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Abstract

Monitoring preparative protein chromatographic steps by in-line spectroscopic tools or fraction analytics results in

medium or large sized data matrices. Multivariate Curve Resolution (MCR) serve to compute or to estimate the con-

centration values of the pure components only from these data matrices. However, MCR methods often suffer from

an inherent solution ambiguity which underlies the factorization problem. The typical unimodality of the chromato-

graphic profiles of pure components can support the chemometric analysis. Here we present the pure components

estimation process within the framework of the area of feasible solutions, which is a systematic approach to represent

the range of all possible solutions. The unimodality constraint in combination with Pareto optimization is shown to

be an effective method for the pure component calculation. Applications are presented for chromatograms on a model

protein mixture containing ribonuclease A, cytochrome c and lysozyme and on a two-dimensional chromatographic

separation of a monoclonal antibody from its aggregate species. The root mean squared errors of the first case study

are 0.0373, 0.0529 and 0.0380 g/L compared to traditional off-line analytics. The second case study illustrates the

potential of recovering hidden components with MCR from off-line reference analytics.

Key words: pure component calculation, multivariate curve resolution, bio-pharmaceuticals, chromatography,

unimodality, FACPACK.

1. Introduction

Chromatography in biopharmaceutical industry is of great importance not only as an analytical technique but also

as a preparation method for pure materials [1, 2, 3]. A typical application is protein chromatography [1, 3]. The

basis for protein fractionation are different retention times of proteins due to their specific elution behavior, but the

resulting chromatograms typically do not achieve baseline separation of different species. Instead, a second, orthogo-

nal analytical measurement method is necessary to interpret the preparative protein chromatograms [1, 4, 5, 6]. The

analytical dimension is typically achieved by off-line reference analytics. Alternatively, selective quantification by

spectroscopic tools has been investigated as potential method for process monitoring [7]. The analysis of measure-

ments is often done manually and is by no means trivial. Typically, the results depend on the analyst interpreting the

data. In-line spectroscopic measurements are analyzed with calibrated statistical models such as partial-least squares

regression [7]. Here, significant resources have to be invested into model calibration. The quality of the analysis has

a distinct impact on the reliability and reproducibility of the results from preparative protein chromatography.

Automated calibration-free tools for chromatographic data analysis can improve the data interpretation and can sup-

port the reproducibility of the results [8]. Such tools should be capable to identify the number of species, to compute

pure component factorizations, to exploit the existence of unimodal profiles within the decomposition process and,

last but not least, to handle strongly interfering peaks. Ideally, the method should be robust with respect to variations

of the observed retention times.

The solution of such data analytical problems is incumbent on multivariate curve resolution (MCR) methods [9,

10], which are effective tools for the analysis of spectroscopic and chromatographic data. MCR methods solve the

pure component calculation problem, namely to reconstruct the (pure component) factors from mixed spectral or
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chromatographic data. Originally, MCR methods were developed to decompose spectral mixture data as reaction-

accompanying series of IR/Raman or UV/Vis spectra into the contributions from the pure components [11, 12]. The

application of MCR methods to chromatographic data to biopharmaceutical applications is comparatively new [13,

14, 15, 16].

Typically the focus of MCR-methods is on determining one, single factorization for the given (chromatographic) data,

but no systematic analysis of the solution ambiguity is applied [13, 15, 17, 16]. It is worth stressing that MCR-

methods by using constraint-based Pareto optimization techniques evade the issue of non-unique solutions [18, 19].

Consequently, the pure component factorizations as computed by the routines [20, 21] and others strongly depend on

the active constraints and their relative weighting. Such a steering effect of validated constraints is very helpful. For

chromatographic data the typical unimodal profile shape of single components can support the MCR analysis [22, 23].

The situation is more complex in the case of multiple components with overlapping profiles. Many solutions can exist,

but most of them do not represent chemically and physically meaningful profiles.

The intention of this paper is to discuss the pure component factorization problem for chromatographic biopharmaceu-

tical data on the basis of the so-called area of feasible solutions (AFS), [24, 25, 26, 27, 28, 29]. This permits a general

approach for the analysis of the solution ambiguity of the pure component calculation problem. The application of

this relatively young tool to chromatographic data and biopharmaceutical problems seems to be new. Our focus lies

on analyzing the non-uniqueness of the solutions, on giving guidelines for the practical application of the methods and

on interpreting its results. The AFS is a low-dimensional representation of all possible profiles that the factorization

problem can have for a given data set. Being aware on the existence of a solution ambiguity can only be a first step.

A second step should be a reduction to a single, hopefully true and chemically correct decomposition. We show that

for the given chromatographic data the unimodality constraint can serve as an effective reducer in order to find the

desired solution. This work takes up the chemometric MCR-based analyses of [14, 16] on the pure component extrac-

tion of preparative protein chromatograms and demonstrates the application of AFS-based chemometric analyses. We

hope that the latter more general approach can provide a deeper insight into the problem of profile ambiguities and

strategies how to select the correct solution.

1.1. Organisation of the paper

The paper is organized as follows. First, Section 2 introduces two experimental data sets for the subsequent method

development and the numerical testing. Section 3 is of central importance. It introduces the theoretical background

of the solution ambiguity underlying MCR methods and how it complicates the pure component calculation problem.

The computation of properly constrained factors with respect to penalty and regularization functions is explained in

Sec. 3.3. Then Sec. 3.4 presents the AFS approach and the FACPACK software for AFS related computations. Finally,

Sec. 4 reports on the results for the experimental data sets and discusses the questions concerning the identification of

the number of absorbing and reconstructable components.

2. Materials & Methods

The following two experimental data sets accompany the method developments and numerical experiments:

Data set 1. The first mixture contains the three model proteins, ribonuclease A, cytochrome c and lysozyme. The

detailed data was previously published in [16]. Briefly, the UV/Vis-absorbance data of a cation-exchange chro-

matography step from 240 nm to 310 nm was used for this study. A number of k = 588 spectra in the interval

t ∈ [1.67 · 10−2, 48.93] min were taken. Each spectrum consists of absorption values at n = 71 wavelengths. The data

(in 2D- and 3D-plots) as well as the singular value decomposition of the data matrix are shown in Figs. 1 and 3. (All

numerical computations in this paper are done in MatLab version R2018a and all singular value decompositions are

computed by its svd-routine.) MCR-based pure component factors under the constraint of unimodal elution profiles

are shown in Fig. 5.

Data set 2. This data set describes a two-dimensional chromatographic separation of a monoclonal antibody (mAb)

from its aggregate species. For technical details on this data set see [30]. The first chromatographic separation was

based on preparative cation exchange chromatography (CEX) which is typically used in biopharmaceutical production

processes for the purification of proteins [1]. However, preparative CEX only provides limited resolution of the

different species. In order to specify the elution profiles, the effluent from the 5 column volume preparative CEX

step was collected in fractions. These were then analyzed by a higher resolution second chromatographic separation

(analytical size exclusion chromatography) to improve the resolution of the different species. During the second
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Figure 1: Series of chromatograms of a protein mixture according to data set 1 in a 3D-plot (left, only every third wavelength) and a 2D-plot (right,

color changing from red to black with increasing wavelength values).
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Figure 2: Series of chromatograms of the separation of a monoclonal antibody (mAb) from its aggregate species according to data set 2. Left:

Series of chromatograms for the 20 fractions. Throughout this paper absorption values are given in AU for Arbitrary Unit. Right: Two-dimensional

plot of the chromatographic profiles with a color changing from black to red with increasing fraction values.

chromatographic separation, the UV absorbance trace at 280 nm was recorded. For the analysis we consider a number

of k = 21 chromatograms each with absorption values at n = 3751 retention times in the interval t ∈ [3, 5.5] min. The

resulting series of analytical chromatograms are shown in two- and three-dimensional representation in Fig. 2. Figure

4 shows the dominant singular values and the associated singular vectors. The resulting pure component estimation is

presented in Fig. 9.

3. Theory: The pure component calculation problem, its solution and solution ambiguties

The pure component calculation problem deals with the extraction of the pure component information (here chromato-

graphic elution profiles) from the spectral or chromatographic mixture data. The series of spectra or chromatograms

is stored row-wise in a matrix D ∈ R
k×n. These data correspond to measurements on a retention time×wavelength

grid or a retention time×fraction grid. The fraction axis can be considered as an intermediate coordinate for the sec-

ond chromatographic separation. The naming of this coordinate is not important for the following analysis. Instead,

we are interested in factorising the matrix D of mixture data to its source terms C ∈ R
k×s and S ∈ R

n×s according

the underlying bilinear structure of the problem. The dimension s equals the number of components. This bilinear

structure is expressed in the well-known Lambert-Beer law reading in matrix notation

D = CS T + E. (1)

Ideally, the matrix E is the null matrix. In practice, E should be close to the null matrix and its non-zero entries

express deviations from strict bilinearity, e.g., due to noise. The columns of C are the concentration profiles in time

of the pure components. Depending on the problem, the columns of S are elution profiles, pure component spectra or

other pure component profiles.
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Figure 3: The dominant singular values and associated singular vectors by an SVD of the matrix underlying data set 1. The largest/dominant

singular value and the associated singular vectors are drawn blue. Then with a decreasing size of the singular values the colors red, ochre, purple

and green are used. The singular values indicate that at least s = 3, but not more than s = 4 components can be reconstructed.

3.1. Pure component calculation and the non-uniqueness of solutions

The problem of recovering the unknown pure component factors C and S from the measured D is a so-called inverse

problem, which is closely related to the blind source separation problem [31] or the cocktail party problem [32]. Only

matrices C and S with nonnegative entries can make physical sense. Thus D = CS T poses a nonnegative matrix

factorization problem for the given matrix D. See the monographs [9, 10] for a detailed introduction to MCR for

applications in chemistry.

The nonnegative matrix factorization problem is not easy to solve. A main hurdle is the non-uniqueness of the

solution of such factorization problems. In order to explain this non-uniqueness let D = CS T be a nonnegative matrix

factorization (NMF) of D which means that C, S ≥ 0. Typically many invertible matrices R ∈ Rs×s exist so that

D = CS T = (CR−1)(RS T ) = C̃ S̃ T (2)

is also a nonnegative factorization of D with the factors C̃ and S̃ . Trivial examples of such R are those that can be

formed as a product of a permutation matrix and a diagonal matrix with positive diagonal elements. These matrices

are called generalized permutation matrices and effect simultaneous permutations of the columns of C and S together

with mutual up- and down-scaling of the columns. These operations do not yield any additional information on the

pure components, but correspond to an interchange of the components together with a scaling. More importantly,

often other feasible matrices R exist that are different from generalized permutation matrices. From the viewpoint of

the chemical MCR problem this solution ambiguity is very disturbing as only very few (if not only one) factorizations

exist which have a chemical meaning. In the research field of chemometrics this problem of non-uniqueness is known

under the keyword of rotational ambiguity, see [11, 10, 19, 26, 29] among many others.

3.2. Reconstruction by singular value decomposition

Many methods for estimating the pure components are based on a singular value decomposition (SVD) of D, see [33].

The SVD D = UΣVT is a three-factor decomposition of D where U ∈ Rk×k and V ∈ Rn×n are orthogonal matrices and

Σ ∈ R
k×n is a (rectangular) diagonal matrix. The diagonal elements of Σ are the singular values σ1 ≥ σ2 ≥ · · · ≥ 0.

The columns of U are called the left singular vectors of D and the columns of V are called the right singular vectors

of D.

If D has the rank s, then only its first s singular values are positive and the remaining singular values equal zero. Then

D can be represented only by the first s left and the first s right singular vectors and the associated singular values; for

small s this corresponds to an effective data compression. In the case of noisy experimental data the rank-s matrix D

is perturbed by noise D̃ = D + E. Typically, D̃ has the maximal rank rank(D̃) = min(k, n). If the noise level is small,

then its first s largest singular values dominate the remaining singular values which are close to zero. The SVD is

the starting point for the construction of noise-filtered low rank approximations of D. Only the first s singular vectors

carry important structure information and the remaining singular vectors with their associated close-to-zero singular

values can be ignored. This amounts to a low-rank approximation of D̃ by D. For data sets 1 and 2 the two figures 3

and 4 show the largest twenty singular values and the singular vectors belonging to the dominant singular values.

For experimental spectral data the size distribution of the singular values helps to determine the number of dominant,

structurally important singular values s. This number is the barrier to the remaining close-to-zero singular values that

have their origin in noise. Usually, s is much smaller than k and n. Then the so-called truncated SVD is formed only
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Figure 4: The dominant singular values and associated singular vectors by an SVD of the matrix underlying data set 2. Three dominant singular

values can be assumed, but there is no clear break-point between the dominant singular values and those close-to-zero singular values which are to

be associated with noise.

by the s dominating singular values and the associated singular vectors. By using the same variable names also for

the truncated matrices, namely U ∈ Rk×s, V ∈ Rn×s and Σ ∈ Rs×s, the factorization approach (2) finds its pendant in

D = UΣVT = UΣT−1

︸  ︷︷  ︸
C

TVT

︸︷︷︸
S T

= CS T . (3)

Therein T is an invertible s-by-s matrix; for details see [11, 10, 34]. The main advantage of this approach is the

reduction of the degrees of freedom. A direct computation of C and S includes (n + k)s variables. In contrast to this,

the representation of (3) reduces the degrees of freedom to the s2 matrix elements of T . Equation (3) is the pivotal

point for the optimization-based solution of MCR problems by using penalty and regularization functions in Sec. 3.3

and for the general analysis of the set of all nonnegative factorizations of D in Sec. 3.4.

3.3. Optimization-based solution of the MCR problem

The computation of meaningful, chemically interpretable pure component factorizations is by no means trivial [18].

Sometimes additional information on the expected structure of the pure component factors is available which can

help to steer the factorization process in a way that the pure component profiles are meaningful and interpretable.

Such a control of the factorization process can be achieved by a weighted sum of penalty and regularization terms

[35, 12, 34, 16]. The idea is to minimize the reconstruction error D − CS T under the constraints that C and S

are nonnegative matrices plus further constraints. Technically, this is implemented by considering the optimization

problem

f (T )→ min with f (T ) = ‖D −CS T ‖2F + α1‖min(0,C)‖2F + α2‖min(0, S )‖2F +

p∑

i=1

βigi(C, S )2. (4)

Therein, ‖ · ‖2
F

denotes the Frobenius norm, which is the sum of squares of all matrix elements of its matrix argument.

The coefficients α1, α2 > 0 are weight factors that determine how strongly the nonnegativity of C and S is enforced.

Further regularization terms gi, i = 1, . . . , p, with weights βi ≥ 0 and βi ≪ α1, α2 can be added.

Due to the representation of C and S by (3) the residual term ‖D −CS T ‖2
F

can be replaced by ‖Is×s − T−1T‖2
F

without

changing the result of the optimization since ‖D−CS T ‖2
F
= ‖Is×s − T−1T‖2

F
+
∑min(k,n)

i=s+1
σ2

i
and the latter term is a fixed

value not influencing the minimum point. Therein Is×s denotes the s-by-s identity matrix. In the case of noisy data a

strict penalization of negative entries of C or S can be too rigorous. Instead, small positive control parameters εC , εS

can be used that define lower boundaries on acceptable negative entries of C and S in the form of relative size limits

min C(:, i)

max C(:, i)
≥ −εC ,

min S (:, i)

max S (:, i)
≥ −εS , i = 1 . . . , s. (5)

The numerical minimization of the objective function f by (4) can be achieved by optimizers as the FORTRAN

routine NL2SOL by ACM or the MatLab routine lsqnonlin. Sometimes a pre-optimization by a genetic algorithm

is worthwhile. If the data includes not only small deviations from the bilinear model (1), then it can be useful to

use a higher number of singular vectors z > s in order to reconstruct the s pure component profiles [36, 34]. Such an

approach is used if significant information on certain profiles cannot be extracted only from the first s singular vectors.

Later we use this technique for data set 2.

5



The final success of such a Pareto optimization approach depends first and foremost on a proper selection of the regu-

larization functions and their weighting. An imbalanced weighting can prevent convergence to meaningful solutions.

For strongly rectangular data sets with k ≪ n or n ≪ k, as this is the case for data set 2, the weight factors should be

adapted properly. The unimodality constraint is of special importance for the analysis of chromatographic profiles in

this work. The choice of the weighting constants is to be discussed later. Finally, we apply later the L-curve technique

[37, 38] that serves to visualize the trade-off between the objective function and constraint functions in dependence

on the choice of the weight factors.

For the given biopharmaceutical data we expect unimodal profiles in various instances. For example, the elution

profile of a single component typically has a one-maximum behavior, which means that it is continuously decreasing

on both sides of the maximum. For noisy and perturbed experimental data we are interested in profiles that are more or

less unimodal. Thus we need a method that allows us to judge to which extent a certain profile is close to a unimodal

profile. Algorithm 1 suggests a solution in the form of a simple MatLab-code that evaluates profiles with respect

to their closeness to a unimodal shape. Figure 5 shows a pure component estimation for the data set 1 under the

constraint that the factor C consists of nearly unimodal profiles. Obviously the blue and the ochre elution profiles

are not perfectly unimodal. However, the deviations from unimodality appear to be acceptable for experimental (non-

model) data.

Algorithm 1: MatLab-code for the evaluation how close a certain profile c = C(:, i) is to a unimodal profile. The control parameter ω ≥ 0 controls

the acceptable deviation from unimodality. The residual vector r ∈ R
k−1 has negative entries when C(:, i) breaks the ω-weakened unimodality

constraint

function unival = unimodeval(c,omega)

r = zeros(size(c));

[cm,i0] = max(c);

for j=i0:-1:2

r(j-1) = min(0, cm-c(j-1)+omega);

if ((cm > c(j-1)) || (cm-c(j-1)+omega < 0))

cm = c(j-1);

end

end

cm = c(i0);

for j=i0+1:length(c)

r(j-1) = min(0,cm-c(j)+omega);

if ((cm > c(j)) || (cm-c(j)+omega < 0))

cm = c(j);

end

end

unival = norm(r,2);

Other typical regularizations are those that support smooth profiles, those with a small integral (by computing the

Euclidean norm of the profile) or regularizations that foster profiles with a high selectivity. A further very effective

regularization supports the concentration profiles to be close to the concentration profiles resulting from a given kinetic

model [39, 40, 10, 41, 42].

Next we estimate the pure components for data set 1 assuming a number of s = 3 components. Unimodality is a

constraint for the elution profiles. The control parameters and weight factors are εC = 7 ·10−3, εS = 10−4, α1 = α2 = 1

and βunimodal,C = 0.1. The control parameter for the unimodality constraint is ω = 10−4. The resulting function values

of the unimodality penalty functions are (without weight factors)

gunimodal, ribonuclease A = 8.40 · 10−5, gunimodal, cytochrome c = 3.15 · 10−6, gunimodal, lysozyme = 2.80 · 10−7.

All other penalty functions have function values that are smaller than 3 · 10−11. The results are plotted in Fig.5.

3.4. Low-dimensional representation of profiles by the AFS

As already mentioned, the spectral data matrix D has nearly always many nonnegative matrix factorizations, but

only one, namely the chemically correct factorization, is of interest for the chemist. There is no golden way from

the data to a single and chemically most meaningful solution. A first step towards such a solution is to determine

all possible NMFs of the given observed data matrix. This provides an overview on the solution space from which

the chemist can typically exclude chemically non-interpretable profiles. In ideal cases this process can result in the

desired chemically correct factorization. The benefit of this approach is its reliability and verifiability - in contrast to
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of the proteins ribonuclease A (blue), lysozyme (red) and cytochrome c (ochre). The known profiles are not used for the computation of the

factorization.

this, MCR methods, which result in a single and often method-dependent solution, tend to bias the solution selection

by additional uncertain assumptions. As we are now interested in the set of all nonnegative factorizations of D, the

question is how to make accessible the sets of all matrix factors C and S and how to represent these sets. The answer

is simple: We are only interested in the sets of all possible columns of C and S that can be extended to a nonnegative

matrix factorization of D. These sets of profiles can be represented in the form of bands of feasible profiles or in

a low-dimensional way by plotting their expansion coefficients with respect to the bases of left and right singular

vectors. We take the latter option below.
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Figure 6: The AFS-sets (colored red, blue and ochre) for the concentration factor and the spectral factor for data set 1. Each point in the AFS

defines a feasible profile. The vertices of the two triangles (by black solid lines) mark the chemically correct profiles. The small gray circles

represent the columns and rows of D in the AFS. For theoretical reasons, see for example [29], and for noise-free data, all these gray circles must be

enclosed by the two triangles. For the given experimental data set very small negative matrix entries are acceptable; we used the control parameters

εC = εS = 7 · 10−3 by Eq. (5).

3.4.1. The area of feasible solutions (AFS)

Equation (3) has a key function for the low-dimensional representation of the feasible profiles since it allows to

present the profiles (being high-dimensional vectors) by the few matrix elements of T or its inverse T−1. The matrix

elements of T are the expansion coefficients with respect to the basis of right singular vectors and the elements of

T−1 determine together with the singular values the expansion coefficients with respect to the basis of left singular

vectors. This allows us to define the AFS. For an s-component system the spectral factor AFS is a subset of the

(s − 1)-dimensional space and reads

MS =
{
x ∈ Rs−1 : exists T ∈ Rs×s with T (1, :) = (1, xT ), rank(T ) = s and C, S ≥ 0

}
(6)

with C and S as in (3). The details underlying this definition, especially the leading 1’s in each row of T , are rather

technical and skipped here. We refer for detailed explanations to [24, 26, 27] and the survey contributions [43, 28, 29].
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The associated AFSMC for the concentration factor is defined in an analogous way [44, 29]. Further,MC equals the

spectral AFS of the transposed matrix DT since in DT = S CT the matrices C and S have changed their places compared

to D = CS T . In recent years various methods have been developed for the geometric construction and the numerical

approximation of the AFS, see e.g. [45]. Of key importance for these developments are the Perron-Frobenius spectral

theory of nonnegative matrices [46], the crucial nonnegativity constraints [24, 47], the representation of the single

rows and columns of D in the AFS and the associated simplex constructions [24, 44].

For the data sets 1 and 2 the AFS is computed by the polygon inflation algorithm [27]. Each AFS consists of three

separated subsets. For this experimental data small deviations from strict nonnegativity should be allowed. The control

parameters are εC = εS = 7 · 10−3 according to (5). Fig. 6 shows the concentration factor and the spectral factor AFS

for data set 1 together with the true profiles by Fig. 5, namely those elution profiles with the smallest deviation from

unimodal profiles and those spectra that are closest in the mean squares sense to the given spectra. These six profiles

are represented by the six vertices of the two triangles.
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Figure 7: Feasible elution profiles (top) and pure component spectra (bottom) for data set 1. These profiles correspond to the AFS sets as shown

in Fig. 6. The finitely many profiles in each plot correspond to the same number of the grid points of uniform grids covering the AFS subsets. No

further requirements were placed on these profiles than nonnegativity. Many of the elution profiles are not unimodal and are thereby not meaningful.

Fig. 8 shows the remaining profiles under unimodality constraints. The true profiles from Fig. 5 are plotted as black lines.

The mathematical relation between points in the AFS, namely vectors of expansion coefficients, and the associated

profiles is as follows: A point x(i) = (x
(i)

1
, x

(i)

2
) ∈ MS or y(i) = (y

(i)

1
, y

(i)

2
) ∈ MC represents the associated (feasible)

profile

s(i) = (1, x(i))VT or c(i) = UΣ(1, y(i))T .

If we cover an isolated subset of the AFS with a more or less uniform grid and plot for each node of the grid the

associated profile, then we get a good approximation of the band of feasible profiles. Figure 7 shows these bands of

profiles for the two AFS sets as shown in Fig. 6.

3.4.2. The AFS under unimodality constraints

Assuming elution profiles as unimodal is often well-justified and has a strong impact on the set of feasible solutions.

This is reflected in smaller bands of feasible solutions and in a smaller AFS in comparison to the non-reduced original

AFS. The idea to combine unimodality assumptions with the AFS is relatively new and discussed in [48, 49].

Figure 8 shows the unimodality restricted AFS and the associated profiles for data set 1. For these computations the

control parameters on nonnegativity according to Eq. (5) are εC = εS = 7 · 10−3. The control parameter ω = 0.025

limits small deviations from strict unimodality, cf. Algorithm 1. The weight factors are α1 = α2 = 1 and βunimodal,C =

0.1. The unimodality restrictions on the concentration factor AFS imply, by so-called duality, further restrictions on

the spectral AFS; we skip the plots of this duality-based restricted spectral AFS here.
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Figure 8: Impact of the unimodality constraint on the AFS and the bands of feasible elution profiles for data set 1. Top left: Reduced AFS. The

original AFS is marked by dashed lines. Other plots: The associated bands of unimodal elution profiles. The original profiles are marked in

transparent colors in order to point out the effectiveness of the unimodality constraint.

3.4.3. Problems with bi-directional unimodal profiles

The AFS computation for data set 2 yields AFS sets of special structure. The concentration factor AFS and the spectral

factor AFS consist of very large and narrow subsets together with others that are much smaller and close to the origin.

All this makes it difficult to construct meaningful solutions in the geometric way as explained above. We see a possible

explanation in the structure of D as shown in the left subplot of Fig. 2 where two main nonzero signal regions can

be identified that are weakly coupled. Weakly coupled sub-spectra suggest to split the data set to two independent

data sets and then to subject them to a separate analysis. On the one hand, this would ignore the weak coupling. On

the other hand, a joint analysis of the full data set runs into the problem that the matrix DT D is close to a reducible

matrix for which the AFS cannot work. In such borderline cases, it is known that the AFS can consist of long narrow

subsets. A possible explanation is that unimodal profiles are to be constructed from linear combinations of singular

vectors. Only the first singular vector can be unimodal, whereas the other singular vectors are typically due to their

mutual orthogonality non-unimodal. The finding of unimodal linear combinations is then difficult - a circumstance

which can intuitively be understood while working with the FACPACK module Duality/Complementarity & AFS on

this data set; see Appendix A on the FACPACK software.

4. Results & Discussion of the chemometric analysis

Next further results on the pure component estimation for the two data sets are presented and discussed. First, we

consider the pure component estimation of the problematic data set 2 under unimodality constraints for each of the

two factors, see also Sec. 3.4.3. Second, we discuss the question of how to select a proper number of components s.

Various estimations are computed and analyzed.

The results in this section demonstrate the potential of AFS techniques for analyzing ambiguous MCR outputs. We do

not claim that the AFS can help for any liquid chromatography separation. However, the usefulness of AFS techniques

is likely to increase with an increasing complexity and mutual overlap of the given chromatographic data.
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4.1. Pure component calculation for data set 2

As already mentioned in the first paragraph of Sec. 3, the naming of the second factor in D = CS T suggests an

interpretation as a spectral factor. However, data set 2 does not include a frequency axis as all absorption measurements

are taken at the fixed wavelength 280 nm. As we focus on the bilinear data structure we do not see a strong necessity

for introducing a new variable name for the second factor. Unimodal profiles are expected for each factor. Within

the factorization process it turned out that two observable peaks in the analytical dimension have nearly the same

preparative elution profile. Hence it can be merged in a joint analytical elution profile, which is then a bi-modal

profile. Thus unimodality is applied only for all but one analytical and for all preparative elution profiles. For the

reconstruction of s = 3 components the information from z = 4 singular vectors is used, see [34]. The control

parameters and weight factors are εC = εS = 10−4, α1 = 100, α2 = 1, βunimodal,C = 10, βunimodal, S = 50 and

ω = 10−4. The considerably different sizes of the weight factors is justified by the asymmetric resolution for the

chromatograms, namely k = 21 and n = 3751. Additionally, the function values of the function penalizing deviations

from unimodality are usually much smaller than those on deviations from nonnegativity. In order to balance these

constraints, the weight factor of the unimodality constraint function is taken larger than that of the nonnegativity

constraint function. Whether or not the weight factor choice is suitable can be checked by evaluation of the weighted

residuals. For the given problem well-balanced values read as follows

‖D −CS T ‖2F −

21∑

i=4

σ2
i = 1.3 · 10−29, α2

1gnonneg(C) = 2.1 · 10−2, α2
2gnonneg(S ) = 5.0 · 10−2,

β2
unimodal,Cgunimodal(C) = 7.4 · 10−2, β2

unimodal,Sgunimodal(S ) = 1.4 · 10−3.

The results are presented in Fig. 9 for the case of selecting s = 3 main components. From the perspective of a

practitioner, the species drawn in blue and red in Fig. 9 correspond to the aggregates and the product, respectively. The

elution profiles are largely consistent with the results from manual data analysis shown in Fig. 5B in [30]. The species

drawn in ochre was not detected during manual data analysis in [30]. It seems to correspond to a lumped component

of non-ideal elution behavior of the main peak and of product fragments which tend to be obscured by the main peak.

Upon careful inspection of the analytical chromatograms in the right subplot in Fig. 2, a shoulder is distinguishable

above 5 min retention time. While a manual analysis would be challenging, MCR allows to systematically extract the

shoulder as additional species thus improving reproducibility.
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Figure 9: Pure component estimation for data set 2 for the case of s = 3 assumed species. Unimodal profiles are used for each factor except for one

analytical elution profile drawn in ochre for which the singular value decomposition does not permit a signal separation. This compound profile

includes the two peaks centered at 4.64 min and 5.01 min. For the reconstruction z = 4 singular vectors are used in order to improve the results.

4.2. Verification of the weight factor ratios by an L-curve for data set 2

A suitable choice of the weight factors is important for the final success of the Pareto optimization of the objective

function (4). Next various combinations of weight factors are tested for data set 2. Then the resulting pure component

profiles are used in order to evaluate the penalty functions including their weight factors in separate form. For these

computations we assume s = 3 components.

Next we compare the nonnegativity constraint and the unimodality constraint. The weight factors are as follows

α1 = 100, α2 = 1, α3 = 1, βunimodal,C = γ, βunimodal,S = 5γ. (7)

The L-curve is plotted in Fig. 10 for several values γ ∈ [0.01, 500], see [37, 38] for the L-curve technique.
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in Fig. 9. Values of γ that are closer to the kink (point of highest curvature) of the L-curve as γ = 17.4 result in a nearly unchanged factorization.

The total deviation is ‖C − C̃‖2
F
/‖C‖2

F
+ ‖S − S̃ ‖2

F
/‖S ‖2

F
= 10−5 if (C, S ) correspond to γ = 10 and (C̃, S̃ ) correspond to γ = 17.4.

4.3. Detection of the number of components

The number s of singular vectors that are used for the construction of the pure component factors is sometimes difficult

to determine. Indicators on the size of s can be a prior knowledge on the number of chemical species in the system

or the size distribution of the singular values of the matrix D. In ideal cases the size distribution shows a clear break

between a dominant set of s singular values that are characteristically larger than the remaining set of singular values.

These latter singular values are sometimes close to zero and their origin can be seen in noise. Typical situations are

illustrated by Fig. 5 in [29], Fig. 2 in [50] or Fig. 5 in [41].

The decision on a proper choice of s is problematic for the given protein chromatographic data sets, cf. the plots of

the singular values in Figs. 3 and 4. For data set 1 either s = 3 or s = 4 are reasonable values. For data set 2 the

choice s = 3 appears to be possible for a first analysis, but this ignores many singular values that are relatively large.

The observed high number of relevant singular values was attributed to multiple sources. First of all, protein systems

generally contain a large number of subspecies, i.e. product- and contaminant-isoforms. Furthermore, analytical

chromatography may display deviations from ideal bilinear behavior [8]. As we try to reconstruct only the main

species and neglect analytical imperfections, the SVD helps to denoise the data.

4.3.1. Pure component estimation for data set 1 with s = 4 species

Whenever there are doubts about the appropriate choice of the number of components s, it is advisable to experiment

with an increased or sometimes decreased s. Therefore we try a second estimation for data set 1 with s = 4 com-

ponents. Once again unimodality constraints are applied to the elution profiles. The results are presented in Fig. 11

together with a comparison to the results for s = 3. The estimation for s = 4 species is not interpretable since only the

component ribonuclease A (blue) appears to be correct and the other spectral profiles cannot be associated to the other

protein species. Especially the red spectrum shows pronounced deviations from the typical profile with a minimum

near 280 nm instead of a maximum.

4.3.2. Pure component factorization for data set 2 and different numbers of species s

The SVD of the matrix underlying data set 2 does not clearly indicate the number of species s. We tried various

combinations of the numbers s and z. Unimodality constraints are used for all but one profile in the analytical elution

direction and for all profiles in the preparative elution direction. The weight factors for all these experiments are listed

in Sec. 4.1. Decompositions are computed for s ∈ {2, . . . , 7}. The resulting minimal values of the objective function

(4) are numerically evaluated. These values are plotted in Fig. 12 together with the final values of the unimodality

constraint function and the relative reconstruction errors. Only s = 3 results in an interpretable solution, see Fig. 9.

For the factorization with s = 2 a number of z = 4 singular vectors has been used. For all other factorizations z equals

s + 1.
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Figure 11: Pure component estimations and the residuals for data set 1 with respect to s = 3 (top row and see also Fig. 5) and s = 4 (lower row).

For the (s = 4)-component estimation only the pure component of ribonuclease A (blue) is correct. In contrast to this, all profiles of the estimation

with s = 3 components can be associated with biopharmaceutical components. In the right plots the residuals D − CS T are drawn in red together

with the original spectral data in black. Not surprisingly the residual is smaller for the larger s = 4.
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Figure 12: Function values of the objective functions and of the penalty functions for pure component estimations of data set 2 versus various

settings of the number of components s. For each s ∈ {2, . . . , 7} the objective function f by (4) is optimized and the final values for the optimal T

are evaluated and plotted by blue crosses. Further, the final values of the penalty function on unimodality for the preparative elution profiles are

marked by red triangles. The analogous values for the analytical elution profiles are plotted by ochre squares. The weight factors are βC = 10 and

βS = 50. Additionally, the relative reconstruction error ‖D − CS T ‖2
F
/‖D‖2

F
is shown by purple circles. However, the latter term is not part of the

objective function in this form. Therein C = UΣ(T (opt))+ and S T = T (opt)VT are the factors for the optimal transformation T (opt). Biochemically

interpretable are only the results for the choice s = 3. See Fig. 9 for the resulting unimodal profiles for s = 3 and s = 4.
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Figure 13: Comparison of the computed results (lines) and the off-line analytic (bars, measured concentrations) for data set 1. The profiles are scaled

in terms of a least-squares fit compared to the offline analytic. The deviations appear to be acceptable with respect to the different measurements.

Off-line analytics results in profiles with a slight tailing. The peaks are asymmetric for higher retention times.

4.4. Verification of the results by quantitative analysis

The methodology introduced and applied in this paper results in qualitative (non-scaled) profiles. The knowledge of an

underlying kinetic model, additional information of certain concentration profiles or of elution profiles (for example

from separate measurements) can help to determine the correct scaling of all profiles forming the columns of C and

S . Although a quantitative analysis is not a primary focus of the suggested techniques, we carry out a quantitative

analysis to check the accuracy of the results for data set 1.

Fig. 13 compares the computed profiles with off-line analytical results for data set 1. The profiles are scaled by

means of a least-squares fit to offline analytical measurements (interpolation is used due to different time grids). The

results are largely consistent. Minor deviations can be traced back to different recording techniques (the values of

off-line analytics are averaged values). We note that the measuring sites of the off-line analytics and for recording

spectroscopic data D are different. This can result in a minor tailing of the peak profiles and a slight profile smoothing

due to dispersion of the chromatographic system.

Next the root mean square error of the prediction (RMSEP), the coefficients of determination (R2 values) as well as a

relative error estimator ∆ are evaluated in order to compare the computed and the predicted profiles. These values are

given by

RMS EPℓ =

√√
1

n

n∑

i=1

(
C(i, ℓ) − Ĉ(i, ℓ)

)2
, R2

ℓ = 1 −

∑n
i=1

(
C(i, ℓ) − Ĉ(i, ℓ)

)2

∑n
i=1

(
C(i, ℓ) −Ci

)2 , ∆ℓ =

∑n
i=1

(
C(i, ℓ) − Ĉ(i, ℓ)

)2

∑n
i=1

(
Ĉ(i, ℓ)

)2

for ℓ = 1, . . . , 3. Therein C are the computed profiles. Further Ĉ contains the predicted profiles and the mean values

are given by Cℓ =
1
n

∑n
i=1 C(i, ℓ). The profiles are interpolated for the n = 49 predicted grid points. Once again the

profiles are scaled in terms of a least squares fit. The values are

RMS EP = (0.0373, 0.0529, 0.0380) g/L, R2 = (0.946, 0.886, 0.942), ∆ = (0.045, 0.092, 0.048)

in the order ribonuclease A, lysozyme, cytochrome c.

4.5. Comparison with results gained by MCR-ALS

MCR-ALS is a well established MCR-toolbox for the pure component recovery from spectral mixture data, see

e.g. [12, 51]. Its idea is to compute a factorization D = CS T by solving iteratively least squares problems in an

alternating way and where nonnegativity constraints are applied in each step. This strategy is comparable to clas-

sical numerical routines to compute nonnegative matrix factorizations (NMFs), see [21]. Additional constraints as

unimodality, closure or equality can also be applied. We use MCR-ALS for the computation of the factors C and

S and assume unimodality of the elution profiles (columns of C). Next the results are compared for the data sets 1

and 2. Figure 14 shows the MCR-ALS profiles by dash-dotted lines in combination with the results gained by Pareto

optimization and which are separately plotted in Figs. 5 and Fig. 9. The profiles for each of the data sets nearly co-

incide. Considering the set of all feasible profiles, we would like to point out that the AFS approach is more general

as it informs the user on potential ambiguities of the profiles. It gives access to all solutions that any MCR method

can provide. But it is equally important to provide selection strategies to find the correct solution within the bands of

feasible solutions. The present results indicate that our optimization-based selection strategy can successfully extract

the correct profiles.
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Figure 14: Comparison with MCR-ALS (dash-dotted lines) results for data set 1 (left) and data set 2 (right). The solid lines represent the profiles

gained by Pareto optimization. Both computational approaches use unimodality constraints for the concentration profiles.

5. Conclusion

The solution ambiguity underlying MCR methods, although not generally aware, can affect the reliability of chemo-

metric analyses also in the field of biopharmaceutical chromatographic data and protein purification processes. Within

the framework of the area of feasible solutions, which contains all possible factorizations, further constraints can help

to determine a single, chemically correct solution. The present study demonstrates a successful application of the uni-

modality constraint in order to steer the pure component factorization in the correct direction. A challenging problem

for protein chromatographic data is the correct identification of the number of components that can be reconstructed

from the data. Biopharmaceutical protein mixtures containing a larger number of isoforms make it difficult to separate

the characteristic structures of the dominating species from other components with smaller contributions.

Since unimodality constraints work effectively (at least) for the given chromatographic data, future work may deal

with the introduction of additional models on the elution profiles. Similarly, the application of any kinetic modeling, as

far as possible, can support a successful pure component factorization. An extension of the MCR software FACPACK

by a module that exploits unimodality in one of the factors or simultaneously in both factors is planned.

A. Appendix: AFS computation and profile reconstruction by FACPACK

The software FACPACK [52] is a collection of routines for AFS computations and AFS related data analyses. The

terminology and focus is on applications to spectroscopic data on a time×frequency grid. However, any other data

with an underlying bilinear structure can also be analyzed. The computational core of the software is written in C and

FORTRAN. Using the software is easy since it comes with a MatLab-based graphical user interface. Currently the

software is limited to chemical systems with not more than four chemical components (s ≤ 4) as for systems with a

larger number of components a graphical representation of the results in the (s − 1)-dimensional space is difficult to

handle. However, in systems with more than four chemical components a subsystem analysis appears to be possible

if a spectral window can be specified in which not more than four components are active.
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The module Duality/Complementarity& AFS (3 components) of FACPACK gives the user the opportunity to construct

pure component decomposition in a step-by-step manner. This can be done by selecting and modifying the vertices

of the two triangles representing the pure component factors of a three-component system. Duality relations that

express the impact of known columns of C or S T to the other factor are implemented in an interactive way. This

means that if one triangle is modified, then its dual triangle is adapted automatically so that D = CS T always holds,

see the simplex-based geometric construction of pure component decompositions [53, 54, 29]. If for example one

vertex of the triangle representing the spectral factor is modified, then this results in a simultaneous visualization

of the associated spectral profile and the automatic adaption of the dual vertices of the concentration factor triangle

and their associated elution profiles. An activation of the live-view mode of this module makes it possible to see all

these modifications as a simultaneous response on the movement of the certain point of the AFS by mouse motions.

Presumably correct profiles can be locked by pressing the left mouse button and further profiles can be edited in the

same way. Fig. 15 shows a screen shot of the duality module for three-component systems in its application to data

set 1.
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Figure 15: Screenshot of the FACPACK module Duality/Complementarity & AFS for three-component systems. Its main operation steps are as

follows: Step 1 to load the data. Step 2 to compute the AFS for the concentration factor and the spectral factor. Step 3 to select by choice of the

user a first profile, to move the mouse pointer through the associated AFS and to lock a presumably correct profile. Further steps 4 and 5 are to

select and to modify the second and third profile. Modification steps can be repeated in order to refine the profile selection. In an optional step 6

the user can apply similar changes to the factor S .
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