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ON THE SET OF SOLUTIONS OF THE

NONNEGATIVE MATRIX FACTORIZATION PROBLEM

KLAUS NEYMEYR∗,† AND MATHIAS SAWALL∗

Abstract. The nonnegative matrix factorization (NMF) problem D = XY T for a given nonnegative
matrix D and with nonnegative factors X and Y can have many solutions aside from trivial permutations
or positive multiples of the columns of X and Y . The set of feasible solutions (SFS) is a low-dimensional
representation of all possible columns of either X or Y in any NMF of D. The SFS provides important
information on the possible ambiguity of the NMF. This paper conveys the SFS concept as developed in
chemometrics to mathematics. Various properties of the SFS are proved. Numerical algorithms for the
SFS computation are reviewed and tested for an application model problem from analytical chemistry.
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1. Introduction. For a given nonnegative matrix D ∈ R
k×n and a positive integer

s ≤ min{k, n} the approximate nonnegative matrix factorization problem is to determine
the minimum

min
X∈Rk×s, Y ∈Rn×s

‖D −XY T ‖F with X ≥ 0, Y ≥ 0.(1.1)

Therein ‖ · ‖F is the Frobenius norm. If the rank of D equals s, then a factorization D =
XY T with nonnegative factors X ∈ R

k×s and Y ∈ R
n×s can exist. Such a factorization

makes the minimum (1.1) equal to 0. In general the nonnegative rank of D [9], denoted
by rank+(D) = r, is the smallest integer so that nonnegative factors X ∈ R

k×r and
Y ∈ R

n×r exist. Here we assume that rank+(D) = rank(D) = s. The focus of this
paper is on these rank-s nonnegative matrix factorizations (NMF) of the form D = XY T .
The NMF constitutes the limit case ε → 0 of approximate rank-s factorizations with
rank(D) > s but rankε(D) = s. Therein rankε(D) is the number of singular values of
D which are greater than or equal to ε. Rank-s approximations typically apply to cases
where D contains noisy, perturbed or rounded numerical data, e.g., image data or spectral
data.

A vast literature exists on nonnegative matrices and their nonnegative factorizations,
see for example [2, 4, 8, 24]. The NMF problem has a strong application background, see
[7, 26] and many others. The existence and uniqueness of NMFs is discussed e.g. in [18] and
also in [10, 34] on the basis of a geometric cone theory. The numerical NMF computation
is treated in [5, 15, 20, 21, 25] and many other publications.

Due to the non-convexity of

f(X,Y ) = ‖D −XY T ‖2F
in X and Y the problem (1.1) typically lacks a unique solution. However, there are trivial
ambiguities how to generate from a given nonnegative factorization D = XY T further
nonnegative factorizations:

1. Scaling ambiguity: If ∆ is a nonnegative, invertible s× s diagonal matrix, then

D = (X∆)(∆−1Y T )(1.2)

is a column-rescaled nonnegative matrix factorization of D.
2. Permutation ambiguity: If P is an s× s permutation matrix, then

D = (XP )(Y P )T(1.3)

represents a simultaneous permutation of the columns of X and Y .
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The product M := ∆P is a generalized permutation matrix [24]. It is a well-known fact
that M and M−1 are nonnegative if and only if M is a generalized permutation matrix,
see Lemma 1.1 in [24].

1.1. Aim and organization of this paper. The aim is to determine a low-dimen-
sional representation of the solutions X and Y of the NMF problem. Against the back-
ground of a spectroscopic application problem, see Section 2, we are interested in the sets
of all possible columns of X respectively Y which arise in all nonnegative matrix factoriza-
tions D = XY T . Such a representation of the factors has been developed in chemometrics
[6, 12, 19, 27, 28]. Here our intention is to convey these ideas to the mathematical commu-
nity and to discuss the underlying mathematical theory. The column-oriented approach
to the set of the solutions of the NMF problem implicitly allows us to get rid of the permu-
tation and the scaling ambiguities. The representing set for a rank-s matrix D is proved
to be a bounded subset of the R

s−1 with respect to a reduced basis of singular vectors.
The case s = 2 was investigated by Lawton and Sylvestre [19] in 1971. See also [1, 35] on
the non-uniqueness of such factorizations of D with a chemical application background
and for which the term rotational ambiguity has been established. Here we call such a set
the set of feasible solutions (SFS) for general s. For s = 3 common names for the SFS are
feasible region [27] or area of feasible solutions [13]. For s = 4 the SFS is sometimes called
the volume of feasible solutions [14]. The paper not only introduces the SFS and proves
various of its properties, but also reports on methods for a numerical computation of the
SFS. A major part of the analytic theory of the SFS rests upon the Perron-Frobenius
spectral theory of nonnegative matrices.

The paper is organized as follows: First Sec. 2 presents a typical application problem
from analytical chemistry which motivates and accompanies the following analytic part of
the paper. Sec. 3 defines the SFS by means of an SVD of D. The analytic SFS theory is
presented in Sec. 4. Sec. 5 shows the SFS for the model problem from Sec. 2. A stable and
fast numerical algorithm to compute the SFS for the important case s = 3 is explained in
Sec. 6. Finally, Sec. 7 proves an important property of the SFS which makes it possible
to compute the SFS for s ≥ 3.

2. An application in analytical chemistry. A significant field of application of
nonnegative matrix factorizations is the so-called pure component analysis in analytical
chemistry. Next we introduce a typical model problem, namely a three-component two-
step consecutive reaction scheme

A
k1−→ B

k2−→ C(2.1)

with the reaction rate constants k1 and k2. Throughout this paper we use this model
problem to illustrate the theoretical results.

Next we intermediately assume that the pure component spectra for the three com-
ponents A, B and C are given. Then the Lambert-Beer law [3] in its frequency and
time-dependent form [22] allows us to construct a nonnegative matrix whose elements
represent the idealized mixture spectra which can be taken from a spectroscopic obser-
vation of this reaction system. The steps of this matrix construction are explained later
in this section. The matrix assembly phase is followed by a recovery phase we refer to
the NMF problem. In this phase we try to recover only from the spectral data matrix all
the initial data, namely the pure component spectra and also the concentration profiles of
the pure components. The mathematical basis for the recovery phase is analyzed in this
paper.

Next the spectral data matrix D is constructed: According to the kinetic model (2.1)
the time-dependent concentration profiles c(t) = (cA(t), cB(t), cC(t)) of the three species
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Fig. 2.1. The three concentration profiles (2.3) (left subplot) and the associated spectral profiles
(2.4) with z = 30 (centered subplot).Component A (green), component B (blue) and component C (red).
Right: Plot of the series of superposed (“measured”) spectra.

satisfy the system of ordinary differential equations

d

dt
c(t) = (−k1cA(t), k1cA(t)− k2cB(t), k2cB(t)) .(2.2)

With the initial concentration values (cA(0), cB(0), cC(0)) = (a0, 0, 0) at t = 0 the system
of ordinary differential equations (2.2) has the solution

c(t) =

(
a0e

−k1t,
a0k1

k2 − k1

(
e−k1t − e−k2t

)
, a0 − cA(t)− cB(t)

)
.(2.3)

For the limit case k1 = k2 = k L’Hospital’s rule results in cB(t) = a0kt e
−kt.

The associated frequency-dependent model spectra aA(ν), aB(ν) and aC(ν) are each
formed by a sum of two Gaussians with different centers, signal widths and amplitudes

aA(ν) = 3e−ν2/(200z) + 2e−(ν−100)2/(150z),

aB(ν) = 3e−(ν−30)2/(100z) + e−(ν−190)2/(150z),(2.4)

aC(ν) = 2e−(ν−20)2/(100z) + 2e−(ν−200)2/(120z).

The parameter z > 0 controls the signal width and thus the overlap of the Gaussians.
Figure 2.1 shows the concentration profiles for t ∈ [0, 5] and the spectra for ν ∈ [0, 250],

z = 30 and the rate constants k1 = 2 and k2 = 1. The spectroscopic measurement of this
system takes k separate spectra each at n frequency values. The spectroscopic data are
stored in a k × n spectral data matrix D. The time-series of superposed spectra are also
shown in Figure 2.1.

The Lambert-Beer law of spectroscopy states that the measured absorbance data
(i.e. the matrix elements of D) are linear superpositions of the contributions from the
chemical components A, B and C. The measured absorbance at a certain frequency
and for a fixed chemical component is proportional to the product of its concentration
and its absorptivity. Therefore the Lambert-Beer law in matrix form [22] complies with
the nonnegative matrix factorization D = XY T . The three columns of X represent the
concentration profiles (2.3) evaluated at these k points in time. Further, the columns of
Y are the three spectra (2.4) evaluated at the given n frequency values.

In analytical chemistry the so-calledmultivariate curve resolution problem [22, 23] is to
recover from given D the unknown matrix factors X and Y of the pure components. This
is an NMF problem. The nonnegativity of the factors is a consequence of the physical fact
that concentration values and absorptivity constants are nonnegative. Typically, many
nonnegative matrix factorizations of D exist and the problem is to find the chemically
correct factorization among all nonnegative factorizations. To find these true solutions
chemical expertise is required. For instance, concentration profiles are often monotone
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functions or have only one isolated maximum. Then all other concentration profiles can
be ignored. Similarly, a chemist can identify those feasible nonnegative columns of Y
which for physical reasons cannot be spectra of the expectable chemical components. The
mathematical challenge is to determine in a first step the sets of all possible nonnegative
factors of D in a certain low-dimensional representation. Here we do not treat the second
step, namely to sort out all solutions which do not satisfy various chemical criteria. Next
we introduce the low-dimensional representation of the sets of all possible columns of X
and Y in nonnegative factorizations D = XY T .

3. An SVD based representation of the factorization problem. The definition
of the SFS requires a singular value decomposition (SVD) D = UΣV T of the nonnegative
matrix D ∈ R

k×n. The matrices U, V are orthogonal and Σ is a diagonal matrix whose
diagonal contains the singular values σi. D is a rank-s matrix so that σ1 ≥ . . . ≥ σs >
0 = σs+1 = σs+2 = . . . = σmin{k,n}. This justifies to work with the truncated SVD with

Σ = diag(σ1, . . . , σs) ∈ R
s×s, U ∈ R

k×s and V ∈ R
n×s.

Any matrix factorization D = XY T (not only the nonnegative ones) can be repre-
sented in terms of the bases of left and right singular vectors with an invertible matrix
T ∈ R

s×s according to

D = (UΣT−1)︸ ︷︷ ︸
=:X

(TV T )︸ ︷︷ ︸
=:Y T

.(3.1)

The s2 matrix elements of T parametrize the factorizations of D and also its subset of
nonnegative factorizations.

Theorem 3.1. Let D ∈ R
k×n be a nonnegative matrix with s = rank(D) ≥ 2. If

DTD is an irreducible matrix, then V w ≥ 0 for a nonzero w 6= 0 implies that w1 6= 0. In
other words, any nonzero linear combination of the columns 2, . . . , s of V has at least one
negative component.

Proof. The matrix vector product V w is written as

V w = V (:, 1)w1 + V (:, 2 : s)(w2, . . . , ws)
T .(3.2)

The Perron-Frobenius theory applied to the irreducible nonnegative matrix DTD guaran-
tees that the Perron eigenvalue σ2

1 is simple and that the associated eigenvector satisfies
V (:, 1) > 0 or V (:, 1) < 0 componentwise. Forming the Euclidean product of V (:, 1) with
(3.2) and the orthogonality of the columns of V show that

0 6= V (:, 1)T︸ ︷︷ ︸
≶0

V w︸︷︷︸
6=0

= w1‖V (:, 1)‖2 + V (:, 1)TV (:, 2 : s)(w2, . . . , ws)
T = w1,

which proves the proposition.

Remark 3.2. In the following we always assume DTD to be an irreducible matrix.
This is not a restrictive assumption for the general application background in analyti-
cal chemistry, see Section 2. Irreducibility of DTD guarantees according to the Perron-
Frobenius theory that the first right singular vector V (:, 1) is either componentwise positive
or componentwise negative. Without loss of generality we also assume that the singular
value decomposition D = UΣV T results in V (:, 1) > 0. This assumption avoids bother-
some case distinctions. Otherwise, the simultaneous replacement of V (:, 1) and U(:, 1) by
−V (:, 1) and −U(:, 1) yields the desired SVD.

The following corollary is the analog of Thm. 3.1 for expansions of the columns of X
in terms of left singular vectors.

Corollary 3.3. On the assumptions of Theorem 3.1 and if DDT is an irreducible
matrix, then UΣw ≥ 0 for a nonzero w 6= 0 implies that w1 6= 0.
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Proof. The Perron vector U(:, 1) is a componentwise positive vector of the irreducible
nonnegative matrix DDT . The evaluation of the product U(:, 1)TUΣw as in the proof of
Theorem 3.1 shows that w1 6= 0.

Next we discuss how the scaling ambiguity and the permutation ambiguity can be
taken into account in the nonnegative factorization problem: By (3.1) the ith column of
Y reads

Y (:, i) =

s∑

ℓ=1

V (:, ℓ)tiℓ.(3.3)

Thm. 3.1 guarantees that t1ℓ 6= 0 for ℓ = 1, . . . , s. This allows us to insert the diagonal
matrix ∆ = diag(t11, . . . , ts1) and its inverse in Eq. (1.2). Hence in

D = XY T = (X∆)(∆−1Y T ) = (X∆)(∆−1TV T )

the matrix ∆−1T has the form

∆−1T =




1 t12/t11 . . . t1s/t11
1 t22/t21 . . . t2s/t21
...

...
...

1 ts2/ts1 . . . tss/ts1


 ∈ R

s×s.

Such a scaling of the factorsX and Y does not imply any restriction for the application
problem from Sec. 2. For structural elucidation purposes the spectra and concentration
profiles can (in a first step) be determined qualitatively. A quantitative determination of
the factors is not mandatory. Quantitative information by eliminating the influence of
the scaling ambiguity is sometimes accessible in an optional second step, for instance, by
considering a mass balance or by a posteriori calibration measurements.

The permutation ambiguity, see Eq. (1.3), permits a further simplification. The si-
multaneous permutation P of the columns of X and Y can be expressed by a permutation
of the rows of ∆−1T . In other words and according to (1.3) any row of ∆−1T can be
transposed to its first row. Hence the matrix elements α1, . . . , αs−1 in the first row of

PT∆−1T =




1 α1 . . . αs−1

1 w11 . . . w1,s−1

...
...

...
1 ws−1,1 . . . ws−1,s−1


(3.4)

are the representatives of the possible columns of Y . The set of all possible first rows
of PT∆−1T =: T̃ represents the set of all possible and properly scaled columns of the
factor Y . Without loss of generality we can drop the tilde superscript. Then the aim is to
determine the set of all possible first row vectors (1, α1, . . . , αs−1) of T so that T can be
supplemented to an invertible matrix by proper matrix elements wij and that X = UΣT−1

and Y = V T T in (3.1) are nonnegative matrices. This construction is summarized in the
following definition.

Definition 3.4 (Set of feasible solutions). A vector α := (α1, . . . , αs−1)
T ∈ R

s−1 is
called feasible if a matrix W ∈ R

s−1×s−1 exists so that

T =

(
1 α

T

e W

)
(3.5)

with the all-ones vector e = (1, . . . , 1)T ∈ R
s−1 is an invertible matrix and that

X = UΣT−1 ≥ 0, Y = V T T ≥ 0.(3.6)
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The set of feasible solutions (SFS) for the factor Y comprises all feasible vectors α

M =
{
α ∈ R

s−1 : ∃W ∈ R
s−1×s−1 in (3.5) so that T is regular and X,Y ≥ 0

}
.(3.7)

Remark 3.5. The SFS is the set of vectors α which according to (3.5)-(3.7) represent
the possible nonnegative columns of Y in a way that α can be augmented to the matrix T by
(3.5) so that X,Y ≥ 0. The same construction applied to DT = Y XT serves to define the
corresponding set of feasible solutions with respect to the left singular vectors of D. Then
irreducibility of DDT must be assumed. This leads to the corresponding representation of
all possible nonnegative columns of the matrix factor X.

4. Properties of the SFS. In this section various properties of the SFS are proved.
First the superset N of the SFS M by (3.7) is introduced.

Definition 4.1. The set

N = {α ∈ R
s−1 : V

(
1
α

)
≥ 0},(4.1)

contains all coefficient vectors α for which V (1,αT )T is nonnegative. Borgen and Kowal-
ski [6] in their work on the case s = 3 call the set (4.1) the first polygon or FIRPOL. Here
this name is adopted for any integer number s ≥ 2.

Theorem 4.2. The set N is a convex polyhedron. Hence, its subset M is also
bounded.

Proof. By definition, N is the intersection of the n half-spaces

Hi = {α ∈ R
s−1 : V (i, 2 : s)α ≥ −V (i, 1) } i = 1, . . . , n.

Hence N is a convex set. The origin α = 0 is contained in N since the Perron vector
satisfies V (:, 1) > 0, cf. Remark 3.2. Convexity of N implies that N is unbounded if it
contains a semi-straight line α

∗
R+ for an α

∗ 6= 0. This means that for i = 1, . . . , n

V (i, 2 : s)(ωα∗) ≥ −V (i, 1) for all ω ≥ 0.

This can only be true if V (:, 2 : s)α∗ ≥ 0. The latter inequality contradicts Theorem
3.1 for nonzero α

∗. Hence N is a bounded convex polyhedron. The set definition (4.1)
requires only nonnegativity of X(:, 1) = V (1,αT )T whereas (3.7) requires (even more
than) X ≥ 0. Hence M is a subset of N and is also bounded.

In contrast to the polyhedron FIRPOL, the SFS does not contain the origin α = 0.
This is proved next.

Theorem 4.3. Let D ∈ R
k×n be a nonnegative matrix with s = rank(D) ≥ 2 so that

DTD and DDT are irreducible. Then 0 /∈ M.
Let D = XY T be a nonnegative factorization with X ∈ R

k×s and Y ∈ R
n×s. More-

over, the Perron vector V (:, 1) of DTD is not collinear to any of the columns of Y and
the Perron vector U(:, 1) of DDT is not collinear to any of the columns of X.

Proof. For each α ∈ M a nonnegative factorization D = XY T exists so that the first
column of Y has the form

Y (:, 1) = V

(
1
α

)
.(4.2)

Thus the representation of Y with respect to the right singular vectors as Y = V T T fulfills
T (1, :) = (1,αT ). The associated second column of X in D = XY T reads X(:, 2) = UΣυ
for a υ 6= 0. For the identity matrix I it holds that

0 = I1,2 = (TT−1)1,2 = (1,αT )υ,
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which shows that υ1 = −α
T υ(2 : s). Corollary 3.3 guarantees that υ1 6= 0 so that α 6= 0

and υ(2 : s, 1) 6= 0. This proves that 0 /∈ M.
Since α 6= 0, Eq. (4.2) shows that V (:, 1) cannot be equal or collinear to a column of

Y . Applying the same arguments to DT proves that U(:, 1) is not (collinear to) a column
of X either.

Definition 4.4. The convex hull of the row vectors

wi :=
1

(DV )i,1
((DV )i,2, . . . , (DV )i,s) =

1

σ1Ui,1
(UΣ)(i, 2 : s) ∈ R

1×s−1(4.3)

for i = 1, . . . , k is a polyhedron which is called INNPOL

I := convhull{wi : i = 1, . . . , k}.

The name INNPOL was coined in [6] for the case s = 3; here we consider s ≥ 3.

Lemma 4.5. Let DDT be an irreducible matrix. Then the origin α = 0 is an interior
point of I. Thus the volume of the polyhedron I is nonzero.

Proof. We assume α = 0 not to be an interior point of I. Then convexity of I implies
that I is a subset of the half plane

H = {z ∈ R
1×s−1 : zy ≥ 0}

for a proper nonzero column vector y ∈ R
s−1×1. With (4.3) it holds that

0 ≤ wiy =
1

σ1Ui,1
UΣ(i, 2 : s)y, i = 1, . . . , k,

which reads in vectorial form

1

σ1
diag(1/U1,1, . . . , 1/Uk,1)UΣ(:, 2 : s)y ≥ 0.

Since σ1 > 0 and U(:, 1) > 0 by Thm. 3.1 and Remark 3.2, this means that UΣ(:, 2 : s)y ≥
0 for the given y 6= 0. This contradicts Corollary 3.3 for irreducible DDT .

Theorem 4.6. Let D ∈ R
k×n be a nonnegative matrix with the rank s so that DTD

and DDT are irreducible. A vector α ∈ R
s−1 satisfies α ∈ M if and only if α ∈ N

and if the simplex being the convex hull of α and other s − 1 vectors in N contains the
polyhedron I.

Proof. Let an element α = α
(1) of M be given. Then, by definition, a nonnegative

factorization D = XY T of D exists with Y = V T T , T (:, 1) = e and T (1, :) = (1, (α(1))T ).
The s − 1 vectors α

(m) with T (m, :) = (1, (α(m))T ) for m = 2, . . . , s are also elements
of M ⊂ N . It remains to show that the simplex with the vertices α

(m), m = 1, . . . , s,
includes I. To show this we start with

DV = XY TV = X(V T T )TV = XT.

The components 2 : s of its ith row are

(DV )(i, 2 : s) = X(i, :)T (:, 2 : s) i = 1, . . . , k.

Division by (DV )i,1 6= 0 together with (4.3) yield

(4.4) wi =
(DV )(i, 2 : s)

(DV )i,1
=

X(i, :)

(DV )i,1
T (:, 2 : s) i = 1, . . . , k.
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This proves that the generating vectors wi of I are linear combinations of the row
vectors T (m, 2 : s) = (α(m))T . The linear combinations are convex combinations if
Xi,j/(DV )i,1 ≥ 0 and

∑s
j=1 Xi,j/(DV )i,1 = 1. First, the inequality holds since X ≥ 0

and (DV )i,1 = D(i, :)V (:, 1) with D ≥ 0 and V (:, 1) > 0. For the second property we
start with

Xe = XTe1 = XTV TV e1 = XY TV e1 = DV e1,

whose ith component reads

(Xe)i =

s∑

j=1

Xi,j = (DV )i,1.

This proves the desired equality.

To prove the reverse direction we start with the (s−1)-dimensional vectors α(m) ∈ N ,
m = 1, . . . , s, whose convex hull encloses I. These vectors form an (s × s)-matrix T in
a way that T (m, :) = (1, (α(m))T ) for m = 1, . . . , s. The matrix T is regular since the
convex hull of the α

(m) encloses I which is nonempty by Lemma 4.5. The inclusions
α

(m) ∈ N for m = 1, . . . , s guarantee according to (4.1) that Y = V T T ≥ 0. It remains
to show that X ≥ 0. As I is a subset of the simplex with the vertices α(m), m = 1, . . . , s,
it holds for each i ∈ {1, . . . , k} that

(4.5) wi =

s∑

m=1

µ(i)
m α

(m)

with the coefficients µ
(i)
m of the convex combination satisfying µ

(i)
m ≥ 0 and

∑s
m=1 µ

(i)
m = 1.

Since T (m, 2 : s) = (α(m))T a comparison of (4.5) with (4.4) shows that

0 ≤ µ(i)
m = Xi,m/(DV )i,1,

which proves X ≥ 0.

Next we show that the representing matrices T which belong to the SFS M are
bounded away from singular matrices.

Theorem 4.7. Let D ∈ R
k×n be a nonnegative matrix with the rank s so that DTD

and DDT are irreducible. Then a σ > 0 exists so that

σs(T ) ≥ σ > 0,(4.6)

for each T belongs to a nonnegative factorization D = XY T with X = UΣT−1 and
Y = V T T . Therein σs(T ) is the smallest singular value of T .

Proof. We assume that only σ = 0 satisfies (4.6) and derive a contradiction. Then a
sequence of factorizations D = X(i)(Y (i))T , i = 1, 2, . . ., with X(i), Y (i) ≥ 0 exists so that

(Y (i))T = T (i)V T and lim
i→∞

σs(T
(i)) = 0.

For any i with T := T (i) of the form

T =




1 (α(1))T

...
...

1 (α(s))T



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it holds that

det(T ) =

∣∣∣∣∣∣∣∣∣

1 (α(1))T

0 (α(2))T − (α(1))T

...
...

0 (α(s))T − (α(1))T

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

(α(2))T − (α(1))T

...

(α(s))T − (α(1))T

∣∣∣∣∣∣∣
= (s− 1)! vol(S(T )),

where S is the (s − 1)-dimensional simplex with the vertices 0 and (α(j))T − (α(1))T ,
j = 2, . . . , s. By Theorem 4.6 the simplex (α(1))T + S encloses I, i.e. INNPOL. The
volume of I is bounded from below by the volume of a ball Bε(0) centered at the origin
with the radius ε > 0 as 0 is an interior point of I. This results in

1

(s− 1)!
det(T ) = vol(S(T )) ≥ vol(I) ≥ vol(Bε(0)) > 0.

For each i the absolute value of the determinant equals the product of all singular values
σℓ so that

1

(s− 1)!
| det(T (i))| = 1

(s− 1)!

s∏

ℓ=1

σℓ(T
(i)) = vol(S(T (i))) ≥ vol(Bε(0)) > 0.

Thus the limit limi→∞ σs(T
(i)) = 0 results in a contradiction if the remaining singular

values are bounded from above independently on i. To show this, it is sufficient to bound
‖T (i)‖ from above since

‖T (i)‖ = σ1(T
(i)) ≥ σ2(T

(i)) ≥ . . . ≥ σs(T
(i)).

Let (1,αT ) be an arbitrary row of T (i). Then

‖(1,αT )‖ ≤ (1 + diam(N )2)1/2 =: M

since α ∈ N and where diam(N ) is the diameter of the polyhedron FIRPOL. Hence M
is a constant for the given matrix D since FIRPOL is a bounded set by Thm. 4.2. Direct
computation shows that

‖T (i)‖ = ‖(T (i))T ‖ = max
x 6=0

‖(T (i))Tx‖
‖x‖ ≤ max

x 6=0

‖x‖1
‖x‖ M ≤ √

sM.

This concludes the proof.
After these preparatory steps we can show that the SFS M is a closed set.

Theorem 4.8. On the assumptions of Thm. 4.7 the SFS N is a compact set.
Proof. First we form the set

T = {T ∈ R
s×s : T (i, 2 : s) = (1, (α(i))T ), α(i) ∈ N for i = 1, . . . , s and σs(T ) ≥ σ}.

Compactness of T follows from the fact that the α are from the compact set N , see
Thm. 4.2, and by σs(T ) ≥ σ > 0. The later inequality is guaranteed by Theorem 4.7 for
any nonnegative factorization D = XY T for T in the sense of Eq. (3.6) and avoids that
T contains a sequence of matrices which tends to a singular matrix. The image of T with
respect to the continuous matrix inversion

T = {T−1 : T ∈ T }

is also compact. Its subset of all T−1 which additionally satisfy that UΣT−1 ≥ 0

T̂ := {T−1 ∈ T : UΣT−1 ≥ 0}
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is a closed set due to the greater-and-equal constraints. Hence the intersection

T ∗ = T ∩ {T : T−1 ∈ T̂ }

is also compact. Thus for a T ∈ T ∗ it holds that TV T ≥ 0, UΣT−1 ≥ 0 and T (:, 1) = e
which are the defining conditions of the SFS. Thus the SFS written as

M = { rows of T ∈ T ∗ aside from the leading 1}

is also a compact set.

5. The SFS for the model problem. This section presents the SFS for various
parameter selections for the model problem as introduced in Section 2. First Figure 5.1
shows in its upper row the spectra (2.4) of the three components A, B and C for three
values of the signal width parameter z ∈ {1, 30, 50}. The overlap of the spectra increases
with an increasing signal width. The associated concentration profiles are given by (2.3)
independently of z. The time interval t ∈ [0, 5] is discretized by k = 200 equidistant
points and the frequency interval ν ∈ [0, 250] uses n = 251 equidistant frequency values.
According to the three possible values of z three matrices D ∈ R

200×251 are formed. The
lower row of Figure 5.1 presents the three associated SFS plots. For z = 1 with the lowest
signal overlap the factorization D = XY T is nearly unique. Then the SFS consists of
three almost point-shaped subsets which are drawn in Figure 5.1 by three points in red,
blue and green color. For z = 30 the SFS shows that an increased signal width results
in an increased size of the set of possible nonnegative factorizations D = XY T . The SFS
consists of three relatively large isolated subsets which are plotted in Figure 5.1 in red,
blue and green color. Finally, for the largest signal width z = 50 the SFS is a single
topologically connected set. These sets of feasible solutions confirm the result of Thm. 4.3
that the origin is never contained in the SFS.

With increasing z the SFS has an increasing area. Correspondingly the range of
possible nonnegative factorizations D = XY T increases. Figure 5.2 shows for the three
components A, B and C the possible series of spectra for the case z = 30. To this end the
(α1, α2) plane of the SFS is covered by a quadratic mesh and for each grid point which
falls into one of the three SFS subsets the function V (1, α1, α2)

T is plotted. Additionally,
the boundary curve of each subset of the SFS is covered with nodes which are equidistant
with respect to the curve parameter. Again the associated solutions are plotted. The
comparison with the original spectra in the centered subplot in the first row of Figure 5.1
shows that the series of feasible spectra contains (aside from scaling) the initial spectra in
each case of the three components A, B and C.

Finally, Fig. 5.3 shows the SFS for z ∈ {1, 30, 50} of the transposed matrix DT =
Y XT . These SFS sets represent the possible columns of X with respect to the left singular
vectors of the SVD D = UΣV T . Once again, with increasing z the area of the SFS
increases. The figure shows in its lower row for z = 30 the associated series of possible
nonnegative columns of the matrix factorX , namely for the reactantA for the intermediate
component B and the reaction product C. The original and true concentration profiles
by Eq. (2.3) are (aside from scaling) contained in these series of spectra.

5.1. NMF algorithms and the SFS. The SFS (by its column-oriented represen-
tation of all possible nonnegative factors of a given nonnegative matrix) provides the basis
for a comparative study of the results of various NMF algorithms. Many numerical NMF
algorithms have been devised, see for example Kim and Park [15–17] or Lee and Seung
[20, 21].

Next we use the model data D ∈ R
200×251 for z = 30 and apply to it four different

NMF algorithms. Each algorithm is started 200 times. The NMF codes use random initial
values so that the resulting factors are different. The representatives of the columns of
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Fig. 5.1. Upper row of 2D line plots: The spectra (2.4) are shown for z = 1, z = 30 and z = 50.
With an increasing value of the peak width parameter z the spectra of the components A (green), B (blue)
and C (red) show an increasing overlap. Lower row of plots: SFS plots according to (3.7). The left subplot
for z = 1 shows three very small subsets of the SFS which indicates more-or-less unique solutions. The
ambiguity increases for z = 30 (centered subplot) and z = 50 (right subplot). In each subplot k = 200
gray dots is plotted. The coordinates of these points are the expansion coefficients of the rows of D with
respect to the right singular vectors with a scaling so that the expansion coefficient of V (:, 1) equals 1.
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Fig. 5.2. A series of possible nonnegative spectra is shown for z = 30. Left subplot (component
A), centered subplot (component B) and right subplot (component C). A comparison with the original
spectra in the centered subplot in the first row of Figure 5.1 shows that the series of feasible spectra for
the components A, B and C (aside from scaling) include the original spectra.

the computed factors X are marked in the corresponding SFS. The same is done for the
columns of Y . Fig. 5.4 shows the results which have been computed by the Nonnegative
Matrix and Tensor Factorization Algorithms Toolbox by Kim and Park [16, 17]. The
following toolbox algorithms have been used:

1. Alternating non-negative least-squares (ANLS) with the block principal pivoting
method (ANLS BPP).

2. ANLS with the active set method and column grouping (ANLS ASGROUP).
3. The hierarchical alternating least squares method (HALS).
4. The multiplicative updating method (MU).

The numerical results show that the different methods result in different scatter patterns
in the SFS subsets. For all these computations the stopping tolerance parameter TOL
has been decreased from 10−3 to 10−8 and the parameter MAX ITER has been dou-
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Fig. 5.3. Upper row of SFS plots: SFS sets for z ∈ {1, 30, 50} which represent the possible non-
negative columns of the factor X with respect to the left singular vectors of D. In each SFS a number
of n small gray circles is plotted. The coordinates of these points are the expansion coefficients of the n

columns of D with respect to the left singular vectors of D. Once again, these coefficients are rescaled
so that the first coefficient equals 1 and is not plotted. Lower row of feasible concentration profiles for
z = 30. The correct profiles by Eq. (2.3) are (aside from scaling) contained in these series of spectra.

bled to a value of 1000 maximal iterations in order to avoid approximate factors whose
representatives are not located in the SFS sets. Nevertheless there are still approximate
factorizations which are not located in the SFS; see for example the + symbols outside
the blue SFS subsets for the MU method.

6. Numerical approximation of the SFS for s = 3. This section briefly explains
how the SFS-plots, as shown in Section 5, can be computed. In 1971 Lawton and Sylvestre
[19] were the first to solve the problem of how to represent the possible columns of the
nonnegative factors of a given matrix for the background problem of pure component
decompositions in analytical chemistry, see Section 2. This first work is restricted to
(s = 2)-component systems. In 1985 Borgen and Kowalski [6] and later Rajkó and István
[27] extended these representations to three-component systems (s = 3) in terms of a
geometry-based SFS construction, see also [29].

The first numerical SFS approximation method for s = 3 was suggested in 2011, see
[13]. This algorithm aims at the enclosure of the boundary lines of the SFS by chains of
equilateral triangles which cover the boundary. An extension of this algorithm to the case
s = 4 appeared in [14]. Instead of representing the ambiguity of the NMF in the SFS, one
can also plot series of possible columns of X and Y . A related analysis on upper and lower
enclosing curves is given by Gemperline [11] and Tauler [33]. See also [12] for a review on
recent AFS methods.

Here we consider a more efficient numerical algorithm for the approximation of the
boundary of the SFS by sequences of adaptively refined polygons. This algorithm is called
the polygon inflation algorithm [30]. If the SFS consists of several isolated hole-free subsets,
then the boundary of each subset is computed separately. For the other case that the SFS
is a topologically connected set which contains a hole around the origin (see Thm. 4.3)
we need a special approximation technique which allows the computation of the inner
and the outer boundaries. For s = 3 further cases than the mentioned ones, e.g. more
than one SFS subset which contains a hole, cannot occur. This can be understood by the
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Fig. 5.4. The nonnegative matrix D ∈ R
200×251 is factorized by four different NMF algorithms.

Each algorithm is started 200 times. The columns of X and Y are marked in the SFS plane by +
symbols. First row: Factorization by alternating non-negative least-squares (ANLS) with block principal
pivoting method (ANLS BPP). Second row: ANLS with the active set method and column grouping
(ANLS ASGROUP). Third row: Hierarchical alternating least squares method (HALS). Fourth row:
Multiplicative updating method (MU). We have used the implementation in the Nonnegative Matrix and
Tensor Factorization Algorithms Toolbox by Kim and Park [16, 17]. For all computations the default
stopping tolerance parameter TOL has been decreased from 10−3 to 10−8 and the parameter MAX ITER
has been doubled to 1000 maximal iterations. In particular for the multiplicative updating method some
of the factorizations are not sufficiently accurate so that the + symbols are not located in the SFS.
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geometric SFS construction by the triangle-rotation algorithm in [6]. Hence, the SFS sets
as shown in Figures 5.1 and 5.3 are typical representatives of the general case. However,
sets of feasible solutions exist which consist of a multiple of 3 isolated hole-free subsets
for properly constructed matrices D. In practical applications (analytical chemistry) only
the cases of a connected SFS and of three isolated subsets are known. These typical cases
are illustrated in Fig. 5.1.

The polygon inflation algorithm is based on a target function whose minimization
allows to decide whether or not a certain point α ∈ R

2 is contained in M. A numerically
efficient and stable SFS algorithm should be able to work with experimental, noisy or
perturbed spectral data matricesD. Such matrices can even contain small negative matrix
elements. The source of these negative matrix entries can be baseline correction steps or
rank-reducing subtractions from the spectral data in order to remove background signals
or already known components. A further source can be a low-rank approximation which
can be used to reduce noise and other perturbations.

Hence a stable and practically usable numerical algorithm should be robust with
respect to small negative entries of X and Y . To this end a small parameter ε ≥ 0 is fixed
so that

(6.1)
miniXij

maxi |Xij |
≥ −ε,

mini Yij

maxi |Yij |
≥ −ε, j = 1, 2, 3

are lower bounds for the acceptable smallest (negative) entries in X and Y in terms of a
relative measure. In order to decide if α = (α1, α2) ∈ M is true, we consider the target
function f : R2 × R

2×2 → R with

(6.2)
f(α,W ) =

k∑

i=1

3∑

j=1

min(0,
Xij

‖X(:, j)‖∞
+ ε)2 +

n∑

i=1

3∑

j=1

min(0,
Yij

‖Y (:, i)‖∞
+ ε)2

+ ‖I3 − TT+‖2F .

Therein ‖ · ‖∞ is the maximum norm, ‖ · ‖F is the Frobenius norm, T+ is the pseudo-
inverse of T and W ∈ R

2×2 is the (2, 2) block submatrix of T in (3.5). Numerically and
in consideration of small negative entries in X and Y a point α is contained in the SFS if
the function

F : R2 → R, F (α) = min
W∈R2×2

f(α,W )(6.3)

satisfies F (α) ≤ εtol with a small εtol, for example εtol = 100eps with the machine precision

eps. Hence the numerical approximation M̃ of M is

M̃ =
{
α ∈ R

2 : F (α) ≤ εtol
}
.(6.4)

With the target function f and the resulting function F the polygon inflation algo-
rithm works as follows:

1. First construct an initial nonnegative matrix factorization D = XY T ∈ R
k×n by

a proper numerical algorithm, e.g., by the algorithm of Lee and Seung [21] or the
algorithm by Kim and Park [15]. According to Y = V T T the three rows of T
result in three points in the SFS.

2. Starting from one of these points the value of α1 is increased to a maximal value
α1 so that (α1, α2) is located on the boundary of M̃. Then α1 is minimized
so that (α1, α2) is also located on the boundary. Finally, a third point on the
boundary of the SFS is determined by a minimization of α2 which results in the
boundary point ((α1 + α1)/2, α2). These three boundary points of M̃ define an
initial triangle.
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3. Each of the three edges of the initial triangle is separated in the middle and the
closest boundary point is determined as a new vertex of a refined polynomial. For
each of the three edges the resulting gain-of-area in the refinement is stored as an
attribute of the two new edges.

4. The edge partition and polygon refinement steps are repeated until the gain-of-
area for each of the edges falls below a predefined threshold value.

The adaptive polygon inflation procedure is illustrated in Fig. 6.1, where it is used to
approximate the boundary of a quarter-circle. The vertices of the initial triangle are on
the boundary of the quarter circle. A small number of refinement steps is needed on the
rectilinear parts of the boundary of the quarter circle and a larger number of refinement
steps on the curvilinear boundary. Table 1 shows the Hausdorff distances of the polygons
and the quarter circle against the number of vertices. These data validate the effectiveness
of the adaptive procedure.

The approximation error of the piecewise linear interpolation of the boundary of M
behaves like O(h2) in the edge-length h. Together with the adaptiveness of the algorithm
the boundary approximation ofM is much more effective compared to the enclosure of the
boundary by a sequence of equilateral triangles whose approximation error equals O(h).

Whenever the algorithm detects that the SFS consists of only a single topologically
connected set, which then contains a hole around the origin according to Thm. 4.3 , then an
alternative algorithm is employed. This algorithm is called inverse polygon inflation, see
[31]. This algorithm is computationally somewhat more expensive (less than the factor of
2) and also applicable to the general case of any SFS. The idea of inverse polygon inflation
is to compute first the boundary of the bounded set FIRPOL as introduced in Def. 4.1.
The numerical test for α ∈ N does not require the solution of an optimization problem
as only the nonnegativity of V (1, αT )T is tested. Hence the boundary approximation of
N is computationally cheap. Then a second set

(6.5) M∗ = {α ∈ R
2 : min

W
‖g(α,W )‖22 = 0}

is considered which works with the modification g of the f defined by (6.2) in a way
that the nonnegativity constraint of the first column of Y (which is already tested for the
membership to the set N ) is omitted. Hence in (6.2) the substitution

n∑

i=1

3∑

j=1

min(0,
Yij

‖Y (:, i)‖∞
+ ε)2 →

n∑

i=1

3∑

j=2

min(0,
Yij

‖Y (:, i)‖∞
+ ε)2

results in the target function g. Then the intersection of the boundary of M∗ with the
interior of the set N is computed by polygon inflation. Finally, the intersection N ∩M∗

equals M.

7. An intersection property of the SFS. This section proves a further property
of the SFS for s ≥ 2, namely that rays which start at the origin intersect the SFS at most
in a line segment [32]. The intersection may also be empty or degenerated to a single
point which is then located on the boundary of the set FIRPOL (4.1). This line segment
intersection property is the basis for an efficient numerical computation of the SFS for
higher dimensions s.

Lemma 7.1. Let X ∈ R
k×s, X ≥ 0 and

M =

(
µ mT

0 I

)
∈ R

s×s(7.1)

with µ > 0, m ∈ R
s−1×1 and m ≤ 0. Then XM−1 ≥ 0. Further, nonnegativity of

Y ∈ R
n×s and M(1, :)Y T ≥ 0 imply that MY T ≥ 0.
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175
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20 vertices 50 vertices 254 vertices

Fig. 6.1. Approximation of the boundary of a quarter circle with the radius 1 by a series of adaptively
refined polygons by the polygon inflation algorithm.

Vertices of Hausdorff distance of
polygon polygon and quarter circle

3 4.160 · 10−1

6 2.437 · 10−1

10 2.437 · 10−1

20 3.560 · 10−2

50 7.354 · 10−3

150 2.818 · 10−4

254 1.563 · 10−4

Table 1
Approximation of a quarter circle with the radius 1 by polygon inflation. The Hausdorff distances

of the boundaries of the approximating polygons and of the quarter circle are tabulated. The adaptive
approximation scheme results in a fast boundary approximation in straight-line regions of the boundary.

Proof. M is invertible. Its inverse on the assumptions on µ and m satisfies

M−1 =

(
1/µ −mT /µ
0 I

)
≥ 0.

Thus XM−1 ≥ 0. Moreover,

MY T =

(
M(1, :)Y T

Y T (2 : s, :)

)
≥ 0

holds since M(1, :)Y T ≥ 0 and Y ≥ 0.
Lemma 7.1 and Corollary 3.3 are needed for the proof of the next theorem on the

intersection of the SFS with semi-straight lines starting at the origin.
Theorem 7.2. Let D ∈ R

k×n be a nonnegative matrix, rank(D) = s and let DTD
and DDT be irreducible matrices. If α ∈ M, then a maximal number ρ∗ exists so that
ρ∗α ∈ M∩ ∂N where ∂N is the boundary of FIRPOL (4.1). Further a minimal number
0 < ρ∗ exists so that ρ∗α ∈ M. The intersection of M with the semi-straight line ωα,
ω ≥ 0 is the (full) line segment {ρα : ρ ∈ [ρ∗, ρ

∗] }.
Proof. By Theorem 4.2 the set N is bounded which together with M ⊂ N proves the

existence of a supremum ρ∗. By Theorem 4.3 it holds that 0 /∈ M so that ρ∗ > 0. The
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compactness of M due Thm. 4.8 with ε = 0 guarantees the existence of a maximum and
a minimum.

Let α ∈ M be given. Without loss of generality we can assume that ρ∗α = α (namely
that α is the point closest to the origin in αR+ ∩M). Then according to (3.5) and (3.7)
this α is associated with

Tρ :=

(
1 ραT

e W

)
with ρ = 1 and X = UΣT−1

1 ≥ 0, Y = V T T
1 ≥ 0.

Therein D = UΣV T is a truncated SVD with V (:, 1) > 0 and also U(:, 1) > 0. It remains

to show that X̂ = UΣT−1
ρ ≥ 0 and Ŷ = V T T

ρ ≥ 0 for any ρ ∈ (1, ρ∗]. These matrices can
be written as

X̂ = (UΣT−1)︸ ︷︷ ︸
X

(TT−1
ρ )

︸ ︷︷ ︸
M−1

ρ

and Ŷ T = (TρT
−1)︸ ︷︷ ︸

Mρ

(TV T )︸ ︷︷ ︸
Y T

with Mρ = TρT
−1. We show that Mρ satisfies the assumptions of Lemma 7.1. The inverse

of T with the Schur complement S = W − eαT is given by

T−1 =

(
1 +α

TS−1e −α
TS−1

−S−1e S−1

)
(7.2)

and S−1 = W−1 + (1/1 − α
TW−1e)W−1eαTW−1 by the Sherman-Morrison formula.

Corollary 3.3 applied to each column of UΣT−1 ≥ 0 guarantees that the first row of T−1

in (7.2) is strictly positive. Thus

α
TS−1 < 0 and α

TS−1e < 0(7.3)

where α
TS−1e is the sum of the components of αTS−1. Hence Mρ = TρT

−1 reads

Mρ =

(
1− (ρ− 1)αTS−1e (ρ− 1)αTS−1

0 I

)
.

Then (7.3) together with ρ ≥ 1 prove that m = (ρ − 1)αTS−1 ≤ 0, which is the first
premise of Lemma 7.1. Further, µ = 1 − (ρ − 1)αTS−1e ≥ 1 since α

TS−1e < 0 by (7.3)

and ρ ≥ 1. Thus X̂ = XM−1
ρ ≥ 0 by Lemma 7.1.

Secondly, we prove that Ŷ T = MρY
T ≥ 0. By Lemma 7.1 only Mρ(1, :)Y

T ≥ 0 is to
be shown. It holds that

Mρ(1, :)Y
T = yT1 − (ρ− 1)

[
α

TS−1eyT1 −α
TS−1(Y ([2 : s], :))T

]
︸ ︷︷ ︸

=:rT

with the first column y1 of Y for ρ = 1. If ρ = ρ∗ = 1, nothing remains to prove. Next
the remaining case 1 < ρ < ρ∗ with ρ∗α ∈ ∂N is analyzed. It holds that

Mρ∗(1, :)Y T = yT1 − (ρ∗ − 1)rT ≥ 0.

Multiplication of the last inequality with (ρ− 1)/(ρ∗ − 1) > 0 results in

(ρ− 1)/(ρ∗ − 1)yT1 − (ρ− 1)rT ≥ 0.

Since ω := 1 − ((ρ − 1)/(ρ∗ − 1)) ≥ 0 for 1 ≤ ρ ≤ ρ∗ an addition of ωyT1 ≥ 0 to the
left-hand side of the last inequality results in

yT1 − (ρ− 1)rT ≥ 0
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Fig. 7.1. Construction of the two-dimensional SFS for the three-component model problem from
Section 2. Left: Equiangular rays starting at the origin. The bold black line marks the boundary of N .
Center: The intersections of these rays with the SFS M are colored. Right: Boundary curves of the three
subsets of the SFS.
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Fig. 7.2. The plot shows a typical three-dimensional SFS. The surface triangle mesh of this topo-
logically connected object with holes can be constructed from the set of the endpoints of the line segments
αR+ ∩M. Evenly distributed directions α can be constructed by using spherical coordinates.

which shows that Mρ(1, :)Y
T ≥ 0. Lemma 7.1 proves Ŷ ≥ 0.

Remark 7.3. The proof of Theorem 7.2 is based on matrix theory. Alternatively, the
proof can be based on the geometric construction of the SFS as introduced in 4.6. Then
the intersection property of Theorem 7.2 is equivalent to the possibility to move one or
more vertices of the polyhedron in N to the boundary ∂N without breaking the inclusion
condition for the representatives of the rows of the matrix D.

8. Conclusion. H. Minc in the foreword of his monograph ”Nonnegative Matrices”
[24] formulated the “aim of the book to provide the reader with a rigorous study of the
Perron-Frobenius theory”. He criticized other mathematical textbooks on nonnegative
matrices for their inclusion of “all kinds of applications to as many cognate and unrelated
fields as possible”. Bearing these words in mind, we have isolated the analytic represen-
tation problem of all NMF solutions from a field of application and have imported it to
the mathematical theory of nonnegative matrices.

The set of NMF solutions in its SFS representation has a rich mathematical structure
and various of its properties are largely based on the Perron-Frobenius theory. In view
of the field of application, a deeper mathematical understanding of these sets and also
the development of efficient numerical algorithms for their computation can considerably
support the structure elucidation in analytical chemistry. We hope that this contribution
at the interface of mathematics and a challenging field of application in chemistry can
inspire further analytic developments and open new SFS applications for NMF analyses.
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