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SUMMARY

This paper deals with the convergence analysis of various preconditioned iterations to compute
the smallest eigenvalue of a discretized self-adjoint and elliptic partial differential operator. For these
eigenproblems several preconditioned iterative solvers are known, but unfortunately, the convergence theory
for some of these solvers is not very well understood.

The aim is to show that preconditioned eigensolvers (like the preconditioned steepest descent iteration
(PSD) and the locally optimal preconditioned conjugate gradient method (LOPCG)) can be interpreted as
truncated approximate Krylov subspace iterations. In the limit of preconditioning with the exact inverse of
the system matrix (such preconditioning can be approximated by multiple steps of a preconditioned linear
solver) the iterations behave like Invert-Lanczos processes for which convergence estimates are derived.

key words: Elliptic eigenvalue problem; Preconditioner; Krylov space; Lanczos methods; Rayleigh

quotient.

1. Introduction

Eigenvalue problems for elliptic and self-adjoint partial differential operators can be solved
numerically by means of preconditioned (gradient type/approximate inverse iteration type)
eigensolvers; see Chap. 11 in [2] for a survey. Geometric multigrid preconditioning and, recently,
algebraic multigrid preconditioning [1, 4] have been proved useful in order to construct effective
preconditioned eigensolvers. At best, numerical approximations of a fixed number of the smallest
eigenvalues together with the eigenvectors can be computed with optimal complexity, i.e., with
total costs increasing linearly in the number of unknowns.

The discretization of such an operator eigenproblem leads to the generalized eigenvalue problem

Ax = λMx

for symmetric positive definite n-by-n matrices A and M . The associated Rayleigh quotient reads

ρ(x) =
(x, Ax)

(x, Mx)
.

Here we are interested in iterative methods which work with the gradient of the Rayleigh quotient

∇ρ(x) =
2

(x, Mx)
(Ax − ρ(x)Mx).

The negative gradient vector is the direction of correction underlying the (basic and ineffective)
gradient iteration

xj+1 = xj − ωj∇ρ(xj)
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where ωj is a scaling parameter. A significantly faster convergence can be gained by proper
preconditioning. D’yakonov [6] suggests to interpret preconditioning as a change of the underlying
geometry. Preconditioned gradient type iterations for the eigenproblem work with a preconditioned
gradient vector. The gradient ∇B is derived with respect to a Euclidean space whose inner product
is induced by a symmetric positive definite matrix B. It is assumed that B−1A is in some sense
close to the identity matrix and B−1 (sometimes B) is called a preconditioner. The B-gradient
reads

∇Bρ(x) = B−1∇ρ(x) =
2

(x, Mx)
B−1(Ax − ρ(x)Mx).

Proper spectral assumptions on the preconditioner B, see Section 1.3, guarantee that the iterates

xj+1 = xj − B−1(Axj − ρ(xj)Mxj) (1)

converge to an eigenvector and that the Rayleigh quotients ρ(xj) form a monotone decreasing
sequence converging to the corresponding eigenvalue. Iterations like (1) were first analyzed in 1958
by Samokish [32] and later on by several, mainly Russian, authors; see [2] for a survey.

To consider (1) as a preconditioned gradient type iteration is one, but perhaps not the optimal
point of view for analyzing its convergence. Sharp convergence estimates for (1) have been derived
by interpreting the method as a preconditioned variant of inverse iteration [18]. The key equation
underlying this interpretation is a reformulation of (1) in the form of an error propagation equation,
i.e.,

xj+1 = ρ(xj)A
−1Mxj + (I − B−1A)(xj − ρ(xj)A

−1Mxj). (2)

In (2) the new iterate xj+1 is represented as the result of scaled inverse iteration applied to xj ,
that is ρ(xj)A

−1Mxj , plus a perturbation (I − B−1A)(xj − ρ(xj)A
−1Mxj) whose magnitude is

controlled by the spectral radius of the error propagation matrix I −B−1A. A direct way to derive
(2) is to consider the linear system

Az = ρ(xj)Mxj (3)

for z. Then z = ρ(xj)A
−1Mxj results from applying (non-shifted) inverse iteration to xj . The

approximate (or preconditioned ) solution of (3) gives (2). If (3) is solved approximately by a
number of k steps of a preconditioned iteration, then the error propagation matrix I −B−1A in (2)
is substituted by its kth power. This shows how practically the preconditioning with preconditioners
close to A−1 can be realized.

1.1. Acceleration with the Rayleigh-Ritz procedure

The basic preconditioned iteration (1) can be significantly accelerated by means of the Rayleigh-Ritz
procedure. Such improved preconditioned eigensolvers are the well-known preconditioned steepest
descent (PSD) iteration [2] and the locally optimal preconditioned conjugate gradients (LOPCG)
scheme [2, 13].

For PSD the optimal step-length is

ωj = argmin
ω∈R

ρ(xj − ωB−1(Axj − ρ(xj)Mxj)),

which implicitly defines an optimally scaled preconditioner ωjB
−1. The next PSD-iterate is

xj+1 = xj − ωjB
−1(Axj − ρ(xj)Mxj). (4)

The step length ωj depends on xj , A, M and B−1, e.g., see Kantorovich [10]. An equivalent way
to compute the PSD-iterate xj+1 is to apply the Rayleigh-Ritz procedure to the 2D subspace

S(2)
j = span{xj, B

−1(Axj − ρ(xj)Mxj)}. (5)
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The Ritz vector corresponding to the smallest Ritz value is collinear to xj+1 in (4). The optimality
of the Rayleigh-Ritz approximation shows that estimates for (1) apply as upper estimates for PSD.
However, such trivial upper estimates are not sharp; see also [2, 8, 27, 32].

The locally optimal preconditioned conjugate gradient (LOPCG) method derives by enlarging the

PSD subspace S(2)
j by the preceding iterate xj−1 which yields

S(3)
j = span{xj−1, xj , B

−1(Axj − ρ(xj)Mxj)}. (6)

The new iterate xj+1 ∈ S(3)
j is a Ritz vector corresponding to the smallest Ritz value and minimizes

the Rayleigh quotient in S(3)
j , i.e.

xj+1 ∈ argmin ρ(S(3)
j ). (7)

The LOPCG method and its block variant (LOBPCG), which is used to compute several of the
smallest eigenvalues/vector approximations simultaneously, have been introduced by A. Knyazev.
He suggested the scheme in [13], see also [2, 14, 16]. The acronym LOPCG contains the term
“conjugate gradients”, which alludes to strong relations to the preconditioned conjugate gradient
iteration (PCG) for linear systems. Numerical experiments show a striking similarity of the
convergence behavior of PCG and LOPCG if a linear system (discretization of a boundary value
problem) and a matrix eigenvalue problem (discretization of an operator eigenvalue problem) are
considered for the same elliptic and self-adjoint partial differential operator. In such comparative
studies both for the linear system (PCG) and for the eigenvalue problem (LOPCG) the same
multigrid preconditioner can be applied.

Unfortunately, there is no sound theory available up to now providing sharp convergence
estimates for LOPCG (aside from trivial upper bounds as derived for the slower converging PSD
scheme or even for the scheme (1)). A partial answer is given in Sections 3 and 4, where upper and
lower estimates are derived for some types of best and poorest preconditioning.

1.2. Simplifications

Without restriction of generality, we always make use of a diagonalizing basis, i.e., we transform
the generalized eigenvalue problem (A, M) by means of an M -orthogonal basis of eigenvectors to
the standard eigenproblem for a symmetric and positive definite matrix, once again denoted by A.
All convergence estimates which are derived with respect to this diagonal problem apply without
any changes to the original problem. The diagonal eigenproblem is denoted by

Ax = λx

with

A = diag(λ1, . . . , λn), (8)

so that the eigenvector ei corresponding to λi is just the i-th column of the n-by-n identity matrix.
We assume 0 < λ1 < λ2 ≤ . . . ≤ λn. The smallest eigenvalue λ1 is assumed to be a simple eigenvalue
for the sake of a simple representation. Multiple eigenvalues do not add fundamental difficulties to
the problem, see Sec. 3 in [18].

In this paper we are mainly interested in the smallest eigenvalue λ1 and the corresponding
eigenvector e1. Implicitly all eigeniterations which use the Rayleigh-Ritz procedure provide further
eigenvalue approximations/Ritz vectors whose quality is not analyzed here.
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1.3. Preconditioning

In general, for any n-by-n symmetric positive definite matrix B−1 (the preconditioner) real
constants γ0, γ1 with 0 < γ0 ≤ γ1 exist so that

γ0(x, Bx) ≤ (x, Ax) ≤ γ1(x, Bx), ∀x ∈ R
n. (9)

The true importance of (9) is based on cases where A is a finite element discretization of an elliptic
and self-adjoint partial differential operator. Then the constants γ0, γ1, at best, do not depend on
the mesh parameter h for certain geometric multigrid or multilevel preconditioners B−1. In such
cases preconditioned eigensolvers can converge with a grid-independent convergence rate and can
provide a fixed number of eigenvector and eigenvalue approximations with computational costs
which increase linearly in the number of unknowns (case of optimal complexity).

The ratio γ1/γ0 is the spectral condition number of the preconditioned matrix B−1A. If B is
ideally scaled, then it can be assumed that

‖I − B−1A‖A ≤ γ, 0 ≤ γ < 1. (10)

Therein ‖ · ‖A denotes the A-operator norm which is induced by the A-based vector norm
‖x‖A = (x, Ax)1/2.

Inequality (9) follows from (10) with γ0 = 1−γ and γ1 = 1+γ. If (9) is assumed to hold, then the
optimally scaled preconditioner 2B/(γ0+γ1) in place of B satisfies (10) with γ = (γ1−γ0)/(γ1+γ0).

Next we always assume (10). This does not restrict the generality of the analysis, as the Rayleigh-
Ritz procedure in the following Algorithms 1 and 2 implicitly computes the optimal scaling constant.

1.4. Overview and aim

The core issue of this paper is to show that various preconditioned iterations for the solution of
positive definite (mesh) eigenproblems can be understood as approximate Invert-Lanczos processes.
Here the analysis is restricted to eigenproblems for positive definite matrices and, in the same
way, the preconditioning is confined to positive definite operators, cf. Section 1.3. This restriction
is made on account of our setting of an (adaptive) finite element discretization of a self-adjoint
partial differential operator. Positive definite preconditioning is realized by (one or more cycles of)
a multigrid solver. Indefinite preconditioners approximating in some sense (A − σM)−1 (M = I
on the assumptions of Sect. 1.2) with σ > λ1 are not within the scope of our method. Typically,
symmetric positive definite multigrid preconditioners can be realized with only linearly increasing
computational costs (optimal complexity) and, at best, convergence rates can be guaranteed which
do not depend on the mesh size. In contrast to this, the multigrid preconditioning of indefinite
problems is complicated and computationally very expensive.

The restriction to positive definite matrices distinguishes this work from the recent approach
by Stathopoulos [34], where the Generalized Davidson (GD) method and its variants have been
investigated. In that paper the optimality of various eigensolvers for the hermitian eigenproblem to
compute the smallest eigenvalue is considered. An important result is that the GD(mmin, mmax)+1
scheme appears to be even more effective than the LOBPCG solver. However, in the current paper
we pursue a different approach, i.e., we only consider positive definite preconditioners and get
somewhat different results. The focus of [34] is the construction and the analysis of optimal solvers
including the use of indefinite preconditioners. In such a setting the GD as well as the JDQMR
scheme [34] appear to be nearly optimal candidates; cf. [22–24] for recent results on the analysis of
GD-like schemes.

In contrast to this, the intention of this paper is not to construct optimal Invert-Lanczos
processes. Instead, preconditioned gradient type eigensolvers are studied in the limit of ”exact-
inverse preconditioning” (B = A) and the convergence of the resulting Invert-Lanczos processes is
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analyzed. According to that, the preconditioned eigensolvers (1), (4) and (7) can be interpreted as
approximate Krylov subspace iterations within a general hierarchy of preconditioned eigeniterations;
see Algorithm 1. Following this point of view we derive lower and upper convergence estimates
(corresponding to exact and poorest preconditioning).

Though the results of this paper have a prevailing theoretical character, it is clear how the
convergence behavior for B ≈ A can be approximated for any (multigrid) preconditioner satisfying
(10): If k steps of a preconditioned linear solver are applied to the linear system (3), then
(I−B−1A)k is the resulting error propagator in (2). This amounts to the action of a preconditioner
with the spectral radius of the error propagation matrix being γk. However, computational
experiments show that the additional computational costs for the improved solution of the linear
system cannot be justified by the potential acceleration of convergence.

The paper is structured as follows: In Section 2 a hierarchy of preconditioned eigensolvers is
introduced, which includes the eigensolvers (1), (4) and (7). The aim of Section 3 is to show that
these solvers in the limit B = A are certain Invert-Lanczos processes, and to give a convergence
analysis for these Lanczos type solvers. The convergence analysis in the general case B 6= A is still
an open problem for LOPCG and more complex schemes. A partial solution is given in Section
4, where bounds are derived on the fastest and slowest possible convergence corresponding to the
best and poorest possible preconditioning.

2. A hierarchy of preconditioned eigensolvers

In this section, a unifying framework is suggested for a class of preconditioned gradient type
eigensolvers. This framework includes the Preconditioned gradient iteration or Preconditioned
inverse iteration (PINVIT) by Eq. (1), the Preconditioned steepest descent scheme (PSD) by Eq. (4),
the Locally optimal preconditioned conjugate gradient iteration (LOPCG) by Eq. (7) and more
general schemes.

Common to all these eigensolvers is the correction direction

dj := B−1(Axj − ρ(xj)xj) =
(xj , xj)

2
∇Bρ(xj)

which is the preconditioned residual of the jth iterate xj or the B-gradient of the Rayleigh quotient
in xj . The new iterate xj+1 is formed from the preconditioned residual dj by a suboptimal linear
combination with xj (in the case of (1)), by an optimal linear combination with xj (in the case of
PSD) or by an optimal linear combination with xj and xj−1 (in the case of LOPCG). Optimality

means that xj+1 minimizes the Rayleigh quotient either with respect to the trial subspace S(2)
j given

by (5) or S(3)
j given by (6). In each of these cases the new iterate is the Ritz vector corresponding

to the smallest Ritz value.

The straightforward generalization is to apply the Rayleigh-Ritz procedure to the nested
subspaces

S(k)
j := span{xj−k+2, . . . , xj , B

−1(Axj − ρ(xj)Mxj)}, k ≥ 2, j ∈ N, (11)

which are formed by stepwise expansion in the previous iterates xj−1, . . . , xj−k+2. Hence S(2)
j ⊆

S(3)
j ⊆ . . . ⊆ S(k)

j . The smallest subspace S(2)
j is associated with PSD. The Courant-Fischer

principles guarantee a monotone decrease of the smallest attainable Ritz value in S(k)
j for increasing

k which shows the stabilizing effect of such subspace enlargements.

The application of the Rayleigh-Ritz procedure to S(k)
j defines a hierarchy of preconditioned

eigensolvers; see Algorithm 1. These can be called PINVIT(k), or briefly, the (k)-scheme since the
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k Eigensolver Subspace

k = 1 Preconditioned gradient iteration/inverse iteration [xj − dj ] ∈ R
n

k = 2 Preconditioned steepest descent [xj , dj ] ∈ R
n×2

k = 3 Locally optimal preconditioned conjugate gradient [xj−1, xj , dj ] ∈ R
n×3

k ≥ 4 Higher order schemes; S(k)
j ∈ R

n×k

practically of minor importance

Table I. (k)-scheme, Algorithm 1, for small k; dj is the preconditioned residual of xj.

schemes derive from the basic iteration (1) whose close relation to inverse iteration has already
been pointed out in Section 1.

Algorithm 1 (k)-scheme, PINVIT(k), k ≥ 1.

Required: Matrix-vector products as subroutines y 7→ Ay, z 7→ B−1z.
Input: x1 ∈ R

n \ {0} and k ≥ 1.

1. Initialization: If k ≥ 3, then compute an initial sequence of k − 2 vectors x2, . . . , xk−1

by executing single steps of the (m)-scheme with the initial sequence x1, . . . , xm−1 for
m = 2, . . . , k − 1.

2. Iteration:

If k = 1, then compute for j = 1, 2, . . .

x̃j+1 = xj − B−1(Axj − ρ(xj)xj), xj+1 = x̃j+1/‖x̃j+1‖.

If k ≥ 2, then for j = k − 1, k, k + 1, . . ., until (approximate) convergence do:
Compute

dj := B−1(Axj − ρ(xj)xj), (12)

apply the Rayleigh-Ritz procedure to the column space of

S
(k)
j := [xj−k+2 , . . . , xj , dj ] ∈ R

n×k (13)

and let xj+1 be a Ritz vector corresponding to the smallest Ritz value.

For k ≥ 2 the Rayleigh-Ritz procedure in Algorithm 1 guarantees that the Rayleigh quotients
of xj form a monotone decreasing sequence for any (even indefinite and/or non-symmetric)
preconditioner B−1. Thus the method is robust with respect to the choice of the preconditioner.
This includes that the scaling of the preconditioner (see also Section 1.3) is of no importance since

any (nonzero) multiple of dj does not change the Ritz approximations from S
(k)
j , k ≥ 2.

Table I summarizes the (k)-schemes for k = 1, 2, 3. Numerical experiments as given in [14] or more
explicitly in [16] give clear evidence of the minor practical relevance of the (k)-scheme for k ≥ 4.
In [16] multigrid preconditioning has been used for mesh eigenproblems; for k ≥ 4 no mentionable
speedup has been observed compared to LOPCG, but at the same time, the computational costs
increase in k. The practical experiences recommend the LOPCG scheme as the optimal choice
within the (k)-scheme hierarchy of preconditioned eigensolvers.

A subspace variant of the (k)-scheme for computing an eigenspace corresponding to several of the
smallest eigenvalues can be formulated in a self-suggesting way; see [19] for the explicit construction.
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3. The limit B = A and the Invert-Lanczos process

Here a convergence analysis is given for Algorithm 1 in the limit B = A. Then the preconditioned
eigensolvers can be interpreted as truncated/implicitly restarted Invert-Lanczos processes in the
Krylov subspaces

Kj(A
−1, x1) = span{x1, A

−1x1, . . . , A
−(j−1)x1}.

For very large matrices A these Krylov subspaces based on A−1 cannot be used in practice as the
solution of the linear systems in A is too expensive. However, the asymptotic convergence analysis
for γ → 0, see (10), describes the limit of working with the exact inverse B−1 = A−1. Studying
this limit is not an academic question, but within the scope of any practical preconditioner as the
action of a high-quality preconditioner with γ ≈ 0 can be emulated by applying several steps of a
(poorly) preconditioned iteration to solve the linear system (3). In the following we call γ = 0 the
limit of exact inverse preconditioning.

The substitution B = A in Algorithm 1 yields the INVIT(k) iteration, see Algorithm 2. For
k = 1 the resulting scheme is the basic non-shifted inverse iteration (INVIT). For k ≥ 2 inverse
iteration is combined with the Rayleigh-Ritz procedure.

Algorithm 2 INVIT(k) for k ∈ N

Input: A s.p.d., x1 ∈ R
n \ {0} and k ≥ 1

1. Initialization: If k ≥ 3, then compute an initial sequence of k − 2 vectors x2, . . . , xk−1

by executing single steps of INVIT(m) with the initial sequence x1, . . . , xm−1 for m =
2, . . . , k − 1.

2. Iteration:

If k = 1, then solve for j = 1, 2, . . .

Ax̃j+1 = xj , xj+1 = x̃j+1/‖x̃j+1‖.

If k ≥ 2, then for j = k − 1, k, k + 1, . . ., until (approximate) convergence do:
Solve the linear system

Auj = xj

and apply the Rayleigh-Ritz procedure to the column space of

T
(k)
j := [xj−k+2, . . . , xj , uj] ∈ R

n×k. (14)

Let xj+1 be a Ritz vector corresponding to the smallest Ritz value.

3.1. The Krylov subspace Kj(A
−1, x1)

Algorithm 2 works in the Krylov subspace

Kj(A
−1, x1) = {p(A−1)x1; p polynomial with deg p ≤ j − 1} (15)

as shown in Lemma 3.2. However, k is a truncation parameter which controls the computational
costs of the Rayleigh-Ritz projections. For j ≥ k the Ritz vector xj is in the (smaller) column space

of T
(k)
j being a subspace of Kj(A

−1, x1).

In this sense Algorithm 2 can be interpreted as an implicitly restarted Invert-Lanczos process (for
IR-Lanczos see Sec. 4.5 of [2] and for SI-Lanczos see [7],[29]). To make this clear, first note that for
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the Krylov subspaces Kj(A, x1) the stepwise extraction of Rayleigh-Ritz projections is well-known
as the Lanczos process, as expressed by, [26, Ch. 13],

Kj(A, x1) + Rayleigh-Ritz(A) ≡ Lanczos(A, x1, j). (16)

Therein, Lanczos(A, x1, j) denotes the jth step of the Lanczos process for A with the starting vector
x1. In general, one might express this also as

Krylov space + Orthogonalization ≡ Lanczos,

but here we prefer (16) because of its contrast with (17).
The crucial point is that Algorithm 2 works with the inverse matrix A−1. In the initialization

phase of INVIT(k) for j < k the column space of

T
(k)
j = [x1, . . . , xj , A

−1xj ] ∈ R
n×j+1

is the Krylov subspace Kj+1(A
−1, x1). Then the Rayleigh-Ritz procedure for A (and not for A−1)

is applied in order to extract the Rayleigh-Ritz approximations. This is an Invert-Lanczos process
with a modified starting vector as shown in the next lemma.

Lemma 3.1. The initialization phase of INVIT(k) for j < k is an Invert-Lanczos process with the
starting vector A1/2x1 which is expressed by

Kj(A
−1, x1) + Rayleigh-Ritz(A) ≡ Lanczos(A−1, A1/2x1, j). (17)

Proof. The Lanczos process for A−1 with the initial vector A1/2x1 works in the Krylov subspaces
Kj(A

−1, A1/2x1) with the Krylov matrices K̄j = (A1/2x1, A
−1/2x1, . . . , A

1−jA1/2x1) ∈ R
n×j .

Then Kj = A−1/2K̄j has the column space Kj(A
−1, x1). The Lanczos process for A−1 with

K̄j gets the Rayleigh-Ritz approximations from the matrix pencil (K̄T
j A−1K̄j , K̄

T
j K̄j). Since

(K̄T
j A−1K̄j , K̄

T
j K̄j) = (KT

j Kj , K
T
j AKj) the Ritz values generated by Lanczos(A−1, A1/2x1, j) are

the inverses of the Ritz values gained in Kj(A
−1, x1). 2

Algorithm 2 is a simple Invert-Lanczos and not a Shift-and-Invert (SI) Lanczos process (with a
nonzero shift). For appropriate shifts the SI-Lanczos process can converge much faster compared
to the non-shifted scheme, and SI-Lanczos allows us to compute eigenvalues in the interior of the
spectrum. A substantial drawback is that the indefinite linear systems are to be solved accurately.
The solution of these linear systems is usually realized by direct solvers, and restarting is the key to
an effective realization of SI-Lanczos [5, 37]. In our setting of very large eigenproblems which derive
from the discretization of partial differential operators we cannot treat indefinite systems effectively
because of the following reason: First, direct solvers cannot be applied to these large indefinite linear
systems because the computational costs. Second, iterative solvers can not be effectively applied
to these indefinite linear system since effective multigrid preconditioning of indefinite systems is
still a non-trivial problem (see, e.g., [21, 36, 38] and [3] for promising new developments). Hence the
preconditioning in Algorithm 1 is only applied to s.p.d. linear systems (3) and preconditioning of
indefinite systems is not within the scope of these schemes.

To prepare the further analysis note that the dimension of the Krylov subspace Kj(A
−1, x1) is

always less or equal to j. Its maximal dimension is the grade with respect to A−1 of x1 denoted
by grade(A−1, x1). In general, the grade of v with respect to Y ∈ R

n×n is the lowest degree of a
nonzero (minimal) polynomial p(t) = α0 + α1t + . . . + αµtµ, αµ 6= 0, so that p(Y )v = 0. If Y is a
regular matrix, then α0 6= 0 as otherwise the factorization p(t) = t(α1 + . . . +αµtµ−1) would imply
grade(Y, v) ≤ µ − 1. Further, for invertible Y the factorization

0 = (α0I + . . . + αµY µ)v = Y µ(αµI + . . . + α0Y
−µ)v
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shows that

grade(Y, v) = grade(Y −1, v). (18)

Thus, both Kj(A
−1, x1) and Kj(A, x1) have the maximal dimension grade(A, x1).

We always assume that the grade µ is sufficiently large (larger than k in Algorithm 2). A small
grade is not a misfortune as Kµ(A−1, x1) with µ = grade(A, x1) is an A-invariant subspace [31,
Prop. 6.2]. Random initial vectors x1 rarely have a small grade (µ < n) since the A-invariant linear
subspaces form a set of measure zero within the set of all linear subspaces of the R

n.

Lemma 3.2. The INVIT(k)-iterates xj satisfy

xj ∈ Kj(A
−1, x1), j ≥ 1.

If grade(A, x1) ≥ j, then any linear expansion of xj in x1, A
−1x1, . . . , A

−(j−1)x1 has a non-
vanishing coefficient in A−(j−1)x1 or the iteration terminates in xj−1 being an eigenvector.

Proof. If xj−1 ∈ Kj−1(A
−1, x1), then uj−1 = A−1xj−1 and for the Ritz vector xj it holds that

xj ∈ span(T
(k)
j−1) ⊆ Kj(A

−1, x1).

If xj−1 is not an eigenvector of A, then ρ(A−1xj−1) < ρ(xj−1) by the strictly monotone decrease
of the Rayleigh quotient due to inverse iteration. Then min ρ(Kj(A

−1, x1)) < min ρ(Kj−1(A
−1, x1))

so that xj must have a non-vanishing expansion coefficient in A1−jx1. 2

3.2. Convergence estimates

The following convergence estimates adapt the classical proofs of Kaniel [9], Paige [25] and Saad
[30] (KPS-technique) to the Lanczos process Lanczos(A−1, A1/2x1, j). Proofs are omitted if classical
results concerning A are applied to A−1. If Rayleigh-Ritz approximations for A are extracted from
Krylov subspaces generated by A−1, then slight modifications are required in the classical proofs.
The latter Rayleigh-Ritz approximations for A in a Krylov space generated by A−1 can also be
considered as harmonic Ritz extractions for A−1; c.f. Sec. 3.2 in [2] and the references therein. The
following estimates are upper bounds on the eigenvector/value approximations which are computed
in the initialization phase of INVIT(k) and, partially, for the iteration phase (see Section 3.3).

Lemma 3.3 provides a representation for the acute angle enclosed by the ith eigenvector ei of A
and the Krylov subspace Km(A−1, x1).

Lemma 3.3. If x ∈ R
n with xT ei 6= 0, then the acute angle ϕ(ei,Km(A−1, x)) enclosed by the

eigenvector ei and the Krylov subspace Km(A−1, x) is given by

tan ϕ(ei,Km(A−1, x)) = min
p∈Pm−1, p(λ−1

i )=1
‖p(A−1)zi‖ tan ϕ(ei, x) (19)

with

zi =

{

(I−Pi)x
‖(I−Pi)x‖ , if (I − Pi)x 6= 0,

0 else.

Therein Pm−1 is the set of polynomials with a degree less or equal to m− 1. Furthermore Pi is the
spectral projector on the ith eigenvector, i.e., Pix = x|iei.

The proof follows follows by replacing A by A−1 in Lemma 6.1 of [31].

Next the approximation properties of Km(A−1, x) are described and the error of the smallest
Ritz value is estimated.
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Theorem 3.4. The Krylov subspace Km(A−1, x) provides an eigenvector approximation for ei

whose quality is controlled in terms of the Chebyshev polynomial Tm−i in the following manner

tan ϕ(ei,Km(A−1, x)) ≤ κi

Tm−i(1 + 2δi)
tan ϕ(ei, x) (20)

with

κ1 = 1, κi =

∣

∣

∣

∣

∣

∣

i−1
∏

j=1

1/λj − 1/λn

1/λj − 1/λi

∣

∣

∣

∣

∣

∣

, δi =
1/λi − 1/λi+1

1/λi+1 − 1/λn
. (21)

For the smallest Ritz value θ
(m)
1 it holds

0 ≤ θ
(m)
1 − λ1 ≤ (λn − λ1)

(

tan ϕ(e1, x)

Tm−1(1 + 2δ1)

)2

. (22)

Proof. The proof follows Thm. 6.4 in [31], but here Rayleigh-Ritz approximations for A are taken
with respect to Km(A−1, x). First ‖p(A−1)zi‖ in (19) for i = 1 is estimated. The eigenvector
expansion z1 =

∑n
j=2 ηjej with ‖z1‖ = 1 yields

‖p(A−1)z1‖2 =

n
∑

j=2

(p(λ−1
j ))2η2

j ≤ max
j=2,...,n

(p(λ−1
j ))2 ≤ max

λ∈[1/λn,1/λ2]
|p(λ−1)|2.

The Chebyshev polynomial Tm−1 shifted to [1/λn, 1/λ2] provides the upper bound

min
p∈Pm−1, p(λ−1

1 )=1
‖p(A−1)z1‖ ≤ min

p∈Pm−1, p(λ−1
1 )=1

max
λ∈[1/λn,1/λ2]

|p(λ−1)|

≤
(

Tm−1(1 + 2
1/λ1 − 1/λ2

1/λ2 − 1/λn
)

)−1

.

(23)

In the general case i 6= 1 the minimization can be restricted to all polynomials having the form

p(λ) =
(1/λ1 − λ) · · · (1/λi−1 − λ)

(1/λ1 − 1/λi) · · · (1/λi−1 − 1/λi)
q(λ)

with deg q(λ) ≤ m− i and q(λ−1
i ) = 1. Bounding this with the Chebyshev polynomial Tm−i yields

(21). From

θ
(m)
1 − λ1 = min

06=p∈Pm−1

((A − λ1I)p(A−1)x, p(A−1)x)

(p(A−1)x, p(A−1)x)

an upper estimate using (23) yields (22). 2

3.3. Explicit estimates for INVIT(2)

Theorem 3.4 provides an explicit estimate for the convergence of INVIT(2) toward e1 (the
eigenvector corresponding to λ1). For m = 2 and i = 1 it holds

tan ϕ(e1, span{A−1x, x}) ≤ 1

T1(1 + 2
λ−1

1 − λ−1
2

λ−1
2 − λ−1

n

)

tan ϕ(e1, x).

The convergence factor ϑL = 1/T1(1 + 2δ1) is

ϑL =
λ1(λn − λ2)

λ2(λn − λ1) + λn(λ2 − λ1)
. (24)
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Thus ϑL is smaller than the convergence factor

ϑ =
λ1(λn − λ2)

λ2(λn − λ1)

which has been derived in [19, Thm. 6.3] for the convergence of the Ritz vector corresponding to
the smallest Ritz value in span{A−1x, x}. There ϑ has been gained by the adaption of convergence
estimates on steepest ascent/descent in span{Ax, x} to the Krylov subspace span{A−1x, x} by
using mini-dimensional proof techniques. Such convergence estimates on steepest ascent/descent in
span{Ax, x} have a long history; see Kantorovich [10, 11] and Hestenes and Karush [8] for classical
asymptotic estimates and for non-asymptotic estimates [12, 17, 28, 39].

For mesh eigenproblems with the discretization parameter h → 0 and so λn → ∞ one obtains

lim
λn→∞

ϑL =
λ1

λ2 + (λ2 − λ1)
<

λ1

λ2
= lim

λn→∞
ϑ

confirming mesh-independent convergence for both estimates.

The Ritz value estimate (22), once again for m = 2, i = 1 and ϑL = 1/T1(1 + 2δ1), with the
convergence factor (λn − λ1)(ϑL)2 tan2 ϕ(e1, x) is unsatisfying in a PDE context (cf. Section 3.4).
Grid-independent estimates for m = 1, 2 are well known. For instance Theorem 6.3 in [19] shows

for the smallest Ritz value θ
(2)
1 generated by the (2)-scheme that

∆1,2(θ
(2)
1 ))

∆1,2(ρ(x))
≤

(

1 − ξ

1 + ξ

)2

with

ξ =
λ2 − λ1

λ2 − λ1λ2

λn

and ∆1,2(κ) =
κ − λ1

λ2 − κ
.

3.4. Lanczos(A) vs. Lanczos(A−1) in a PDE context

The Lanczos process simultaneously approximates both the largest and the smallest eigenvalues
though the rate of convergence to the smallest eigenvalues may be slower. In the case of PDE
eigenproblems we are typically interested in some of the smallest eigenvalues and, sometimes, in
eigenvalues which are in the interior lower part of the spectrum. The largest eigenvalues of the
discretized problem are only poor approximations of the underlying continuous problem.

Next let us compare the convergence behavior of the Lanczos(A) and the Lanczos(A−1) processes.
The decisive term controlling convergence in the classical KPS proofs reads (i.e. the pendant of
(23))

min
p∈Pm−1

max
j=2,...,n

(

p(λj)

p(λ1)

)2

≤ 1

(Tm−1(λ1; λ2, λn))
2

with the shifted Chebyshev polynomial Tm−1(λ; a, b) = Tm−1((2λ − a − b)/(b − a)). It can be
bounded as follows

1

(Tm−1(λ1; λ2, λn))
2 < 4

(

e−4
√

τ
)m−1

(25)

with

τ =
λ2 − λ1

λn − λ1
.

The quantity τ is called the gap ratio of λ2 with respect to λ1, λn, see [35, Sec. 4], [33].
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For the Lanczos(A−1) process one obtains from (23) instead of (25)

1
(

Tm−1(
1
λ1

; 1
λn

, 1
λ2

)
)2 < 4

(

e−4
√

τ̃
)m−1

(26)

with the gap ratio

τ̃ =
1

λ1
− 1

λ2

1
λ1

− 1
λn

.

It is instructive to study the gap ratios for mesh eigenproblems assuming the typical behavior
λn = O(h−2) with the discretization parameter h. First the Lanczos(A) process shows a grid-
dependent convergence rate with

lim
λn→∞

τ = 0 and τ = O(h2).

In contrast to this Lanczos(A−1) owns a grid-independent upper estimate on the convergence rate
(the dependence on λn vanishes) as

lim
λn→∞

τ̃ = 1 − λ1

λ2
and τ̃ = 1 −O(1).

This very different behavior provides a justification for the preconditioning as used in Algorithm 1.
There the asymptotic behavior for B → A is that of the Lanczos(A−1) process and grid-independent
convergence is attained (not only in the limit B = A).

3.5. Numerical experiments

The test problem is n = 106 dimensional with the eigenvalues λl,m = l2 +m2, l, m = 1, 2, . . ., of the
(continuous) Laplacian −∆ on [0, π]2. In Figure 1 the convergence history both for the eigenvector
and eigenvalue approximations is shown for INVIT(k), k = 1, . . . , 6. Moreover, the approximations
from the full Krylov subspace Kj(A

−1, x) are plotted versus the iteration index j. The error of
the eigenvector approximations is displayed as tanϕ(e1, V ) where V is the current approximating
subspace. Further the eigenvalue error θ1 − λ1 is plotted where θ1 in each step is the smallest
Ritz value. For k ≥ 3, at least for k ≥ 4, the truncated Krylov subspace iteration INVIT(k)
shows a convergence which is very close to the optimal convergence in the full Krylov subspace
scheme in Kj(A

−1, x). The slope of the KPS estimates (semilogarithmic plot) is determined by
the Chebyshev polynomial, see (26). The slope gained analytically is close to the findings by the
numerical experiments. However, the analytical bounds are not very sharp; for the eigenvalue
approximations this is an effect of the disturbing factor λn − λ1 in (22).

For the eigenvector approximations averaged convergence factors concerning the convergence
of tanϕ(e1,Km(A−1, x)) have been computed for 2000 random initial vectors (averaged stepwise
convergence factors between iterations 3 up to 8). The factors are as follows:

Method INVIT(1) INVIT(2) INVIT(3) INVIT(4) INVIT(5) INVIT(6) KPS
Conv. factor 0.3875 0.1712 0.1162 0.0861 0.0828 0.0825 0.1270

.

For INVIT(k), k ≥ 4, no significant acceleration can be observed. Numerically the limit
convergence factor (averaged factor for the same 2000 random initial vectors) of the non-truncated
iteration, i.e. all previous iterates form the subspace to which the Rayleigh-Ritz procedure is
applied) is about 0.081.
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Figure 1. Eigenvector and eigenvalue approximations in Kj(A
−1, x) and INVIT(k) approximations.

4. Upper and lower convergence estimates for poor preconditioners

The limit B = A of exact inverse preconditioning has been treated in the last section. However,
optimality of a preconditioner for a linear system does not imply optimality for the eigenvalue
problem. For linear systems Ax = b exact inverse preconditioning is optimal. It yields the solution
x = A−1b within a single step if the preconditioning is applied to the (sometimes so-called) simple
iteration

xj+1 = xj + B−1(b − Axj) |B=A= A−1b.

Contrastingly, for the eigenvalue problem the inverse matrix A−1 is a fairly good, but not the best
possible preconditioner. To see this, substitute B = A (and M = I) in (1) which amounts to inverse
iteration, i.e.,

xj+1 = ρ(xj)A
−1xj .

However, preconditioners B 6= A exist, which give much more accurate eigenvalue/eigenvector
approximations compared to exact inverse preconditioning. See [20] for a systematic analysis.

To summarize, preconditioners which are “poor” for the solution of linear systems can potentially
be very suitable for the eigenvalue problem. Those preconditioners for which the control parameter
γ by (10) is close to 1 are considered as poor (linear systems) preconditioners as they represent poor
approximations to the inverse A−1. However, these preconditioners have the potential of leading
to rapid (even one-step) convergence for an iterative eigensolver. This behavior is summarized in
Table II.

For the most simple (1)-scheme poorest convergence is estimated by (Thm. 1 in [15])

ρ(xj+1) − λk

λk+1 − ρ(xj+1)
≤ (q(γ, λk, λk+1))

2 ρ(xj) − λk

λk+1 − ρ(xj)

with the convergence factor

q(γ, λk, λk+1) = γ + (1 − γ)
λk

λk+1
. (27)

The limit γ → 0 with q(0, λk, λk+1) = λk/λk+1 (being the rate of convergence of non-shifted inverse
iteration) is the topic of Section 3.
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Linear system Eigenproblem
γ = 0 One-step convergence Linear convergence

(Inverse Iteration)
γ → 1 Stationarity 1. One-step convergence

2. Stationarity

Table II. Extremal convergence for preconditioners B with ‖I − B−1A‖A ≤ γ for linear systems and
eigenproblems.

Taking the limit γ → 1 in (27) yields

lim
γ→1

q(γ, λk, λk+1) = 1

which suggests that stationarity can occur as a case of poorest convergence. And in fact, for each
x ∈ R

n \ {0} and any sequence (γi) with γi → 1 a sequence of symmetric and positive definite
preconditioners (Bi), ‖I − B−1

i A‖A ≤ γi, exists so that these preconditioners generate a sequence
of iterates

xi := x − B−1
i (Ax − ρ(x)x) = (I − B−1

i (A − ρ(x)I))x

which converges to x. Thus stationarity can be attained in the limit γ → 1. In the following the
analysis of the fastest and slowest possible convergence in the limit γ → 1 is extended to the general
(k)-scheme for k > 1.

4.1. The set of admissible preconditioners

For γ ∈ [0, 1) let

Bγ = {B−1 ∈ R
n×n; B symmetric positive definite, ‖I − B−1A‖A ≤ γ},

be the set of admissible preconditioners containing all symmetric and positive definite
preconditioners which satisfy the quality constraint (10). For analytical purposes it can be more
convenient to work with the whole set of admissible preconditioners instead of using the constraint
(10) only:

Lemma 4.1. Let x ∈ R
n, x 6= 0, and let

Bγ(x) := {ρ(x)A−1x + y; y ∈ R
n, ‖y‖A ≤ γ‖(I − ρ(x)A−1)x‖A}, (28)

which is a ball with respect to the norm induced by A with the center x̄ = ρ(x)A−1x. Then the
mapping

Ex : Bγ → Bγ(x) : B−1 7→ x′ = x − B−1(Ax − ρ(x)x)

is a surjection.

The proof is given by Lemma 2.2 and Lemma 2.3 in [18].
The size of Bγ is controlled by the parameter γ ∈ [0, 1). The smallest set is B0 = {A−1}. For

0 < γ < 1 the compact ball Bγ ⊂ R
n×n contains preconditioners allowing either faster or slower

convergence of the eigenvalue solver compared to γ = 0. The limit set B1 is not a closed set, as for
the sequence (1

i A
−1)i∈N

‖I − 1

i
A−1A‖A = 1 − 1

i
< 1, i ∈ N,

but limi→∞(1/i)A−1 is the singular null matrix. Therefore extremal convergence for γ → 1 cannot
be analyzed by means of the limit set B1. Instead we work with the interior of B1.
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4.2. Fastest possible convergence for γ → 1

Here the question is as follows: does the set Bγ of admissible preconditioners contain preconditioners
which force the (k)-scheme to converge in a single step to an eigenvector of A?

For the (1)-scheme the situation has been analyzed in [20], Lemma 3. For the (k)-schemes, k ≥ 2

the Rayleigh-Ritz procedure guarantees one-step convergence if e1 ∈ S(k)
j ; see (11). Lemma 4.2

shows that one-step convergence to the eigenpair (e1, λ1) can occur if γ is sufficiently large.

Lemma 4.2. Let x ∈ R
n with ‖x‖ = 1 be an iterate of the (k)-scheme, k ≥ 2. If (e1, x) 6= 0, then

for all γ ≥ γ̃ with

γ̃ =
min(α,β)∈R2 ‖αe1 + βx − ρ(x)A−1x‖A

‖x − ρ(x)A−1x‖A
< 1 (29)

the set Bγ contains a preconditioner which results in one-step convergence to the eigenvector e1.
The minimum in (29) is attained in

α =

(

ρ(x)
λ1

− 1
)

(e1, x)

1 − λ1

ρ(x) (e1, x)2
, β =

1 − (e1, x)2

1 − λ1

ρ(x) (e1, x)2
. (30)

Proof. If αe1 + βx is contained in the ball Bγ(x) given by (28), then a preconditioner B−1

exists so that (1 − β)x − B−1(Ax − ρ(x)x) = αe1. Hence the Rayleigh-Ritz procedure applied

to S(k)
j ⊇ {x, B−1(Ax − ρ(x)x)}, for k ≥ 2, yields the eigenpair (e1, λ1).

The distance of αe1 +βx to the center ρ(x)A−1x of Bγ(x) is R(α, β) := ‖αe1+βx−ρ(x)A−1x‖A.
Since (e1, x) 6= 0, we have

min
(α,β)∈R2

‖αe1 + βx − ρ(x)A−1x‖A < ‖x − ρ(x)A−1x‖A

so that γ̃, which is the ratio of this smallest distance and the (maximal) radius ‖x − ρ(x)A−1x‖A

of B1(x), is less than 1.
A vanishing gradient ∇(α,β)R(α, β) results in a linear system for α, β

αλ1 + (βλ1 − ρ(x))(e1, x) = 0, βρ(x) + αλ1(e1, x) − ρ(x) = 0.

Its solution (30) minimizes R(α, β). 2

The critical quantity γ̃ is not at all close to 1. For the test problem from Section 3.5 the averaged
value of γ̃ for 103 random vectors x with ρ(x) < λ1,2 = 5 is about 0.19 (for random vectors x with
ρ(x) < λ1,3 = 10 the mean value of γ̃ is about 0.24).

4.3. Poorest convergence for γ → 1

Next we show that an initial sequence for Algorithm 1 can be constructed (in the case of flexible
preconditioning, i.e., the preconditioner may change from step to step) in a way that the Rayleigh-
Ritz procedure cannot realize a decrease of the Rayleigh quotient in the limit γ → 1.

Theorem 4.3. Let ρ ∈ R with λ1 < ρ ≤ λn−k+1. Then a vector x ∈ R
n with ρ = ρ(x) can

be constructed so that for sequences of preconditioners from Bγ with γ → 1 the (k)-scheme with
flexible preconditioning may attain stationarity in the limit γ → 1. If k ≥ 3, then the initial sequence

spanning S(k)
j is taken from iterates of the basic (1)-scheme applied to x.

Proof. We first assume ρ ∈ (λ1, λ2) and consider x = (ξ1, ξ2, 0, . . . , 0)T ∈ R
n with

ξ1 =

(

λ2 − ρ

λ2 − λ1

)1/2

, ξ2 =

(

ρ − λ1

λ2 − λ1

)1/2

.
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Then ‖x‖ = 1 and (x, Ax) = ρ. Next let k = 2. For ǫ ∈ [0, 2(1 − ρ/λ2)/3) we define

x′ := (ξ1, (1 − 2ǫ)ξ2,−
(

λ2

λ3
ǫ(2(1 − ρ

λ2
) − ǫ)

)1/2

ξ2, 0, . . . , 0)T . (31)

This shows that

‖x − ρA−1x‖2
A − ‖x′ − ρA−1x‖2

A = 2(x′, x)ρ − ρ − ‖x′‖2
A = ǫ

(ρ − λ1)(2(λ2 − ρ) − 3ǫλ2)

λ2 − λ1
> 0.

Thus x′ ∈ ∪γ∈[0,1)Bγ(x). Hence Lemma 4.1 guarantees the existence of a preconditioner B̄−1 in
the interior of B1 so that x′ = x − B̄−1(Ax − ρ(x)x).

Next the Rayleigh-Ritz procedure is applied to the two-dimensional subspace S(2) spanned by x
and x′ − x. The direction of correction

x′ − x = (0,−2ǫξ2,−
(

λ2

λ3
ǫ(2(1 − ρ

λ2
) − ǫ)

)1/2

ξ2, 0, . . . , 0)T

is collinear to

d(ǫ) = (0, 2
√

ǫξ2,

(

λ2

λ3
(2(1 − ρ

λ2
) − ǫ)

)1/2

ξ2, 0, . . . , 0)T

and its limit is

lim
ǫ→0

d(ǫ) = d(0) = Ce3 C 6= 0

with e3 being the eigenvector corresponding to λ3, see (8). As (d(0), x) = 0 the Rayleigh-Ritz
projections V T AV , V T V with V = [x, d(0)] are diagonal matrices. The Ritz values are ρ(x) and
λ3 > ρ(x). Continuous dependence of the Rayleigh-Ritz approximations (in the case of simple Ritz
values) on ǫ proves the stationarity for ǫ → 0 (or γ → 1).

The case k > 2 is treated similarly. Starting from x = (ξ1, ξ2, 0, . . . , 0)T ∈ R
n one first takes

x(1) := x′ = (ξ1, ξ2[ǫ
(1)], ξ3[ǫ

(1)], 0, . . . , 0)T

where the components ξ2[ǫ
(1)], ξ3[ǫ

(1)] are the second and third component in (31). If ǫ(2) is
sufficiently small, then the component construction underlying (31) can be applied to the third
and fourth component resulting in

x(2) = (ξ1, ξ2[ǫ
(1)], ξ3[ǫ

(1), ǫ(2)], ξ4[ǫ
(1), ǫ(2)], 0, . . . , 0)T

are computed by a similar construction as used in (31). Then x(2) ∈ ∪γ∈[0,1)Bγ(x) and

‖x(2) − ρA−1x‖2
A < ‖x(1) − ρA−1x‖2

A.

One can extend this construction up to ξk[ǫ(1), . . . , ǫ(k−1)]. All vectors x, x(1), . . . , x(k−1) are in the
interior of B1(x) and can be constructed by consecutive steps of the (1)-scheme using variable
preconditioners. Taking the limits ǫ(k−1) → 0, . . . , ǫ(1) → 0 shows that the limit subspace is

span{x, e3, . . . , ek+1}.

The Rayleigh-Ritz procedure provides Ritz values converging to ρ, λ3, . . . , λk+1, which proves
stationarity.

If λj ≤ ρ < λj+1 ≤ λn−k+1, then the starting point is a vector x = (0, . . . , 0, ξj, ξj+1, 0, . . . , 0)T

with ρ(x) = ρ. Because of λj+1 ≤ λn−k+1 at least k − 1 zero components ξj+2, . . . , ξn are available
to pursue the construction outlined above. 2
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Remark 4.4. The assumption ρ(x) ≤ λn−k+1 made in Thm. 4.3 cannot be skipped as otherwise
the Courant-Fischer principle would enforce non-stationarity. To see this, assume ρ(x) > λn−k+1

and a k-dimensional iteration subspace S(k)
k−1. Then

min
z∈S(k)

k−1\{0}
ρ(x) ≤ max

V, dim V =k
min

x∈V \{0}
ρ(x) = λn−k+1

where the maximum is taken over all k-dimensional subspaces.

5. Conclusion

A link has been presented from the (partially not very well understood) preconditioned gradient
type eigensolvers to the (well understood) Invert-Lanczos process. The joining element is
the limit of preconditioning with the exact inverse of the system matrix. The analysis of
the Invert-Lanczos process is instructive in order to understand the convergence behavior of
such practically important preconditioned eigensolvers like the Locally Optimal Preconditioned
Conjugate Gradients (LOPCG) scheme. The application of the inverse system matrix for
preconditioning purposes is usually impossible and/or too expensive. However, the action of
accurate preconditioners can be approximated by multiple steps of a preconditioned linear solver
which, for example, can be based on a simple V-cycle in the context of a mesh discretizations of a
partial differential operator.

By using standard techniques for the analysis of the Lanczos process (estimates using Chebyshev
polynomials) upper and lower convergence estimates are accessible for this limit case. It has been
shown that standard assumptions on the quality of the preconditioner, i.e. assumptions which
are made for linear systems solvers, allow, on the one hand, extremely fast convergence of the
preconditioned eigensolver and, on the other hand, very poor convergence up to stationarity.
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Universität Tübingen, Germany, 2001.

20. K. Neymeyr. A geometric theory for preconditioned inverse iteration IV: On the fastest convergence cases.
Linear Algebra Appl., 415(1):114–139, 2006.

21. M.G. Neytcheva and P.S. Vassilevski. Preconditioning of indefinite and almost singular finite element elliptic
equations. SIAM J. Sci. Comput., 19(5):1471–1485, 1998.

22. Y. Notay. Is jacobi–davidson faster than davidson? SIAM Journal on Matrix Analysis and Applications,
26(2):522–543, 2004.

23. E. Ovtchinnikov. Convergence estimates for the generalized davidson method for symmetric eigenvalue problems
i: The preconditioning aspect. SIAM Journal on Numerical Analysis, 41(1):258–271, 2003.

24. E. Ovtchinnikov. Convergence estimates for the generalized davidson method for symmetric eigenvalue problems
ii: The subspace acceleration. SIAM Journal on Numerical Analysis, 41(1):272–286, 2003.

25. C.C. Paige. The computation of eigenvalues and eigenvectors of very large sparse matrices. PhD thesis, London
University, Institute of computer science, 1971.

26. B.N. Parlett. The symmetric eigenvalue problem. Prentice Hall, Englewood Cliffs New Jersey, 1980.
27. W.V. Petryshyn. On the eigenvalue problem Tu − λSu = 0 with unbounded and non-symmetric operators T

and S. Philos. Trans. Roy. Soc. Math. Phys. Sci., 262:413–458, 1968.
28. V.G. Prikazchikov. Strict estimates of the rate of convergence of an iterative method of computing eigenvalues.

USSR J. Comput. Math. and Math. Physics, 15:235–239, 1975.
29. Axel Ruhe. Rational Krylov sequence methods for eigenvalue computation. Linear Algebra Appl., 58:391–405,

1984.
30. Y. Saad. On the rates of convergence of the Lanczos and the block-Lanczos methods. SIAM J. Numer. Anal.,

17(5):687–706, 1980.
31. Y. Saad. Numerical methods for large eigenvalue problems. Manchester University Press, Manchester, 1992.
32. B.A. Samokish. The steepest descent method for an eigenvalue problem with semi-bounded operators.

Izv. Vyssh. Uchebn. Zaved. Mat., 5:105–114, 1958. (In Russian).
33. G.L.G. Sleijpen and A. van der Sluis. Further results on the convergence behavior of conjugate-gradients and

Ritz values. Linear Algebra Appl., 246:233–278, 1996.
34. A. Stathopoulos. Nearly optimal preconditioned methods for hermitian eigenproblems under limited memory.

part i: Seeking one eigenvalue. SIAM Journal on Scientific Computing, 29(2):481–514, 2007.
35. A. van der Sluis. The convergence behaviour of conjugate gradients and Ritz values in various circumstances.

Beauwens, R. (ed.) et al., Iterative methods in linear algebra. Proceedings of the IMACS international
symposium, Brussels, Belgium, 2-4 April, 1991. Amsterdam: North-Holland. 49-66 (1992)., 1992.

36. P.S. Vassilevski. Preconditioning nonsymmetric and indefinite finite element matrices. Numer. Linear Algebra
Appl., 1:59–76, 1992.

37. K. Wu and H. Simon. Thick-restart Lanczos method for large symmetric eigenvalue problems. SIAM J. Matrix
Anal. Appl., 22(2):602–616, 2000.

38. H. Yserentant. Preconditioning indefinite discretization matrices. Numer. Math., 54(6):719–734, 1989.
39. P. F. Zhuk and L. N. Bondarenko. Sharp estimates for the rate of convergence of the s-step method of steepest

descent in eigenvalue problems. Ukräın. Mat. Zh., 49(12):1694–1699, 1997.


