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Abstract

Multivariate curve resolution methods aim at recoverirgguhderlying chemical components from spectroscopic data
on chemical reaction systems. In most cases the spectraocacértration profiles of the pure components cannot
be uniquely determined from the given spectral data. lastemtinua of possible factors exist. This fact is known
as rotational ambiguity. The sets of all possible pure camepbfactors can be represented in the so-called area of
feasible solutions (AFS).

This paper presents an AFS study of the pure component reeaotisn problem for a series of YVis spectra
taken from an acid-base titration Nfmethyl-6-oxyquinolone. Additional information on thewliprium concentra-
tion profiles for a varying acid concentration is taken froomoflescence measurements. On this basis chemometric
duality arguments lead to the construction of a unique fiokitgn.

Key words: multivariate curve resolution, nonnegative matrix faiation, rotational ambiguity, spectral recovery,
feasible bandFACPACK

1. Introduction

In chemistry and catalysis we are often faced with the protiteat the spectral signatures of reactants, intermedi-
ates and products overlap. A proper analysis of\d¥, fluorescence or infrared spectra as well as derivingtiis
requires a clear model-independent decomposition metHadein we present a general tool that is based on mul-
tivariate curve resolution methods in order to recover mamponent spectra and simultaneously the concentration
profiles along the reaction coordinate. The concentratiofilps can depend on the time (progress of a reaction)
or can depend on a changing temperature, acidity and so omosh cases, a multi-component system cannot be
uniguely determined from the given spectra. Mathematicatintinua of possible factors exist, including the chemi-
cally correct solution. In our method, all possible compurfactors are represented in the so-called area of feasible
solutions (AFS).

Exemplarily, we present an AFS study on the Wi spectra of a recently published dye system, which hag onl
been characterized by a two-component analysis [44]. Theapproach goes much further, which is shown for
the titration grades at an acid-base reaction of the dye., Ngstems including more than two components can be
decomposed easily. All mathematically possible solutamesdisplayed in the AFS. With the additional information
on the equilibrium concentration profiles for a varying aoichcentration taken from fluorescence measurements, the
AFS can be reduced to one distinct solution. For the givensgigéem the concentration profiles have been achieved
and the chemical reaction could be described properly.

The AFS approach provides a comfortable graphical userfate and any programming is superfluous. For time
dependent measurements reaction kinetics and thermodypaoperties could be derived. Concentration dependent
studies such as titrations allow the determination of éopiiim constants, here the acid constant.

1.1. Multivariate curve resolution

Multivariate curve resolution (MCR) methods aim at extiragthe contributions from the underlying sources to a
given data set. An important application in chemometri¢héscase that the spectroscopic observation of a chemical
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reaction system has yielded a matfixe R*" of absorption values on a timefrequency grid. Thereilk is the
number of the measured spectra anid the number of spectral channels of each spectrum. Théemnab to find
the underlying spectra and concentration profiles of the pomponents. The Lambert-Beer law in matrix notation
relates the pure component recovery problem to the nonimegaatrix factorization problem

D=CS'. ()

Proper nonnegative matrix facta@se RS andS e R™S can be interpreted in a way that taeolumns ofC are the
concentration profiles of thepure components and the columnsSoéire the associated pure component spectra, see
e.g. [28, 25]. If additional information on the reactiontgys is available, for example some pure component spectra
or concentration profiles, then this can simplify the camstion of proper matrix factor€ andsS, see e.g. [35] and
the references therein.

For an overview on chemometric methods for solving the MCébfam see the monographs [28, 25]. The MCR-
ALS method [18, 17] is very important. it works with the ahliating least squares (ALS). Without claiming any
completeness we would also like to mention the window faatalysis [29], the evolving factor analysis [27, 24, 26,
20] and the algorithms described in [23, 21].

Here we focus on MCR methods which use a singular value degsitign (SVD) of the matrixD [22, 28, 25],
see Sec. 2.1. All these MCR methoddtsu from the fact that the nonnegative matrix factorizatioabpem (1)
typically has continua of possible solutiorns, §). This fact is known as “rotational ambiguity” of the soluri
[3, 11, 39, 12, 48]. Soft-modeling (regularization) or evend constraints (e.g. by kinetic models) are proper tools
for reducing the rotational ambiguity, see e.g [28, 25]. Ha best case these additional constraints affecantly
restrictive so that a unique solution can be determined.

An approach for a systematic investigation of the rotati@nabiguity is to get access to the set of all nonnegative
factorizations in the form (1) for the given spectral datanxmaD. A low-dimensional representation of this set is
called the area of feasible solutions (AFS), see e.g. [613439]. Within the AFS-setting it is possible to adjoin
extra information on the matrix factors, for example by kmav@ncentration profiles or spectra, in a very transparent
way. By means of duality arguments, see [15, 33, 35, 30]atidtional information can be used in order to restrict
the AFS and to visualize the mutual influence of a given spetion the dual concentration profiles and vice versa
[42, 4, 14].

1.2. Contents and organization of the paper

In this paper we analyze series of spectra taken from antssd-titration of the highly-sensitive diemethyl-6-
oxyquinolone as an acidometer in acetonitrile. First wdyamsthe ambiguity of the MCR solution. It turns out that
considerable ambiguities exist for one spectrum and alsorfe profile of equilibrium concentrations in dependence
on the acid concentration. The application of the so-calledure constraint, namely a mass balance, does not lead
to a unique solution. Additional information (namely fixedrp component spectra in combination with fluorescence
data) is used in order to construct the final solution. Theasoe FACPACK]39, 41] is used for all computations.
The final pure component decomposition is validated agé#iestesults of a rank annihilation analysis and a kinetic-
model-based factorization [16, 2]; see also the relatekifathowndates by [5].

The paper is organized as follows: Section 2 introduces $¥Bed MCR techniques, the AFS approach for rep-
resenting the rotational ambiguity and the related duaglityciples for the solution of the spectral recovery praofmle
The implementation of these methods in f&CPACkKsoftware is briefly reviewed in Sec. 3. The chemometric
analysis for an acid-base titration is contained in Sec. 4.

2. Chemometric pure component recovery

Next the AFS and related duality principles are shortly akpd. The starting pointis the SVD-based construction
of factorizationd = CS'.



2.1. SVD-based construction of pure component factodnati

From a mathematical point of view the factorization (1) isanmegative matrix factorization dd. Typically,
the dimension& andn of D are much greater than the number of the underlying chem@aponentss. For an
appropriate value of (typical values ares < 7) the factorsC andS are computed by means of a truncated SVD of
the data matrix [22]. The truncated SVD has a noise-filteeifigct and read® = UXVT with orthogonal matrices
U e R*sandV € R™S, FurtherX € R®Sis a diagonal matrix with the singular values on its diagoAakcording to
[22, 28, 25, 31] the factorS andS can be represented within the truncated bases of left ahtlgilggular vectors by
means of a basis transformation matffix R as follows

D=UzZV' =UZT 1TV, (2)
N — N——
C ST

ThusC = UXT ! andS = VTT are representations of tisk + n) matrix elements o€ andS by the much smaller
number ofs?> matrix elements of (and its invers@ ~1). Sec. 2.3 shows how these degrees of freedom can be reduced
from s? to (s— 1)s. For general the matrice<C andS are calledabstract factorsand can have large negative entries.
The next step is to extract only the nonnegative, chemicalgvant factors.

2.2. Computation of nonnegative factors

SVD-based MCR methods on the basis of Eq. (2) aim at constguet proper matrixT so thatC andS are
the chemically correct factors. The matiixcan be determined by solving a minimization problem for ajective
function which is a weighted combination of penalegularization functions [13, 7, 47, 31]. The scalar wefghtors
enable a proper balance between thedént constraints and steer the factorization process.eMenyvthe resulting
factorsC andS sometimes depend on the constraint presetting of the MC&ano. This is an unwantedfect. The
minimization of an objective function is usually notfBaient in order to enforce only one, intentionally the cheaiic
correct solution.

In contrast to aiming at a single solution which potenti@lpnly an approximation, it is also possible to compute
the sets ofll possible nonnegative facta@sandS with D = CS". Such approaches are band boundary computations
[8, 46] and the AFS computation.

2.3. The area of feasible solutions

The AFS is a low-dimensional representation of either alimegative spectra, namely the possible columns of
S, or all nonnegative concentration profiles, namely the mmis ofC, with D = CS'. In other words, we consider
all concentration profiles and all spectra which can be @ddrto nonnegative matric&s andS in D = CS'
[6, 34, 11, 39, 10, 37, 45]. These feasible column€air S with eitherk or n components can be described in a
low-dimensional way by the rows @f. The reason for this is that the matrix elementd dh (2) are the expansion
codficients of the spectra with respect to the basis of the rigigiidar vectors. The associated concentration profiles
depend in a similar way ofi—%. Without loss of generality the desired nonnegative specitan be assumed to be
located in the first column @& = VTT, cf. Eq. (2). The associated expansionflicents are given by the first row of
T with the form

1 Xg v Xs-1
1
T=|. Wi , 3)

1

whereW is an 6 — 1) x (s— 1) submatrix ofT. The first column ofT equals the all-ones vector; see [39] for the
justification of this implicit scaling. On the basis of theseangements the AFS for the spectral factor is defined as

Ms = {x e RS : existsW € REDXED with rank(T) = s, C=UXT ' >0andS=VT' >0} (4)

The AFS comprises alk(- 1)-dimensional vectors € RS which can be completed by a matii € R9*(-1) 5o
thatT by (3) is a regular matrix an@, S > 0. Similarly, one can also define the AR3c which represents all feasible
nonnegative columns &, see [37].
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The AFS setsMs and Mc for two-component systems can easily be constructed [23]. 1Several geometric
and numerical algorithms are known to compute the AFSder 8)-component systems [6, 34, 11, 39, 41, 19, 9, 43].
For (s = 4)-component systems the AFS computation is much mdfieult and only few publications are available
[12, 43]. See also [10, 37] for an overview on the AFS topic.

Here three-component systems=£ 3) are in the focu of interest. For this case the polygon iisitamethod
[39, 41] is an &ective, very fast and easy-to-control algorithm for AFS gomations. In Sec. 3 the software module
Complementarity> AFS (3 componentgf FACPACKIs used in order to construct the AFS. It is also used to reduce
the ambiguity successively by involving additional systeformation, see Sec. 2.4.

Up to now we have rigorously assumed nonnegativitppC andS. However, experimental spectral data after
preprocessing steps, e.g. background subtraction, maginmmall negative entries. The raskruncation of the
data matrix by the SVD can be a further source of small negaitries. Then small negative entries should also
be accepted i€ andS as otherwise the produ€S™ cannot reproduce small negative entrieDofTo this end the
polygon inflation algorithm uses a control parameter 0 on the acceptance of small negative entrie€ @indS.

The feasibility check works as a lower bound on the relatiegnitude of negative entries. If radk( = s, then a
violation of the inequalities

&, j=1,...k and —2 _>_g j=1...n (5)

L.k =1,

andi = 1,..., sis used for a penalization in the minimization process.

2.4. Duality underlying the factors C and S

The factorization probler® = CS' is sometimes accompanied by a certain pre-knowledge of péttie factors.
For instance, a spectrum of a reactant or a reaction prodgtitime known or it is possible to determine the concen-
tration profile of a chemical component. A further case ig thirequency window is known in which some of the
chemical components are absent.

This information on the columns @ andor S can be exploited in order to reduce the rotational ambigofity
the solution. The reason for this is that the constraintsoninegativity ofC andS and the equalityp = CST imply
restrictions orC if S is partially given and vice versa. These mutual constrarggelated to the duality principle or
complementarity theory [15, 33, 35, 4, 30].

The underlying idea for the detailed analysis, which is akyd in [35], is based on Eq. (2) whefeandS are
coupled via the matriX . If for example one pure component spectrum is given, themsanciated row of can be
determined. Due to the equatidn'T = I, a known row ofT implies linear and fline constraints on the columns of
T, This yields according t€ = UXT ! in linear, respectivelyfine, constraints for the columns 6f An extreme
case is that all but one spectra are given. Then the contientmofile of the remainingomplementary chemical
componentis uniquely determined except for positive agali

2.5. Reduction of the AFS by duality arguments

The linear and fline constraints due to known parts©for S can be visualized in the AFS [42, 4, 14]. The
reduced ambiguity expresses itself in a reduced size of tHe &fter taking into consideration the known parts of
C or S. The reduction of the ambiguity is analyzed in this papertfigr three-component system of an acid-base
titration, see Sec. 4. For this system we demonstrate howarkspectrum of one of the components (this spectrum
is represented by a certain point in the AFS) restricts byitjuarguments thes — 1 concentration profile of the two
remaining chemical components. In the AFS of the conceatrdactor these components are located insan 2)-
dimensional ffine hyperplane. This hyperplane is (in a mathematical sehsd)o a given fixed point in the spectral
AFS. To be explicit, the dualfine hyperplane of a three-component system for the case vén gpectrum is a line
in the concentrational AFS. Similar relations hold in thearsed direction. For ars(= 4)-component system a given
point in the spectral AFS is dual to a plane in the concemtnali AFS and vice versa. See [42, 38] for more details
on these relations and for mathematical formula underlthingyduality of points andféine hyperplanes.
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Figure 1: A screen-shot of the graphical user interface @ FRCPACKmodule Complementaritye- AFS (3 components)A first concentration
profile is constructed. The example data set is explainecem & The construction steps are explained in Sec. 3. Thedaoies of the two
AFS-sets folC andS are drawn in black in the two lower plots. The user can movertbase pointer through the AFS and the associated spectrum
or concentration profile is shown simultaneously. By pughire left mouse button, a certain solution can be fixed. Thierént scaling in the plot

of Mc compared to the AFS plots in Figs. 6-8 is explained by thetfattthe matrixt is taken into account here, but is omitted in Figs. 6-8.

3. Data analysiswith FACPACK

The chemometric analysis in Sec. 4 uses the software pa¢ag@ACKwhich provides a convenient ML as
graphical user interface (GUI) for AFS-computations footwthree- and four-component systeritie software is
available on th&eFACPACKhomepage [36]. In particular we utilize tRACPACKmoduleComplementarity AFS
(3 componentshhat serves to construct a pure component decompositioheobasis of the two AFS-sets for the
factorsC andS. Known parts of the factors can be identified in the AFS. Thagpam uses duality arguments, see
the complementarity theorem [35], in order to visualize toerelations of the factor€ andS interactively. This
approach reduces the rotational ambiguity of the nonnegatatrix factorization problem drastically.

The steps of the chemometric analysis are illustrated bg.Higand 2 that show screen-shots of this program if
applied to the UWis-data of Sec. 4. First the spectral data is loaded to thgram (see step 1 in Fig. 1). Certain
control parameters can be set in an optional step (see stepi@.i1). The AFS sets are drawn after checking the AFS
box (see step 3). The chemometric pure component recotistrisstarted by selecting the radio butfost (see step
4). Then the mouse pointer can be moved through the contiensbAFS. Simultaneously the concentration profile
which belongs to the AFS-coordinates under the mouse pamtiawn. Any solution can be locked by clicking the
left mouse button. The selected solution in the concepmatiAFS is linked to a straight line in the spectral AFS (by
duality arguments). This blue straight line in Fig. 1 reprgs a significant restriction on the feasible spectral jgfi

Then Fig. 2 (upper screen shot) demonstrates how a secomértostion profile is determined. Once again,
duality arguments result in restrictions in the spectralSABee the green straight line. The point of intersection
of these two straight lines uniquely determines the spetwfione chemical component. Finally, the screen shot
in the lower part of Fig. 2 illustrates how the pure compordatomposition is completed after determining a third
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Figure 2: In addition to Fig. 1 these two screen-shots detratesthe construction of the second (upper screen-shdtpfahe third (lower screen-
shot) concentration profile. The duality theory increalsitignits the feasible solutions, which means that the iotatl ambiguity is reduced.



The spectral data in 2D

The spectral data in 3D
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Figure 3: Series of UWis spectra on the protonation 8 Qzin acetonitrile. Left: 2D-plot. Right: 3D-plot.
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Figure 4: Reaction scheme of the proton transfeNtmethyl-6-oxyquinolone N1Q2), dimerization to MQzHMQ3" and split of the dimer to
MQc* with an increasing acid concentration.

concentration profile. The user has then the option to refi@eé&composition by releasing any arbitrary concentration
or spectral profiles and to modify it until a complete optirsalution is found.

The FACPACKSsoftware uses the polygon inflation algorithm for AFS conafiohs and provides all the chemo-
metric software tools within a conveniently usable graphigser interface. This includes interfaces for the data
import, for an optional data preprocessing and the datarex@ther AFS computation methods are the so-called
Borgen plots [6, 34] and the recent dual Borgen plot appr¢4@h38]. Alternatively, the rotational ambiguity un-
derlying MCR factorizations can be illustrated in terms loé thands of feasible profiles [8, 46] and by using the
MCR-Bands software. The steps of our chemometric analgsisbe applied in similar form to the sets of feasible
bands.

3.1. Control parameter setting

The numerical AFS computation is controlled by several patars, e.g. stopping criteria for the optimization
procedure, the boundary precision, a bound on the sum dfdgaares of the objective function, the maximal number
of cycles of the optimization and the maximal number of fimrtevaluations. For the detailed description of these
parameters we refer to [39]. The program provides defalltegafor all parameters which ensure in most cases a
stable, precise and fast AFS computation. Finally, thempatare in Eq. (5) controls the size of acceptable negative
entries ofC and S and thus the size of the AFS. Increasingesults in an expansion of the AFS-sets. For all
computations we used= 2 - 104,

4. Chemometric analysis of an acid-base titration

Here we study a series of YVis spectra of a titration dii-methyl-6-oxyquinoloneN1Q2) in acetonitrile with the
trifluoromethanesulfonic superacid. The acid is denotetH By The series of spectra is plotted in Fig. 3. The AFS is
constructed for the spectral factor and for the factor ofilégium concentration profiles in dependence on the acid
concentration. Finally, a unique pure component facttinnas constructed by involving information on known pure
component spectra and fluorescence measurements of thier@gui concentrations. The addition of information for
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Figure 5: The first 5 leftight singular vectors and the singular values in a senadlitigmic plot. The SVD indicates the existence of three d@mnt
absorbing components. Colors of singular vectors: bluggi®en (2), red (3), cyan (4) and purple (5).

the two matrix factor€ andS distinguishes the present approach from other works asij4P4]. See Sec. 4.4 for
the detalils.

4.1. Experiment and spectral data

Fig. 4 shows the protonation schemeNsfmethyl-6-oxyquinoloneiIQ2) which includes an intermediate dimer-
ization, see also [32]. A total number bf= 12 UV/Vis spectra are taken for increasing concentration valfi#seo
superacicHA. The interval of concentration values @i is [0, 1.264- 10-3]mol I=1. Each spectrum is a vector with
n = 401 components which are the absorption values in the wagtiavindow [200600]nm. Hencep e R12401,
Fig. 3 shows the series of spectra in a 2D- and a 3D-plot.

The three dominant chemical components of this reactiotesysre the chemical indicatdQz the dimer
speciesMQzHMQ3", the protonated indicatd Qct as well aHAandA~. The latter two components in negligible
extent contribute to the absorption in the analyzed waygleimterval. The reaction equations with kinetic constant
read

k:
2MQz+ HA = [MQzHMQ3"* + A",
k1

(6)
[MQZHMQZ* + HA <% 2MQc" + A~
k..

2

For stoichiometric reasons the weighted sum of conceatratlues fulfills
c¢(MQ2 + 2¢([MQzHMQZ*) + c(MQC") = ¢y )

with the initial concentration, = 9.84269- 10-“mol I~. The chemometric analysis is based on the following steps:
First we compute an SVD db and also the AFS sets, see Sec. 4.2. The rotational ambighith is represented by
these AFS sets is thenvisualized in terms of feasible baedsSec. 4.3. In order to reduce the rotational ambiguity, we
add in afirst step the pure component spectrum of the reddt@atand in a second step the equilibrium concentration
profiles ofMQzandMQc', see Sec. 4.4.

4.2. SVD and AFS computation

Fig. 5 shows the first five lefight singular vectors and the 12 singular value®ofThese data clearly indicate
three dominant singular values and thus oMz, [MQzHMQ3" andMQc+ have relevant absorptions in the given
wavelength window. This result is confirmed by the assodigiteee leftright singular vectors which have a non-
oscillatory character and are expected to include relestamttural information. The singular values and the siagul
vectors indicate a relatively large signal-to-noise r&tiothe given spectr®. This is a good basis for a successful
construction of the two AFS sets and also for exploiting thderlying duality of the factor€ andS. The polygon
inflation method is applied with = s, = 107* ande = 2-10°* as upper bounds on the relative size of negative entries.

The AFS-sets indicate a small ambiguity of the solution fiertivo components1QzandMQc* (in blue and red)
in the spectral AFS since the area of the associated suliskéesAFS is very small. The subsets of the concentrational
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Figure 6: The two AFS-sets for the acid-base titration d&ach of the AFS-sets consists of three isolated subsethwépresent the three
chemical component®1Qz (blue), MQzHMQ2* (green) andVMQc' (red). The results are computed with= 2- 1074,

AFS which belong to the component$Qz (blue) and MQzHMQZ2* (green) are also small. Thus the associated
series of spectra and concentration profiles only show al srmaddtion. In other words the rotational ambiguity is
of moderate magnitude. Only the pure component spectruriM@fZHMQZ* and concentration profile d1Qc*
contain considerable ambiguities.

4.3. Bands of possible profiles representing the ambiguity

The rotational ambiguity inherent to an AFS can also be smred by drawing the associated bands of feasible
spectra and the band of feasible equilibrium concentratiofiles. This is done in Fig. 7. The colored crosses in the
left two AFS plots mark positions for which the associatedct or concentration profiles are drawn. More than
one point for one chemical component is considered in thetsgdAFS of MQzHMQ2* and in the concentrational
AFS of MQc'.

The series of spectra and concentration profiles are drawigirY. The upper row of plots show the spectral AFS
and their spectral bands. The color code for the AFS setstentands is as follows. Blue color is used dQz
green for MQzHMQZ2"* and red fotMQc". The subsets of the AFS-sets with the largest area, natEdzHM Q2"
in the spectral AFS anQc* in the concentrational AFS, are associated to the seridsedbasible spectra (green)
and concentration profiles (red), see the centered colurkigof .

The two plots in the centered column of Fig. 7 show the bandh@possible factors in a non-scaled form (as
obtained by th&cACPACKsoftware). Two spectraMQzandMQc') and one concentration profileM[QzHMQ2+)
are almost uniquely determined; the latter by duality. Thailéorium concentration profile ofNMlQ2) has a very
low rotational ambiguity. However, the spectrum MQzHMQ2" and the concentration profile ®Qc" show a
considerable ambiguity.

The two plots in the right column of Fig. 7 show the same prsfifter an application of a scaling with respect to
the so-called closure constraint, which is the mass balanderlying (7). The scaling constants are computed in the
sense of least-squares along the full acid concentratimn &kis results in concentration valuesMQct equal to
the initial valuecy, = 9.84269 10~* at the highest acid concentration. A sidEeet of this scaling is that an additional
scaling ambiguityappears for the concentration profile of the dim&QzHMQZ* (green curves). In other words
the profile of this component has been qualitatively deteeahj but not quantitatively. With the given information on
the system this remaining ambiguity cannot be broken upthorelated triples of concentration profiles in the right
lower plot of Fig. 7 the squared sum of errors

12
éZ(ci(MQz) +26(IMQZHMQZ") + 6i(MQC") - co)?
i=1

has approximately the valuel4 10°8. Therein the index runs through the 12 fferent values of the acid concen-
tration for which the equilibrium concentrations of thegbrcomponent81Qz [MQzHMQ2*" andMQc" are to be
determined.
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Figure 7: AFS-based analysis of the rotational ambiguitylo€code: MQzin blue color, MQzHMQ2" in green color andMQc' in red color.
Left column of plots: In the spectral AFS two spectra (credfee MQzandMQc') are fixed due to their low ambiguity. A series of points in the
green subset of the AFS is considered. These are marked &y gresses and represent a series of possible spectveffiMQ2*. By duality
arguments the equilibrium concentration profile fQzHMQ2* is uniquely determined, see the green cross in the contenabAFS. The blue
crosses1Q2) only show a small variability, whereas the equilibrium centration profiles oMQc" (red) show a strong variation. The remaining
four subplots show the bands of spectra and concentratafilgsrwhich belong to the marked points in the AFS. The widtthese bands is large
if the points in the AFS show a strong variation. These plbtssthe profiles in a non-scaled and also in a scaled form;hgeexplanations.

4 .4. Involvement of additional chemometric information

In order to attain a final and unique pure component decortippsiome additional information on the chemical
reaction system is to be added. This is done in two steps:

First the pure component spectrumMf)zis set to be equal to the first measured spect(y :). The justifica-
tion for this is that the concentration vector of the threeroical components for an initial acid concentration of zero
equals €, 0, 0). Furthermore, the last spectrddfl2, :) is set to the pure component spectrum of compoMQt*.
This fixes two points in the spectral AFS. The underlying dyainiquely determines (up to scaling) the equilibrium
concentration profile of the dimeMQzHMQ2*, see the left column of plots in Fig. 8. As explained in Se8.sbme
ambiguity still remains.

The second step is that fluorescence measurements makeilllpds determine the equilibrium concentration
profiles ofMQz (blue curve) andMQc* (red curve). Once again the duality of these known partseofabtorC to the
factorS uniquely determines the spectrum of the dindiyzHMQZ*. This completes the pure component recovery.
All results are shown in Fig. 8.

4.5. Result verification by means of rank annihilation armekic-hard modeling

In Sec. 4.4 we have involved the pure component spectfd @ and of MQc" to the final pure component
recovery. Good approximations of these spectra are abbe$sim the first and last column @. The associated
concentration values af&(1, ;) = (co, 0,0) andC(12,:) = (0,0, cp). These data also make it possible to apply a rank
annihilation analysis [16, 2] in the form of two rank-1 dovatels [5]

Ci. 1) C(.3)

“h 1)[)(1, ) - =222 D(12,2). (8)

D=D C(123)
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Figure 8: Reconstruction of the final solution as explaime8éc. 4.4. Upper left plot: Two pure component spectra aee fix the spectral AFSK(
markers). Lower left plot: The duality underlyi@andS in D = CST uniquely determines one point in the concentrational AFSdiax marker).
Centered column of figures: Fluorescence measurementsniletetwo of the concentration profiles (blue and red marketke concentrational
AFS). Once again a duality argument uniquely determinespleetrum of the dual spectrum, namely the spectrum of therditiQzHMQ3".
Right column of figures: The final pure component factororati

If perturbations are ignored, thdhis a rank-1 matrix which contains in its columns only mukiplof the spectrum

of the dimer MQzHMQZ". For experimental spectral data we must take into accouséramd other perturbations.
Thus a singular value decomposition Bfis applied. The left and the right singular vectors correstiog to the
largest singular value are the desired equilibrium comedioh profile and spectrum oMQzHMQZ2*. The profiles
are plotted in Fig. 9 by dashed lines. The results of the A&Sed approach are plotted by solid lines. Relevant
difference must be stated in particular for the spectrum of timediM QzHMQZ* which attains close to 500nm a
minimal negative component efL.7 - 10-2 by rank annihilation. The AFS-based approach preventstivegentries

of such a magnitude. There are alsfigliences between the equilibrium concentration profiles@fwo methods.

In order to judge which of the approaches provides the begtarlts, we have fitted the kinetic model (6) to the
computed pure component factors each for the two computtapproaches. Such kinetic models are well known to
be stringent decision makers [45]. For these computatianbave sek_; = k_, = 0 as the trifluoromethanesulfonic
superacid does not let expect a notable back reaction. Huétsare plotted in Fig. 10. They clearly indicate that
the AFS-based decomposition provides the better resuiis.cbnclusion is supported by the following relative error
values

o ICEO, i) — ek i)
reld = e

on the diferences of the kinetic-model-based concentration pra@ié3(:, i) for the the components for= 1,2, 3 to

the solution profile<®)(:, i) of the AFS-based approach and the rank annihilation aphroBhese relative errors
have been computed with respect to the maximum norm (maxiataé of absolute error values) and the Euclidean
norm (sum of squares)

AFS-based solution: || -|max : reldiff = (0.039 0.050 0.048), I -]l : reldiff = (0.089 0.088 0.103),
Rank annihilation: Il - llmax : reldiff = (0.117, 0.121, 0.092) || -1l2 : reldiff = (0.235 0.223 0.195)
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Figure 9: Comparison of the results of a rank annihilatioalysis (dashed lines) with the results of the AFS-basedasmbr for the reduction of
the rotational ambiguity.
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kinetic fit to the AFS-based factors.
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Figure 10: Kinetic model fits (dash-dotted lines) to the twluions as shown in Fig. 9.

5. Conclusion

The ambiguity of the solutions of the pure component faz&dion problem is a fundamental complication, which
is often hidden by the fact that MCR software packages preduaty one solution. However, this single solution must
be considered to be only a more or less reliable approximafithe true solution. In this study we have shown that a
unigue pure component decomposition can be gained for tea ginree-component system consistingNehethyl-
6-oxyquinolone MQ2), the zwitterionic speciesMQzHMQ3Z* and MQc". The underlying rotational ambiguity
of the pure component factorization problem for this systeroomputed and represented in the AFS. Versus the
background of the AFS, various chemometric techniques mgayed in order to reduce the ambiguity. The final
pure component factorization is verified against an altereag@hemometric approach and also against a kinetic-model
of the reaction scheme. The results underline tfecéveness of AFS-based chemometric analyses and derai@sstr
the dfectiveness oMQzas an optical acidometer.
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