j=2 β̂jûj fulfill the
ellipsoid equation

(2.3)

k+1∑

j=2

β̂2
j

α1 − θ1
θ1 − αj

= 1.

The proof of this lemma is given in [19, Lemma 3.3, Lemma 3.4]. Especially, the
ellipsoid defined by (2.3) can simply be derived by the definition of the Rayleigh quotient
µ̂(·), namely

θ1 = µ̂(û) =
ûT Ĥû

ûT û
=

α1 +
∑k+1

j=2 αj β̂
2
j

1 +
∑k+1

j=2 β̂
2
j

⇒

k+1∑

j=2

(θ1 − αj)β̂
2
j = α1 − θ1.

The quotients (α1 − θ1)/(θ1 − αj) are positive due to (2.2) and are equal to the squares
of the semi-axes of the ellipsoid; see Figure 2.1 for an illustration.

a =
√

α1−θ1
θ1−α2

b =
√

α1−θ1
θ1−α3

c =
√

α1−θ1
θ1−α4

Fig. 2.1. The ellipsoid defined by (2.3) in the case k = 3.

3. Sharp Ritz value estimates. Lemma 2.1 is the basis for the following advanced
ellipsoid analysis which is inspired by [19]. We use the properties of the auxiliary subspace
U in order to derive a sharp estimate for restarted Krylov subspace iterations. First, The-
orem 3.1 provides an estimate in terms of the Ritz values of H in U . In subsection 3.2,
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Lemma 3.2 contains an improved estimate using eigenvalues of H and monotonicity argu-
ments. This result shows that the slowest convergence is attained in a (k+1)-dimensional
invariant subspace. Additionally, similar estimates concerning arbitrary eigenvalue inter-
vals, namely µ(y) ∈ (µi+1, µi) for i = 1, . . . ,m− 1, are formulated in Lemma 3.3. In
subsection 3.3, we improve the representation of the sharp estimate especially for three-
dimensional Krylov subspaces. Moreover, the drawback of the Chebyshev type estimate
(1.7) is discussed and illustrated by a numerical comparison. In subsection 3.4, the main
results are summarized and restated in explicit form for the generalized eigenvalue problem
Ax = λMx.

3.1. An auxiliary estimate. We start with the analysis of the nontrivial case that
the Krylov subspace K is not H-invariant. The analysis extends the geometry-based
analysis in [19] and generalizes the derivation of a sharp bound for the steepest descent
method in [16].

Theorem 3.1. Let µ1 > µ2 > · · · > µm be the distinct eigenvalues of the sym-
metric and positive definite matrix H ∈ R

n×n. The corresponding Rayleigh quotient is
µ(y) = (yTHy)/(yTy). Consider for y ∈ R

n\{0} the Krylov subspace K := Kk
H(y) =

span{y,Hy, . . . , Hk−1y}, k > 2, and the H-projection w1 of y to the eigenspace associated
with µ1. If K is not H-invariant and µ(y) ∈ (µ2, µ1), then the subspace U := span{w1,K}
is (k+1)-dimensional. Let α1 ≥ · · · ≥ αk+1 be the Ritz values of H in U . Then the largest
Ritz value θ1 of H in K satisfies

(3.1)

(
α1 − θ1
θ1 − α2

)(
α1 − µ(y)

µ(y)− α2

)−1

≤ p−2(α1).

Therein p(·) is a polynomial of degree k−1 which interpolates the k pairs
(
αj , (−1)

j
)
,

j = 2, . . . , k + 1. Equality is attained in the limit case µ(y)→ α1.
Proof. Lemma 2.1 proves dimU = k+1. The proof of (3.1) is given in five steps:
(i) We represent y and a Ritz vector associated with θ1 by using the auxiliary vectors

ỹ, ỹ ′ ∈ Û as introduced in Lemma 2.1. Then the Û-representation of the Krylov
subspace K is shown to be a hyperplane in R

k.
(ii) A representation of the hyperplane from (i) is derived depending on the Ritz

values α1, . . . , αk+1 and the coefficients β2, . . . , βk+1 of ỹ from Lemma 2.1.
(iii) We represent ỹ ′ by using the geometric property of the ellipsoid (2.3).
(iv) An intermediate bound for the left-hand side of (3.1) is proved concerning the

Û-coefficients of ỹ and ỹ ′.
(v) An upper bound is proved for the intermediate bound by (iv). This bound is

shown to be equal to p−2(α1) with the interpolating polynomial p(·).
The details are as follows:
(i) According to Lemma 2.1, we use the Rayleigh quotient µ̂(·) with respect to the

matrix Ĥ := UTHU . It holds that

µ̂(ỹ) = µ̂(UT y) =
(UT y)T (UTHU)(UT y)

(UT y)T (UT y)
=

yT (UUT )H(UUT )y

yT (UUT )y
.

Since y,Hy ∈ U and UUT is the projection matrix on U , it holds that (UUT )y = y, and
(UUT )H(UUT )y = Hy so that µ̂(ỹ) = (yTHy)/(yT y) = µ(y). Further, (a) in Lemma

2.1 shows that (θ1, ỹ
′) is a Ritz pair of Ĥ in K̂, since (θ1, U ỹ ′) is a Ritz pair of H in K,

and ỹ ′ = UT (Uỹ ′). Moreover, θ1 = µ̂(ỹ ′) is the largest Ritz value of Ĥ in K̂, i.e. the

maximum of µ̂(·) in K̂. Thus, the analysis can be restricted to the Krylov subspace K̂.

Due to ỹ, ỹ ′ ∈ Û , we define for each û ∈ Û the coefficient vector

P û := (β̂2, . . . , β̂k+1)
T ∈ R

k
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with respect to the expansion û = û1 +
∑k+1

j=2 β̂j ûj. For each subspace V̂ ⊆ Û , we

define P V̂ := {P û ; û ∈ V̂}. Then we consider the intersection Û ∩ K̂ and the level set

S := {û ∈ Û ; µ̂(û) = θ1}. Their Û-representations P (Û ∩ K̂) and PS can be interpreted
geometrically. The set PS is the ellipsoid given by (2.3). The convexity of the ellipsoid

and the fact that ỹ ′ maximizes the Rayleigh quotient µ̂(·) in Û ∩ K̂ show that P (Û ∩ K̂)
is a tangential hyperplane of PS; see Figure 3.1. The point of tangency is P ỹ ′.

P ỹ ′
P ỹ ′

Pv2

Pv3

Pv4

Fig. 3.1. Geometry in the affine space Û in the case k = 3. Left: Ellipsoid PS and its tangential
hyperplane P (Û ∩ K̂). Right: Representation of the tangential hyperplane by its intersection points with
the coordinate axes.

(ii) The hyperplane P (Û∩K̂) can be represented by P û+W with an arbitrary û ∈ Û∩K̂
and a (k−1)-dimensional subspace W ⊂ R

k. Suitable û and W can be constructed by

using the intersection points vi of Û ∩ K̂ and the axes û1 + span{ûi} with

vi := (Û ∩ K̂) ∩ (û1 + span{ûi}), i = 2, . . . , k + 1.

Due to û1 + span{ûi} ⊂ Û , it holds that vi = K̂ ∩ (û1 + span{ûi}). Since ỹ is collinear to

ŷ (as Uỹ and y = Uŷ are collinear) and vi ∈ K̂ = span{ŷ, Ĥŷ, . . . , Ĥk−1ŷ}, the vectors vi
can be represented by vi = qi(Ĥ)ỹ with certain polynomials qi(·) whose degrees are less
than or equal to k−1. Next, we determine the explicit form of qi(·). With the expansion

ỹ = û1 +
∑k+1

j=2 βj ûj from Lemma 2.1, we get

vi = qi(Ĥ)ỹ = qi(Ĥ)


û1 +

k+1∑

j=2

βj ûj


 = qi(α1)û1 +

k+1∑

j=2

βjqi(αj)ûj .

Together with vi ∈ û1 + span{ûi} and βj 6= 0, we conclude that

qi(α1) = 1 and qi(αj) = 0 for j = 2, . . . , k + 1, j 6= i.

This interpolation problem in the k pairwise different nodes α1, . . . , αi−1, αi+1, . . . αk+1 is
uniquely solved by the Lagrange polynomial

qi(α) =

k+1∏

j=2, j 6=i

α− αj

α1 − αj
.

This yields

vi = û1 + βiqi(αi)ûi = û1 + βi

k+1∏

j=2, j 6=i

αi − αj

α1 − αj
ûi.
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The corresponding Û -representations are

(3.2) Pvi := βiκiei−1 with κi :=

k+1∏

j=2, j 6=i

αi − αj

α1 − αj
, i = 2, . . . , k + 1,

where e1, . . . , ek ∈ R
k are the standard basis vectors. By using these k intersection

points, we obtain a representation P û+W of the hyperplane P (Û ∩ K̂) with û = v2 and
W = span{Pv3 − Pv2, . . . , Pvk+1 − Pv2}; see Figure 3.1. Therein Pvi = βiκiei−1 and
βiκi 6= 0 prove that dimW = k − 1.

(iii) The representation P û +W from (ii) allows us to describe ỹ ′ componentwise:
We interpret the ellipsoid PS as the unit sphere in R

k with respect to the norm ‖ · ‖D
induced by the diagonal matrix D = diag(δ2, . . . , δk+1) ∈ R

k×k with

(3.3) δj =

(
α1 − θ1
θ1 − αj

)−1

, j = 2, . . . , k + 1.

Since P ỹ ′ is the point of tangency associated with PS and the tangential hyperplane
P û + W , the vector P ỹ ′ is orthogonal to the subspace W with respect to the inner
product (·, ·)D induced by D. Because of dimW = k−1, the D-orthogonal complement of
W in R

k is one-dimensional so that P ỹ ′ is collinear to any v ∈ R
k\{0} satisfying v ⊥D W .

Such a vector v can easily be determined by using the basis vectors Pvi − Pv2 of W . We
set e.g. v = (γ1, . . . , γk)

T and solve the system of equations

(v, Pvi − Pv2)D = 0, i = 2, . . . , k + 1.

Since D = diag(δ2, . . . , δk+1) and Pvi = βiκiei−1, these equations have the detailed form

γi−1 δi (βiκi)− γ1 δ2 (β2κ2) = 0, i = 2, . . . , k + 1.

A particular solution of this linear system with degenerate rank has the components
γj = (δj+1βj+1κj+1)

−1, j = 1, . . . , k so that P ỹ ′ is collinear to

(3.4) v =

(
1

δ2β2κ2
, . . . ,

1

δk+1βk+1κk+1

)T

.

(iv) In order to apply the detailed representation (3.4), we derive for the left-hand side
of (3.1) an intermediate bound which is related to P ỹ and P ỹ ′. First, (b) in Lemma 2.1
and the Courant-Fischer principles show that µ1 = α1 > µ2 ≥ α2. Then µ(y) ∈ (µ2, µ1)

and µ̂(ỹ) = µ(y) yield µ̂(ỹ) ∈ (α2, α1). Next, the expansion ỹ = û1 +
∑k+1

j=2 βj ûj gives the
equation

µ̂(ỹ) =
α1 +

∑k+1
j=2 αjβ

2
j

1 +
∑k+1

j=2 β
2
j

so that α1 − µ̂(ỹ) =
∑k+1

j=2 β
2
j

(
µ̂(ỹ)− αj

)
and

(3.5)
α1 − µ(y)

µ(y)− α2
=

α1 − µ̂(ỹ)

µ̂(ỹ)− α2
=

k+1∑

j=2

βj
2

(
µ̂(ỹ)− αj

µ̂(ỹ)− α2

)
≥

k+1∑

j=2

βj
2

(
θ1 − αj

θ1 − α2

)

by using θ1 ≥ µ̂(ỹ) and the monotonicity of the function f(a) = (α−αj)/(α−α2). Thus,

(
α1 − θ1
θ1 − α2

)(
α1 − µ(y)

µ(y)− α2

)−1

≤

(
α1 − θ1
θ1 − α2

)


k+1∑

j=2

βj
2

(
θ1 − αj

θ1 − α2

)


−1

=




k+1∑

j=2

βj
2

(
θ1 − αj

α1 − θ1

)


−1

(3.3)
=




k+1∑

j=2

δjβj
2




−1

= ‖P ỹ‖−2
D .
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However, the intermediate bound ‖P ỹ‖−2
D depends on the semi-axes δ2, . . . , δk+1, whereas

the bound in (3.1) only depends on the Ritz values of H in U . Hence a further reformu-

lation is necessary. Since P ỹ, P ỹ ′ ∈ P (Û ∩ K̂) = P û +W , it holds that P ỹ − P ỹ ′ ∈ W .
Then the orthogonality P ỹ ′ ⊥D W implies that

(P ỹ − P ỹ ′, P ỹ ′)D = 0 ⇒ (P ỹ, P ỹ ′)D = ‖P ỹ ′‖2D = 1.

Therein the last equality holds, since P ỹ ′ belongs to the unit sphere with respect to ‖·‖D;
see (iii). Furthermore, we get

cos∠D(P ỹ, P ỹ ′) =
(P ỹ, P ỹ ′)D
‖P ỹ‖D‖P ỹ ′‖D

=
1

‖P ỹ‖D
.

Therefore, the intermediate bound ‖P ỹ‖−2
D coincides with cos2 ∠D(P ỹ, P ỹ ′) and with

cos2 ∠D(P ỹ, v) for v from (3.4), since P ỹ ′ is collinear to v.
(v) Finally, cos2 ∠D(P ỹ, v) needs to be compared with a further bound which only

depends on α1, . . . , αk+1. We begin with the representation

cos2 ∠D(P ỹ, v) =
(P ỹ, v)2D
‖P ỹ‖2D‖v‖

2
D

(3.4)
=

(∑k+1
j=2 κ

−1
j

)2

(∑k+1
j=2 δjβ

2
j

)(∑k+1
j=2 δ

−1
j β−2

j κ−2
j

) .

The denominator can be bounded below by using the Cauchy-Schwarz inequality:




k+1∑

j=2

δjβ
2
j




1/2 


k+1∑

j=2

δ−1
j β−2

j κ−2
j




1/2

≥

k+1∑

j=2

(
δ
1/2
j βj

)(
δ
−1/2
j β−1

j |κj |
−1

)
=

k+1∑

j=2

|κj |
−1.

This yields

cos2 ∠D(P ỹ, v) ≤

(∑k+1
j=2 κ

−1
j

)2

(∑k+1
j=2 |κj |−1

)2 .

According to the definition of κ2, . . . , κk+1 in (3.2), we consider the polynomials

lj(α) =

k+1∏

i=2, i6=j

α− αi

αj − αi
, j = 2, . . . , k + 1

which are the Lagrange basis polynomials with respect to α2, . . . , αk+1. Then the sum∑k+1
j=2 lj(·) is a constant function equal to 1 so that

∑k+1
j=2 κ

−1
j =

∑k+1
j=2 lj(α1) = 1. Fur-

thermore, α1 < α2 < · · · < αk+1 shows that |κj |
−1 = (−1)jκ−1

j . Thus,

k+1∑

j=2

|κj |
−1 =

k+1∑

j=2

(−1)jκ−1
j =

k+1∑

j=2

(−1)jlj(α1) = p(α1)

with the interpolating polynomial p(·) for the pairs
(
αj , (−1)

j
)
, j = 2, . . . , k + 1 so that

cos2 ∠D(P ỹ, v) ≤ p−2(α1). Combining this with (iv) results in the estimate (3.1).
In the limit case µ(y)→ α1, which means that µ̂(ỹ)→ α1, θ1 → α1, the inequality in

(3.5) for the intermediate bound in (iv) turns into an equality. Additionally, the Cauchy-
Schwarz inequality applied in (v) turns into an equality by setting suitable coefficients βj

such that the two corresponding vectors are collinear. Thus, the equality in (3.1) can be
attained.



10 M. Zhou and K. Neymeyr

3.2. An improved estimate in terms of the eigenvalues of H. In order to
improve the usefulness and applicability of the estimate (3.1), we use the Courant-Fischer
principles in order to bound the Ritz values α1, . . . , αk+1 in terms of the eigenvalues of H .

Lemma 3.2. Let µ1 > µ2 > · · · > µm be the distinct eigenvalues of the symmetric and
positive definite matrix H ∈ R

n×n, and let µ(·) be the Rayleigh quotient with respect to H.
Consider a Ritz vector y′ associated with the largest Ritz value of H in the Krylov subspace
K := Kk

H(y) = span{y,Hy, . . . , Hk−1y} with y ∈ R
n\{0} and k > 2. If µ(y) ∈ (µ2, µ1),

then it holds that

(3.6)
µ1 − µ(y′)

µ(y′)− µ2
≤

(
min
J

pJ (µ1)
)−2 µ1 − µ(y)

µ(y)− µ2
,

where J runs through all (k−2)-element subsets of {3, . . . ,m − 1}. Further pJ(·) is a
polynomial of degree k−1 through the k points

(
µ2, 1

)
,
(
µm, (−1)k+1

)
and

(
µσ(j), (−1)

j
)
,

j = 3, . . . , k with the indices σ(j) ∈ J in increasing order.
Proof. If K is H-invariant, then one can easily show that µ(y′) = µ1. Thus (3.6) holds

trivially. If K is not H-invariant, then Theorem 3.1 provides the auxiliary estimate (3.1).
Because of µ1 = α1 > µ2 ≥ α2 and µ(y′) = θ1, we have

(
µ1 − µ(y′)

µ(y′)− µ2

)(
µ1 − µ(y)

µ(y)− µ2

)−1

≤

(
α1 − θ1
θ1 − α2

)(
α1 − µ(y)

µ(y)− α2

)−1

≤ p−2(α1) = p−2(µ1).

The interpolation conditions p(αj) = (−1)j , j = 2, . . . , k+1 together with µ1 = α1 > α2 >
· · · > αk+1 imply that p(·) has all its roots in (αk+1, α2). Then p(µ1) has the same sign
as p(α2) so that p(µ1) > 0. Therefore, we can maximize p−2(µ1) by minimizing p(µ1). In
order to prove (3.6), we consider the function f(α2, αk+1) := p(µ1) and compare the values
f(α2, αk+1), f(µ2, αk+1), f(µ2, µm) on condition that µ1 > µ2 ≥ α2 > · · · > αk+1 ≥ µm.

In order to show f(α2, αk+1) ≥ f(µ2, αk+1), we use the Newton form of the interpo-
lating polynomial p(·) derived from the table

αk+1 (−1)k+1

αk (−1)k δ
(1)
k,k+1

...
...

...
. . .

α3 −1 δ
(1)
3,4

. . .
. . .

α2 1 δ
(1)
2,3 δ

(2)
2,4 · · · δ

(k−1)
2,k+1

with the divided differences

(3.7) δ
(1)
i,i+1 :=

2 (−1)i

αi − αi+1
, δ

(j+1)
i,i+j+1 :=

δ
(j)
i,i+j − δ

(j)
i+1,i+j+1

αi − αi+j+1
.

The first k−1 rows define a polynomial q(·) whose coefficients do not depend on α2.

Further, the polynomial p(·) has the form p(α) = q(α) + δ
(k−1)
2,k+1

∏k+1
i=3 (α− αi) so that

f(α2, αk+1) = p(µ1) = q(µ1) + δ
(k−1)
2,k+1

k+1∏

i=3

(µ1 − αi).

To represent f(µ2, αk+1) in a similar way, we substitute α2 by µ2 in the Newton table.
Then only the last row is changed. The new quotients are

δ̃
(1)
2,3 :=

2

µ2 − α3
, δ̃

(j+1)
2,j+3 :=

δ̃
(j)
2,j+2 − δ

(j)
3,j+3

µ2 − αj+3
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so that

f(µ2, αk+1) = q(µ1) + δ̃
(k−1)
2,k+1

k+1∏

i=3

(µ1 − αi).

Because of µ1 > α2 > · · · > αk+1, the product
∏k+1

i=3 (µ1 − αi) is positive. Therefore, we

can verify f(α2, αk+1) ≥ f(µ2, αk+1) by means of the inequality δ
(k−1)
2,k+1 ≥ δ̃

(k−1)
2,k+1 . This is

shown below: First, we get by induction that δ
(j)
i,i+j > 0 for even i, and δ

(j)
i,i+j < 0 for odd

i. Especially, it holds that δ
(j)
3,j+3 < 0. Next, a successive comparison of the two versions

of the last row leads to

µ2 ≥ α2 > α3 ⇒ δ
(1)
2,3 =

2

α2 − α3
≥

2

µ2 − α3
= δ̃

(1)
2,3 > 0,

µ2 ≥ α2 > αj+3

δ
(j)
2,j+2 ≥ δ̃

(j)
2,j+2 > 0

δ
(j)
3,j+3 < 0





⇒ δ
(j+1)
2,j+3 =

δ
(j)
2,j+2 − δ

(j)
3,j+3

α2 − αj+3
≥

δ̃
(j)
2,j+2 − δ

(j)
3,j+3

µ2 − αj+3
= δ̃

(j+1)
2,j+3 > 0.

This proves δ
(k−1)
2,k+1 ≥ δ̃

(k−1)
2,k+1 inductively.

In order to show f(µ2, αk+1) ≥ f(µ2, µm), we modify the Newton table in the form

µ2 1

α3 −1 δ
(1)
2,3

...
...

...
. . .

αk (−1)k δ
(1)
k−1,k

. . .
. . .

αk+1 (−1)k+1 δ
(1)
k,k+1 δ

(2)
k−1,k+1 · · · δ

(k−1)
2,k+1

.

Therein we use again (3.7) to form the divided differences and substitute α2 by µ2. As
above we compare the last row with its variant corresponding to µm. The variant has the
new quotients

δ̂
(1)
k,k+1 :=

2 (−1)k

αk − µm
, δ̂

(j+1)
k−j,k+1 :=

δ
(j)
k−j,k − δ̂

(j)
k−j+1,k+1

αk−j − µm
.

Then f(µ2, αk+1) ≥ f(µ2, µm) is verified by showing δ
(k−1)
2,k+1 ≥ δ̂

(k−1)
2,k+1 . Therein it holds

again that δ
(j)
i,i+j > 0 for even i, and δ

(j)
i,i+j < 0 for odd i. In the case of even k, we have

αk > αk+1 ≥ µm ⇒ δ
(1)
k,k+1 =

2

αk − αk+1
≥

2

αk − µm
= δ̂

(1)
k,k+1 > 0,

δ
(j+1)
k−j,k+1 =

δ
(j)
k−j,k − δ

(j)
k−j+1,k+1

αk−j − αk+1
≤

δ
(j)
k−j,k − δ̂

(j)
k−j+1,k+1

αk−j − µm
= δ̂

(j+1)
k−j,k+1 < 0 for odd j,

δ
(j+1)
k−j,k+1 =

δ
(j)
k−j,k − δ

(j)
k−j+1,k+1

αk−j − αk+1
≥

δ
(j)
k−j,k − δ̂

(j)
k−j+1,k+1

αk−j − µm
= δ̂

(j+1)
k−j,k+1 > 0 for even j

so that δ
(k−1)
2,k+1 ≥ δ̂

(k−1)
2,k+1 . For odd k, a similar induction yields the same result.
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In summary, we have shown that f(α2, αk+1) ≥ f(µ2, αk+1) ≥ f(µ2, µm). In order
to improve the lower bound f(µ2, µm), we can consider it as a function of α3, . . . , αk and
determine its discrete minimum in the set {µ3, . . . , µm−1}

k−2 ⊂ R
k−2 under the constraint

α3 > · · · > αk. This results in the interpolating polynomial pJ(·) in the assertion.

An optimal set J in
(
minJ pJ(µ1)

)−2
can be determined by solving a discrete mini-

mization problem. Then the analytical approach of Theorem 3.1 is applicable by consid-
ering an invariant subspace corresponding to J instead of the subspace U . The resulting
bound is sharp. This additionally shows that the slowest convergence can be attained in
a (k+1)-dimensional invariant subspace. For the case µ(y) ∈ (µi+1, µi), a similar analysis
can be formulated with some additional assumptions on y and the Ritz value α2.

Lemma 3.3. Let µ1 > µ2 > · · · > µm be the distinct eigenvalues of the symmetric and
positive definite matrix H ∈ R

n×n, and let µ(·) be the Rayleigh quotient with respect to H.
Consider the Krylov subspace K := Kk

H(y) = span{y,Hy, . . . , Hk−1y} with y ∈ R
n\{0}

and k > 2, where the H-projection wi of y to the eigenspace associated with µi is nonzero.
If K is not H-invariant and µ(y) ∈ (µi+1, µi), then the subspace U = span{wi,K} is
(k+1)-dimensional and has k+1 Ritz values of H which are denoted by α1 ≥ · · · ≥ αk+1.
Let y′ be a Ritz vector associated with the largest Ritz value θ1 of H in K. If µi+1 ≥ α2,
then the estimate (3.1) holds. Furthermore, µ(y′) ≥ µi holds trivially for i > m− k. In
the case i ≤ m− k, it holds that

µi − µ(y′)

µ(y′)− µi+1
≤

(
min
J

pJ(µi)
)−2 µi − µ(y)

µ(y)− µi+1

where J runs through all (k−2)-element subsets of {i+2, . . . ,m−1}. Further pJ(·) is
a polynomial of degree k−1 which interpolates the pairs

(
µi+1, 1

)
,
(
µm, (−1)k+1

)
and(

µσ(j), (−1)
j
)
, j = 3, . . . , k with the indices σ(j) ∈ J in increasing order.

Proof. With the additional assumptions wi 6= 0 and µi+1 ≥ α2, minor modifications
of Lemma 2.1 and Theorem 3.1 result in (3.1). The new estimate can be proved by using
µi = α1 > µi+1 ≥ α2 and by modifying the proof of Lemma 3.2.

3.3. Explicit and J-minimization-free estimates. An obvious drawback of the
estimates by Lemma 3.2 and Lemma 3.3 is that the bounds are non-explicit, i.e., they
depend on a minimization with respect to the index set J . We prefer a description which
explicitly depends on the relevant eigenvalues. Such explicit estimates can be proved at
least for three-dimensional Krylov subspaces. In order to avoid the additional assumptions
on y and the Ritz value α2 in Lemma 3.3, we start with the case µ(y) ∈ (µ2, µ1). First
we adapt Lemma 3.2.

Lemma 3.4. With the settings of Lemma 3.2 and for k = 3 it holds that

µ1 − µ(y′)

µ(y′)− µ2
≤ q−2(µ1)

µ1 − µ(y)

µ(y)− µ2
.

Therein q(·) is a quadratic polynomial which interpolates the pairs
(
µ2, 1

)
,
(
µξ,−1

)
and(

µm, 1
)
, and µξ is an eigenvalue which has the smallest distance to (µ2 + µm)/2 among

the eigenvalues µ3, . . . , µm−1 (if there are two such eigenvalues nearest to (µ2 + µm)/2,
we select the larger one as µξ).

Proof. We start with the estimate (3.6) from Lemma 3.2. In the case k = 3, the

polynomial pJ (·) in the convergence factor
(
minJ pJ (µ1)

)−2
is a quadratic polynomial

interpolating the pairs
(
µ2, 1

)
,
(
µm, 1

)
and

(
µξ,−1

)
with µξ ∈ {µ3, . . . , µm−1}. In order

to determine the optimal pJ(·), we define

f(µξ) := pJ (µ1) =
2µ2

1 − 2(µ2 + µm)µ1 + (µ2µξ + µξµm + µ2µm − µ2
ξ)

(µ2 − µξ)(µξ − µm)
.
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The derivative

f ′(µξ) =
−2(µ1 − µ2)(µ1 − µm)(µ2 − 2µξ + µm)

(µ2 − µξ)2(µξ − µm)2

is a negative multiple of (µ2−2µξ+µm). Hence f(·) is decreasing in (µm, µ̃) and increasing
in (µ̃, µ2) with µ̃ := (µ2 + µm)/2. Moreover, f(·) is symmetric with respect to µ̃ within
the interval (µm, µ2), i.e., f(µ̃ − t) = f(µ̃ + t) ∀ t ∈ [0, µ2 − µ̃). Thus, the minimizer
of f(·) with respect to {µ3, . . . , µm−1} ⊂ (µm, µ2) is given by an element nearest to µ̃.
Consequently, the optimal pJ(·) coincides with the polynomial q(·) from the assertion.

We remark that the value q(µ1) is a discrete minimum of the function f(·), whereas
the continuous minimum of f(·) in the interval (µm, µ2) reads T2(1 + 2γ1) with γ1 =
(µ1 − µ2)/(µ2 − µm). Thus, q(µ1) ≥ T2(1 + 2γ1), which means that the bound q−2(µ1) is
smaller compared to the Chebyshev bound T−2

2 (1 + 2γ1). This comparison inspires us to
extend Lemma 3.4 to general eigenvalue intervals (µi+1, µi) by using the proof technique
in [19], since the latter analysis has adapted the Chebyshev type estimates to general
eigenvalue intervals. For this sake, we use Lemma 3.2 in [19], which is restated next.

Lemma 3.5. With the settings of Lemma 3.2 let ỹ =
∑m

j=1 w̃j be the expansion of
ỹ ∈ R

n\{0} in terms of its orthogonal projections w̃j to the eigenspaces of H for the m
distinct eigenvalues µj. If µ(ỹ) ∈ [µi+1, µi], then the re-weighted vector z̃ =

∑m
j=1 αjw̃j

satisfies
(a) If |αj | ≥ 1 ∀ j ≤ i and |αj | ≤ 1 ∀ j > i, then µ(z̃) ≥ µ(ỹ).
(b) If |αj | ≤ 1 ∀ j ≤ i and |αj | ≥ 1 ∀ j > i, then µ(z̃) ≤ µ(ỹ).

The combination of Lemma 3.4 with Lemma 3.5 yields the following sharp Ritz value
estimate for three-dimensional Krylov subspaces.

Theorem 3.6. Let µ1 > µ2 > · · · > µm be the distinct eigenvalues of the symmetric
and positive definite matrix H ∈ R

n×n, and let µ(·) be the Rayleigh quotient with respect
to H. Let y′ be a Ritz vector associated with the largest Ritz value of H in the Krylov
subspace K := K3

H(y) = span{y,Hy,H2y} with y ∈ R
n\{0}. If µ(y) ∈ (µi+1, µi), then

µ(y′) ≥ µi holds trivially for i > m− 3 (this case is not relevant for intentionally high-
dimensional H whose largest eigenvalue is to be computed). In the case i ≤ m− 3, it holds
that

(3.8)
µi − µ(y′)

µ(y′)− µi+1
≤ q−2(µi)

µi − µ(y)

µ(y)− µi+1
.

Therein q(·) is a quadratic polynomial which interpolates the pairs
(
µi+1, 1

)
,
(
µξ,−1

)
and(

µm, 1
)
, and µξ is an eigenvalue which has the smallest distance to (µi+1 +µm)/2 among

the eigenvalues µi+2, . . . , µm−1 (if there are two such eigenvalues nearest to (µi+1+µm)/2,
we select the larger one as µξ). Equality can be attained in the limit case that y belongs
to the invariant subspace associated with the eigenvalues µi, µi+1, µξ, µm together with
µ(y)→ µi.

Proof. The three interpolation conditions

q(µi+1) = 1, q(µξ) = −1, q(µm) = 1

with µ1 > · · · > µm imply that q(·) is strictly increasing in [µi+1,∞) so that

(3.9) min
j=1,...,i

|q(µj)| = q(µi) > q(µi+1) = 1.

Moreover, q(·) is symmetric with respect to µ̃ := (µi+1+µm)/2 in the interval (µm, µi+1).
Since µξ is an eigenvalue closest to µ̃, no eigenvalues are contained in the interval (µ̃ −
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δ, µ̃+ δ) with δ := |µ̃− µξ|. Combining this with the symmetry and the monotonicity of
q(·) shows that

(3.10) max
j=i+1,...,m

|q(µj)| = 1.

The case µ(y′) ≥ µi is trivial, since then the left-hand side of (3.8) is non-positive. In the
other case µ(y′) < µi, we begin with the obvious relation µi > µ(y′) ≥ µ(y) > µi+1 and
select an auxiliary vector z satisfying µ(y′) ≥ µ(z) ≥ µ(y). The rest of the proof is similar
to the analysis for the Chebyshev type estimate in [19, Section 3.2]. For convenience,
we present here a concise version of the proof: Based on the eigenspace expansion y =∑m

j=1 wj of y suggested in Lemma 3.5, we define z := q(µi)y1 + y2 with y1 =
∑i

j=1 wj

and y2 =
∑m

j=i+1 wj . Then

(3.11)

(
µ(y1)− µ(z)

µ(z)− µ(y2)

)(
µ(y1)− µ(y)

µ(y)− µ(y2)

)−1

= q−2(µi).

Note that µ(y1) and µ(y2) are the Ritz values of H in the subspace span{y1, y2}. Next,
the properties (3.9) and (3.10) allow us to apply Lemma 3.5 (a) to ỹ = y and z̃ =
z which yields µ(z) ≥ µ(y). Further inequalities can be derived by using the vector
q(H)y =

∑m
j=1 q(µj)wj ∈ K. Lemma 3.5 (a) applied to ỹ = y and z̃ = q(H)y yields

µ
(
q(H)y

)
≥ µ(y). Hence µ

(
q(H)y

)
∈ [µ(y), µ(y′)] ⊆ [µi+1, µi]. Then Lemma 3.5 (b)

applied to ỹ = q(H)y and z̃ = z shows that µ(z) ≤ µ
(
q(H)y

)
. In summary, we have

µ(y1) ≥ µi > µ(y′) ≥ µ
(
q(H)y

)
≥ µ(z) ≥ µ(y) > µi+1 ≥ µ(y2)

so that

(
µi − µ(y′)

µ(y′)− µi+1

)(
µi − µ(y)

µ(y)− µi+1

)−1

≤

(
µ(y1)− µ(z)

µ(z)− µ(y2)

)(
µ(y1)− µ(y)

µ(y)− µ(y2)

)−1

.

This result together with (3.11) completes the proof of the estimate (3.8). The sharpness
of the bound can be proved by applying the analysis in Theorem 3.1 to the invariant
subspace spanned by the orthogonal projections wi, wi+1, wξ and wm of y.

The convergence factor in (3.8) can easily be shown to fulfill q−2(µi) ≤ T−2
2 (1 +

2γi) with the gap ratio γi := (µi − µi+1)/(µi+1 − µm). To illustrate this inequality,
we consider the simple example H = diag(10, 9, 8, 7, 6.5, 3, 2, 1) and select 98 equidistant
values in each of the intervals (7, 8), (8, 9), (9, 10). By using random vectors in the
corresponding level sets of the Rayleigh quotient µ(·) and additionally by using equiangular
vectors (with respect to spherical coordinates) from the invariant subspace associated with

µi, µi+1, µξ, µm, we compute numerical upper bounds of
(

µi−µ(y′)
µ(y′)−µi+1

)(
µi−µ(y)

µ(y)−µi+1

)−1

and

compare them with the new estimate bound q−2(µi) and the known Chebyshev bound
T−2
2 (1 + 2γi) based on [8] and [19]; see Figure 3.2.

We remark that the Chebyshev bound T−2
2 (1 + 2γi) is sharp if (µi+1 + µm)/2 is an

eigenvalue of H . A more general conclusion is:
Corollary 3.7. The Chebyshev bound in the estimate (1.7) from Theorem 1.1 is

sharp for k > 2 if all extreme points of the polynomial

p(α) := Tk−1

(
1 + 2(α− µi+1)/(µi+1 − µm)

)

in the interval (µm, µi+1) belong to the spectrum of H.
Proof. Since the polynomial p(·) is given by the transformation of the Chebyshev

polynomial Tk−1(·) from [−1, 1] to [µm, µi+1], there are k−2 extreme points in (µm, µi+1).
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Fig. 3.2. Comparison of the numerical upper bounds (curve) with the estimates bounds q−2(µi)

(bold line) and T−2
2 (1 + 2γi) (dashed line) for the ratios

(
µi−µ(y′)

µ(y′)−µi+1

)(
µi−µ(y)

µ(y)−µi+1

)
−1

.

If these are eigenvalues of H , then they can be denoted by µσ(3) > · · · > µσ(k). By
applying the analysis in Theorem 3.1 to the case that y belongs to an invariant subspace
associated with the k+1 eigenvalues µi > µi+1 > µσ(3) > · · · > µσ(k) > µm, we have the
sharp estimate (3.1) with α1 = µi, α2 = µi+1, α3 = µσ(3), . . . , αk = µσ(k), αk+1 = µm.
Then (3.1) can be rewritten in the form of (1.7) by using simple substitutions. This means
that the Chebyshev bound in (1.7) is attainable for a proper y.

Moreover, the eigenvalue µξ in Theorem 3.6 can be interpreted as an eigenvalue nearest
to a certain extreme point of a Chebyshev polynomial. However, for k > 3 it is difficult to
describe such supporting eigenvalues by the distances to an extreme point, since the level
sets of the objective function of the associated optimization problem are not ellipsoidal.
As an example, we discuss the supporting eigenvalues for the sharp estimate in the case
k = 4 according to Lemma 3.2. First, we define the function f(µξ, µη) := p(µ1) with the
cubic polynomial p(·) which interpolates the pairs

(
µ2, 1

)
,
(
µξ,−1

)
,
(
µη, 1

)
,
(
µm,−1

)
on

condition that µ1 > µ2 > µξ > µη > µm. The derivatives fµξ
, fµη

are nonzero multiples of
(µη−µm)(µ2−2µξ+µη)+(µ2−µξ)

2 and (µ2−µξ)(µξ−2µη+µm)−(µη−µm)2 respectively.
Setting fµξ

, fµη
equal to zero gives a stationary point (µ∗

ξ , µ
∗
η)

T with µ∗
ξ = (3µ2 + µm)/4,

µ∗
η = (µ2+3µm)/4, where the minimum of the continuous problem is attained. Moreover,

the coordinates µ∗
ξ , µ

∗
η are extreme points of the transformed cubic Chebyshev polynomial

in the interval (µm, µ2). However, the discrete minimum of f(·, ·) in {µ3, . . . , µm−1}
2 is

not always given by a pair with the smallest distance to (µ∗
ξ , µ

∗
η)

T . In order to illustrate
this, we set m = 6 and (µ1, . . . , µ6) = (10, 9, 8, 6.5, 5, 1) and draw several level sets of the
corresponding function f(µξ, µη) surrounding its extreme point P1 = (7, 3)T ; see Figure
3.3. The discrete minimum is attained in P2 = (8, 5)T , whereas the nearest point to P1 is
another point P3 = (6.5, 5)T .

3.4. Estimates for the generalized eigenvalue problem. Because of the im-
portance of the generalized eigenvalue problem Ax = λMx we explicitly state for this
problem the main results gained in section 3 on the convergence of the restarted Krylov
subspace iteration (1.3). This reformulation is a direct consequence of the previous results
together with the substitutions based on y = A1/2x and H = A−1/2MA−1/2; see [19] for
the details of the transformation.

Theorem 3.8. Let λ1 < λ2 < · · · < λm be the distinct eigenvalues of the gen-
eralized eigenvalue problem Ax = λMx. A,M ∈ R

n×n are symmetric and positive
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Fig. 3.3. Level sets of f(µξ , µη) associated with the interior supporting eigenvalues for the sharp

estimate in four-dimensional Krylov subspaces. The continuous minimum is attained in P1 = (7, 3)T .
Although P3 is close to P1 compared to P2, the function takes the larger function value in P3.

definite matrices. Further, let ρ(·) be the Rayleigh quotient defined in (1.1) and x′ be
a Ritz vector associated with the smallest Ritz value of (A,M) in the Krylov subspace
span{x,A−1Mx, . . . , (A−1M)k−1x} with x ∈ R

n\{0} and k > 2. The convergence mea-
sure ∆i,i+1(·) is given in (1.4).

(i) If ρ(x) ∈ (λ1, λ2), then it holds that

∆1,2

(
ρ(x′)

)
≤

(
min
J

pJ(λ
−1
1 )

)−2

∆1,2

(
ρ(x)

)
,

where J runs through all (k−2)-element subsets of {3, . . . ,m−1}. Further pJ(·) is a poly-
nomial of degree k−1 interpolating the pairs

(
λ−1
2 , 1

)
,
(
λ−1
m , (−1)k+1

)
and

(
λ−1
σ(j), (−1)

j
)
,

j = 3, . . . , k with the indices σ(j) ∈ J in increasing order; cf. Lemma 3.2. A similar
estimate for the case ρ(x) ∈ (λi, λi+1) can be derived by adding assumptions on x and a
certain Ritz value as in Lemma 3.3.

(ii) If k = 3 and ρ(x) ∈ (λi, λi+1), then ρ(x′) ≤ λi holds trivially for i > m− 3. In
the case i ≤ m− 3, it holds that

∆i,i+1

(
ρ(x′)

)
≤ q−2(λ−1

i )∆i,i+1

(
ρ(x)

)
.

Therein q(·) is a quadratic polynomial which interpolates the pairs
(
λ−1
i+1, 1

)
,
(
λ−1
ξ ,−1

)

and
(
λ−1
m , 1

)
, and λ−1

ξ is an element nearest to (λ−1
i+1+λ−1

m )/2 in the set {λ−1
i+2, . . . , λ

−1
m−1}

(if there are two such elements, we select the larger one as λ−1
ξ ). Equality can be attained

in the limit case that x belongs to the invariant subspace associated with the relevant
eigenvalues and ρ(x)→ λi; cf. Theorem 3.6.

(iii) The Chebyshev bound in the estimate (1.6) is sharp if all extreme points of the
polynomial

p(α) := Tk−1

(
1 + 2(α− λ−1

i+1)/(λ
−1
i+1 − λ−1

m )
)

in the interval (λ−1
m , λ−1

i+1) are reciprocals of the eigenvalues of (A,M); cf. Corollary 3.7.

The representation minJ pJ(λ
−1
1 ) in (i) cannot be compared with the bound (6.45)

by Saad [22] which is related to the distance between an eigenvector and a Krylov sub-
space. The advantage of the estimate in (i) is that it is applicable to a restarted method.
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Moreover, the two decisive indices 2, m of pJ have explicitly been determined, and the
interpolation conditions describe the monotonicity of pJ . This allows us to interpret it in
a similar way as a Chebyshev bound.

4. Numerical experiments. We consider a high-dimensional matrix eigenvalue
problem and illustrate the sharpness of the new estimates for restarted Krylov subspace
iterations by comparing the analytical bounds with the numerically observed bounds. The
matrix eigenvalue problem derives from a finite element discretization of the Laplacian
eigenproblem

−∆u = λu(4.1)

on a 2D domain with the boundary Γ1 ∪ Γ2 ∪ Γ3 with

Γ1 =
{(

r(t) cos(t), r(t) sin(t)
)T

; r(t) := | cos(1.5 t)|+ | sin(1.5 t)| ; t = [0, 2π)
}
,

Γ2 =
{
(1− t, 0)T ; t = (0, 1)

}
, Γ3 =

{
(t, 0)T ; t = [0, 1)

}
;

see Figure 4.1. Homogeneous Dirichlet boundary conditions are imposed on Γ1 ∪ Γ3 and
homogeneous Neumann boundary conditions are considered on Γ2. For the computation of
the smallest eigenvalues and the associated eigenfunctions we use our Adaptive-Multigrid-
Preconditioned (AMP ) eigensolver software ( http://www.math.uni-rostock.de/ampe).
The code combines adaptive finite element discretizations of self-adjoint and elliptic partial
differential operators with gradient type eigensolvers for the solution of the discretized
matrix eigenvalue problems. Here we use linear finite elements on triangle meshes. The
residual-based error estimator from [13] controls the grid refinement by using additionally
quadratic elements. The eigenfunction of (4.1) which is associated with the smallest
eigenvalue has an unbounded derivative at (0, 0)T . Hence the adaptive grid generation
results in a high depth of the triangulation around the origin; see the initial grid in Figure
4.1 and three finer triangle meshes in Figure 4.2. The eigensolver is a block version (with
three-dimensional subspace iterates) of the restarted Krylov subspace iteration.

For all numerical computations we have used a personal computer with a single core
of an Intel Xeon 3.2GHz CPU and with 31.4GiB RAM. In Figure 4.3, the left subfig-
ure illustrates the computational costs versus the degrees of freedom. The cumulative
computation times until a certain grid level is reached is drawn by the solid curve, and
the computation times within the current level by the curve with markers. In the cen-
tered subfigure we show the convergence history of θi − λi for i ∈ {1, 2, 3}. The curve
with markers represents i = 1, the dashed curve stands for i = 2 and the solid curve
for i = 3. The limit values λi are taken approximately from a grid with more than 39
million (39,247,401) nodes. The error indicators of the residual based error estimator are
plotted in the right subfigure. The solid curve shows the norm of the estimated residual
vector corresponding to quadratic elements. The absolute values of the components of this
residual vector are used to steer the grid refinement process. The dashed curve contains a
modified residual norm suggested in [13, Section 4], which is used to define the stopping
criterion of the eigensolver. The curve with markers shows the A−1-norm of the residual
of the eigenfunction approximation computed with linear elements. Additionally, the Ritz
approximations θ1 of the smallest eigenvalue on six exemplary levels are listed in Table 1.

Experiment I: We use an FE grid with the depth 63. The associated discretization
matrices of the matrix eigenvalue problem Ax = λMx have the dimension 5,006,817. The
four smallest eigenvalues are λ1 ≈ 5.598534, λ2 ≈ 8.727609, λ3 ≈ 12.24183, λ4 ≈ 16.01582.
We check the statements of Theorem 3.8 by numerical tests with the restarted Krylov
subspace iteration (1.3) in the form x′ ← RRmin

(
Kk(x)

)
for k ∈ {3, 4}; see Figure 4.4.

To this end we fix 98 equidistant values in each of the three intervals (λi, λi+1),
i ∈ {1, 2, 3}. For each value we select 1000 random vectors from the corresponding level
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Γ1

Γ2

Γ3

Fig. 4.1. Left: The 2D domain for the Laplacian eigenvalue problem (4.1). Center: The contour
lines of an eigenfunction corresponding to the smallest eigenvalue. Right: The initial grid.

level 1 17 38 51 63 72
nodes 26 2768 69118 676518 5018199 23295537
d.o.f. 12 2582 67870 672500 5006817 23271083
θ1 10.44194 5.637456 5.599702 5.598635 5.598534 5.598522

Table 1

Ritz approximations θ1 of the smallest eigenvalue λ1 ≈ 5.598520 computed by using the AMP eigen-
solver software with a block version of (1.3). More than 23·106 degrees of freedom are used on the finest
grid with the level index 72.

set of the Rayleigh quotient ρ(·) together with equiangular vectors from the invariant
subspaces associated with the supporting eigenvalues. For these test vectors, we compute
the numerical values of the ratio

(4.2) ∆i,i+1(ρ(x
′))/∆i,i+1(ρ(x))

with ∆i,i+1(·) defined in (1.4). As shown in Figure 4.4, the maxima with respect to the
test vectors form in each interval a curve, which takes its maximum at the left end-point
of the interval. Such a maximum is compared with the analytical bounds given in (i), (ii)
of Theorem 3.8.

For k = 3, the statement (ii) can directly be used in order to determine the supporting
eigenvalue λξ for a quadratic polynomial q(·), which is here denoted by qi according to
the cases ρ(x) ∈ (λi, λi+1), i ∈ {1, 2, 3}. Table 2 lists λξ for each qi together with the
distance ratios

(4.3)
∣∣λ−1

ξ − (λ−1
i+1 + λ−1

m )/2
∣∣ /

∣∣λ−1
i+1 − λ−1

m

∣∣

and the relative accuracy of the Chebyshev bound compared to the new sharp bound.
The monotonically increasing relative overestimation by the T2-bound in dependence of
the distance ratio (see columns 3 and 4 in Table 2) support the statement (iii) on the
sharp case of the Chebyshev bound.

For k = 4, we formulate a discrete optimization problem on the eigenvalue set
{λ3, . . . , λm−1} according to (i) in Theorem 3.8. An optimization with respect to the
subset {λ3, . . . , λ25} gives two supporting eigenvalues λξ and λη, which are sufficient in
order to solve the optimization problem. The sharp bounds have the form q−2(λ−1

i ) with
a cubic polynomial q(·) interpolating the pairs

(
λ−1
i+1, 1

)
,
(
λ−1
ξ ,−1

)
,
(
λ−1
η , 1

)
,
(
λ−1
m ,−1

)
.

As shown in Figure 4.5, such cubic polynomials, denoted by qi, i ∈ {1, 2, 3}, fulfill

min
j=1,...,i

|qi(λ
−1
j )| = qi(λ

−1
i ) > qi(λ

−1
i+1) = 1, max

j=i+1,...,m
|qi(λ

−1
j )| = 1,
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Fig. 4.2. Triangle meshes with 2,768, 69,118 and 676,518 nodes and associated numbers of 2,582,
67,870 and 672,500 inner nodes. The associated depths of the triangulations are 17, 38 and 51. Square-
shaped sectional enlargements around the critical point (0, 0)T are drawn for the two finer meshes. The
side lengths of these enlargements are 3 · 10−4 and 6 · 10−7 respectively.
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Fig. 4.3. Computational information on the AMP eigensolver for the approximation of the smallest
eigenvalues by a block version of the restarted Krylov subspace iteration (1.3). Left: Cumulative compu-
tation times and computation times on the current level. Center: Convergence history of the eigenvalue
approximations for the three smallest eigenvalues. Right: Error indicators of the residual-based error
estimator associated with the smallest eigenvalue λ1.

where the second property is verified by using the monotonicity of qi on the interval
(λ−1

m , λ−1
25 ). These properties of qi correspond to the main properties (3.9), (3.10) used

in the proof of Theorem 3.6. A similar further analysis shows that q−2
i (λ−1

i ) is the sharp
bound for the ratio (4.2). Table 3 lists the supporting eigenvalues λξ, λη for the polyno-
mials qi. Additionally, the distance ratio

(4.4) ‖(λ−1
ξ , λ−1

η )T −
(
(3λ−1

i+1 + λ−1
m )/4, (λ−1

i+1 + 3λ−1
m )/4

)T
‖2 / |λ−1

i+1 − λ−1
m |

containing the extreme points of the polynomial

p(α) := T3

(
1 + 2(α− λ−1

i+1)/(λ
−1
i+1 − λ−1

m )
)

is compared with the overestimation of the Chebyshev bound using T3 with respect to the
sharp bound q−2

i (λ−1
i ).

Finally, the sharp bounds for k = 3 and k = 4 are drawn by bold lines in Figure 4.4.
The numerical maxima coincide with the sharp bounds.

Experiment II: We consider again the eigenvalue problem Ax = λMx from Exper-
iment I and illustrate multi-step convergence behavior of the restarted Krylov subspace
iteration (1.3). For each k ∈ {3, 4, 5} we select 1000 random initial vectors x(0) from the
level set of the Rayleigh quotient ρ(·) with the value 8.294 ∈ (λ1, λ2). The convergence
of the eigenvalue approximations ρ(x(ℓ)) is measured in terms of the ratio ∆1,2

(
ρ(x(ℓ))

)
;
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Fig. 4.4. Slowest convergence of single steps of the restarted Krylov subspace iteration for k = 3
(left subplot) and k = 4 (right subplot). The abscissa is marked at the eigenvalues λ1, . . . , λ4. The curves
show the numerical maxima of the ratio (4.2). The bold lines represent the analytical bounds based on
the statements (i), (ii) in Theorem 3.8.

Polynomial λξ Distance ratio (4.3) Relative overestimation by T2-bound

q1 λ4 4.494 · 10−2 1.43%
q2 λ7 2.403 · 10−2 0.38%
q3 λ9 1.591 · 10−2 0.15%

Table 2

Supporting eigenvalue λξ in the statement (ii) of Theorem 3.8. The relative overestimation (in
percent) of the Chebyshev bound in the estimate (1.6) is given in the last column.

see (1.4). For the eigenvector approximations x(ℓ) we measure the convergence in terms
of the tangent value tan∠M (x(ℓ), E1) with respect to the eigenspace E1 associated with λ1

and the inner product induced by M . The slowest convergence with respect to these two
measures is plotted in Figure 4.6 by solid lines.

The first row of Figure 4.6 shows for the three cases k ∈ {3, 4, 5} the numerical
evaluations of ∆1,2

(
ρ(x(ℓ))

)
, of the one-step bound q−2(λ−1

1 )∆1,2

(
ρ(x(ℓ−1))

)
and of the

multi-step bound q−2ℓ(λ−1
1 )∆1,2

(
ρ(x(0))

)
. For k = 3 and k = 4, the polynomial q(·) has

been determined as q1 in Experiment I based on the statements (i), (ii) from Theorem
3.8, cf. Table 2 and Table 3. For k = 5, we solve a further discrete optimization problem
according to the statement (i). The supporting eigenvalues of q(·) are given by λ3, λ5, λ21.
The comparison reflects the fact that the polynomials q(·) which satisfy (3.9), (3.10) have
similar properties as the transformed Chebyshev polynomials and that the value q(λ−1

1 )
increases rapidly with the degree of q(·). Therefore, the increasing dimension k causes a
smaller convergence factor q−2(λ−1

1 ) and guarantees the convergence acceleration.
The second row in Figure 4.6 shows a comparative numerical evaluation of the measure

tan∠M (x(ℓ), E1), of the one-step bound κ tan∠M (x(ℓ−1), E1) and of the multi-step bound

κℓ tan∠M (x(0), E1) with κ =
∏k−1

j=1 (λ
−1
2 −λ−1

m+1−j)/(λ
−1
1 −λ−1

m+1−j) based on the estimate
(1.8) in Theorem 1.1. These κ-bounds, especially the multi-step bound, are shown to
cause an overestimation.

The third row in Figure 4.6 illustrates an improvement of the κ-bounds based on an
inequality for any x ∈ R

n with ρ(x) ∈ (λ1, λ2) and the eigenspace expansion x =
∑m

i=1 vi,
namely

tan2 ∠M (x, E1) =

∑m
i=2(λ2 − λ1)‖vi‖

2
M

(λ2 − λ1)‖v1‖2M
≤

∑m
i=1(λi − λ1)‖vi‖

2
M∑m

i=1(λ2 − λi)‖vi‖2M
= ∆1,2

(
ρ(x)

)
.

The numerical data for tan∠M (x(ℓ), E1) are compared in these plots with the one-step

bound q−1(λ−1
1 )

(
∆1,2

(
ρ(x(ℓ−1))

)) 1
2 and the multi-step bound q−ℓ(λ−1

1 )
(
∆1,2

(
ρ(x(0))

)) 1
2 ,



Sharp Ritz value estimates for restarted Krylov subspace iterations 21

−1
1

5

15

25

35

 

 

λ−1
m λ

−1
21 ↑

λ
−1
14

λ
−1
11

λ
−1
6

λ
−1
4 λ

−1
3

λ
−1
2

λ
−1
1

q3

q2

q1

α

q(
α
)

−1

1

 

 

λ−1
m λ

−1
21 ↑

λ
−1
14

λ
−1
11

λ
−1
6 λ

−1
4

λ
−1
3 λ

−1
2

q3 q2 q1

α

q(
α
)

Fig. 4.5. Cubic polynomials q(·) which are parts of the sharp bounds for single steps of the restarted
Krylov subspace iteration with k = 4. These polynomials are denoted by qi for ρ(x) ∈ (λi, λi+1), i ∈
{1, 2, 3} respectively. The reciprocals of the supporting eigenvalues λξ, λη are marked on the curves by

filled black circles. The vertical dotted lines in the lower subfigure correspond to the values λ−1
25 , . . . , λ−1

2 .

i.e. the square roots of the bounds for ∆1,2

(
ρ(x(ℓ))

)
. This obviously avoids an overesti-

mation.

5. Conclusion. The numerical approximation of the smallest eigenvalues and the
associated eigenspaces of self-adjoint and elliptic partial differential operators is a chal-
lenging problem. Its successful solution requires efficient discretization techniques, an
adaptive grid refinement strategy, a proper (multigrid) preconditioning and, last but not
least, efficient iterative matrix eigensolvers. Sharp estimates for the underlying eigen-
solvers are of major interest in order to understand these iterations and to develop even
more efficient schemes.

The present paper focuses on the convergence analysis of restarted Krylov subspace
eigensolvers for generalized matrix eigenvalue problems with symmetric and positive def-
inite matrices (A,M). An important ingredient of these Krylov subspace iterations is
their underlying A-gradient subspace extension which amounts to an exact-inverse pre-
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Polynomial λξ λη Distance ratio (4.4) Relative overestimation by T3-bound

q1 λ3 λ11 3.731 · 10−2 2.41%
q2 λ4 λ14 1.526 · 10−2 0.42%
q3 λ6 λ21 4.480 · 10−2 3.42%

Table 3

Supporting eigenvalues λξ, λη for the sharp bound q−2
i (λ−1

i ) based on the statement (i) in Theorem
3.8. The overestimation of the Chebyshev bound in the estimate (1.6) is measured in terms of the relative
error with respect to the sharp bound.

conditioning.

The main results of the new geometry-flavored and ellipsoid-based convergence anal-
ysis are sharp Ritz value estimates which improve the Chebyshev type estimates from the
previous work [19]. The new bounds depend on certain interpolating polynomials which
have similar properties compared to the Chebyshev polynomials. An important feature of
this A-gradient Krylov subspace convergence analysis is that it provides convergence esti-
mates for general preconditioned eigensolvers in the limit that the preconditioner tends to
the inverse A−1 of the discretization matrix A. This has provided new sharp convergence
estimates for the restarted generalized Davidson method.
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Fig. 4.6. Multi-step convergence behavior of the restarted Krylov subspace iteration (1.3). The
subfigures are arranged in three rows. First row: Ritz value estimates based on Theorem 3.8. Second
row: Ritz vector estimates based on Theorem 1.1 (i.e. on the convergence analysis from [19]). Third row:
Improved Ritz vector estimates with convergence factors of Ritz values from Theorem 3.8. In each row
the results are plotted for k = 3, 4, 5. In each subfigure the numerical data for the slowest convergence
(solid lines) are compared with one-step estimates (bold lines) and multi-step estimates (dashed lines).
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