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Abstract

The partial knowledge of the factors in a multivariate curesolution problem can simplify the factorization prob-

lem. The complementarity and coupling theory (J. Chemanse®6 (2012), 526-537) provides precise mathematical
conditions for certain unknown parts of the factors. Thesestraints are based on a singular value decomposition
(SVD) of the data matrix; they have the form of linear dliree linear spaces which contain the unknown parts of the

pure component factors.
This paper presents a new and simple SVD-free form

of the tmmgmtarity and coupling theory. The derivation

of these theorems is based on elementary arguments of bigelora. The new mathematical form of the theory

allows its easy and straightforward applicability.
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1. Introduction

We consider the multivariate curve resolution prob-
lem to find for a given spectral data matiixthe non-
negative matrix factorizatio® = CAT into the pure
component factor€ andA. The following problem was
discussed among some members of a recent conferenc
on chemometrics (SSC14 in Chia, Italy):

Problem: "If in an s-component system all
but one pure component spectra are known
and if also the spectral data matixis given,

is then the remaining spectrum aside from
scaling uniquely determined?”

Answer: No - this is not true.

The simple numerical counterexample

o-(53)-(3 3)(33)
B
c A

shows for a two-component systera € 2) that the
spectral data matrip € R?*? has two essentially dif-
ferent nonnegative factorizatiols= CA" even though

the first rows ofAT and AT are the same. Further, no
scaling operation or reordering of the components ex-
ists, which allows to transform one of these factoriza-
tions into the other one. All predetermined quantities
are underlined, namely the elementsinind the first
rows of AT andAT. The second rows o&” andA " are

fon-collinear vectors. Thus the remaining spectrum is

not determined by the given information. This proves
that the assumption is not true.

However, the equation (1) also shows that the second
columns ofC andC are the same (aside from scaling).
Collinearity of these columns is not a coincidence, but
is a well-understood result of the so-called complemen-
tarity theorem [16]. In fact, if all but one pure com-
ponent spectra and are known, then the complemen-
tary concentration profile, i.e. the concentration profile
of the single component with an unknown spectrum, is
uniquely determined aside from scaling.

1.1. Aim and overview

The aim of this paper is to present a comprehensive
and easily accessible analysis of how to exploit partial
knowledge of the nonnegative factoBs € RS and
A e R™Sin MCR factorization® = CA' for D e R,
Implications on the remaining unknown parts of the fac-
tors are derived.
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In contrast to the complementarity and coupling the- 3. If ¢, is given, then a combination of the previous
ory from [16] we do not refer to a singular value de- two steps transforms the problem to the reduced
composition ofD. Thus all results are presented in an problem with givera;.

SVD-free manner. In Section 2 we start with a system-

atic analysis of the problem for rank-2 matrides For o .

these rank-2 matrices all derivations are only based on. All this justifies to present the problem in the follow-

elementary linear algebra. The simple rank-2 approach ing general form.

is generalized to the general problem in Section 3. The proplem 2.2. Let a kx n rank-2 matrix D be given so

guiding line for this deepened analysis is the rank-2 4t

approach. This analysis results in an SVD-free repre-

sentation of the complementarity and coupling theory. D=ab +cd (3)

Finally, Section 4 is devoted to the analysis of various

cases of simultaneously given spectra and concentrationwith the column vectors,a € Rk and hd € R". If b

profiles. is given, which implications can then be drawn on a, ¢
and d?

2. Analysis of two-component systems Problem 2.2 complies with Equation (1) and a given

First, we start with the analysis of two-component vectorb.. A solution is d.erived by elimir]ating the un-
systems which are represented by rank-2 matrices. Thisknowns in (3). The details of the analysis are presented
analysis has the advantage of being very simple. Nev-'" _ o
ertheless, the rank-2 approach is capable to explain the - S€ction 2.1 forimplications df onc,
central idea with a few lines of mathematics. Ite - Section 2.2 for implications df on,

RN be the spectral data matrix of a two-component - Section 2.3 for implications dj ond.

system. Assuming noise-free data, the mabihas
the rank 2 and can be written by a sum of two dyadic
products

Remark 2.3. The vector b, whose availability is as-
sumed in the following, must only be known up to scal-
ing. The key point is that for a substitution$ gb
D = CA” = (c1, o) (a1, @2)" = caal + Coal. ) with 3 # 0 all results are still valid if the substitution

a — a/pis applied simultaneously. Th€8) turns into
Thec € R*! are the concentration profiles and taes - -
R™1 are the spectra. For this two-component system we D = (a/B)(Bb)" +cd'.
consider the following problem:

) . 2.1. Frombtoc
Problem 2.1. For a given spectral data matrix D let

additionally one of the four vectors aay, ¢; and @ be Let the matrixD and the vectob be given, i.e. a spec-
known. Which information can then be derived for the trumis predetermined in the sense of (2). Next restric-
remaining three vectors? tions onc are derived. The complementarity theorem

(Theorem 4.2 in [16]) uses a singular value decompo-
Without loss of generality Problem 2.1 can be re- sition (SVD) of D in order to derive restrictions on

duced to the case thBtand the spectrura, are known.  However, one can easily derive and formulate such re-
This reduction can be justified as follows: strictions without referring to an SVD. The same ob-
servation has already been made by Manne [12] where
in Section 2.1 the same result has been derived for a
two-component system, see also the results of Maeder
[10, 9] and Malinowski [11].

1. If & is given, then the problem can be traced back
to the reduced problem of givem by simply ex-
changing the indexes 1 and 2.

2. If ¢y is given, then transposition of (2) results in
1. Letb € R™! andD € R*" be given. Multiplica-

D' = ACT = ayc] + &C;. tion of (3) with b results in
Thereinc; and g have just changed their places. Db = al|b||? + c(b, d) (4)
Thus all results on Problem 2.1 for givancan be
translated to Problem 2.1 for the case of giwgn with the Euclidean inner produck,y) = x"y and
by simple transposition. the Euclidean norrix|| = (x" x)%/2.



Next (4) is used to eliminatain (3). One gets

_ Db-c(b,d)

b" + cd
lIbl|2
or equivalently
bb’ (b, d) d)
l-—)=cd' - 5
lIbl|2 ( b2 o). ®)
=y7

For givenD andb the left-hand side of (5) can be
computed. The key point is that the right-hand side
of (5) says that this matrix is a rank-1 matrix be-
cause it has the form of a dyadic prodagt for

a vectory € R™1, Hencecy' is a matrix which
contains in its columns multiples of the vector

We express this relation with theol operator
which extracts from the rank-1 matrix(l - \|b\2) a
normalized vector which is collinear to the desired
vectorc. Thus

- bb"
Cc= CO|(D(| - W)) =cly (6)

with an (unknown) nonzero numbeiso thatc]| =
1.

2. Numerical example: We reconsider Equation (1)
with the known matrixD and with givenb =
(1,0)". This yields

ol - ||b||2)_(L21 g)( (}))(10))

4 2\(0 0) (0 2

2 2J\o 1) {0 2/)
The columns of this matrix are multiples of the nor-
malized column vector (1v2, 1/ V2)". It holds

that y
- 0 2\, [(1/v2
- g 2p-(5%)
andc = yC with an unknown real numbey. In

other words the second columns®@&andC in (1)
have been recovered aside from scaling.

2.2. Frombtoa

Let the matrixD and the vectob be given. Restric-
tions ona are derived next. The coupling theorem (The-
orem 4.5 in [16]) uses a singular value decomposition
of D in order to derive information oa. Once again,
all this can be done without referring to singular vectors
of D.

3

1. For givenD € R*" andb € R™ one can writec

by (6) in the form

bb"

c=+vyC=vycol(D(l -
¥C =y col(D( B

T5))-

If ¢ = yC with knownTand unknowry is inserted
in (3), then we get

D=ab" +ycd'.
Right-multiplication withb results in
Db = allblf* + y&(b, d).

This equation can be solved faywhich yields

_Dbb bd
2= 1o ¥ e © @

=

This is a representation afin the form of an &ine
space where@ € R is a single degree of freedom
(and where the other quantities are known).

. Numerical example: Takin® from Equation (1)

and withb = (1,0)" we get by evaluating (7)

Trolve)-(2)(5%)

In fact, settinge = —2V2 results ina = (2,0)".

This is the first column o€ in (6). Alternatively,
a = —V2 givesa = (3,1)", which is the first col-
umn ofC in the second factorization in (1).

a=

2.3. Frombtod

The non-unique factorization in Equation (1) shows
thatd cannot be uniquely determined from giverand
b. Next the underlying equations are derived systemati-
cally.

1. Equation (3) reads in transposed form

T =ba' +dc'.

For knownD andb, the vectorc is determined by
Equation (6) in the fornt = y€ with an unknown
parametet. Hence,

T = ba +yde’.

Right-multiplication with together with the nor-
malization conditioni[c]| = 1 yield

D'C = b(a,©) + yd.



Equation (7) allows to eliminata. Thus

DTE = b(22

TR + @C,C) + yd.

Henced satisfies

_ pDTr b

vyd=D'C TR (8)
Unfortunately, this equation has two free parame-
tersa andy. For the given two-component system
(or rank-2 system) the three vectatsD'C andb
are necessarily linearly dependent. In other words,
the right-hand side of (8) allows to represeamy
vector in the two-dimensional plane spanned by
D'candb. Hence, no additional information can
be derived ord.

(Db, ) - ab.

. Numerical example: For the factorization in Equa-
tion (1) with b = (1,0)" we have already deter-
mined¢ = (1,1)"/ V2. The two linearly indepen-
dent vectord andc span the 2D plane. Hence, the
vectord = (1,1)", i.e. the second column &, and
also the vectod = (1, 2)", i.e. the second column
of A, can be represented by linear combinations of
b andt. This underpins the non-uniqueness of the
factorization in Equation (1).

3. General analysis fors-component systems

The results on two-component systems from Section
2 are next generalized to genesatomponent systems.
To this end letD € R be a ranks matrix, which de-
scribes ars-component system so that

S
D=CA = ) ca.
i=1

In order to analyze the impact of partial knowledge of
the factors on the remaining parts, we consider the fol-
lowing partitioning ofC andA

Ci= [Cl, .. Cso] S kaso’

C2 = [CS)+1’ o CS] € RkXS*So’

C=[CuCy],

A =[ag,...ag] € R™®,

Az = [ag+1, ... as) € RS,
A=[AyA].

Typically we assume, spectra oisy concentration pro-
files to be given, i.eC; or A; are assumed to be given.
With these matrices it holds that
S
D= cal =CA] +CoAl. (9)
i-1

Remark 3.1. The partitioning introduced above does
not restrict the generality of the approach. If foysom-
ponents, either the spectra or the concentration profiles,
are known, then let

K={isi...,ig)

("K” for known) be the index set of the known compo-
nents. Further, let

U={12...,s\K

be the set of the remaining indexes of the unknown ("U”
for unknown) components. With these two sets the fol-
lowing theory works in the same way for the matrices

C1 = [Gliex,
Al = [a|]IEK’

C=[Cy,Cy],
A=[A, A

C, = [Ci]ieu,
A2 = [ai]IEU’

3.1. The complementarity theory

Let eitherA; or C; be given. Then the complementar-
ity theorem 4.2 in [16] provides conditions on the com-
plementary factor, i.e. either @@ or onA,. The math-
ematical analysis in [16] is based on a singular value
decomposition oD. There the restricting space is con-
structed as the image of the null space of the matrix
A1V, whereV contains in its columns the firs right
singular vectors oD. For details see Equation (7) in
[16]. The new theorem provides the same information
without referring to an SVD oD. The new proof is a
direct analog of the vectorial argumentation in Section
2.1. Moreover, this presentation of the complementarity
theory is strongly related to the first theorem of Manne
in [12]. Manne uses an orthonormal basis by the vectors
Wp, of the known parts of the factor and constructs from
these basis vectoms,, a matrixW. Thenl — WW' is
used as an orthogonal projector from the spectral data
matrix on the unknown part of the factor. The following
representation of the complementarity theorem does the
same; the relationship to orthogonal projectors is dis-
cussed in Section 3.1.1.

Theorem 3.2 (Complementarity theorem)Let D to-
gether with g linearly independent spectra be given.
These spectra form the columns gf Ahen thgs— s)-
dimensional column space of the matrix, @vhich is
spanned by the concentration profiles of the comple-
mentary components, is equal to the column space of
the matrix

D(I - Ai(A[A)AT). (10)

If, alternatively, G with linearly independent columns
is given, then the column space of, &vhich is spanned



by the spectra of the complementary components, is Algorithm 1 Simplified complementarity.

equal to the(s — s9)-dimensional column space of the
matrix

DT (I - Cy(C]Cy)'Cy). (11)
Proof. Right-multiplication of (9) withA; results in
DA; = CIAJ AL + CLAT A

The s given spectra are linearly independent so that
is a ranksy matrix. ThusAIAl is an invertiblesy x s
matrix. Hence the last equation can be solvedXor

Cy = (DAL — CoAJ A)(ATA) (12)
Insertion of (12) in (9) yields
D = CiA] + CA]
= (DAL — CoAJ A (AT A) THAT + CoA,,
which can be written as
D[l - Al(A] A) AT | 13

= Co|A] - AJAL(AT A AT

This matrix equation says that the column spac€pf
is spanned by the columns of the matrix on the left-hand
side of (13), i.eD[I — Ay(A] A1) *A]].

Equation (11) follows by applying the first statement
to the transposed form of (9)

D = A;C] + ACJ. (14)
Thus (11) can be derived from (10) by substitutidg-
DT andA; — Cy in (10). O

The matrix (10) can easily be computed for givién
andA; by solvings, linear systems of equations within
the regularg x sp matrix AIAl. Analogously (11) can
be computed fronb andC;.

Corollary 3.3. Ifall but one spectra are known, i.ey s

s— 1, then the concentration profile of the last compo-
nent G is uniquely determined (aside from scaling). It
holds that

Cs = col(D(I — Ay(A] A)1AT)),

with the column space operataol as defined in(6).
Similarly, if s—1 concentration profiles are given by C

then the spectrum of the complementary component is

given by

as = col(D'[I - C4(C] C)'CT]).

Require: D e R*" Ae R™(D) g
Ensure: Complementary concentratian
: C=D*(eye(n)-A*inv(A*A)*A’);
c=sqgrt(diag(C'*C));

if max(c) < -min(c), ¢ = -c; end

. plot(c);

=

El

Algorithm 2 Simplified complementarity - noisy data.
Require: D e R*" Ae R™D) g

Ensure: Complementary concentratien

. C=D*(eye(n)-A*inv(A*A)*A");

2: [c,si,v]=svds(C,1);

3: if max(c) < -min(c), ¢c = -c; end

4: plot(c);

=

Proof. The matrix ( — Ai(A] A;)*A]) is a rank-1 ma-
trix and the assertion is just a special case of Theorem
3.2forgg=s-1. O

In [17], see Algorithm 1, the Matlab code is provided
for an implementation of the complementarity theory
for the special case ah = s— 1. With the simplified
form (10) or (11) the implementation is possible without
referring to the SVD oD. In line 1 of Algorithm 1 the
matrix C whose columns are all multiples of the desired
complementary concentration profilés constructed by
a single command. In line 2 the vecwis extracted in
a numerically stable way. A possibly wrong signoaé
corrected in line 3 and finally the concentration profile
is plotted.

In the case of perturbed data, thatbDshas a rank
larger thars, the matrixD = (eygn, n) — A(AT = A)~1AT)
is no longer a rank-1 matrix. Then line 2 in Algo-
rithm should be substituted by a better suited way to
extract the vector, which generates the dominant part.
The dominant left-singular vector is the optimal choice,
see Algorithm 2.

3.1.1. Complementarity and projection operators

The complementarity theorem comprises a funda-
mental structure from linear algebra. The right-hand
factors in Equations (10) and (11) are orthogonal pro-
jection operators. This is explained in the following.

Remark 3.4.

1. In Equation(10)the right-hand factor

P=1-A(A]A) A



Al

<PA>#04=-------- <A > (1C1 + |C2 ) P

:

= Cl + C2

<PA1>:O <A1>

Figure 1: The geometry of the projecti¢h Left: P maps the column space A; > of the matrixA; to null space. It also projects the column
space ofA; to the orthogonal complemert A; >*. Right: The same projection applied from the right-hane s@D = ClAI + CZA{ maps the
column space ob to the desired column space®j.

is an orthogonal projection operator on the or- Theorem 3.5(Coupling theory) Let D together with
thogonal complement of the column space pEA  A; be given. Then the ith concentration profilefor
R™%_ For basic properties of orthogonal projec- i = 1,...,s is contained in thds — sp)-dimensional
tion operators see monographs on matrix algebra, affine subspace

e.g. Section 2.5.1 in [6] or Section 5.13 in [13]. .

See also Figure 1 for an illustration of the geomet- ¢ € DA(A; A)""8 + spaniZ} (15)

ric properties. with

Similarly, the matrix Q= | — C;(C]Cy)"*CT is an Z=D [l - Al(AIAl)’lAH .
orthogonal projection operator on the orthogonal

complement of the column space gf €RM. Therein ¢ is the ith standard basis vector (the ith col-

umn of the identity matrix) anspaniZ} is the(s — s)-

2. The fundamental functionality of the complemen- dimensional column space of Z.
tarity theory can be expressed with respect to the ~ Secondly, if @ with linearly independent columns is
projection operator notation as follows. Equation given, then fori= 1,..., s the ith spectrumais con-

(10)is rewritten as tained in the(s— s)-dimensional #ine subspace
DP=CATP aj € D'Cy(C{Cy) g + spanY} (16)
= [C1, CoJ[AL, AP with

- [Cn.C ]( AP )— [C1.C ]( (PA)T ) Y=DT|i-cyciey ey

bR AP B (PAY)T Proof. Right multiplication of (12) with théth standard
e 0 basis vectol ani € {1,..., s} yields theith concen-
= [CoCl{ ppy tration profile
=0+ Cy(PAY)".

¢ =Cie = DAL(A[A) e - CLAJA(ATA) e
This again shows that the column space of the ac- (17)

cessible matrix DP provides the column space of In this equationA; is unknown and thus; cannot be
the unknown matrix & The right subplot of Figure determined in a unique way. However, the- s)-

1 illustrates the impact of the projection operator dimensional column space @, according to (13) is
P in the sum of dyadic products ©C;A] + CoA] . equal to the column space of

3.2. The coupling theory Z=D [I - Al(AIAl)‘lAI].
Once again, we assunsgpure component spectra in
the columns ofA; t_o be given. We derive |mpl|cat|ons G e DAl(AIAl)_la + spanz).
on the concentration profiles of the remaining compo-
nents, i.eC,. The fo”owing theorem is the SVD-free A direct application of this first result to the tranSpOSEd
counterpart of Theorem 4.6 in [16]. decomposition (14) results in (16). O
6

Hence,



4. Analysis of cases of simultaneously known spec-
tra and concentration profiles

Up to now only those cases have been analyzed in
which either pure component spectra or pure component
concentration profiles are known. This theory can be

extended to cases of simultaneously known spectra and

concentration profiles.
As in Section 3 we consider a rarsimatrix D € R
and its dyadic-sum representation

>

i=1

T

D= ) cag (18)

with the column vectors; € R¥ anda; € R". We ana-
lyze in
- Section 4.1 the case of simultaneously gieeand
a,; (same index),
- Section 4.2 the case of givepanday, with differ-
entindexeg # m.

4.1. Simultaneously given paifs;, a;) and matrix de-
flation
If for the same component, i.e. the same indethe
concentration profile, is given together with the spec-
trumay, then thist-th component can completely be re-
moved from the system. Mathematically this is a sub-
traction of the rank-1 matrix,na}. Then

S
D-ca; = Z cay

i=1

i#l

is a “deflated” rank-¢ — 1) matrix. The pure compo-
nent factorization problem can then be considered for
the deflated matrix. This makes the problem more sim-
ple. This problem of splitting4d certain components

is well-known from the Rank Annihilation Factor Anal-
ysis (RAFA), see, e.g., [8, 1]. See also [4] on rank-1
downdates in the thematic frame of nonnegative matrix
factorizations.

However, in typical applications, anda, are only
known up to scaling (as spectra from the shelf or typ-
ical assumptions on the concentration profiles are not
given in absolute values). Instead @fwe consider a
collinear (nonzero) vectar; and instead o&, we con-
sider the collinear vect@;. We assume that onf and
a; are known in order to express the loss of the scaling
information. Then we consider the matrix

D=D-wGa'.

The problem is to determine the parameteso thatD
is a deflated rankg— 1) matrix.

Second singular value @ — wCia'

1.2¢

0.8

a2

0.6f

0.4f

0.2r

0.2 0.3 0.4
w

0.1 0.5

Figure 2: The second singular value Df- w(ﬁaTlT as a function of

w € [0,0.5]. Forw = 1/4 the second singular value is zero. Thus the
matrix has the rank 1.

This problem can easily be solved numerically by
computing thesth singular value of the matrip as a
function ofw. This is demonstrated numerically for the
example problem (1). We consider the first row of Equa-

tion (1) with
°-(2 2]

andc; = (4,0)" anda; = (2,0)". Hence

(2 2)l

D-wGa' =
4-8w 2
2 2 )

4 2
2 2

5 8 0

00

|

Only for w = 1/4 the matrixD is a rank-1 matrix and
the second singular value of this matrix equals O.

The numerical evaluation ef,(D — a)ﬁiﬁlT), where
o, denotes the second singular value of the
dependent matrix, is shown in Figure 2 fore [0, 0.5].
The clear minimum atv = 1/4 confirms the correct-
ness.

4.2. Independent pair&,, am) with £ £ m

In order to illustrate that for independent indexes
and m one cannot extract very much information, we
reconsider the rank-2 model problem

D-ab" =cd

from Section 2. We assume thBt b andc are the
known quantities. It is an interesting fact that even then
the factorization is not unique. Bérent factorizations
exist, which cannot be converted into each other by triv-
ial scaling or reordering operations. This is illustrated,



once again, by the example matixfrom (1).

Finally, a deepened understanding of the complemen-

tarity/coupling theory is supported by its interpretation

D= ( 4 2 ) _ ( 2 2 )( 10 ) in terms of orthogonal projection operators, see Remark
22 0 2/\11 3.4, due to the simple and evident geometry of a projec-
—_—— —— — .
S AT tion step.
(19)
(3 2\(10
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