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Abstract

The area of feasible solutions (AFS) of a multivariate cuaaolution method is the continuum of feasible solutions
under the given constraints. In the current paper the AFSngpeited only on the condition of nonnegative solutions.
This work is a continuation of a paper (J. Chemometrics 28:106, 2013) on the polygon inflation algorithm for
AFS computations. In this second part various propertigh®fAFS are analyzed. First, its boundedness is proved,
which is a necessary condition for its numerical computati®econd, it is shown that the origin is never contained
in the area of feasible solutions. This fact is the basisHerihverse polygon inflation algorithm, which allows to
compute specific types of an AFS containing a hole.

The numerical computation of the AFS is a complicated andpmdationally expensive process. The construc-
tion of proper objective functions for the AFS-optimizatiproblem appears to be decisive. The paper contains a
comparative analysis of two objective functions and déssrihe ideas of the nelfAC-PACK toolbox for MarlL as.

This freely available toolbox contains a numerical impleta¢ion of the polygon inflation and of the inverse polygon
inflation algorithm.

Key words: factor analysis, pure component decomposition, nonnegatatrix factorization, area of feasible
solutions, polygon inflation.

1. Introduction ences therein. We use the teanea of feasible solutions
regardless of the dimension or number of components of
The area of feasible solutions (AFS) represents the the system since we understand the term not in the sense
continuum of all solutions of multivariate curve reso- of a two-dimensional surface area but more in the sense
lution techniques under pre-given constraints. In this of a region or territory.
paper we consider the AFS only for nonnegativity con-  In 2011 Golshan, Abdollahi and Maeder provided a
straints on the spectral factor and on the concentration new idea for the numerical approximation of the bound-
factor. The AFS allows to gain an overview on the pos- ary of the AFS by a chain of equilateral triangles [7]. An
sible solutions from which an MCR method extracts one alternative solution for such a numerical approximation
final solution by using soft and hard models. However, ofthe AFS by a sequence of adaptively refined polygons
the reliability of the solution depends on the correctness has been suggested in the first part of this paper [8].
of the models. A stable and precise numerical compu-  To our knowledge some topological properties of the
tation of the AFS is a time-consuming process, whichis AFS have never been analyzed. For instance, it is not
made more dficult by noisy data. clear that the AFS is (under some mild assumptions)
The computation of the AFS for a two-component a bounded set. Boundedness, however, is a necessary
system goes back to Lawton and Sylvestre [1] in 1971. prerequisite for a successful numerical approximation.
Borgen and Kowalski [2] have extended AFS computa- Often the AFS consists of three clearly separated sub-
tions to three-component systems in 1985. For further sets. It can also be a single topologically connected set
important contributions see [3, 4, 5, 6] and the refer- with a hole; see Figure 1 for two typical areas of feasi-
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ble solutions. These fiierenttopologies require adapted The collection of spectra for these three reaction sys-

computational strategies. All this justifies the following tems are shown together with the concentrations profiles
objectives: and spectra of the pure components at the end of this pa-
per in Figures 8-10. For more details on these problems

1. analyze some theoretical properties of the Borgen see [9], [11] and [13].

and Kowalski approach to the AFS and their im-
pact on properties of the AFS,
2. compare the two objective functions for the 2. Onthe AFS
triangle-enclosure algorithm and the polygon infla-
tion algorithm, The Borgen and Kowalski [2] approach to the AFS
3. find approximation schemes which allow to ap- for three-component systems together with further ref-
proximate the AFS for typical cases in which the erences and explanations has been introduced in the first
AFS consists of three separated segments or only part [8] of this paper in Section 2.2. Next only those
one segment with a hole, equations are compiled which are essential for this pa-
4. present a fast and stable numerical method for the P€T-
computation of such one-segment AFS, The starting point is & x n spectral data matri®

5. show how the AFS can be reduced if additional in- Whose nonnegative factorizatiddA is desired. The
formation on the factors is available. k x s concentration matriXC contains the concentra-

tion profiles of thes components in its columns, and

The paper is organized as follows. In Section 2 some the sx n spectral factoA contains the associategure-
mathematical properties of the AFS are analyzed. Sec-componentspectrain its rows. Usually, a gi@has an
tion 3 is devoted to a comparative analysis of two ob- infinite number (or continuum) of nonnegative factor-
jective functions which are key tools for the numerical jzations. The AFS is a low dimensional representation
AFS approximation. In Section 4 the new inverse poly- of these solutions. ID has the ranls, then the truncated
gon inflation SCheme, which allows to Compute an AFS ranks Singu|ar value decomposition reabs = Oi\7
with a hole, is introduced. The inverse polygon infla- \ith J € R*s, £ € RS andV e R™S. This allows to
tion algorithm is a central part of the nedMAC-PACK setC = UST-LandA = TV' whereT is ans x sregu-
toolbox in MatL as for AFS computations. In Section 5 |5y matrix and = UST-1TV"
techniques are presented which allow to reduce an AFS

by means of additional information on the factors. All 5,4 the upper relations hold in an approximate form.

this is accompanied by various numerical examples in - 1tha AFS for ans-component system is a subset of
sections 3, 4 and 5. theRS ! with the form

. If D contains perturbed
spectral data, then the rankbfis usually larger thas

1.1. Data sets M= {te R>*1: exists invertibleT € RS,
Within this paper the algorithms and new concepts T(L)=@t), UST >0 andTV" > 0}
are tested for the three data sets: . »r - -

1. Rhodium catalyzed hydroformylation, see [9, 8]. For a three-component system this simply reads
A number ofk = 1045 FT-IR spectra with = 664
spectral channels is used. There sre3 indepen- M= {(a,p) e R? : det(T) # 0, C,A> 0}
dent components namely the olefin, the acyl com-
plex and the hydrido complex. The AFS is shown With C = UZT-% A= TV and
in Figure 1 (left) and in Figure 6.

(1)

2. Formation of hafnacyclopentene, see [10, 11, 12]. T 1 @« B 5
A number ofk = 500 UV/Vis spectra witm = 381 |1 :211 22 (2)
1 2

spectral channels is given. The AFS for this system
with s = 3 independent components is shown in
Figures 1 (right) and 7.

3. ButiPhane ligands and hydrogenation activity, see  The definition ofM in (1) implies that the rowa of
[13]. A number ofk = 82 UV/Vis spectra witm = a feasible factoA can be presented by linear combina-
1951 channels is given. The AFS for this system tions of the rows o' in the form
with s = 2 independent components is shown in -7
Figure 3. a=(Lt)-V. 3)
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Figure 1: Typical areas of feasible solutions. Left: Threpasated segments forming the AFS (Data set 1: hydrofotioglprocess). Right: The
AFS is a connected set with a hole (Data set 2: formation afdmfclopentene).

The fixed 1 in the row vector (1) guarantees thatny Theorem 2.2. Let D € R®*" be a nonnegative matrix
spectrum has a contribution from the first right singular with rank(®) = s which has no zero column. Further let
vector. This property is by no means evident and has to UXVT be a singular value decomposition of D and let
be proved. Theorem 2.2 shows that the AFS represenV be the submatrix of V formed by its first s columns.

tation (1) is valid if and only ifDTD is an irreducible There exists no row vectort RS\ {0} with
matrix. For such matrices Theorem 2.4 shows ihéis ~T
a bounded set. Boundedness is a necessary prerequisite OH-v 20 (4)

for the numerical techniques in [7, 8] to compute the
AFS. To our knowledge no proof on the boundedness
has been given so far.

The central results of this section are Theorems 2.2
and 2.4. In these theorems rabBlj(= sis assumed with Proof. First let DD be irreducible. The Perron-
s> 2. The results do not necessarily hold for perturbed Frobenius-theorem [14] guarantees that the first right
data and ifsis smaller than rankf). Some implications  singular vectoV(:, 1) is a sign-constant vector without
of these theorems are summarized at the end of this seczero components. This means that eithiér, 1) > 0
tion. or V(:,1) < 0. If V(;,1) > 0 and assuming a vector

t € RS1\ {0} satisfying (4), then it holds that

(in words: any linear combination of the columns
2,...,s of V has negative components) if and only if
DD is an irreducible matrix.

Definition 2.1. Let P be an nx n permutation matrix,
i.e. Pis a column permutation of the identity matrix. (0,1) - i V(,1)> 0.
An nx n matrix H with n> 2 is called reducible, if a m ";6"’
permutation matrix P exists so that N
This is a contradiction to the orthogonality ¥fsince
PHP = ( Hi1 Hi2 ) its first columnV(;, 1) is orthogonal to all the remain-
0 Ha2 ) ing columnsV(:,2 : s). For the cas&/(;,1) < 0 the
arguments are almost the same.

In order to prove the opposite direction by contrapo-
sition, letDT D be a reducible matrix. According to Def-
inition 2.1 there is a permutation matiikso that

TpT D. O
The next theorem proves that the Borgen and Kowal- PD DP' = ( 0 D, )
ski approach (with 1s in the first column @ is justi-
fied. Further, the result is used in Theorem 2.4 on the The right upper block is also a zero block since
boundedness of the AFS. PDTDPT is a symmetric matrix.
3

Therein H,; is an mx m submatrix and H is an mx
(n—m) submatrix withl < m < n. If such a permutation
matrix P does not exist, then H is called an irreducible
matrix.



By assumptioD has no zero-columns so that all dia-
gonal elements oD"D are nonzero; i.e.d{d;< + 0
wheredy is thek-th column ofD. ThereforePD" DPT
has no zero-columns so that andD, are nonzero and
nonnegative matrices. Without loss of generdlityand

D, can be assumed to be irreducible matrices; otherwise
the argumentation is applied to proper irreducible sub-

matrices.

Let 11 and A, be the eigenvalues &, resp.D, with
the largest modulus.
guarantees that; and A, are (by irreducibility) sim-

ple and positive eigenvalues. The associated normal-

ized eigenvectorsl; andu, are component-wise pos-

itive vectors. These eigenvectors are among the right

singular vectors oD so that for proper indexés, i»

0
+Uo

PV( i) = ( s ) PV(.i2) = ( ) (5)
Therein + expresses that the orientation of a singu-
lar vector is not uniquely determined. Without loss of
generality leti; # 1 (otherwisei; # 1). Then let
(O,1) := J_rei wheree, is the standard basis column vec-
tor whosei,-th component equals 1 and all other com-

ponents are 0. From (5) one gets
PV(ze,) = ( 0 ) > 0.
U

Transposition of this equation and right multiplication
by P results in

+qV PT
e

P =(0,u;)P>0.

Together with (4) this completes the proof. O

Corollary 2.3. Let D' satisfy the assumptions of Theo-
rem 2.2. Then no € RS exists with

Ui(o)zo
19

if and only if DD' is irreducible.

Proof. FromD'" = VEUT and non-existence dfwith
(0,t)UT > 0if and only if DDT is irreducible one gets
the non-existence afwith (0,t)£UT > 0. Transposition
of the last inequality proves the proposition. O

The matrixDTD can be assumed to be irreducible

D'D = I3 for which T is not necessarily in the form
(2) (sinceV =T =T 1=C=A=13>0isafeasible
solution).
An important consequence of Theorerg B that the
AFS is a bounded set. The AF® is a subset of
M+ {t c Rlxs—l

LoV >0, (6)

which is closely related to FIRPOL in [2, 3]. The set

The Perron-Frobenius theorem/M* stands for the nonnegativity of the spectral factor

Aonly, andM* is the intersection of the half-spaces

{teR™S1: tV(i,2:9" > -V(i,1)}, i=1,....n

(7)

The next theorem shows th&t and M™* are bounded
sets for irreducibl®TD.

Theorem 2.4. Let D satisfy the assumptions of Theorem
2.2. ThenM* by (6) andM are bounded if and only if
DD is an irreducible matrix.

Proof. Since M* is an intersection of the half-spaces
(7), boundedness oM* means that there is nb e
R¥*s-1 g0 that according to (6)
(LytV' >0 8)
for all y > 0 (otherwiseM* would be unbounded in

the directiort).
Inequality (8) can be rewritten as

W 2:9T >0 -V(, 1)

The null vector has been inserted in this chain of in-
equalities which is justified becau¥§:, 1) is a nonneg-
ative vector. Hence boundedness means that there is no
t e R™s1so thattV(;,2 : §)T > 0. Equivalently, there
is not so that (Qt)V > 0 and thusDTD is irreducible
due to Theorem 2.2. This proves the assertion¥or .
As M s a subset oM™ the proofis completed. [

With few additional assumptions one can show that
the setM does not include the origin (i.e. the zero vec-
tor).

Theorem 2.5. Let D € R¥S be a nonnegative rank-s
matrix so that DD and DD' are irreducible matrices
and that a factorization D= CA with nonnegative fac-
tors exists. Thef ¢ M.

Further, the first left singular vectdd (;, 1) is not the

for spectroscopic applications. Otherwise, the series of
spectra decomposes into apparently separated or nonconcentration profile of a pure component and the first
coupled subblocks. A trivial example of a reducible fight V(:, 1) is not the spectrum of one of the pure com-
matrix is the 3-by-3 identity matribD = I3 so that ponents.

4



Proof. Let D = CA be a factorization with < C ¢ with a row vectort = (ty,...,ts1) € R1X5‘1~a~nd a sub-
RS and 0< A € R®". According to (1) the firstrow of ~ matrix S € RE*1 jn a way thatC = UST! and
AequalsA(l,:) = (1, t)V' forsomet € M. Theconcen- A = TV' are nonnegative matrices. In order to decide

tration profile of the second componen@is, 2) = UXv whethert is valid (t € M) or non-valid ¢ ¢ M) one has
for v € RS, Corollary 2.3 proves that; # 0. to solve an optimization problem. The solution is either
Thus (11) is the first row of T andv is the second  a proper submatri$ or its non-existence can be stated.
column of T-1. From We call this process th&FS-decisiorover ¢, S).
0=l1o=TT H12=(L1 v

3.2. Thessq approach

one derives Gt vy = —t-v(2 : s 1). Thus neithet nor The AFS-decision ovet(S) in [4, 5, 7] is based on
v(2 : s, 1) are null vectors. So @ M andV(:, 1) is not

equal to a pure component spectrum. Applying the ar- ssq : R®™* x REDED LR, (t,S) - |ID - C, A2
guments tdD" shows thatJ(;, 1) is not a concentration

profile of a pure component. O with
C. =maxUsTL0), A, =max(TV',0)
3. Objective functions

) ) andT given by (9). Furthelf - || denotes the Frobenius
The numerical computation of the AFS fee 3 and

X - i norm [15].
even.largers is a compllqated and computationally ex- By usingssq the AFSM is
pensive process. There is no closed-form-representation
of the AFS which could simply be drawn by the evalu- M= {t eM':  min  ssq(t,S) < 6} (10)
ation of a function. Noisy data makes the computation SeR(s-1x(s-1) T

of the AFS even more fficult.

For three-component systems Borgen and Kowalski
[2] as well as Rajko6 and Istvan [3] presented for noisy-
free datag geometrig approach FO thg construction of thesimplex minimization (MrLas routine fminsearch).
AFS. A direct numerical approxmgtlon of the AFS for This approach is summarized as follows:
three-component systems and noisy data can be com-
puted by means of the triangle-enclosing algorithm [7] Objective function 1. The AFS-decision ovt, S) re-
and the polygon inflation algorithm [8]. These iterations sults in a valid t, i.e. te M, if the minimization of the
aim at an approximate computation of the boundary of objective functiorssq yields 0 up to rounding errors.
the AFS. The central process behind these algorithms is

with € = 0. For practical computations in presence of
rounding errors one can uge= 1072, The minimiza-
tion problem in [7] has been solved by the Nelder-Mead

a routine which decides whether a certain poing) is 3.3. Alternative approach to the AFS-decision
contained inM. Such points are calledalid. Points Next an alternative minimization problem is dis-
exterior toM arenon-validpoints. cussed with a much smaller number of squares. A first

The algorithms in [7] and [8] make use offiéirent  rapid test on the validity of € M can result in an addi-
objective functions. Next these objective functions are tional acceleration of the computational process.
compared for genera-component systems. The first e start with this rapid test for a given Nonnega-
objective function requires a more expensive computa- tjity of TV' implies that
tional process compared to the second function. The

two algorithms give the same results for nonnegative —t-V(i,2:9" <V(i,1), i=1...,n (12)
data. In case of noisy data the resulting AFS approx- ] )
imations may slightly dter. This test does not require the computatiorSoin (9)
so that the computational costs for checking (11) are
3.1. The AFS for s-component systems negligible.
According to (1) and (2) the problem for as If a certain row vectot has passed the test (11), then

component system is to find regular matrices we consider the function

1t ... tsg f i RS x RSDX(s-D) _, Rksrn(s-11+1 (12)

1

T= S € RS 9)

min(0, Cj) kscomponents
(t,S) — | min(0, As;) n(s— 1) components
Ils— T*TI2 1 component.
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Figure 2: Decision tree for objective function 2. The dashbigpse
expresses some uncertainty as the numerical minimizatinoecning
S may fail, cf. Section 3.5.

The firstks components off are either equal to O or
the negative components 6f € RS, The following
n(s — 1) components of are either equal to 0 or the
negative components éf € RS"; the first row ofA has

not to be checked on negative components due to the

test (11). The last component éfaims at avoiding a
rank-deficient matrix@ with rank(T) < s.

The least-squares minimization bfincludes a num-
ber ofks+ n(s— 1) + 1 squares. Sinceis a fixed small
number and as well as are potentially large the total
costs for minimizing (12) increases @ék + n) wherein
O is the Landau symbol. In contrast to this, gsg ap-
proach is more expensive wigth(kn). For the numerical
minimization of || f(t, S)||§ a code for nonlinear least-
squares minimization can be applied likégnonlinin
MarLas. For ourFAC-PACK implementation we use
the FORTRAN code NL2SOL [16].

With (12) this allows to define the area of feasible
solutions as follows

M:{teM* : If(t. S)IE < }

Se R(sl)x(&l)

Theoreticallye = 0 but we uses = 107 for practical
computations.

Objective function 2. The AFS-decision ovét, S) re-
sults in a valid t, i.e. te M, if the test(11) is passed
and the minimization of the objective function f results
in 0 up to rounding errors. The decision tree is shown
in Fig. 2.

3.4. Negative components

C andA. A proper treatment of small negative compo-

nents of these matrices appears to be crucial for a suc-
cessful construction of the AFS. The approaches from
Sections 3.2 and 3.3 treat such negative components dif-

ferently.
Let us first discuss the limit case of
Mingcresoxsy f(,S) = f(t,S*) = 0. Then by

definition of f, see Equation (12), it is guaranteed that
C andA are nonnegative matrices. Thus

max(C, 0) - max@A,0)=C-A=D.

This implies thatsq(t, S*) = 0. It is not clear that the
other case of a vanishirggq of D — C, A, implies that
f also vanishes. To show this, the reconstrucfibe
C. A, with the truncated matricés, andA, mustimply
C_=0andA_ = 0. Itis not clear if such properties can
be proved. But a€, andA, are feasible nonnegative
factors they are in any case represented by the AFS.
Here we accept the facto@sandA if the relative neg-
ative portion in the columns o and the rows ofA is
bounded as follows

minj Cji
maxj |Cji| -

min,- Aij
Tomax A
fori = 1,...,3. The parametes, see Section 3.3, is
taken ass = 10712 for model problems without pertur-
bations.
Similarly the first rapid test (11) is reformulated as

Vit + t1Vig + -+ + 151 Vis .
(L ) Ve -

Therein|| - || is the maximum norm, i.e. the maximum
of the absolute values of the components.
Further, the firskscomponents of are taken as

min(0, Cy /IC(:, Nllw + &)
and the followingn(s — 1) components are similarly
min(0, A¢j/IIACL, lleo + ).

3.5. Reliability of the numerical optimization

The AFS-decision for a vectdre RS! is a numer-
ically expensive and potentially instable process since
for the givent a properS is to be computed by solving
an optimization problem. This numerical computation
may fail. In particular such problems are to be expected
if only a poor initial approximation fo§ is available at

Noisy spectral data or negative components of the the start of the optimization procedure.

spectral data matrifo due to some data preprocessing

However, for two-component systems the situation is

does not always allow to find nonnegative matrix factors very simple, see Section 3.6. Fop 3 the decision tree

6
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Figure 3: AFS for a two component system for the ButiPhana.dat

shown in Figure 2 applies. The rapid test on nonnegativ-

ity by inequality (11) appears to be non-critical. Further,
any decisiort € M can be trusted as the optimization
process has found a solution. A decisiop M due to

mins [|f(t, S)Il3 > € may not be trusted as, e.g., the op-

dimension || objective fct. 1| objective fct. 2
k n time [s] time [s]

75 50 9.15 1.23

150 | 100 33.31 1.68

300 | 200 133.04 2.82

450 | 300 271.95 3.47

750 | 500 803.86 5.45

1500 | 1000 3773.88 11.26

Table 1: Total computing times for programs using the tweeotije

functions for the model from [8]. In each of these cases th& Afic

and the AFSMa are computed.

proved in Theorem 2.5. In case of noisy data, the AFS
is still a rectangle. Then the scalas, c andd can be

timization procedure may have got stuck in a local and computed numerically by using the bisection method.

non-global minimum. To reduce the risk of such mis-

classifications we always take special care to generate©f @ S0 that

good initial values forS. Such initial matrices can be

computed by local averaging final and trusted matrices

S on points in a close neighborhoodtof

3.6. The AFS for two-component system
For a two-component system the matfixs simply

given by
1 a
T_(l o)

If we ignore noise and let = 0, then using the objective
function 2 results in

(@p) elablx[cd or (Ba)e[ab]x[cd]
with
\i . Ujo
a=- min ——, b =min ,
i V(i,|2)>0 Vip ] Uiro1
_ Uizo 3 Vi1
°= miaXUilo'l’ d= i:\r/]a%io Vig’

For instancea andd are the minimal or maximal value

(La)VT S
(L, a)VTlle —
andb, c are computed analogously by using linear com-
binations ofUX. Figure 3 shows the two-dimensional
AFS for the ButiPhane data set, which is data set 3 in
Section 1.1.

€

3.7. Computational costs

Next a direct comparison of the computational costs
is given for the two objective functions presented above.
First we consider a three-component model problem
and second we use FT-IR spectral data from the hydro-
formylation process. The two objective functions are
each applied within the polygon inflation algorithm in
order to present in detail thdfect of the choice of the
objective functions.

3.7.1. A model problem

The three-component model problem is taken from
part | of this paper; see Section 4.1 in [8]. Here we
consider a series of fierent values fok, the number
of spectra, ana, the number of spectral channels, see

Thus the AFS for a two-component system consists of Table 1. The last two columns of Table 1 give the total
two real intervals. These two intervals are usually rep- computational times for programs using the objective
resented by the sides of a rectangle, cf. [5]. A point functions 1 and 2. For these computations the parame-
within this rectangle allows a simultaneous representa- terse = 1012 andep = ¢ = 1073 have been used; see
tion of the AFS for the spectral and for the concentration Part | for the explanation af, andé.

factor (which is fundamentally fferent from the AFS Figure 4 shows the computation time agaiksin a

for three-component systems where either the AFS for log-log plot. The computational costs for the first ob-
the spectral factor or the AFS for the concentration fac- jective function increases wit? (kn). The second ob-

tor is represented in 2D). It is also clear that 0 < ¢
and that eitherr < 0 andB > O or alternativelyn > 0
andg < 0. All this is consistent with G¢ M which is

7

jective function results in a much faster method. The
numerical data are consistent with costs increasing as
O (k+n).
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AFS | objective fct. 1| objective fct. 2

time [s] time [s]
Mc 998.32 4.58
Ma 862.33 4.39

Table 2: Computing times for the two objective functions fbe
Rhodium catalyzed hydroformylation. The times #6tc and Ma
are tabulated separately.

3.7.2. Rhodium catalyzed hydroformylation

Next we consider the Rhodium catalyzed hydro-
formylation as given by the data set 1 in Section 1.1.
Now the parameters ate= —0.01 ands, = 6 = 1073,
The computational times in Table 2 confirm that the sec-
ond objective function results in a much faster method.
The resulting areas of feasible solutions are almost iden-
tical if the same valuey, for the boundary precision is
used. The associated Hausfalistances for the three
segments of the AFS are given in Table 1 of [8].

4. Inverse polygon inflation for an AFS with a hole

As shown in Section 2 the AFS is a bounded set
which does not include the origin. A challenging ques-
tion is: What is the number of isolated segments an AFS
may consist of?

For s = 2-component systems the AFS consists of

interesting question is to show that the number of AFS
segments oM and Mc coincide.

It is well known that the AFS for three-component
systems may consist of only one segment and that this
segment can contain a hole, which surrounds the origin.
Next we describe a variation of the polygon inflation al-
gorithm which can be used to compute such AFS with a
hole or an AFS with more than three isolated segments.

4.1. Inverse polygon inflation

If for a three-component systems & 3) the en-
tire AFS consists of one segment with a hole, then the
triangle-enclosure algorithm [7] and the polygon infla-
tion algorithm are to be modified properly. For the
triangle-enclosure algorithm two runs are necessary in
order to cover the interior and the exterior boundary
curve by sequences of triangles.

For the polygon inflation algorithm the exterior poly-
gon and the interior polygon are to be treateftiedently
but the geometric concept of inflation polygon is in each
of these cases the same. Only the objective functions are
changed.

First, the computationalffort to compute the exte-
rior polygon is very small since only (ﬂ)\7T >0is
to be tested according to Equation (6), cf. FIRPOL in
[2]. This exterior polygon is just the boundary of the set
M* defined in (6). The remaining conditions bto be
a valid vector, i.et € M, are used to define a further set

M ={teRs: min|If (t SIZ=0 (13)
whose inner boundary is computed by the standard
polygon inflation algorithm. Fot € M* the defini-
tion of M* guarantees thar is regular,C > 0 and
A(2 : 3:) > 0. The intersection oM* andM* , which
combines the conditions, results in the AFS

M=M" NnM". (14)
In order to avoid any misinterpretation we mention that
M is very diterent to INNPOL as used in [2, 3].

The algorithm to compute a polygon which approxi-
mates the boundary o¥1* uses an objective function
which guarantees (7) to hold. The starting point is the
origin which is always inM* . The polygon inflation

p = 2 separated intervals which are taken as the sides ofstarts with a triangle enclosing the origin and whose ver-

a rectangular for its presentation; see [1, 5] or Section
3.6. Fors = 3-component systems experimental data
and model data show that a numberpE 1, p = 3

tices are located on the boundary/ef* .
After this the interior boundary oM* is computed
by using the objective function (12). Therefore the com-

or evenp = 6 segments may occur. We plan to give plementR? \ M* is approximated from the interior of
a mathematical proof that an AFS with two segments this set. The starting point is, once again, the origin
cannot occur in a forthcoming publication. A further since Theorem 2.5 guarantees thatOj0¢ M* . The
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Figure 5: Breaking-up of the AF31, from one to three segments for the Example 4.1 with= 1.5. Left: Only one segment with a hole for
w2 = 0.5. Center: The hole touches each side of the outer trianglefo= 0.26787. Right: Fow, = 0.2 the AFS is broken into three clearly
separated segments.

usage of the complement is the reason why we call the computation ofM* andM* , which is followed by their
algorithm aninverse polygon inflation The computa-  intersection, is a stable and favorable way to construct
tion of the hole of the AFS by applying the polygonin- M. The inverse polygon inflation procedure can even
flation toR?\ M* has the advantage that only few lines be applied to general situations with well separated seg-
of program code are to be adapted. Further, the relevantments - a situation we have often found for FT-IR spec-
regions of the two setdM* and M* can be computed tral data. However, the computational procedure for the
in a stable way. inverse polygon inflation is somewhat more expensive
If FAC-PACK uses the standard polygoninflation al- compared to the direct computation of the three sepa-
gorithm and finds an AFS segment which has a nonzerorated segments.
intersection with at least three quadrants of the Carte-
sian coordinate system, then the algorithm automati- 4.4. AFS dynamics showing the separation process

cally switches to the inverse polygon inflation. Thus a  |n order to study the possible shapes of an AFS we il-
one-segment AFS is automatically computed by inverse |ystrate the transition of the AFS from one topologically

polygon inflation. connected segment to an AFS formed by three segments
. for a three-component model problem. In this separa-
4.2. FAC-PACK software for AFS computations tion process three segments which pairwise touch in one

The polygon inflation algorithm and the inverse poly- point split up to three clearly separated segments. The
gon inflation algorithm are implemented in the software case of only two separated segments is not observed; we
toolbox FAC-PACK for Marias [17]. FAC-PACK will give a mathematical proof on this in a forthcoming
contains a graphical user interface from which the spec- paper. The model problem depends on two real param-
tral data can be loaded, a singular value decomposition etersw; andws.
and an initial nonnegative matrix factorization (NMF)

a3 . .
can be computed. This NMF is the starting point for the Example 4.1. Let D € R be the nonnegative matrix

computation of the AFSFFAC-PACK allows to display 1.0 0 00 0 1 1 1

the spectral and concentration factors which are asso- D={0 1 0|l+wi|1 0 O|+wyl0 1 1.
ciated with any points of the AFS. Further, one or even 00 1 1 1 0 00 1
two components can be locked and the resulting reduced

AFS is shown. Nonnegative factorizations B CA and the AFSM

The FAC-PACK homepage containing the software are to be computed.

and a tutorial can be accessed at _ o
For our computations the parametery is fixed to

httpy//www.math.uni-rostock.qéacpack w1 = 1.5 andw, is used as a variable. Figure 5 shows
that the AFS forw, = 0.5 is one topologically con-
4.3. Weakly separated segments of the AFS nected set. Fow, = 0.26787 the AFS consists of

If the segments of an AFS are only weakly separated three segments which pairwise touch in one point. For
(in a sense that the polygon inflation algorithm tends to w, = 0.2 one gets three clearly separated segments.
glue separated segments of the AFS to a joint segment; Various numerical experiments indicate that the AFS
see the AFS in the mid of Figure 5), then the numerical My for three-component systems is either formed by
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Figure 6: Results of inverse polygon inflation for the hydrafiylation data set 1 from Section 1.1. Left: The boundary6f according to Eq. (6)
is similar to FIRPOL [2]. Center: The s@tl* according to (13) is shown in the samags-window for whichM™* is computed. This avoids useless
computations sincé is a subset oM™ . Right: The AFSM is the intersectionM N M* .

one topologically connected segment or by three iso- NMF. Together with a small radius parametéie func-
lated segments. The same holds for the AHg. Spe- tion

sin(p)
cos(p)

cially constructed matrice® may have much more iso-
lated segments.
is considered in order to compute a feasible aggé®

Orx(p) = X+ (

4.5. The AFS for spectroscopic data

1. Data set 1 - the Rhodium catalyzed hydroformy-
lation: The reference to this FT-IR spectroscopic
data is given in Section 1.1. The spectral AFS for

that gr x(¢) € M. The numerical minimization of the
objective function (12) is executed only if the rapid test
(11) is passed. The initiat might be one of the end-

this problem is computed by inverse polygon in-
flation. Figure 6 shows the sefsl* (left), M*
(center) and their intersectiom, see also Figure
1.

. Data set 2 - formation of hafnacyclopentene: The
reference to this UW¥is data setis givenin Section
1.1. The AFSM = M, is shown in Figure 1 (right

points of the line segment or between them. In the latter
case and ifp represents a feasible direction, then also
¢ — nr stands for a feasible direction. For these two op-
positely oriented direction maximal valugsandr, are
computed by the bisection method so that the desired
line segment equals the unidh U £, with

plot) and is one topologically connected set with B sin(p — ) .
a hole, which contains the origin. This relatively Li=x+r COSfp — ) withr € [0, n] ¢
large AFS imposes only weak restrictions on the sin)

factor A since the associated spectra are nowhere
equal to zero. All this allows a wide range of fea-
sible transformation making the AFS large.

cosfp)

L=

5. How to use additional information on the factors

) with r € [0, r,]}.

4.6. How to compute line-shaped segments of the AFS

An isolated segment of the AFS is most often either  Nonnegativity of the factors is the only restriction
a set whose (mathematical surface) area is larger thanwhich underlies the construction of the AFS. However,
zero oritis a single point. In some cases an isolated sub-sometimes additional information on the factors is avail-
set of the AFS appears to be a straight-line segment. Inable. This information may consist of the knowledge
absence of rounding errors and perturbations its surfaceon certain pure-componentspectra or concentration pro-
area equals zero; for slightly perturbed data such a seg-files. Alternatively, some isolated peaks within a spec-
ment practically is a long and narrow band. The polygon trum may be known. In a recent work Beyramysoltana,
inflation method needs some algorithmic enhancementRajké and Abdollahi [18] have shown a correlation of
in order to compute such straight-line segments. known factors for three-component systems in the spec-

In FAC-PACK we use an angle-search method for tral space with lines in the concentration space and vice
approximating such AFS segments. The starting point versa. Comparable results for two-component systems
is a feasible coordinate = (@, ) as computed by the  are analyzed by Rajkd [19].
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The software toolbok¥AC-PACK allows to lock cer- the two concentration profil€3(;, 1 : 2) are located on a
tain spectra or concentration profiles and then to com- further straight line. Together with the first straight line
pute the reduced and smaller AFS for the remaining the intersection of these lines uniquely determines the

components [17]. In this section we focus on the mu-

tual efect of reducing the AFS foh on the AFS forC
and vice versa.

Further sources of additional information on the fac-
tors might be window factor analysis (WFA) techniques
or the evolving factor analysis [20, 21]. In this con-
text the theorems of Manne [22] might help to extract

concentration profiles of certain components. The im-
plementation of such local rank information as a part

of FAC-PACK is a point for the future work. One can
also use constraints like unimodality or the proximity of

a spectrum in the AFS to a pre-given spectrum in or-
der to reduce the ambiguity. However, in this paper we
concentrate on computing the AFS under nonnegativity
constraints and we do not want to dilute this approach

by introducing too much adscititious information.

5.1. Three-component systems

To discuss a typical and concrete problem we as-

sume that the first spectrui{l, :) of a three-component
system is known. As shown in [12] by coupling and

complementarity theorems the knowledge of this spec-

trum imposes an fiine-linear constraint on the asso-
ciated columrC(;, 1) and further linear constraints on
the remaining column€(;,2 : s). So the knowledge
of A(1,:) considerably reduces the original AFS fr
Additionally, the points representing the complemen-
tary concentration profile€(:,2 : 3) are restricted to
a straight line through the AFS f@. The details are as
follows: A known spectruni\(1, ;) is represented by the
coordinatestg/t;, t3/t1) in the spectral AFSM with
t=(t1,t2,t3) = A(L,:) - V(;,1:5). Theorem 4.2 in [12]
shows, that the concentration profileg, 2) andC(:, 3)
are elements of the subspace

(UZy: t-y=0}=(Uy: t-2-§=0}.

Together with the required scaling = 1 and using
(a, B) as coordinates i this subspace reads

L={(ep): t-21- 1ap)" =0}

t t t
={(a,ﬁ>; Lo 2y _}

o1

ThusL is a straight line throughVic and the ¢,3)-

second concentration profi@(:, 2). This situation has
explicitly been discussed in [12]; see there Theorem 4.2,
Corollary 4.3 and Section 6.1. All these restrictions can
be combined with any further informati@onstraints
on C andA. However, ifC(:,i) andA(i, :) for a certain

i are pre-given simultaneously, then the whole problem
can be reduced by this component.

5.2. Numerical example

Next we consider UWis spectra for the formation

of hafnacyclopentene given by data set 2 in Section 1.1;
see also Section 6.1 of [12]. For this three-component
system the initial concentrations of the consecutive re-
actionX —» Y — Z arecx(0) = 0.01309 andcy(0) =
cz(0) = 0. The last spectrum of this series is a good
approximation of the spectrum of the reaction product
Z as the reaction is more or less completed. Together

with the first spectrum two pure component spectra are

available.
The AFS and its reductions are presented in three
steps:

1. The initial areas of feasible solutions fGrand A
are shown in Figure 7 in the left column. No ad-
scititious information has been used for the AFS
computation.

2. If A(;, 1) for the reactankX is given, then the ini-
tial AFS can be reduced to two smaller segments,
which are shown in Figure 7 in a darker gray. The
bold straight line in the AFS fo€ in Figure 7 (sec-
ond row and second column) covers the comple-
mentary concentration profil€X:, 2 : 3).

3. If finally the spectrumA(;, 3) for Z is also given,
then the resulting AFS is reduced to the right lower
AFS segment which is shown in Figure 7 by the
darkest gray. A second straight line is added to
the AFS forC. Figure 7 (second row and third
column) shows this by another bold line. The in-
tersection of the two lines uniquely determines the
concentration profil€(;, 2).

5.3. Remark on the AFS for multi-component systems
The AFS for a system witls independent compo-

representatives of the complementary concentration nents is a bounded set in tlse- 1-dimensional space

profilesC(:, 2) andC(;, 3) are located on this line.

according to Equation (9). Additional information on

This reduction process can be continued if a second the factors can be applied to such a higher-dimensional

spectrumA(3, 1) is pre-given. For the concentration fac-

AFS in a way which is comparable to the techniques

tor C this means that points in the AFS which represent explained above.
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Figure 7: Restriction of the AFS. First row: AFS for facthr Second row: AFS for factd€. Left column: AFS without any restrictions. Central
column: the pure component spectrum of the compogeistmarked byx in the AFS forA. For further explanations see Section 5.2. Right
column: the pure component spectrum of the compoiaatmarked by in the AFS forA. For further explanations see Section 5.2.

For example consider a four-component system. If a the boundary of the AFS can successfully be used. The

certain spectruni\(1, :) is known, then the AFS fo€(:
,2 : 4)is the intersection of the original AFS fGrand a
plane. The result is a bounded subset of ime-linear

latter fact is the basis for the implementation of the in-
verse polygon inflation algorithm, which is to be used
to compute an AFS with a hole. We observed such an

space with two degrees of freedom. With a pre-given AFS often for UVVis data. For FT-IR spectra an AFS
second spectrum the AFS for the concentration factor with three separated segments seems to be typical.
will be reduced by an additional degree of freedom. There are still open questions on the AFS. The num-
ber of separated segments of an AFS appears to be un-
clear. Further fast and stable algorithms for the con-
struction of the AFS for higher-dimensional systems are
The AFS appears to be a helpful tool for getting ac- still to be developed.
cess to the range of all nonnegative factorizations of a
given spectral data matrix. Inspecting the AFS of a SYS- Acknowledgement
tem can support the user to get an idea on the possible
solutions from which an MCR method can select the  The authors are grateful to the referees for their help-
"one” final solution. ful comments. Section 4.6 on line-shaped AFS seg-
In this paper two objective functions are discussed ments has been added after one referee has pointed out
which allow to decide whether a certain point belongs a problem with the original implementation #AC-
to the AFS or not. Further, the inverse polygon infla- PACK .
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