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Abstract

Multivariate curve resolution (MCR) helps to uncover the spectra and concentration profiles of the pure components

from sequences of spectra measured at a chemical reaction system. However, the underlying matrix factorization

problem has often multiple solutions. This fact is known under the keyword rotational ambiguity and explains why

different MCR methods can provide different decompositions for the same data. Kinetic reaction models can be used

in order to constrain the feasible concentration profiles. This reduces the rotational ambiguity. Especially in the case

that a first-order reaction model is assumed, the remaining ambiguity can be described completely analytically.

A hard-model based MCR method is used for the simultaneous analysis of multiple data sets. The method is tested

for a reversible two-step photokinetic model. The kinetic model cannot enforce a single, unique solution. Instead the

remaining ambiguity is fully investigated. The practical benefit of the method is demonstrated for an experimental

UV/Vis data set of a photoinduced isomerization.

Keywords: Multivariate curve resolution, Kinetic modeling, Ambiguity of kinetic parameters, Multiset analysis.

1. Introduction

Multivariate curve resolution (MCR) techniques are highly useful for the analysis of chemical reaction systems.

Their central objective is the reliable extraction of pure component information from time series of spectra. Let

D ∈ R
m×n be the row-wise matrix representation of a sequence of m spectra, each with n data channels. For an

s-component chemical reaction system the aim is to determine nonnegative factors C ∈ Rm×s and S ∈ Rn×s so that

D = CS T (1)

holds. Any pair of nonnegative matrices C and S that fulfills Equation (1) is called feasible. The occurrence of

multiple nonnegative matrix pairs (C, S ) satisfying (1) is paraphrased by the keyword rotational ambiguity [1, 2, 3].

An important challenge of MCR analyses is to identify those feasible factors that contain chemically meaningful

information. A number of different approaches has been proposed in the literature to overcome this problem. On

one hand there are optimization-based MCR methods which in combination with additional constraints yield by their

construction a single pair of feasible factors. This solution is often assumed to be the true, chemically correct solution

[4, 5, 6]. On the other hand there are global methods which yield the set of all feasible factorizations of D. A

prominent global method is the feasible bands approach [7] that represents all feasible matrix factors in plots of the

bands of all feasible spectra and concentration profiles. An alternative global approach is the Area of feasible solutions

(AFS) representation [8, 9, 10, 11], which provides a low-dimensional representation of the feasible bands in terms of

the expansion coefficients of the left and right singular vectors of D.
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Kinetic reaction models can be combined with each of these techniques [2, 12, 13]. A kinetic model helps to

restrict the set of feasible concentration profiles to those curves that are possible solutions of the kinetic reaction

equations for optimized kinetic parameters. In general, kinetic models are well-known to be very effective in reducing

the rotational ambiguity [12, 14, 15]. However, the usage of consecutive first-order reaction models is often not

sufficient in order to obtain a unique solution [16, 17, 18]. See also [19] for a general approach to this problem with

arbitrary first-order models. In this work, the methodology is to consider the set of all feasible factors C and S for

which a given kinetic model can be parameterized in a way that the concentration profiles are consistent with the factor

C. An elegant and concise representations of these consistent factors is possible by collecting all the associated kinetic

parameters within a set of D-consistent parameters K , see [19]. This representation enables an unbiased analysis of

the feasible factorizations under the constraint of a kinetic model and reveals the underlying correlations of the kinetic

parameters.

In this paper the set of D-consistent parameters (here in the form of quantum yields)K is derived for the reversible

two-step photokinetic model Y ↔ X ↔ Z. Therefore a hard-modeling approach is introduced which can be applied to

multisets [20, 21, 22]. This enables the calculation of a pair of feasible factors, which determine an initial element in

the set K . Based on this initial element, equations for the analytical description of the set K are derived. This makes

it possible to evaluate the rotational ambiguity under the constraint of the given photokinetic model.

1.1. Organization of the paper

Section 2 presents a kinetic hard-modeling approach for multisets. The reversible two-step photokinetic model

is analyzed in Section 3. To this end, the model is introduced, the analytical derivation of the set of D-consistent

quantum yields is derived in Section 3.1 and an approximation of the photokinetic factor is presented in Section 3.2.

Finally, the results are applied to an UV/Vis multiset in Section 4.

2. Kinetic hard-modeling for multisets

The “classical” MCR analysis of an s-component system involves the extraction of concentration profiles and

spectra of the pure components from a sequence of m spectra stored in a matrix D ∈ R
m×n. Nonnegative factors

C ∈ R
m×s and S ∈ R

n×s are to be determined such that (1) holds (at least approximately). The intrinsic ambiguity

of this problem often requires the usage of a-priori assumptions on the factors C and/or S , e.g. kinetic models,

unimodality, monotonicity or selectivity [14]. This ambiguity can also be reduced by analyzing multiple, differing

data sets of the same reaction system. Such data can be acquired by a repeated execution and measurement of the

experiment under different conditions. The resulting collection of data sets can be concatenated into a so-called

multiset. The higher-dimensional multiset data can be processed in a simultaneous analysis. In this section we present

a modification of the kinetic hard-modeling approach from [19], which can be applied to multisets that are regularized

by photokinetic models. Our approach is based on ideas from [12]. If the reader is familiar with the analysis of

multisets and hard-model approaches, then the remaining part of this section can be skipped.

A common experimental setup is to vary one or several properties of a reaction system (e.g. initial concentrations,

pressure, pH-value, etc.) and to measure time-dependent series of spectra under the changed conditions. This results

in p data sets D1 ∈ R
m1×n, . . . ,Dp ∈ R

mp×n with mi, i = 1, . . . , p, being the numbers of time points of the i-th data set

and n the number of data channels of every spectrum. The underlying assumption is that only the dynamic behavior

of the species is different between the individual data sets, whereas their spectra remain unchanged. The p matrices

Di are concatenated to form the matrix

D =





D1

...

Dp





∈ Rmt×n (2)

with mt = m1 + . . . + mp. Under the given assumption one wants to extract a common pure spectra matrix S ∈ Rs×n,

which fits to all Di, i = 1, . . . , p, in the sense that individual factors of concentration profiles Ci ∈ R
mi×s, i = 1, . . . , p
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exits with




D1

...

Dp





︸︷︷︸

D

=





C1

...

Cp





︸︷︷︸

C

S T .

Next we assume that kinetic models are known for the p data sets of the investigated reaction system. The hard-

modeling approach in [19, 12] is based on the minimization of an objective function f (φ) with the parameters of the

kinetic model φ ∈ R
q. This hard-modeling approach has been introduced for applications to single data sets. In the

following we introduce a generalization for applications to multiple bilinear data sets. Only minor changes of f (φ)

are required, which are described in detail next.

In this paper we consider the case of a photokinetic model to describe the behavior of a photoreaction in which the

so-called quantum yields take the place of the kinetic parameters in thermal reactions [27]. The p photokinetic models

for the data sets D1, . . . ,Dp are defined by p initial value problems (IVP) for ordinary differential equations (ODE).

Each IVP has an associated vector of initial concentrations c0,i, i = 1, . . . , p. All ODE systems depend on the (same)

unknown vector of quantum yields φ for which optimal values are to be determined. The matrices Code
i

(φ) ∈ R
mi×s
+ ,

i = 1, . . . , p, can be obtained by numerical integration of the p IVPs with respect to the given time grid. Thus these

matrices represent the evaluations of the p photokinetic models. The concatenated matrix Code(φ) ∈ R
mt×s
+ is defined

by

Code(φ) =





Code
1

(φ)
...

Code
p (φ)





.

Further let UΣVT be the truncated singular value decomposition [23] of D which includes only the first s singular

values and the first s left and right singular vectors. The recipe for the numerical evaluation of the target function can

be taken over directly from [19]. The main computation steps are as follows:

1. Compute Code(φ) for the current quantum yields φ,

2. form the transformation T = (Code(φ))+UΣ,

3. compute from T the associated factors C = UΣT−1 and S T = TVT and finally

4. evaluate the function value of the objective function

f (φ) =

mt∑

i=1

s∑

j=1

min

(
Ci j

maxl(Cl j)
, 0

)2

︸                             ︷︷                             ︸

nonnegativity constraint on C

+

n∑

i=1

s∑

j=1

min

(
S i j

maxl(S l j)
, 0

)2

︸                             ︷︷                             ︸

nonnegativity constraint on S

+ ‖Code(φ) −C‖2F

︸             ︷︷             ︸

kinetic fit

.
(3)

Minimization algorithms as the Nelder-Mead simplex method [24] or the trust-region reflective method [25] can be

used to solve the minimization problem

‖ f (φ)‖2 → min . (4)

This procedure yields the feasible factors C∗ and S ∗ as well as an optimized vector of quantum yields φ∗ of the

photokinetic models.

3. Ambiguity of the photokinetic parameters

This section introduces a reversible two-step kinetic model for a photoinduced reaction system. Further the set of

D-consistent quantum yields is derived for this model. The photokinetic model for the s = 3 components X, Y and Z

reads

Y
φ−1

GGGGGGGBF GGGGGGG

φ1

X
φ2

GGGGGGBF GGGGGG

φ−2

Z (5)
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with the unknown vector of quantum yields φ = (φ1, φ−1, φ2, φ−2)T ∈ (0, 1]4. The corresponding ODE system reads





ẋ(t)

ẏ(t)

ż(t)




= F(t) · I · M(φ)





x(t)

y(t)

z(t)




(6)

with the coefficient matrix

M(φ) =





−φ1 − φ2 φ−1 φ−2

φ1 −φ−1 0

φ2 0 −φ−2









εX 0 0

0 εY 0

0 0 εZ




(7)

and concentration profiles x(t), y(t) and z(t) of the three chemical species X, Y and Z. The incident monochromatic

photon flux is denoted by I ∈ R, the molar absorption coefficients are εX , εY , εZ ∈ R+ and F(t) is the time-dependent

photokinetic factor.

3.1. Set of D-consistent quantum yields

The set of D-consistent parametersK is introduced in [19]. In brief words these are the kinetic parameter vectors

whose associated ODE solutions form a factor C so that D = CS T holds for a (not necessarily nonnegative) matrix S .

Therefore the determination of the set K is not necessarily associated with an MCR factorization problem for D, but

arises for any fitting of a kinetic model to a single-wavelength measurement. In the context of photokinetic reaction

systems we use the conceptual extension of a set K of D-consistent quantum yields. Analogously, for each vector of

quantum yields φ ∈ K , the matrix D can be decomposed into CS T wherein C is close to the ODE solution Code(φ) for

the given vector φ. Thus for a given φ ∈ K the factors C and S (should at least approximately) fulfill the equations

‖D − CS T ‖F

‖D‖F
= 0,

‖C − Code(φ)‖F

‖C‖F
= 0 and

‖min(C, 0)‖F

‖C‖F
= 0.

The last equation guarantees the nonnegativity of C. This equation can be ignored because nonnegativity is already

been guaranteed by the second equation that guarantees that C reproduces the (necessarily) nonnegative ODE solution

Code(φ). All these error measure are considered in the approximate, numerical setup that is presented in Section 4.

The set of feasible quantum yieldsK+ is a subset of K for which additionally the matrix S satisfies

‖min(S , 0)‖F

‖S ‖F
= 0.

The latter condition is necessary for interpreting the columns of S as the spectra of the pure components.

Next we present a closed-form expression (analytic representation) of the set K for the reaction system (5) with

the coefficient matrix M(φ) from (7). Let a certain φ∗ ∈ K be known. Such an initial vector of quantum yields can

easily be computed by the approach presented in Section 2 or any multivariate curve result method which includes

kinetic model modeling. According to the main theoretical result in [19] a vector of quantum yields φ is in the set K

if and only if all eigenvalues of M(φ) coincide with those of M(φ∗). The eigenvalues of M(φ∗) are

λ1 = 0,

λ2,3 = −
κ(φ∗)

2
±

1

2

√

κ(φ∗)2 − 4δ(φ∗) (8)

with

κ(φ∗) = εXφ
∗
1 + εYφ

∗
−1 + εXφ

∗
2 + εZφ

∗
−2,

δ(φ∗) = εXφ
∗
1εZφ

∗
−2 + εYφ

∗
−1εXφ

∗
2 + εYφ

∗
−1εZφ

∗
−2.

(9)

For the analytical representation of the set K , all φ have to be determined which leave the eigenvalues λ1, λ2 and λ3

unchanged. The set K contains all quantum yields φ ∈ (0, 1]4 which meet the following conditions (see Appendix
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Appendix A for details):

−λ2 ≤εXφ2 + εZφ−2 ≤ −λ3 (10)

φ2 > −
1

εXεZφ−2

(εZφ−2 + λ2)(εZφ−2 + λ3) (11)

φ1(φ2, φ−2) = −
1

ε2
X
φ2

· (εXφ2 + εZφ−2 + λ2) · (εXφ2 + εZφ−2 + λ3) (12)

φ−1(φ2, φ−2) =
1

εY

(κ(φ∗) − εXφ1(εXφ2, εZφ−2) − εXφ2 − εZφ−2) (13)

Equations (12) and (13) are explicit representations of the quantum yields φ1 and φ−1 in dependence of φ2 and φ−2.

Together with the bounds (10) and (11) these are two explicit representations of the set of feasible quantum yieldsK .

Eqns. (11)–(13) are the basis for an efficient calculation and generation of plots of the set of feasible quantum yields

K .

Remark 3.1. Two correlations between the results of this section and other (photo-)kinetic models are:

a) The kinetic model (5) and the analytic representation of the set K can be reduced to a “classical” reversible

two-step reaction by setting F(t) = 1 for all times t and I = εX = εY = εZ = 1.

b) By setting the corresponding φi values to zero, the sets K can be derived for various models based on the Eq.

(10)-(13), e.g.

Y
φ−1

GGGGGGGA X
φ2

GGGGGGA Z , Y
φ−1

GGGGGGGBF GGGGGGG

φ1

X
φ2

GGGGGGA Z and Y
φ−1

GGGGGGGA X
φ2

GGGGGGBF GGGGGG

φ−2

Z.

Relabelling of the components and quantum yields/rate constants might be necessary to meet common notation

standards. See [19] for more details on the three models above.

3.2. Approximation of the photokinetic factor

The function F(t) in (6) is not known in advance and must therefore be approximated. Photoinduced reactions

are triggered by light at a chosen irradiation wavelength λ (405 nm here). If we denote by dλ(t) the absorption of

the reaction system at the wavelength λ along the time axis t, then the photokinetic factor can be approximated in a

general way according to

F(t) ≈ F̄(t) =
1 − 10−dλ(t)

dλ(t)
; (14)

see Chapter 1, Equation (1.39), in [26]. A continuous evaluation of F̄(t) is needed for the numerical integration of

the IVPs of Section 2. Because of the discrete structure of spectroscopic data, two minor problems arise. First, the

intensity profile dλ(t) is usually neither known for the irradiation wavelength λ nor for continuous time points t. The

column of D that corresponds to the wavelength which is nearest to λ can be used to approximate dλ(t) on the given

time grid. Second, the values F̄(t) are not obtainable for arbitrary time points t within the boundaries of the time grid,

but can be approximated by (linear or higher order) interpolation.

4. Numerical results

A photochromic UV/Vis study of cis-1,2-dicyano-1,2-bis(2,4,5-trimethyl-3-thienyl)ethene (CMTE) [22, 27] is

investigated in this section. The reaction system contains s = 3 independent components, namely different forms of

CMTE: X = open cis isomer, Y = closed ring form and Z = open trans isomer. The hard-modeling approach from

Section 2 is applied and the sets K and K+ are derived. Finally, an improved solution (by means of typical error

measures) is identified in K+.
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Two UV/Vis data sets D1 ∈ R
103×621 and D2 ∈ R

146×621 with 621 data channels in each of the 103 and 146

measured spectra are considered. They are shown in Fig. 1. The vector x ∈ R
621 contains the wavelength grid and

is valid for both data sets. The two data sets differ in their initial concentrations c0,1 = (5.93 · 10−5, 0, 0) mol/l and

c0,2 = (0, 0, 1.072 · 10−4) mol/l as well as their incident monochromatic photon fluxes I1 = 4.8 · 10−6 mol/(l·s) and

I2 = 4.5 · 10−6 mol/(l·s). Both were irradiated at the same wavelength of 405 nm and the molar absorption coefficients

of the different forms at this wavelength are εX = 3.1075 · 103, εY = 1.0862 · 103, εZ = 2.3365 · 103 in l/(mol· cm).
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Figure 1: On the left the data set D1 and in the middle the data set D2 are shown. The matrix D is the result of merging the data sets D1 and D2 as

in Equation (2) and is presented in the right plot.

Before applying the hard-modeling approach from Section 2, approximations of the photokinetic factors F1(t)

and F2(t) have to be determined for D1 and D2. The 269th component of x reads 404.98nm and is nearest to the

value of the irradiation wavelength λ = 405nm. The evaluation of (14) is done for the time discrete intensity profiles

D1(:, 269),D2(:, 269) and reads F̄1 ∈ R
103 and F̄2 ∈ R

146. Additionally, a Savitzky-Golay filter with 3rd degree

polynomials and a window width of 35 points has proven to be suitable in order to reduce the influence of noise. The

resulting vectors are called F̄ s
1
∈ R

103 and F̄ s
2
∈ R

146. Fig. 2 shows the raw and smoothed approximations of the

photokinetic factors.

0 5
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1.85
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raw
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F̄
2
(t

)
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d
F̄

s 2
(t

)

Figure 2: The approximations F̄1 and F̄2 of the photokinetic factors determined by Equation (14) are plotted in black. The smoothed approximations

F̄s
1

and F̄s
2

were obtained by a Savitzky-Golay filter and are shown as red dashed lines.

Next, the hard-modeling approach from Section 2 is used to calculate a decomposition which is consistent with the

given photokinetic model (5). A solution to the minimization problem (4) is computed with the solver lsqnonlin from

MatLab 2017b. The calculated quantum yields are φ∗ = (0.1429, 0.2491, 0.2219, 0.3678)T and the corresponding

factors C∗ and S ∗ are shown in Fig. 3. The obtained relative errors are

‖D −C∗(S ∗)T ‖F

‖D‖F
= 0.010,

‖C∗ − Code(φ∗)‖F

‖C∗‖F
= 0.022,

‖min(C∗, 0)‖F

‖C∗‖F
= 0.0012,

‖min(S ∗, 0)‖F

‖S ∗‖F
= 0.00052.

Because of the noisy/perturbed spectral data these error values do not exactly equal 0. Therefore the sets K and K+
also contain quantum yields for which the corresponding factors have comparably small relative errors.
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Figure 3: Decomposition of the merged matrix D from Fig. 1; On the left the concentration profiles C∗ are shown in color together with the kinetic

model Code(φ∗) as black dashed lines. The corresponding spectral profiles S ∗ are shown on the right. They are valid for both data sets D1 and D2.
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Figure 4: Representation of the sets K (left) and K+ (right); The set of representatives of K is shown as colored points in the left plot and is

obtained by the use of the Equations (10)-(13). Because of noisy data the nonnegativity constraint of the factor S for K+ has been applied with a

tolerance of 2%. This results in the blue colored subset K+ of K in the right plot. The quantum yields φ∗ are marked by a black cross and φopt by

a red cross in each plot.

Next the analytical description of the setK for the photokinetic model (5) from Section 3 is used. The initial values

κ(φ∗) = 2263.51 and δ(φ∗) = 800718.27 are first computed. Thus the eigenvalues of M(φ∗) are λ1 = 0, λ2 = −438.83

and λ3 = −1824.68. An evaluation of φ1(φ2, φ−2) from Equation (12) is done for values in the (φ2, φ−2)-plane. Only

those values have to be considered for which the constraints from Equation (10) and (11) hold. The corresponding

values for φ−1(φ2, φ−2) are given by Equation (13). They can be neglected in order to reduce the dimension which is

needed to display K . The left plot of Fig. 4 shows an approximation of the set K by a set of representatives. The

quantum yield vector φ∗ ∈ K is used to compute κ, δ and thus also K . It is marked by a black cross.

The second step is a reduction of K to K+. To this end the factor S is calculated for each representative of K in a

way that the objective function (3) is minimized. If

|min(S (i, :), 0)| ≤ 0.02 ·max(S (i, :)) (15)

holds, then the scaled factor S (in way that all columns have a maximum of 1) contains no entry below −0.02. In

other words, this strategy amounts to the acceptance of 2% negative entries in S . In conclusion the corresponding

representative inK also belongs toK+, if (15) holds for i = 1, . . . , s. The result is shown in blue color in the right plot

of Fig. 4. Both sets K and K+ are consistent with the approximations calculated using the grid search algorithm in
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Figure 5: The factors C (left) and S (center) are shown for each representative of K+ in Fig. 4. Qualitative and quantitative differences can be

observed for all species. The two plots can be interpreted as representation of the rotational ambiguity constrained by a kinetic model. A scaling

to a maximal height of 1 for each spectrum is used in the right plot. This highlights that most of the feasible factors S contain a similar structural

information. Nevertheless the corresponding factors C show major differences. It should be noted that not only bands of solutions are shown, but a

set of individual feasible factors. To emphasize this the factors Copt and S opt for φopt are plotted by black dashed lines.

[27]. The associated bands corresponding to these feasible factors C and S are plotted in Fig. 5. These plots constitute

graphical evaluations of the rotational ambiguity of a data set under the constraint of a kinetic model. In the left and

the center plot we use a scaling that is determined by the kinetic model. Consequently, scalar multiples of the same

concentration profile or spectrum also appear in the plots. For better graphical evaluation of the rotational ambiguity

a max-height-of-1 scaling is used in the right plot.

Next, the correctness of the set K+ is validated. Therefore, the nonnegativity and the fit to the kinetic model is

evaluated for all the representatives of K+ as plotted in Fig. 4. Table 1 contains the relative errors for φ∗ as reference

values as well as the corresponding lower and upper bounds. The relative error is between 0.0009 and 0.015 for the

‖C −Code(φ)‖F/‖C‖F ‖min(C, 0)‖F/‖C‖F ‖min(S , 0)‖F/‖S ‖F
φ = φ∗ 0.022 1.2 E−3 5.2 E−4

Upper bound for all φ ∈ K+ 0.067 1.5 E−2 9.8 E−3

Lower bound for all φ ∈ K+ 0.020 9.0 E−4 4.0 E−4

φ = φopt 0.021 1.1 E−3 5.1 E−4

Table 1: The relative errors of the corresponding factors for the vector of quantum yields φ∗ and φopt as well as lower and upper bounds are listed.

nonnegativity of C and between 0.0004 and 0.0098 for the nonnegativity of S . This is considered to be sufficiently

good. The relative error for the kinetic fit ranges between 0.02 and 0.067. The relatively large upper limit is caused

by the noise contained in D1 and D2, which is mainly found in the concentration factors (compare the left and right

plot in Fig. 3).

In the final step of the analysis the representatives of the set K are scanned for a vector of quantum yields which

results in smaller error values compared to that which belong to φ∗. The optimal vector of quantum yields reads

φopt = (0.1355, 0.2592, 0.2263, 0.3671). Its relative error values are listed in the last row of Table 1. Optimality is to

be understood in the sense of smallest error values. This does not necessarily include that the found solution has the

greatest chemical meaning. Nevertheless, these two interpretations are often correlated. The optimal vector is marked

by a red cross in Fig. 4. The two vectors φ∗ and φopt differ only slightly. A graphical comparison of corresponding

factors Copt, S opt (colored) with C∗, S ∗ (gray) is given in Fig. 6. While the spectra of the components X and Z remain

nearly unchanged, a clear difference can be seen for the spectrum of the second component Y. Additionally, the

concentration profiles show major differences in all components. Hence the small difference between φ∗ and φopt can

yield qualitatively different but still feasible solutions.

5. Conclusion

Kinetic models can support MCR methods in reducing the rotational ambiguity of pure component factorizations

for bilinear data. However, even under the constraint of the consistence to a kinetic hard model, a unique factorization
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cannot always be guarantied.

In this paper we have demonstrated a mathematical analysis which allows us to investigate the remaining am-

biguity of a kinetic-hard-model based MCR approach. The ambiguity is presented in closed-form mathematical

expressions for the quantum yield vectors of a reversible two-step photochemical system that are consistent with the

spectroscopic data.

We hope that the presented strategy on the hand can raise awareness for MCR-ambiguities even under the kinetic-

hard-model conditions and on the other hand can highlight the strength of the mathematical-analytic representation of

the set of feasible quantum yields.

Appendix A. Equations for the analytical description ofK

This section contains the mathematical derivation of the Equations (10)-(13) that describe the setK for the kinetic

model (5). We assume that the two eigenvalues λ2 and λ3 in Equation (8) are enumerated in a way that 0 > λ2 > λ3.

The two sets

M :=

{

φ ∈ (0, 1]4 : λ2,3 = −
κ(φ)

2
±

1

2

√

κ(φ)2 − 4δ(φ)

}

,

N :=
{

φ ∈ (0, 1]4 : Eq. (10)-(13) hold
}

are to be considered with κ(φ) and δ(φ) by (9). It has to be shown thatM = N or equivalently that φ ∈ M if and only

if φ ∈ N .

First we prove that φ ∈ M implies that φ ∈ N . In a preparation step we show that the following term equals 0:

(εXφ2 + εZφ−2)2 − (εXφ1 + εXφ2 + εZφ−2)(εXφ2 + εZφ−2) + εXφ1εZφ−2 + εXφ1εXφ2 (A.1)

= (εXφ2 + εZφ−2)2 − (εXφ1 − εXφ1
︸         ︷︷         ︸

=0

+εXφ2 + εZφ−2)(εXφ2 + εZφ−2)

= (εXφ2 + εZφ−2)2 − (εXφ2 + εZφ−2)2

= 0 .

9



Next we subtract the term εXφ1εXφ2 from (A.1) and divide the equation by ε2
X
φ2. This results in

φ1(φ2, φ−2) = −
1

ε2
X
φ2

· ((εXφ2 + εZφ−2)2 − (εXφ1 + εXφ2 + εZφ−2)(εXφ2 + εZφ−2) + εXφ1εZφ−2)

= −
1

ε2
X
φ2

· ((εXφ2 + εZφ−2)2 − (εXφ1 + εXφ−1 − εXφ−1
︸            ︷︷            ︸

=0

+εXφ2 + εZφ−2)(εXφ2 + εZφ−2) + εXφ1εZφ−2)

= −
1

ε2
X
φ2

· ((εXφ2 + εZφ−2)2 − κ(φ)
︸︷︷︸

=−(λ2+λ3)

(εXφ2 + εZφ−2) + δ(φ))
︸︷︷︸

=λ2λ3

= −
1

ε2
X
φ2

· ((εXφ2 + εZφ−2)2 + (εXφ2 + εZφ−2)(λ2 + λ3) + λ2λ3)

= −
1

ε2
X
φ2

· (εXφ2 + εZφ−2 + λ2) · (εXφ2 + εZφ−2 + λ3) .

This shows that Equation (12) holds. Equation (13) follows directly from the fact that κ(φ) = −(λ2 + λ3) is constant

for all φ ∈ M so that κ(φ) = κ(φ∗).

The nonnegativity of φ1(φ2, φ−2) and the representation by Equation (12) imply that

(εXφ2 + εZφ−2 + λ2) · (εXφ2 + εZφ−2 + λ3) < 0 .

Due to λ3 < λ2 < 0 the latter inequality can only hold if εXφ2+εZφ−2+λ2 is positive and εXφ2+εZφ−2+λ3 is negative.

This proves (10).

Next the equation

(εZφ−2 + λ2)(εZφ−2 + λ3) = (εZφ−2)2 + εZφ−2(λ2 + λ3
︸  ︷︷  ︸

−κ

) + λ2λ3
︸︷︷︸

δ

= εXφ2εZφ−2 + εXφ2εYφ−1 = εXφ2(εZφ−2 + εYφ−1)

holds and hence we get

φ2 > 0 > −
εXφ2

εXεZφ−2

(εZφ−2 + εYφ−1)

︸                          ︷︷                          ︸

>0

= −
1

εXεZφ−2

(εZφ−2 + λ2)(εZφ−2 + λ3) .

Thus (11) holds.

Finally we show the reverse direction, namely that φ ∈ N implies that φ ∈ M. We only have to show that

κ(φ) = κ(φ∗) and δ(φ) = δ(φ∗). With (8) this proves that M(φ) has the same eigenvalues as M(φ∗) which completes the

proof.

First, κ(φ) = κ(φ∗) results from a simple reorganization of Eq. (13). Second, starting from (12) the equation

φ1(φ2, φ−2) = −
1

ε2
X
φ2

· (εXφ2 + εZφ−2 + λ2) · (εXφ2 + εZφ−2 + λ3)

= −
1

ε2
X
φ2

· ((εXφ2 + εZφ−2)2 + (εXφ2 + εZφ−2) (λ2 + λ3)
︸    ︷︷    ︸

−κ(φ∗)

+ λ2λ3)
︸︷︷︸

δ(φ∗)

= −
1

ε2
X
φ2

· ((εXφ2 + εZφ−2)2 − κ(φ)(εXφ2 + εZφ−2) + δ(φ∗))

follows. Multiplication by ε2
X
φ2 and subtraction of ε2

X
φ2φ1(φ2, φ−2) gives

0 = − ((εXφ2 + εZφ−2)2 − κ(φ)(εXφ2 + εZφ−2) + δ(φ∗)) − ε2
Xφ2φ1(φ2, φ−2). (A.2)

Expansion of the quadratic term and substitution of κ(φ) by its definition reduces (A.2) to

0 = εXφ1εZφ−2 + εYφ−1εXφ2 + εYφ−1εZφ−2 − δ(φ
∗)) = δ(φ) − δ(φ∗).

Hence δ(φ) = δ(φ∗) has been proved.
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