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Robert Franckeb,c, Adrian Prudlikb,c, Robert Franked,e, Klaus Neymeyra,c

aUniversität Rostock, Institut für Mathematik, Ulmenstrasse 69, 18057 Rostock, Germany
bUniversität Rostock, Institut für Chemie, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany

cLeibniz-Institut für Katalyse, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
dEvonik Industries AG, Paul-Baumann Strasse 1, 45772 Marl, Germany

eLehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
fChemometrics Group, Universitat de Barcelona, Diagonal, 645, 08028 Barcelona, Spain
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Abstract

Multivariate curve resolution (MCR) methods are sometimes faced with missing or erroneous data, e.g., due to

sensor saturation. In some cases, an estimation of the missing data is possible, but often MCR works with the

largest submatrix without missing entries. This ignores all rows and columns of the data matrix that contain miss-

ing values. A successful approach to deal with incomplete data multisets has been proposed by Alier and Tauler

[DOI:10.1016/j.chemolab.2013.05.006], but it does not include a factor ambiguity analysis. Here, the missing data

problem is addressed in combination with a factor ambiguity analysis. An approach is presented that minimizes the

factor ambiguity by extracting a maximum of spectral information even from incomplete rows and columns of the

spectral data matrix. The method requires a high signal-to-noise ratio. Applications are presented for UV/Vis and HSI

data.

Keywords: multivariate curve resolution, area of feasible solutions, incomplete data, missing data

1. Introduction

When dealing with data sets that contain missing data entries or values that are not suitable for analysis, the question

is how to extract the maximum amount of information from the reliable part of the data. For Multivariate Curve

Resolution (MCR) problems, maintaining bilinearity during analysis is critical, as it is dealing with different numbers

of chemical species. An interesting question is whether and how the spectral information underlying the missing block

can be reconstructed. Answers to these questions, as well as a number of applications are presented in this paper for

both noise-free and slightly noisy data.

Incomplete data sets or the occurrence of missing values is a common problem that can occur in a wide range of

applications, not only in chemistry. For example, blockwise missing data occur if the measurement is outside of the

instrument range, the instrument malfunctions for a period of time (e.g., by sensor failure), or a complete measurement

is too expensive or difficult for all objects, see [5, 13]. This is also the case when multiple measurement techniques are

used, for example in image fusion with different resolutions [21] and also for trilinear data from excitation emission

measurements, where no emission can be measured below the current excitation. This results in a strong pattern of

missing values [14]. Another occurrence is in online process monitoring, where the data of future time steps are

unknown and can therefore be assumed to be missing values [5].

Since the goal is to analyze and to extract a maximum of pure component information by MCR methods, a complete

spectral data matrix D is required, i.e., there should be no missing values. As stated in [22]: ”The most radical – and

common – solution is to delete as many variables and/or objects from the data as necessary to reach completeness”.

However, this results in a loss of information that should be avoided. Since the MCR methods used here are based on

a Singular Value Decomposition (SVD), the first approach would be to approximate the SVD of the full matrix.

Several methods have been proposed for this purpose and are widely studied in literature, most are based on statistics.

Here, data imputation as a concept from statistics is used in combination with iterative algorithms to obtain good

approximations of an SVD, e.g., by estimating or using the mean of existing values in the neighborhood of the

missing ones, see [5, 22, 34, 35]. Especially in chemometrics, NIPALS is used to deal with missing values [20, 36],

but it has limitations with missing data or special patterns. Such patterns can occur when entire blocks of data are

missing or when values are not missing at random, e.g., due to an upper detection limit. Thus, it is not statistically
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Figure 1: Simulated data set 1 with missing values (left) and the complete data set (center). Taking only the first 28 frequency channels (the block

D(:, 1 : 28)) results in a much wider band of feasible solutions for a certain concentration profile (right, in blue and red color) than using the

proposed approach (only the red feasible band).

based and therefore not as common in literature, especially when whole blocks of data are missing rather than sparsely

distributed missing entries in the spectral data matrix. Another important aspect is that bilinearity must be maintained

to use MCR methods, which can also be a problem of statistical methods. Therefore, other methods that can deal with

these properties are needed.

In chemometrics, blockwise missing values and handling bilinearity has been considered by Beyad and Maeder [6].

Their method is based on a linear regression using a given solution of a part of the spectral data matrix. However, such

knowledge is not always available. Therefore, Alier and Tauler proposed another approach [2]. Their method obtains

a single feasible solution when dealing with incomplete data using a modified version of MCR-ALS where the two

factors are calculated iteratively. However, there is a restriction that all chemical components must be shared between

the different blocks, see the following subsection for further explanation. This restriction is not needed in the methods

presented here. The advantages of the MCR-ALS approach are that it has been tested with different levels of random

noise and has been applied in image fusion, e.g., in [10, 21], so not only for simulated data sets, but also where noise

is present. However, MCR-ALS approximates only one feasible solution and does not represent the full ambiguity.

To obtain a smallest band of feasible solutions, a novel approach is presented using Borgen plots and the Area of

Feasible Solutions (AFS), both of which are introduced in Sec. 1.2.

To the best of our knowledge, no general method for solving this problem using the AFS approach or feasible bands

representation has been published. To illustrate the benefit of the new method, see Fig. 1. This simulated data set has

more than 50% of missing data, which are concentrated in one block. Looking only at the largest complete subblock,

namely a submatrix without missing entries, one gets the range of feasible profiles as shown in blue and red in the

right subplot for one concentration profile. However, if we consider all available information, namely the data as

shown left in Fig. 1, the ambiguity is drastically reduced (only the red band). This approach is explained in this work.

Our method does not make assumptions or estimates about missing values. Thus, the result is a solution that contains

no numerical errors based on the approximation of the SVD. The only requirement for the method is a high signal-to-

noise ratio.

A method how these solutions are obtained is explained in Sec. 2. An application to several data sets follows in Sec.

3, where a spectroelectrochemical UV/Vis data set, a hyperspectral image data set, and two simulated examples are

used to demonstrate the range of applications. First, the mathematical notation of missing blocks and the restrictions

on the data matrix are explained, and a brief introduction to the ambiguity of feasible solutions is given.

1.1. Missing blocks in the data matrix

For the explanation of the proposed method, a simple form of missing blocks is assumed, see Eq. (1). This form can

easily be extended to more complex structures with more than one missing block, where the matrix can be rearranged

or the methods are applied successively, see Sec. 2.6.

Let D ∈ Rk×n be a given matrix for which a submatrix structure is considered. Two different structures are considered

here. The first structure is a 2× 2 block matrix, where D22 is the block of the missing entries. Assuming the existence

of a nonnegative matrix factorization D = CS T , namely a pure component factorization, the connecting relations

between the various blocks are as follows

D =

(

D11 D12

D21 D22

)

= CS T =

(

C1

C2

) (

S 1

S 2

)T

=

(

C1S T
1

C1S T
2

C2S T
1

C2S T
2

)

(1)
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with D11 ∈ R
k1×n1 ,D12 ∈ R

k1×n2 , D21 ∈ R
k2×n1 and D22 ∈ R

k2×n2 . The nonnegative factorization couples the pure

component information underlying D12 and D21 to D11 via the blocks C1 and S 1 of the pure component factors, see

Eq. (1). Furthermore, the largest submatrices of D without missing values are (D11,D12) and
(

D11

D21

)

. An MCR analysis

can be applied to each of these matrices, but they are linked to each other by D11. In the same way, the constraints

which restrict an overall solution are connected with D11. Because of this connection and because both matrices share

the first block, D11 is called the shared block. This block is important for the following construction.

A further example to explain the concept of a shared block is a 2 × 1 block matrix, denoted by

D =

(

D11

D21

)

=

(

C1

C2

)

S T (2)

with no missing block and D11 ∈ R
k1×n and D21 ∈ R

k2×n. Here, both blocks can either be considered separately, or one

of them can be used as shared block, since both are coupled by the spectral matrix S . We take D11 as shared block.

This case was also analyzed in [3], but is included here again as a special case to apply the proposed approach. It is

also used as an intermediate step in the construction in Sec. 2.2. The main difference between our approach and that

of [3] is that we do not consider the data set as complete and thus the analysis is not based on the SVD of the complete

data set D.

After D11 is introduced as shared block, the spectra and concentration profiles of the chemical components underlying

D11 that are coupled with the other blocks are called shared, in this case shared chemical components. Two different

cases can be considered, depending on the possible shared chemical components and where they appear.

Case 1: rank(D) = rank(D11)

All chemical components that are present in the full data matrix D are also part of D11.

Case 2: rank(D) > rank(D11)

Not all chemical components appearing in D are shared with D11. For example, D11 only depends on a subset of all

concentration profiles or spectra.

Note that the individual position of the blocks is not important. When a 2 × 2 block matrix with one missing block

is given, then it can be transformed into the form of Eq. (1). This can be done by using permutation matrices such

as P =
(

0 I
I 0

)

, where I stands for identity matrices (of potentially different dimensions). Since the following methods

focus on the proposed structure, it is recommended to transform a given spectral data matrix into the form of Eq. (1)

or (2).

1.2. AFS for the solution ambiguity of MCR problems

The area of feasible solutions (AFS) has a key importance for the analysis of the ambiguity of solutions of the pure

component factorization problem in MCR. The following is a brief introduction to this approach, see [12, 25, 31] for

further details. The goal is to find all feasible factorizations

D = CS T + E, (3)

where D ∈ R
k×n is a given data matrix, C ∈ R

k×s contains the pure component concentration profiles, S ∈ R
n×s

contains the pure component spectra and E ∈ R
k×n describes the error matrix with matrix entries close to zero. In

theoretical analyses E is often the null matrix. Otherwise, D is approximated by CS T . This is the case for numerical

calculations or when handling slightly noisy data. The application to experimental data sets with larger errors is

planned for future work.

The calculation of the AFS is based on the truncated singular value decomposition (SVD)

D = UΣVT

where U ∈ R
k×s and V ∈ R

n×s each contain the pairwise orthogonal singular vectors, Σ ∈ R
s×s is a diagonal matrix

containing the singular values and s is the number of chemical components.

With a regular matrix T ∈ Rs×s the pure concentration and spectral profiles can be reconstructed from the bases of left

and right singular vectors

C = UΣT−1, S T = TVT . (4)
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inner polygon IS

outer polygon FS

Figure 2: Low-dimensional representation with the AFS as color-filled areas, the inner and outer polygons (in 2D the polytopes are polygons) as

well as the data representing points ai marked by gray stars.

However, in most cases there are many feasible matrices T that result in nonnegative C and S and thus many feasible

factorizations. This motivates the definition of the AFS for the spectral factor

MS = {x ∈ R
s−1, so that W ∈ R(s−1)×(s−1) exists with

T =

(

1 xT

1 W

)

, rank(T ) = s and C, S ≥ 0

}

.

Thus, the AFSMS of the spectral factor is a set in s − 1 dimensions and represents the so-called rotational ambiguity

of the MCR problem, [1, 17, 18, 32, 33].

The AFS is bounded by the outer polytope, which represents the nonnegativity constraint (also known as FIRPOL)

FS =
{

x ∈ Rs−1, so that (1, xT )VT ≥ 0
}

and the inner polytope (also known as INNPOL) spanned by the data representing points ai

IS = convhull
({

ai ∈ R
s−1, i = 1, . . . , k

})

,

with ai =
((UΣ)(i, 2 : s))T

(UΣ)(i, 1)
.

(5)

Thus, FS and IS contain all necessary information about the nonnegativity constraints on C and S that restrictMS .

The ai are known as data representing points or just data points in spectral direction, i.e. the i-th row of D is rep-

resented by ai. The data points, the corresponding AFS and the polytopes are illustrated for a typical data set with

s = 3 chemical species in Fig. 2. This low-dimensional representation is called a Borgen plot, sometimes also called

Borgen-Rajkó plot.

The geometric and analytical methods [4, 24] only use these polygons to construct the AFS and go back to the work of

Borgen and Kowalski [8]. For s = 3 chemical species this is a planar construction, which is based on the construction

of feasible triangles containing I and contained in F . Each feasible triangle represents the rows of a matrix T so

that C and S according to Eq. (4) are nonnegative matrices. By rotating such feasible triangles in a certain way, it is

possible to construct the AFS [16].

Several other approaches are based on numerical methods, such as polygon inflation or ray casting [27–29]. They

require solving optimization problems to determine whether a point is included in the AFS. In all these cases, the

spectral data matrix D is given and is the starting point for all computations.

Once the AFS is known, then the feasible pure component spectra and concentration profiles can be obtained by Eq.

(4), where T is built from the vertices of a feasible triangle. Each x ∈ MS represents a feasible spectrum of a pure

component, but a valid solution for all components requires a feasible triangle (s = 3) or simplex (for s > 3).

Similar relations hold for the concentration factor. Here the data points are obtained in frequency direction with

b j = (V( j, 2 : s))T/V( j, 1), which correspond to the columns of D. These define IC , the dual inner polytope. Also FC

andMC can be defined analogously for the concentration profiles. Both sets are connected via the concept of duality,

see [7, 15, 23, 26]. For example, if IC is given, then FS can be uniquely determined.
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2. Spectral data matrices with missing blocks

The questions that are answered in this section are: How can one represent a data matrix with missing blocks in a

Borgen plot without knowing the entire matrix? How can this be applied to the described cases 1 and 2? How can one

get a minimal ambiguity for a given incomplete data set?

Therefore, a shared low-dimensional representation is proposed as well as options for reconstructing the missing data.

In order to use a shared low-dimensional representation, it is important to understand essential spectral information

and its effect on Borgen plots. Therefore, the concept of essential spectral information is first introduced in a general

way using convex cones.

2.1. Convex cones and essential spectral information (ESI)

A convex cone C is finitely generated if it has the form

C = R+{31, . . . , 3ℓ} =
{

ℓ
∑

i=1

αi3i : αi ≥ 0
}

. (6)

Such a finitely generated cone is a polyhedral cone (by the so-called Farkas-Minkowski-Weyl theorem). A cone

which is not finitely generated is, for instance, a circular cone for which infinitely many vectors are required for its

generation. The expansion in (6) with nonnegative expansion coefficients is called a conical combination and presents

the cone C based on the vectors {31, . . . , 3ℓ}. If the set of generating vectors {31, . . . , 3ℓ} of a polyhedral cone is minimal

so that none of the vectors can be omitted without changing C, then the vectors are the edges of the cone. A typical

cone with four edges in 3D is shown in Fig. 3.

Let D ∈ R
k×n be a nonnegative (spectral data) matrix with the rank s. The cone which is generated by a conical

combination of the row vectors of D is given by

rowcone(D) =
{

k
∑

i=1

αiD(i, :), αi ≥ 0
}

.

Let E be a smallest subset of indices from {1, . . . , k} so that

rowcone(D) =
{
∑

i∈E

αiD(i, :), αi ≥ 0
}

.

The vectors D(i, :) for i ∈ E are the edges of rowcone(D). Further, let D = UΣVT be an SVD of D. Then the

projections of the row vectors of D to the V-space are

eT
i DV = eT

i UΣ.

The Perron-Frobenius theory [19] guarantees that the first components of all these vectors are nonzero, under the weak

assumption that DT D is an irreducible matrix, as explained in [28]. This justifies a normalization and to consider only

the components 2, . . . , s, as done in Eq. (5) for the data points ai. Their convex hull is the inner polygon in the spectral

space IS .

Theorem 2.1. D( j, :) is an edge of rowcone(D) if and only if a j is a vertex of IS .

Proof. The following equivalences hold:

D( j, :) is an edge of rowcone(D)

⇔ D( j, :) is not representable by the other edges as
∑

i∈E, i, j

αiD(i, :) with nonnegative coefficients αi

⇔ the V-space projection eT
j DV = eT

j UΣ is not representable as
∑

i∈E, i, j

αie
T
i DV =

∑

i∈E, i, j

αie
T
i UΣ

⇔ the data representative a j is not representable as
∑

i∈E, i, j

αiai

⇔ a j is a vertex of IS .
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Figure 3: A polyhedral cone in a 3D space. The edges of the cone are drawn by blue lines and the vertices of the polygonal cross section are marked

by blue dots.

Hence, considering edges of rowcone(D) in the high-dimensional space R
n is one-to-one related to considering ver-

tices of IS in the low-dimensional space Rs−1. The properties can also be considered with respect to the column space

of D in a sense that D(:, j) is an edge of the cone colcone(D) generated by the column space of D if and only if b j is a

vertex of IC . The related set of indices is denoted by Ẽ.

With these sets of indices, we can define the so-called essential spectral information [9, 30]. The formal definition of

essential spectra and frequency channels in terms of the cone notation is as follows.

Definition 2.2. A spectrum is called essential, if it is an edge of rowcone(D), respectively a vertex of IS .

A frequency channel is called essential, if it is an edge of colcone(D), respectively a vertex of IC .

Therefore E and Ẽ denote the essential spectra and frequency channels. The Cartesian product E × Ẽ is denoted by

esi, the essential spectral information (ESI) of a spectral data matrix. For a graphical representation see Fig. 2 in

[30]. This also means that only the entries of the data matrix corresponding to an essential row as well as an essential

column are needed to represent the ambiguity of the matrix factorization. The essential rows are the essential spectra

and the essential columns denote the frequency channels. This means that if a matrix is expanded and the new rows

or columns have no impact on IS respectively IC , then not only the ESI remain the same, but also the set of solutions

remains the same. There is no gain of information. For this reason it is sufficient to consider only the ESI when

looking at the ambiguity of the solutions.

Instead of calculating the ESI for an entire matrix, it is also possible to divide the matrix into blocks and determine

the ESI for them to simplify the calculation, e.g., if the resulting systems have fewer chemical components than the

entire data matrix. The following theorem describes this.

Theorem 2.3. Let D =
(

D11

D21

)

be given. Then the sets of essential spectra ED11
, ED21

and ED satisfy

ED ⊆ ED11
∪ ED21

.

Proof. As in Eq. (2) D ∈ Rk×n and D11 ∈ R
k1×n, D21 ∈ R

k2×n, where k = k1 + k2.

ED =
{

i ∈ {1, . . . , k} so that D(i, :) is not a conical combination of the edges of rowcone(D) without D(i, :)
}

⊆
{

i ∈ {1, . . . , k1} so that D(i, :) is not a conical combination of the edges of rowcone(D11) without D(i, :)
}

∪
{

i ∈ {k1 + 1, . . . , k} so that D(i, :) is not a conical combination of the edges of rowcone(D21) without D(i, :)
}

= ED11
∪ ED21

The statement is equivalent for the essential frequency channels using DT . Another way to describe this is to look

directly at the complete block matrix. Since merging data does not create new data, i.e., new information, it can still

be represented by the essential spectra, respectively frequency channels, of the individual data sets. In the context of

missing values, this theorem means, that the reduced versions of the submatrices using E, respectively Ẽ, are required

for further factor ambiguity calculations.
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Remark 2.4. Theorem 2.3 can be extended to any number of submatrices that are used to build a matrix D and its

ESI.

A special and important interpretation of the block matrix case is the row-wise extension of D. We are not only

interested in the ESI of the extended matrix, but also how the ESI changes when adding rows. Therefore, we first

look at how the essential frequency channels are affected and thus at the properties of colcone(D). We show that the

edges of colcone(D) relate in a one-to-one manner to the edges of the column-space cone colcone(S T ) assuming the

factorization D = CS T to be given.

Theorem 2.5. Let D = CS T be a nonnegative rank-factorization of D ∈ R
k×n with rank(D) = s and C ∈ R

k×s and

S ∈ Rn×s. Then D(:, ℓ) is an edge of colcone(D) if and only if S T (:, ℓ) is an edge of colcone(S T ).

Proof. We show the complementary case of a certain column not being an edge. It holds that:

D(:, ℓ) is not an edge of colcone(D) as a conic combination exists,

D(:, ℓ) = (CS T )eℓ =
∑

i∈Ẽ

αiCS T ei, αi ≥ 0

⇔ C

















S T eℓ −
∑

i∈Ẽ

αiS
T ei

















= 0, αi ≥ 0

⇔ S T eℓ −
∑

i∈Ẽ

αiS
T ei = 0, αi ≥ 0 (since the s columns of C are linearly independent)

⇔ the ℓth column of S T is a conic combination of the edges of colcone(S T ).

Next we show that adding further rows to D (e.g., further measured spectra extend the spectral data matrix) does not

change the edges of colcone(S T ), if the rank of D is preserved under the row augmentation.

Theorem 2.6. Let D ∈ Rk×n be a matrix of rank s having a nonnegative factorization D = CS T with C ∈ Rk×s and S ∈

R
n×s. A (k+1)th row is added to D resulting in D̃ ∈ Rk+1×n, where rank(D) = rank(D̃) = s is assumed. Presuming this

added row is also a nonnegative linear combination of the rows of S T and thus D̃ has also a nonnegative factorization

D̃ = C̃S T with the same factor S T .

Then the two ESI index sets of colcone(D) and colcone(D̃) are the same. Further, it holds that IC(D) = IC(D̃) (and

their vertices are the same), which is equivalent to FS (D) = FS (D̃).

Proof. Applying Thm. 2.5 to D = CS T and to D̃ = C̃S T shows that the edges of colcone(S T ) are equal to the edges of

colcone(D) and also equal to the edges of colcone(D̃). The statement for the inner polygonsIC(D) and IC(D̃) follows

from Thm. 2.1. Further FS (D) = FS (D̃) follows from their duality to IC(D) and IC(D̃).

The argumentation of this theorem is analogous for adding columns, using DT . It can also be rephrased for ESI, where

the essential frequency channels of D and D̃ are the same. Further information regarding a visualization of the impact

on the low-dimensional representation is provided in Sec. 2.3.

2.2. Representation of the factor ambiguity in terms of convex cones

The next step is to look beyond the inner and outer polygons and to inspect the resulting feasible solutions and how

they are affected. Therefore, some additional connections are made next. Here colcone(D(1 : k, :)) denotes the cone

of the column space of the first k rows of D, and (colcone(D))(1 : k) is a k-dimensional representation of colcone(D),

where only the first k dimensions are considered.

Remark 2.7. Presuming the assumptions of Thm. 2.6 are met, then (colcone(D))(1 : k) = colcone(D(1 : k, :)) holds.

This follows from the definition of a convex cone when Ẽ is the same (which it is according to Thm. 2.6).

So it is sufficient to look at the first k rows of D when one is only interested in the first k rows of C. But in order to see

if C and the corresponding S are solutions, i.e., a nonnegative factorization, we first clarify what is a feasible solution

in the context of convex cones.
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Theorem 2.8. If C ∈ Rk×s and D ∈ Rk×n are nonnegative matrices with colcone(C) ⊇ colcone(D), then a nonnegative

matrix S ∈ Rn×s exists so that D = CS T and therefore C and S are feasible solutions.

Proof. colcone(C) ⊇ colcone(D) means that every column of D can be represented by a conical combination of the

columns of C. These nonnegative linear factors can be stored in a matrix S so that D = CS T . This also means that S

is a nonnegative matrix, thus C and S form a nonnegative factorization of D and are therefore feasible solutions.

This is equivalent to the existence of a nonnegative S ∈ R
n×s with rowcone(S T ) ⊇ rowcone(D), which describes

the transposed case. This can be interpreted in a way that the s edges of rowcone(S T ) and colcone(C) enclose the

rowcone(D) and colcone(D) respectively.

The next theorem describes the impact of additional data, i.e., added rows or columns, on the set of feasible solutions

of D.

Theorem 2.9. Let D ∈ Rk×n be a rank-s matrix having a nonnegative factorization. By adding a (k+1)th row to D the

matrix D̃ ∈ Rk+1×n is formed. We assume that rank(D) = rank(D̃) = s and D̃ = C̃S T with C̃ ∈ R(k+1)×s and S ∈ Rn×s.

Then the feasible solutions of D̃ are the same if colcone(D) and rowcone(D̃) are considered instead of colcone(D̃).

Proof. Rem. 2.7 shows that colcone(D) = colcone(D̃)(1 : k) and thus colcone(C̃)(1 : k) ⊇ colcone(D̃)(1 : k). That is,

the set of feasible solutions for the first k rows of C̃ is the same for colcone(D̃) and colcone(D). Thus, C̃(1 : k, :) and

S are the same for both colcone(D) and colcone(D̃) because of Thm. 2.8. It remains to be shown that C̃(k+1, :) is also

the same whether colcone(D) or colcone(D̃) is considered. However, colcone(D̃) is not determined by colcone(D).

But it can be reconstructed uniquely by using D̃(k+ 1, :) = C̃(k+ 1, :)S T . Thus, the resulting feasible solutions are the

same and it is sufficient to consider colcone(D) instead of colcone(D̃).

Therefore, it is also possible to consider the original colcone and only change the rowcone (add new edges) to calculate

the set of nonnegative factorizations of the extended data matrix. If D is extended by more than one row the proof is

analogous. Thus this theorem can be used to represent the solutions of
(

D11

D21

)

using colcone(D11) and rowcone
(

D11

D21

)

.

The same can be done for D12 using rowcone(D11) and colcone(D11,D12). With this it is possible to express the set of

nonnegative factorizations of D in an alternative way as shown in the following theorem.

Theorem 2.10. Under the assumption that the shared block D11 ∈ R
k1×n1 has the same rank as D ∈ Rk×n and D has

a nonnegative factorization, the following holds:

colcone(D)(1 : k1) = colcone(D11,D12)

rowcone(D)(1 : n1) = rowcone
(

D11

D21

)

Thus the set of nonnegative factorizations D = CS T is determined by these cones.

Proof. Applying Thm. 2.9 in row direction shows that colcone(D)(1 : k1) = colcone(D11,D12) holds and the rowcone

stays the same. The same can be done in column direction where the rowcone becomes rowcone(D)(1 : n1) =

rowcone
(

D11

D21

)

. Since this step does not impact the colcone, the desired representation has been achieved. The sets

of solution are also the same because of the former theorem and since the factorization of D is uniquely determined

with the resulting C1 and S 1. This applies since the factors C2 and S 2 are uniquely determined with D12 = C1S T
2

and

D21 = C2S T
1

and therefore also the complete factorization of D.

We conclude that in order to calculate all feasible solutions C =
(

C1

C2

)

and S T = (S T
1
, S T

2
) the entire matrix D is not

needed. This allows to handle cases as described in Eq. (1).

Since it is not very descriptive to represent the solutions of the data set in terms of convex cones we go back to the

well known low-dimensional representation in the AFS space and transfer the properties gained in this section.

2.3. Representation of the factor ambiguity in the AFS space

The advantage of using a low-dimensional representation, such as a Borgen plot for s = 3, is that the feasible solutions

can be represented and a possible solution can easily be selected. The disadvantage is that if the matrix D is changed,

e.g. by adding a new row, the SVD changes and so does the low-dimensional representation.
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However, the convex cone theory opens a way to preserve the low-dimensional representation. For simplicity, we will

only consider the case s = 3 in this section. However, the results are also applicable to s , 3.

Therefore, the results of Sec. 2.1 and 2.2 can be transformed to the low-dimensional representation as follows. Here

F and I always denote the polygons of D11.

Remark 2.11. The statement of Thm. 2.10 can be reformulated for Borgen plots, meaning that it is sufficient to expand

IS and IC by the corresponding data points of D21 and D12 respectively from which the new outer polygons can be

calculated by using duality. Then the AFS can be calculated with these expanded polygons.

This already includes the statement of Thm. 2.9, which is equivalent to:

When expanding D by a new row as in Thm. 2.9, FS stays the same and IS is given by the convex hull of the data

point corresponding to the new row and the old IS . Then the AFS can be calculated by using the expanded polygons.

This is illustrated in Fig. 4 in the upper row.

The data points corresponding to new columns and rows, which means the addition of D12 and D21 to D11, can be

calculated as explained in the following remark.

Remark 2.12. From the SVD D = UΣVT , the data points spanning IS can be calculated by UΣ = DV followed by

scaling the contribution of the first singular vector to the value 1. Thus, the data point corresponding to an extended

row xT can be calculated with xT V followed by scaling. When additional columns are considered, the same holds for

using VT = Σ−1UT D. Thus, any spectra or frequency channel that do not increase the rank can be displayed in the

Borgen plot of the original matrix D. This process can be repeated if more than one row or column is added.

This means that it is possible to represent the additional information underlying D21 and D12 in the same low-

dimensional space as defined for D11 with full information preservation. This is shown in Fig. 4 where at first D21 and

then D12 are added in order to show their individual and combined impact. The associated feasible bands are shown

in Fig. 5, where the feasible bands of the spectral factor are visualized in the same order as in Fig. 4. Since for D11

and (D11,D12) the AFS consists of one connected set and not three separated sets, there is only one set of feasible

bands. As the feasible bands get smaller when more information is included, the ambiguity decreases. This process

starts with the AFS of D11 and then the information from D12 and D21 is added. See the proof of Thm. 2.10 for details.

We call this form of representation the shared low-dimensional representation, since all information is represented in

the low-dimensional representation of the shared block D11. However, not every addition leads to reduced ambiguity.

Only when D12 and D21 contain additional ESI does their inclusion reduce the AFS.

It is possible to select any rank-s submatrix of D and to use it as D11 for representing the complete data matrix in

the corresponding low-dimensional representation. Thus even a full-rank s × s submatrix is sufficient to include all

the information of the complete matrix. The remaining rows and columns then correspond to D12 and D21 after a

permutation to gain the form of Eq. (1). If this is done in a way that D22 contains missing data, then it is now possible

to represent a matrix with missing entries in a low-dimensional representation and to calculate the feasible solutions.

The approach can also be applied if the signal-to-noise ratio is not too small. In cases when certain blocks have a

low signal-to-noise ratio, it may be beneficial to disregard them, reducing the problem from Eq. (1) to Eq. (2). An

application to noisy data sets is provided in Sec. 3.

The detailed explanation of how to apply this theory to the two cases presented in Sec. 1.1 regarding the rank of D11

follows next.

2.4. Case 1: All chemical species contribute to the shared block D11 or rank(D) = rank(D11)

Using the shared low-dimensional representation described above, it is now easy to get a representation of a data set for

case 1 where rank(D11) = rank(D) and to compute the AFS. However, the restrictive assumption rank(D11) = rank(D)

allows us to reconstruct a representative of the missing block D22 in a unique way. There may be different matrices

D22, but all of them have the same pure component factors. Then the factor ambiguity problem can be treated in a

usual way, e.g., by using FACPACK, see [28].

Theorem 2.13. Let rank(D11) = rank(D) be given with D11 = C1S T
1

. Then the missing block D22 is uniquely

determined by D11, D12 and D21.

Proof. 1. According to Eq. (1) D12 = C1S T
2

holds. Thus S T
2

is given by

S T
2 = C+1 D12 (7)
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Figure 4: Shared low-dimensional representations of the simulated data set 1. Top row (left): Low-dimensional representation of D11 where the

AFS is the large connected set in light blue (with a hole around the origin). Top row (right): D11 with added information of D21 in yellow results

in a much smaller AFS which is plotted in dark blue. Bottom row (left): D11 with added information of D12 in green and the reduced AFS in dark

blue. Bottom row (right): Shared low-dimensional representation of D11 with added information of D21 and D12. The resulting AFS in dark blue

has the smallest size and results in a smallest ambiguity of the nonnegative matrix factorization problem. The corresponding feasible bands are

shown in Fig. 5.

with the pseudo-inverse C+
1

of C1. Since rank(D) = rank(D11), the column space of D11 includes the column space of

D12. Thus the matrix equation D12 = C1S T
2

can be solved and has the solution (7). The pseudoinverse C+
1

guarantees

a solution of the smallest Euclidean norm.

2. An analogous argumentation allows us to determine C2 from D21 = C2S T
1

C2 = D21(S T
1 )+. (8)

The combination of (7) and (8) yields

D22 = C2S T
2 = D21(S T

1 )+C+1 D12 = D21(C1S T
1 )+D12 = D21D+11D12.

The resulting D22 is determined in a unique way by solving the two linear systems with the pseudoinverse, which

guarantees solutions with the smallest Euclidean norm. However, the solution D22 is not necessarily unique, since

there are other solutions with contributions from the respective null spaces.

This reconstruction works for noise-free data. Otherwise, D22 may have negative entries. Next we treat the more

complex case, when the shared block D11 does not have the full rank, namely if not all chemical species contribute to

the data in D11

2.5. Case 2: The shared block D11 does not represent all chemical species or rank(D) > rank(D11)

If not all chemical components contribute to D11, we can partially trace the problem back to case 1 in a way that

we use a shared low-dimensional representation and find its minimal ambiguity. The approach is described in the

following theorem. Certain affine subspaces are required, and these are denoted by the letterH .
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Figure 5: Normalized feasible spectral bands of the three chemical species represented by the factor S for the feasible regions presented in Fig. 4.

The feasible spectral band of D11 is shown left in the top row. The AFS is one connected set so that the band is wide. By adding the information of

the block D21 the AFS decomposes into three isolated subsets, which results in three separate spectral band plots (colored plots in the top row). The

three right plots in the bottom row show the feasible bands belonging to the shared low-dimensional representation with the additional information

of both D21 and D12. This represents the minimal ambiguity that can be achieved.

Theorem 2.14. Let D = CS T be given with nonnegative factors C and S and rank(D) > rank(D11). Then the

constraints on the chemical species that are shared between either D11 and D21 or D11 and D12 can be represented by

the Borgen plot of D11, the shared block.

Proof. D11 and D21 are considered first, with rank
(

D11

D21

)

> rank(D11). The case of columnwise extension with D12

can be treated in an analogous way. The starting point is a Borgen plot of
(

D11

D21

)

in a space with the dimension

rank
(

D11

D21

)

− 1. (This uses a generalization of the 2D Borgen plots for systems with three chemical species.) Within

this (higher-dimensional) space the data points of D11 span a (rank(D11) − 1)-dimensional affine subspace which is

denoted by the letter H . Each spectrum in H can be represented by a linear combination of the spectra underlying

the block D11. Those spectra which correspond to data points of D21 that are located in the affine subspace H refer

to chemical species that are shared. We collect them in a submatrix D′
21

, which is a reduced version of D21, with

rank(D′
21

) ≤ rank(D11). With this construction, all constraints which are expressed in terms of Iand F of D11 are

included because

1. H intersects only with the boundary of I
(

D11

D21

)

, because it contains less than rank
(

D11

D21

)

chemical species. There-

fore, only data points that lie onH can lead to further restrictions of I(D11).

2. F remains the same, since the spectra corresponding to the boundary of F (D11) are nonnegative and contain at

least one zero entry and are therefore also on the boundary of F
(

D11

D21

)

. Thus, the intersection ofH and F
(

D11

D21

)

leads to no further constraints regarding F (D11).

The additional information that is inherent in D21 can be included with D′
21

in the same way as for a shared low-

dimensional representation in case 1, since rank(D11) = rank
(

D11

D′
21

)

.

It is also possible to only take the ESI of D21 to get D′
21

, the reduced version of this submatrix that contains only the

shared components. This is because only the spectra that increase IS are additional constraints, and those are a subset

of the ESI of D21. The same holds for D12 when considering the transposed case.

If the shared chemical components are mixed with others in D21, D′
21

can be empty. But since there is still information

to be gained from this block, another method is needed. It is possible to consider not only the data points, thus the inner

polygon, but also the AFS. With this the ambiguity of the shared chemical components is further reduced, compared

to the ambiguity in D11. For this purpose the restrictions of the AFS are transformed into the shared low-dimensional

representation of the shared block. This is done by using the intersection of the subspace where the data points of D11

are located, which we denote it byH , and the AFS of
(

D11

D21

)

. A possible realization for this is a modified ray casting,

see [29] for classic ray casting. This way, all information that can be gained from D21 and D12 of the shared chemical

components is included in the shared low-dimensional representation. The influence on the AFS of the non-shared

chemical components is also included in this way, so that a further limitation of the ambiguity is possible.
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The reduction in ambiguity benefits greatly from the inclusion of the AFS restrictions, but it should be noted that this

comes with a higher computational cost and a more complex algorithm.

Another important fact, which is not self-evident, concerns the knowledge of the appearance of chemical components

and can be formulated as follows.

Remark 2.15. It is not necessary to know which chemical components are shared, because of the nature of the

calculation as described above. Only the number of chemical species underlying each block is important for a correct

low-dimensional representation.

Thus, it has been shown how to handle a matrix as in Eq. (1) for both cases. But also more complex patterns or

structures of missing values may occur where it is not possible to attribute them to that L-shaped structure. Therefore,

the next section looks at some selected structures and how to handle them.

2.6. Application to other block structures with multiple missing blocks

Not only the structure considered in Eq. (1) can be handled when missing values occur, but also more complex ones.

First, we look at a structure that looks quite simple. We assume adjacent blocks share at least one chemical component.

For the sake of clarity the missing blocks are left empty in the matrix representation.

D =

(

D1 D2

D3 D4

)

=

(

C1S T
1

C1S T
2

C2S T
2

C2S T
3

)

=

(

C1

C2

)





















S 1

S 2

S 3





















T

Thus D1 and D4 are not directly coupled through a shared factor. They still affect each other’s ambiguity, even if

they do not share a chemical component through D2 and D3. This holds because D1 is responsible for an ambiguity

reduction in the shared low-dimensional representation with D2 as shared block by reducing FS . The reduced AFS is

then transferred to the shared low-dimensional representation with D3 as the shared block, where D4 is also included.

Therefore, the ambiguity of the chemical components that are not shared with D4 is also reduced by this inclusion.

Instead of a shared low-dimensional representation, this can also be formulated by comparing the resulting feasible

bands and recalculating the AFS under these constraints, as described in Fig. 6.

D =

(

D1 D2

D3 D4

)

(

D1 D2

D3

)

(

D2

D3 D4

)

compare the bands,

calculate intersection

recalculate AFS

considering the

prior limitation
calculate AFS

Figure 6: Schematic representation of dealing with complex block structures.

This can be used for even more complex structures like:

D =































D5

D2 D6

D1 D3

D4































The goal is to split D into blocks that have the same shape as shown in Eq. (1), to analyze each one individually and

combine the solutions in a further step. A possible solution for decomposing D is

D̂1 =

(

D5

D2 D6

)

, D̂2 =





















D1 D3

D4

D2





















, D̂3 =





















D2 D6

D3

D4





















.
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In order to connect all solutions in the end to one, the shared blocks are used (namely D6, D3 and D2). Let us assume

that all these shared blocks have the same rank as D. Then, if a feasible solution is found for one block, e.g., D̂1, a

solution can be found for all blocks uniquely, since the concentration profiles respectively spectra are shared. This

is similar to case 1. However, if not all components of D are present in all shared blocks, then at least an ambiguity

reduction can be gained. That means if the solution of one block, e.g., D̂1, is known, the solutions of D̂2 and D̂3 are not

necessarily unique, but the corresponding ambiguity can be reduced, since again the components and their ambiguity

is coupled through the shared blocks. This approach is similar to case 2.

The main advantage of having multiple blocks is that limiting the ambiguity in one block (e.g., through additional

knowledge) results in a limitation of ambiguity for all other blocks.

To further illustrate the theory, some examples are analyzed in the following section.

3. Examples

For each of the cases described in Sec. 1.1, a simulated data set is used to visualize the results. In addition, two

experimental data sets are provided to analyze more complex situations. The data sets are as follows.

Data set 1. This simulated data set with k = 100 spectra and n = 100 frequency channels with the rank 3, see Fig. 1,

has a missing block whose number of entries is more than 50% of the total data entries. For this data set Thm. 2.13

enables the reconstruction of a representative of the missing block. We follow the procedure described in Sec. 2.3.

The low-dimensional representation is shown in Fig. 4 and the corresponding feasible bands in Fig. 5. The original

profiles are shown in Fig. 8 in purple.

Data set 2. This is a simulated hyperspectral image (HSI) data set with 50 × 50 pixels and whose pixel information

is written row-wise into the k = 2500 rows of the data matrix. Each row represents the spectrum of a single pixel,

and each spectrum has n = 100 frequency channels, see Fig. 9 for the pure component spectra and concentration

maps. The rank of the matrix equals 4. Some pixels have missing spectral values only in the frequency channels

57–100. These pixels with missing spectral information are plotted white in Fig. 10. This white area simulates a

sensor saturation. The rank map is shown in Fig. 11. This example relates to case 2, since not all chemical species

are present in the first 56 frequency channels and in the pixels that are not affected by incompleteness.

Data set 3. An experimental UV/Vis-spectroelectrochemical (SEC) data set on different oxidation states of a phenazine

derivative. The SEC experiment records k = 1518 spectra each at n = 1141 frequency channels. The electrolyte is

acetonitrile with 0.1 M of tetrabutylammonium hexaflourophosphate as conducting salt. The working electrode is a

gold mesh and the counter electrode is made of a platinum wire. At the beginning the phenazine derivative is present

with 0.66 mM. During the measurement the potential is cycled between -0.4 and 1.2 V, with a scan rate of 0.5 mV/s.

The equilibrium potentials are 0.029 V and 0.266 V. For chemical reasons, three chemical species are expected. The

experimental data set contains regions with missing values due to sensor saturation, making the data set ideal for an

application of the methods presented here.

Data set 4. This experimental HSI data set including four chemical species is based on a 60 × 60 grid of pixels. The

pixel-wise spectra are stored in the k = 3600 rows of the data matrix. Each spectrum comes with n = 253 spectral

channels. See [11] for details. This data set describes an oil-in-water emulsion, where a region with more or less

three chemical species (a subsystem) can be identified using local rank information, see [11]. The selected region

is shown in Fig. 19 in the red rectangle. Due to a small signal-to-noise ratio, the complete data matrix has been

approximated by its rank-4 truncated SVD. This leads to a higher signal-to-noise ratio. Additionally, we apply a filter

approximation to the three-species subsystem in order to cancel any noise or traces of the fourth chemical species

in this region. These steps guarantee that the pre-processed experimental data has a sufficient quality to make our

approach applicable.

In the following, these data sets are analyzed using the proposed methods. We present applications to more complex

block matrix structures and to subsystems.

3.1. Analysis of case 1 – Reconstruction of missing data

Data set 1 can be analyzed in two different ways. The first and simplest approach is to reconstruct a representative of

the missing block using Thm. 2.13 and then to analyze the reconstructed data set, for example by using the FACPACK

software. This leads to the bands of feasible solutions as shown in Fig. 8. Another way is to use the shared low-

dimensional representation described in Sec. 2.3. Then data points corresponding to the frequency channels and
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Figure 7: Low-dimensional representation of the data set 1. The AFS of the shared block is shown in light blue (this is a very large connected set

between the inner and outer polygons) and the reduced AFS in dark blue (three isolated much smaller sets). Dual data points and constraints are

marked with the same color (yellow and green, respectively).
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Figure 8: Bands of feasible concentration profiles and spectra for the data set 1. The original profiles are shown in purple. The reconstructed

profiles as derived by the shared block approach are underlaid in gray. The leftmost parts (underlaid in white) of the concentration and spectral

profiles correspond to information gained from the shared block D11 shown in Fig. 7.

spectra are added to the AFS representation of the shared block, see Fig. 4 in yellow and green. According to duality

properties, new data points in the U-space correspond to lines in the V-space and vice versa. This is visualized in Fig.

7 where the dual geometric objects are marked in green and yellow. The impact on the ambiguity is also shown. The

AFS of the shared block is shown in light blue and the reduced AFS in dark blue, taking into account the effect of

the new spectra and frequency channels. A significant reduction of the ambiguity can be observed. Some parts of the

AFS are almost line-shaped or even point-like sets.

The resulting profiles are the same as when the missing block is reconstructed by the first approach. The feasible

profiles are shown in Fig. 8.

3.2. Analysis of case 2

Next we treat the more complex case that rank(D) > rank(D11). Then the missing data cannot be fully reconstructed

by adding information from incomplete rows and columns to the AFS representation of the shared block. In addition,

there is no shared low-dimensional AFS representation of all species. For example, there is no knowledge of the

second part of the concentration profile of a chemical species, if this species contributes only to the frequency range

represented by D12. This information is part of the missing block D22. Thus, the information is not available, but there

is still information in the incomplete rows and columns (namely in D21 and D12) that can be used to reduce the factor

ambiguity.
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In order to analyze an example problem, we consider the HSI model data set 2. Fig. 9 shows the concentration maps

of the four pure chemical components together with their spectra. We assume that the third chemical species is critical

(e.g., due to sensor saturation) so that the data of the last 44 frequency channels with the index range 57-100 cannot

be used. All rows of D which correspond to such pixels have missing entries in the columns 57-100. The missing

value pattern is shown in Fig. 10 and 11. In Fig. 10 this pixel region is shown in white on the concentration maps

of all four chemical species. It has considerable overlap with the regions where the other three chemical species are

found. This model data set meets the requirements of case 2 because the range of missing values (namely the last

44 frequency channels) completely covers the spectral peak of the 4th species, which is only present in the last 20

frequency channels. Therefore, it is clear that the 4th species cannot be reconstructed in the affected pixel region. The

only block that contains information about the affected area is D21, where the 4th species does not contribute.

First, the factor ambiguity analysis is based on the shared block D11. Only two chemical species contribute to D11

with the rank 2. The low-dimensional AFS analysis results in feasible regions in terms of intervals (in purple) in the

U- and V-spaces, see Fig. 12. The associated one-dimensional AFS, which is called a Lawton-Sylvestre plot, for the

submatrix D11 of D is an (s1 − 1)-dimensional object, in this case two intervals on a line drawn in purple, as shown in

Fig. 13. This figure illustrates how the additional information of the 2D AFS of the matrix
(

D11

D21

)

supports to reduce

the ambiguity underlying the shared block D11. Similar steps are shown in Fig. 14 for (D11,D12).

In both cases, the inner polygon corresponding to D11 increases, which means for this one-dimensional AFS that the

inner endpoints move away from the origin. At the same time, the duality also affects the outer polygons, which

means for the given one-dimensional AFS that the outer interval endpoints move closer to the origin. Figs. 12 till 14

illustrate the stepwise reduction of the factor ambiguity. All steps are explained in the respective figure captions. The

result is that including the two blocks D12 and D21 in the factor ambiguity analysis leads to unique spectral profiles

and unique concentration profiles for the two chemical species underlying D11.

Furthermore, these two unique factors lead to uniqueness for the remaining two chemical species. Thus the complete

system has successfully been analyzed. There is a unique pure component factorization. The four unique spectral

profiles are shown in Fig. 15 and the associated concentration maps are plotted in Fig. 16. The missing data is still

responsible for an unknown part of the spectrum of the third chemical species which is marked by the gray rectangle

in Fig. 15. Similar relations hold for the concentration map of the fourth chemical species (the white area in Fig. 16).

The corresponding information that would resolve the unknown parts is contained in the missing block.

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1
Spectrum of species 1

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1
Spectrum of species 2

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1
Spectrum of species 3

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1
Spectrum of species 4

Conc. map of species 1 Conc. map of species 2 Conc. map of species 3 Conc. map of species 4

Figure 9: The HSI model data set 2 with four chemical species. The top row shows the pure component spectra and the bottom row shows the

associated concentration maps. Yellow pixels indicate the presence of the species, all with fixed and equal concentration values. Blue pixels

indicate the absence of the species on the underlying support layer.

3.3. Application to the experimental UV/Vis data set 3

Next, we consider the UV/Vis SEC data matrix with several blocks of missing values. The first step for such more

complex structured matrices is to reshape the data matrix so that it can be decomposed into a minimum number of

subsystems, each of which has the shape as in Eq. (1). This introductory step simplifies the analysis. Each subsystem

can be treated individually, resulting in a factor ambiguity analysis for the full matrix. Considering case 1 of Sec. 1.1,

the full spectral information can be recovered and a representative of the full data matrix can be reconstructed with

minimal effort. For case 2 of Sec. 1.1, our approach provides an easy way to extract a maximum of information about

the ambiguity of all chemical species from the given spectral data matrix.
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Conc. map of species 1 Conc. map of species 2 Conc. map of species 3 Conc. map of species 4

Figure 10: The presence of the third chemical species (third plot) is assumed to result in sensor saturation only for the frequency channels 57 up to

100. Hence, all pixels to which this species contributes are taken as missing matrix entries in this frequency range. This pixel region is marked in

white in the third plot. In other words, each white pixel corresponds to a row of the spectral matrix that contains usable matrix entries only in the

frequency channels 1 up to 56. The non-usable pixels (in the frequency range 57 till 100) are also marked in white in the concentration maps of the

three other chemical species. There is a considerable overlap with the regions of occurrence of the other three chemical species. In the same way

as in Fig. 9 the color yellow indicates the presence and the color blue indicates the absence of the respective chemical species.

Rank map of complete data Rank map and missing pixels

0

1

2

3

4

Figure 11: Left: Rank map over all frequency channels for the complete data set. Possible values are 1, 2, 3, 4. Right: The same rank map, but the

pixels which are saturated in the frequency channels 57-100 are marked in white.
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Figure 12: A Lawton-Sylvestre plot (this is a 1D AFS plot) of the factor ambiguity underlying the shared block D11 of the HSI model data set 2 is

shown in the top line (left in the U-space and right in the V-space). The purple intervals represent the feasible regions of the two chemical species.

Adding the information from D21 and D12 drastically reduces the ambiguity. First, the red intervals represent the factor ambiguity after adding

the information from D21. Second, if we alternatively add the information from D12 the purple intervals are reduced to the green intervals. Third,

combining the restrictions from D11, D21 and D12 means to consider the intersection of all these intervals. The intersection consists of only four

points, which represent four unique profiles, namely the two spectral profiles and the two corresponding concentration profiles of this two-species

system. These points are plotted by circles in cyan.
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Figure 13: Left: The mixture data matrix D where the subblock consists of the block matrices D11 and D21 is surrounded by a red line. Center:

The 2D AFS plot of the matrix
(

D11
D21

)

in the V-space. The inner polygon is the gray area and the outer polygon is drawn by a dashed black line.

The feasible regions are shown in blue (there is one larger set, one narrow strip and a line-shaped region). Right: The 2D AFS plot is overlaid by

the 1D-AFS (a Lawton-Sylvestre plot) of the shared block D11 whose rank equals 2. These are the two purple intervals as shown in Fig. 12 (right).

The intersection of the purple intervals (namely the embedded Lawton-Sylvestre plot) with the blue feasible regions defines the AFS for the shared

chemical species. Thus, using the knowledge of D11 has considerably reduced the ambiguity as shown in Fig. 12 by the red intervals.
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Figure 14: This is the direct analog of Fig. 13, where the block D12 is used to augment D11. Left: The block matrix (D11,D12) is surrounded by a

red line. Center: The 2D AFS plot of the matrix (D11,D12) in the U-space. The inner polygon is the gray area and the outer polygon is drawn by a

dashed black line. The AFS is formed by one large triangle-shaped set and two point-like sets. Right: Again we consider the intersection with the

feasible intervals of D11 in purple. The intersection is plotted by green intervals in Fig. 12 (left).
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Figure 15: Reconstructed spectral profiles of the incomplete HSI model data set 2. The missing part of the 3rd spectrum is marked by a gray

rectangle. There is not enough information to recover this spectral information.
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Figure 16: Corresponding concentration maps to Fig. 15. The white region indicates missing values; there is not enough information to reconstruct

the concentration profiles of these pixels. The color yellow indicates the presence and blue the absence of the species.
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Such complex structures can occur, e.g., when a minimal information loss is desired so that only a few scattered parts

of the data are declared invalid. Sometimes, one may prefer to ignore some parts of the data that cause a complex

data structure. However, one must pay for this by an increased factor ambiguity. These relationships are analyzed

by means of the data set 3. Sensor saturation occurs in several regions, see Fig. 17. This data set can be reshaped

to minimize the procedural effort. For this data set, the reshaping operation is illustrated in Fig. 17. After reshaping,

only a single shared block is required to analyze most of the data, namely D2. Then, the blue and yellow parts of the

matrix are taken into account for the factor ambiguity analysis.
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Figure 17: Left: The experimental UV/Vis SEC data set 3. Gray areas indicate sensor saturation. Right: The original matrix (left) with sensor

saturation (these regions are marked by NaN which stands for Not a Number) is rearranged to give the missing data an L-shape (right). This

simplifies the factor ambiguity analysis.

A submatrix rank analysis reveals that D1 and D2 contain two chemical species and that D3 contains all three of the

species that are present in the data set. The next step is to evaluate the constraints determining the factor ambiguity

that refer to the shared block D2. This step follows the procedure in Sec. 3.2. Since all species are present in D3, it is

also possible to represent all information in the AFS representation of
(

D2

D3

)

. This is analyzed next.

First, the factor ambiguity of (D2,D1) is analyzed as in case 1. The accessible information is represented in the

Lawton-Sylvestre plot (which is a 1D AFS) of D2. The feasible intervals are shown in purple in Fig. 18 (left). This

result can be embedded in the AFS plot of the three-species system represented by the 2 × 1 block matrix
(

D2

D3

)

which

takes into account the spectra that are represented in the V-space of D2, see Fig. 18 on the right. The yellow line

represents the orientation of the feasible intervals of the two-species subsystem D2 within the AFS plane of the three-

species represented by (D2,D1). Once again, the correct embedding of the 1D Lawton-Sylvestre plot into the 2D AFS

is achieved by determining the expansion coefficients of the profiles of the 1D Lawton-Sylvestre plot within the space

of expansion coefficients of the 2D AFS plot.

The intersection of the purple interval (which is partially overlaid by the red interval) and the AFS of
(

D3

D2

)

as plotted

in light blue results in even shorter feasible intervals for this two-species subsystem. This is shown in Fig. 18 (left)

in light blue. The result is that the spectral profiles of two chemical species, which are localized on these feasible

intervals, have a considerable impact on the AFS of
(

D3

D2

)

. The re-calculation of the feasible region for the third

species is the much smaller AFS set shown in dark blue in Fig. 18 (right).

Next, we take advantage of the chemical knowledge that the first measured spectrum is a pure component spectrum of

a single chemical species. This knowledge allows us to reduce one interval of the 1D AFS to a single point, which is

marked in Fig. 18 (left) in red. This additional information on this spectral profile is used to re-calculate the 2D AFS.

Fig. 18 (right) shows the result where the reduced AFS of the third species is shown in dark blue and with a boundary

marked by red dashed lines.

The next step is to include the block D4. Therefore, a matching shared block has to be selected, e.g., a submatrix

of D1 containing the spectra belonging to the same time coordinates as the spectra of D4, or a submatrix of (D1,D2)

again with a selected subset of their spectra. The procedure can then be repeated and the results can be included in the

prior shared low-dimensional representation (with D2 as shared block) by using the resulting feasible concentration

profiles.

However, it is not possible to include D4 in the shared low-dimensional representation due to noise in the proximity

of the saturated part, since this would distort the results. It is still possible to approximate the spectrum of the first

component in this frequency window, since the first measured spectrum can approximately be taken as the pure

component spectrum of the first species.

This data set underlines why our approach is suitable for data with a high signal-to-noise ratio. It also illustrates that

knowing a single profile can have a stronger impact on the factor ambiguity than adding a single submatrix (here

D1) to the analysis. See the purple and red feasible intervals in Fig. 18. In the sense of a step-by-step approach it
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Figure 18: Left: Lawton-Sylvestre plot (a one-dimensional AFS) of the two-component subsystem associated with D2 for the data set 3 with

the feasible intervals drawn in green. The combined information from D1 and D2 results in the somewhat shorter intervals drawn in purple. If

additionally, the restrictions through D3 are taken into account, then the resulting feasible intervals are again somewhat shorter (dark blue). Finally,

incorporating the additional knowledge of the spectrum of the first chemical species (this is an additional chemical information by knowledge of

the SEC reaction system) results in the red point (the given profile) and a red interval (the still unknown spectrum of the second species). Right:

Plot of the AFS of
(

D3
D2

)

in light blue. The orientation of the feasible intervals of the two-species subsystem D2 is drawn by the yellow line, which is

overlaid by the feasible intervals of (D2,D1) drawn in purple. Taking these two feasible intervals (in purple and also overlaid in red) as constraints

for the third chemical species then (the triangle rotation argument) results in the dark blue feasible region for this third species. With the additional

knowledge that only the red interval is the true feasible region, the 2D AFS of the third species is reduced. The boundary of this reduced AFS is

marked by red dashed lines.

might be useful to check the impact of an additional submatrix such as D1 in comparison to directly calculating the

AFS of
(

D2

D3

)

in combination with an application of the knowledge of a certain known pure component spectrum. To

check the impact of a submatrix on the ambiguity, the ESI can be calculated and also the resulting AFS in the shared

low-dimensional representation can be compared to the AFS of the shared block (in this case the AFS of D2 can be

compared with the AFS of (D2,D1)). Therefore, if the effect is sufficiently small, it may not be necessary to consider

a submatrix such as D1 and then to analyze the data set as a complete one.

3.4. Application to the experimental HSI data set 4

In this HSI data set, the focus is on determining pure components and their ambiguity for high-dimensional data by

means of subsystem analyses. To this end, we consider a typical HSI data set with a large number of pixels (first

dimension of D) and a much smaller number of pure components. This refers to Eq. (2) where the spectral matrix

factor is the shared block.

Such an approach is of particular interest when the total system contains more than three chemical species, since

increasing the number of components leads to high computational costs for a factor ambiguity analysis (especially

when more than three species are considered). Subsystem analyses are much less expensive. Our approach makes

it possible to collect all constraints and information about the shared chemical species in the low-dimensional AFS

space of the subsystem. This approach saves computation time, but still allows us to represent the information about

the shared block in a low-dimensional way. The reduction of the factor ambiguity is achieved in a similar way. If

the computational cost is of minor importance, it is also possible to perform the subsystem analysis within the AFS

spaces of the full matrix (with its potentially higher number of chemical species) and then to reduce the ambiguity in

the same way as for the data set 3.

For the given data set 4 a subsystem rank analysis yields

D =

(

D11

D21

)

, with rank(D11) = s1 = 3, rank(D21) = 4 and rank(D) = 4.

Hence, the AFS space of this four-species data set D has three dimensions.

As demonstrated above in the analysis of case 2, we consider the intersection of the two-dimensional AFS V-space

of the block D11 with the three-dimensional AFS space of D. The coordinates of this 2D plane within the 3D space

result from computing the expansion coefficients of three different profiles represented in the 2D space with respect

to the basis of the singular vectors of the 3D space. The result is shown in Fig. 19 where the 2D AFS set of D11 (a

connected set with a hole around the origin) is drawn in red and the 3D AFS of D is drawn in blue. The intersection of
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these two AFS sets is much smaller than the respective 2D and 3D AFS sets. This means that a significant reduction

of the factor ambiguity has been achieved. It can be seen that the intersection of both AFS, i.e., all feasible spectra

that factorize both D11 and three chemical species underlying D, is much smaller than just the respective AFS. This

result can be used for the further analysis of the subsystem. For the block D11 this means that its underlying factor

ambiguity is not given by the relatively large and connected red set, but that it has been reduced to three separated

areas. To calculate the reduced AFS it is sufficient to compute the intersection of the AFS of D with the hyperplane

spanned by the rows of D11. Without computing the AFS of D, it is possible to determine the intersection in a direct

way by a modified ray casting algorithm [29] that uses a point from the hyperplane as a starting point, as well as s1−1

non-collinear vectors that define the hyperplane. This makes available all feasible solutions that factorize both D11

and the shared chemical components between D11 and D21. This step does not require to compute the AFS of D11,

but only the hyperplane of the row space of D11 is important. Additional information can be obtained by analyzing

further subsystems; this will be investigated in future work.
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Figure 19: Left: Mean value image of the data set 4 where the mean values are taken over all frequency channels. The subsystem is marked by a

red rectangle. Right: The AFS of the three-component subsystem in red together with the AFS of the four-component system in blue.

4. Conclusion

The central message of this work is that missing-data MCR analyses can benefit considerably from considering such

blocks of data that are ignored when an MCR analysis is applied only to a largest complete data submatrix. This

work has demonstrated this for the problem domain of factor ambiguity analysis. We have presented a step-by-step

procedure to first compute the AFS sets of the shared block in the U- and the V-space, and then to augment these AFS

sets with the spectral information contained in the data blocks D12 and D21. These steps may involve data blocks with

different numbers of underlying chemical species. AFS sets of different dimensions are then considered. Merging

these AFS sets of different submatrices is achieved by embedding the geometric constraints in the AFS space of the

highest dimension. The pivotal point of such analyses is the shared data block and its AFS. An application of the

presented tool case is not only limited to missing or erroneous data, but is also possible for subsystem analysis and

real-time process analysis, where certain parts of the measurements have not yet been recorded, but a prediction of

some system properties is desired. The proposed method requires data with a high signal-to-noise ratio, which is a

drawback of the present method. This will be investigated in future work.
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