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MULTILEVEL METHOD FOR MIXED EIGENPROBLEMS

R. HIPTMAIR* AND K. NEYMEYR'

Abstract. For a Lipschitz-polyhedron © C R? we consider eigenvalue problems curl o curlu =
Au and grad adivu = Au, A > 0, set in H(curl; Q) and H(div; ). They are discretized by means
of the conforming finite elements introduced by Nédélec. The preconditioned inverse iteration in
its subspace variant is adapted to these problems. A standard multigrid scheme serves as precon-
ditioner. The main challenge arises from the large kernels of the operators curl and div. However,
thanks to the choice of finite element spaces these kernels have a direct representation through the
gradients/rotations of discrete potentials. This makes it possible to use a multigrid iteration in poten-
tial space to obtain approximate projections onto the orthogonal complements of the kernels. There
is ample evidence that this will lead to an asymptotically optimal method. Numerical experiments
confirm the excellent performance of the method even on very fine grids.

Key words. Mixed eigenvalue problems, edge elements, Raviart-Thomas elements, mixed finite
elements, preconditioned inverse iteration, multigrid methods
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1. Introduction. Let 2 C R® be a Lipschitz-polyhedron [33], whose boundary
is partitioned into I'p and I'y. Our focus is on the vector-valued eigenvalue problems

curlacurlu = Au in Q| uxn = 0 onlp, (1.1)
diva = 0 in Q| acurluxn = 0 only, '
and
gradadiva = JAu in Q , u-n = 0 onlp, (1.2)
curlu = 0 in Q , adivau-n = 0 only. '

Here, the vectorfields u is an eigenfunction, A > 0 stands for the eigenvalue and
a € L>*(Q) is a uniformly positive coefficient.

We seek approximations of a few of the smallest non-zero eigenvalues and cor-
responding eigenfunctions. This problem is of considerable relevance in several areas
of scientific computing. For instance, (1.1) describes so-called electromagnetic res-
onators, if u is regarded as the (scaled) electric field. We refer to [1, Sect. 1] for more
detailed explanations. When we want to determine a couple of the lowest resonant
modes for a given cavity (2, we encounter exactly the eigenvalue problem (1.1). Be-
yond the calculation of resonant modes, approximations of the lowest eigenmodes are
the basis for modal approaches: A set of dominant modes is computed once, and the
fields at other frequencies are then approximated by a superposition of these modes.
This can be used to extract lumped parameters for electromagnetic devices in the
frequency domain. A completely different application emerges in the study of coupled
solid-fluid systems. When one tries to find their eigenmodes, the eigenvalue problem
(1.2) pops up [7].

Of course, there is a close relationship between (1.1) and (1.2) and eigenvalue prob-
lems for second order elliptic differential operators. For the latter case, which amounts
to a generalized eigenvalue problem for large sparse symmetric positive definite ma-
trices, a huge body of work about numerical solution methods has been compiled over
the years [4, 5,20, 35,44, 46]. The driving force was the sheer size of the eigenproblems
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arising from discretized PDEs. Millions of unknowns rule out the use of methods that
rely on dense matrices or factorizations. In addition, it is highly desirable to avoid a
deterioration of the convergence of the iterative schemes for large problems. As far
as the solution of discretized elliptic boundary value problems is concerned, multigrid
methods meet this requirement. It turned out that the multigrid idea can be grafted
onto solution methods for discrete elliptic eigenproblems in several ways resulting in
eigensolvers with optimal or quasi-optimal computational complexity. For instance,
Hackbusch [35,36] applies multigrid principles directly to the nonlinear eigenvalue
problem to compute eigenvalue/vector approximations on the final grid by combining
a multigrid iteration and nested iteration. Let us also mention the multigrid minimiza-
tion technique of Mandel and McCormick [46], its extension by Deuflhard et al. [25],
as well as the class of methods which apply multigrid as a linear solver. Essentially,
the idea underlying this last class is to linearize the discrete eigenvalue problem by
methods like inverse iteration [54] and to solve the associated system of linear equa-
tions approximately by multigrid [5]. Representing the application of the multigrid
procedure by a multigrid preconditioner and taking inverse iteration (without a shift)
as an outer iteration defines preconditioned inverse iteration (PINVIT). Recently, a
new convergence theory for preconditioned inverse iteration has been devised provid-
ing sharp convergence estimates and substantial insight into the underlying geometry
[52,53].

The scheme of preconditioned inverse iteration is also known in the literature as
preconditioned gradient method for the eigenvalue problem. The idea behind this term
is to compute a sequence of iterates with decreasing Rayleigh quotients by successively
correcting the iterates in the direction of the negative preconditioned gradient of the
Rayleigh quotient. By doing so, one expects that the sequence of iterates converges to
an eigenvector while the Rayleigh quotients tend to the smallest eigenvalue. Precondi-
tioned gradient methods have been studied predominantly by Russian authors, see for
instance Samokish [56], Petryshyn [55], Godunov et al. [32], D’yakonov et al. [26, 28],
Knyazev [43,44] as well as the monograph of D’yakonov [27] including an extensive
bibliography. Knyazev in [44] gives a survey on preconditioned eigensolvers.

Preconditioned inverse iteration has been generalized to a subspace algorithm for
computing some of the smallest eigenvalues together with the eigenvectors by emulat-
ing the subspace variant of inverse iteration [54]. Once again, the associated matrix
equation is solved approximately. After each subspace correction step the Rayleigh—
Ritz procedure is applied. It provides the Ritz values and Ritz vectors spanning the
approximating subspace. Convergence estimates have been presented in [18,50]. In
sum, the resulting preconditioned eigensolver inherits the typical asymptotic multigrid
efficiency from the multigrid procedure used to solve the associated linear equations.

On a smaller scale, researchers have also investigated ways to compute solutions
to (1.1) and (1.2) [1, 58]. It is obvious that the large kernels of the differential opera-
tors curl and div pose the main challenge: A straightforward application of iterative
techniques developed for the symmetric positive definite case is doomed, because these
methods single out the smallest eigenvalues and will invariable churn out kernel vec-
tors in the end. However, as A > 0 is requested, these are not the desired answer. We
are left with the task of steering the iterations away from the kernels.

One option is regularization, i.e. adding a term corresponding to a weak ver-
sion of graddiv- for (1.1) and curlcurl- for (1.2) to the differential operator (cf.
[1, Sect. 4.1] and [8]). This will make the kernel “visible” and convert the problem
into a standard positive definite one. Thus it becomes amenable to “shift-and-invert”
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techniques combined with, e.g., an implicitly restarted Lanczos method. The result-
ing indefinite linear systems of equations can be solved by means of Krylov-subspace
methods, whose convergence will degrade for very large problems, however.

An alternative option is projection of approximate eigenvectors onto a comple-
ment, of the kernels. This is the gist of our method, which we call projected precon-
ditioned inverse iteration (PPINVIT). The idea to forgo regularization in favor of
projections is fairly natural. For instance, it is used in [57] for 2D problems arising in
waveguide design. Yet, little is gained, unless a fast projections and good precondi-
tioners are at our disposal.

Recently, multilevel methods for the solution of H(curl;)- and H (div;)-
elliptic boundary value problems have become available [3,38,40], if discretization
is based on special conforming finite elements. The goal of this paper is to demon-
strate how they can be forged into eigenproblem solvers featuring multigrid efficiency.
The key idea is to combine the subspace variant of preconditioned inverse iteration
[50] with an inexact multigrid projection onto the orthogonal complements of the
kernels.

As the approach crucially hinges on particular properties of the finite elements,
those are reviewed in the next section. Then we give a detailed description of the algo-
rithm, complete with projection control and termination criteria. The fourth section
is dedicated to some theoretical investigations into the convergence of the method.
Yet, we have not succeeded in providing a comprehensive theoretical analysis. To
compensate for this, we report quite a few numerical experiments in the final section.
They give evidence of the efficacy and satisfactory performance of the method for
some typical large eigenvalue problems.

2. Discrete eigenvalue problems. The Galerkin-discretization starts from the
weak form of the eigenvalue problems: In the case of (1.1) we seek u € Hy, (curl; ),
A > 0 such that

(acurlu,curlv), = A(u,v), Vve Hp,(curl;Q). (2.1)
If (1.2) is of concern the weak form reads: Seek u € Hp, (div; ), A > 0 such that
(adivu,divv), = A(u,v), Vv e Hr,(div;Q). (2.2)

As usual, we adopt the notation (-, -), for the L*(Q)-inner product. By testing (2.1)
with gradients and (2.2) with curls we observe that solutions u are either weakly
divergence-free or weakly curl-free. As Hr, (curl; Q)N H(div; Q) and Hr, (div; Q)N
H (curl; Q) are both compactly embedded in L*(2) [42], the Riesz-Schauder theory
guarantees the existence of increasing sequences of nonzero eigenvalues Ay < Ay < ...
Since the bilinear forms on the left hand sides of (2.1) and (2.2) are symmetric, we
can also conclude that the corresponding eigenspaces are L*(Q)-orthogonal.

This carries over to the discrete eigenfunctions obtained through a Galerkin-
discretization of (2.1) and (2.2). In particular, we use conforming finite elements based
on a hexahedral or simplicial triangulation T, = {T;}; of . Its faces and edges have
to be equipped with an interior orientation. Then, using the constructions proposed
by Nédélec in [49], we obtain the finite element spaces W;,(ﬁ) C H{(curl;Q) and
W;(ﬁz) C H(div; Q) of any polynomial order p € Ny. Details and descriptions of the
degrees of freedom are given in, e.g. [19,31,47,49]. Dirichlet boundary conditions can
be enforced by setting the degrees of freedom (d.o.f.) on I'p to zero.
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In the case of lowest polynomial order p = 0 the finite elements are either known
as Whitney-forms [14] or, in the engineering literature, as edge elements (H (curl; (2)-
conforming scheme) and face elements (H (div;2)-conforming scheme), respectively.
They owe these names to the definition of their d.o.f., which are given by path integrals
along edges of the mesh and flux integrals over its faces, respectively

W, = R W: = R
u, = fuh o dF7 e edge s u; = fuh -y dS, f face .
e f

The finite element spaces form affine equivalent families, if special transformations
are used [39]. This makes it possible to show approximation properties (cf. [24]) and
the inverse inequalities

|lcurluy||, <Ch 1 lunll, Vus € W;})(Th) ;
[divusllg <Ch™ [lunlly,  Yun € Wi(Ta)

where h := max{diam 7T, T' € T} is the meshwidth and C' > 0 are generic constants.
By this terminology we mean that C' may only depend on 2, I'p, a, p, and the shape-
regularity of the finite element mesh. On the other hand, the value of generic constants
C may change between different occurrences.

Despite the glaring differences in their definitions, the finite element spaces for
H (curl; Q) and H (div; ) introduced above are closely related. As discussed in [16,
17,39], they all can be viewed as spaces of discrete differential forms. This is the
rationale behind our decision to treat both (1.1) and (1.2) in a common framework.
In a sense, we will adopt the common notation Vj, for both W;,(Th) or Wi(ﬁ) with
suitable Dirichlet boundary conditions imposed.

Hitherto, discrete differential forms supply the only conforming finite element
discretization of (2.1) and (2.2) that can steer clear of so-called spurious modes. For
instance, if one uses H'(Q)-conforming finite elements to discretize the Cartesian
components of the vectorfields u, the discrete spectrum may feature eigenvalues that
are not related to an eigenvalue of the continuous problem [12,15,30]. On the con-
trary, in recent years rigorous arguments have been found, why discrete differential
forms ensure a correct approximation of the spectrum [10, 13,21,22,30,48]. For qua-
siuniform and shape-regular families of meshes convergence of the eigenvalues will be
quadratic in the meshwidth [21] under mild assumptions on the smoothness of the
eigenfunctions.

A key role in the convergence theory is played by discrete potentials. They refer
to an exceptional property of discrete differential forms, namely that they give rise
to analogues to de Rham’s exact sequences in a purely discrete setting [11,17]. In
particular, for contractible 2, I'p = 9 or 'y = 012,

{u, € W;('Th), curlu, = 0} = grad W) () , (2.3)
{u, € WZ(Th), divu, =0} = cuer;(Th) , (2.4)

where Wg (Tr) stands for the space of continuous finite element functions, piecewise
polynomial of degree p + 1 over T, the conventional Lagrangian finite elements (see
[23]). A proof of these identities can be found in [39]. Now it is clear, why W) (7p)
and W}D(ﬂl) have been dubbed spaces of discrete potentials. Those will be denoted
by S, and Gp, : Sp — Vy is the related differential operator mapping into the kernel
of A, that is, Gp := grad or Gy, := curl.
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In the case of complex topologies and Dirichlet boundary conditions on parts of
0€), the kernels of the differential operators are no longer completely given by suit-
able discrete potentials. What is still missing are low-dimensional spaces of harmonic
vectorfields, H'(Tn) € Wy(Tn) and Ha(Tn) € Wi(Th), whose dimensions depend
on the topology of ) and the arrangements of the connected components of I'p. For
instance, if I'p = 8Q the dimension of %' (73) is equal to the number of connected
components of Q. A basis for #'(73) is given by the gradients of piecewise linear
continuous functions that assume the value 1 on one connected component of I'p and
vanish on the other. Evidently, this basis can be constructed with little effort. In the
case of Neumann boundary conditions throughout, dim #'(73) is equal to the num-
ber of homology classes of boundary cycles that are bounding relative to €. To find a
basis, we associate a cutting surface to each homology class and compute the gradient
of a piecewise linear function that is continuous except for a jump of height 1 across
the cutting surface [2]. The surfaces can be determined by means of graph-theoretic
algorithms [34]. In case of mixed boundary conditions the situation is more involved
[29], but for concrete geometries the harmonic vectorfields can usually be found easily.
In the sequel we will write Hj for a space of harmonic vectorfields and will take for
granted that a basis {hy,... ,h,} of H; has been computed.

In sum, we face the abstract discrete eigenvalue problem: Seek u;, € V), such that

a(uh,vh) = (uh,vh)o Vv, € Vy , (25)

where a(-,-) stands for the positive semidefinite bilinear form from (2.1) or (2.2). We
associate operators Ay : Vy, = V) and My, : V5, = V) with the bilinear forms in
(2.5), which converts it into an operator equation

Ahuh = )\Mhuh . (26)

The basis of YV} dual to the set of degrees of freedom is called the nodal basis
{b,}.,es, with J a suitable index set. The basis functions are locally supported and
satisfy

IIb.||, < C'diamsupp(b,)|b.||, t€J, (2.7)

with |||, the energy-seminorm induced by a(-,-). Given the nodal basis, (2.6) can
also be read as a matrix equation, Ay being the stiffness matrix and M} the mass
matrix, which are both large and sparse.

We follow the convention that functions will be given Roman symbols, whereas
Greek letters are used for functionals. Those related to the base space V) will be
given bold tokens, whereas entities from the potential space Sy are printed in plain
style.

3. Projected preconditioned inverse iteration (PPINVIT). Standard in-
verse iteration (without shift) for an eigenvalue problem Apu;, = AMpu;, with sym-
metric positive definite operators Ay, : Vi, = V), My := V;, = V) computes a new
iterate x;°*V € YV}, from the old x5 € V}, through

yo = kA Mpxyt , xi = ya/ llyally
for some k # 0. First, observe that the choice of k is immaterial. Therefore, we may
set kK = r(xy), where

(Apxp,xp)

(%, Xn) (3.1)

r(xp) =
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denotes the Rayleigh quotient and (-,-) the duality pairing. This choice of k has the
effect that y;, — xj converges to zero when r(xy) approaches the smallest eigenvalue.
Thus we recover the typical situation, where a correction is determined by solving a
linear system with a small residual as right hand side. This paves the way for the
application of a preconditioner By : V) + V}, an approximate inverse of A, to
compute y,. We arrive at the update formula

Yo =Xn = Br(Apxn — r(xp)Mpxn) %37 = ya/ [lynlly (3:2)
which is the basic building block for the algorithm of the preconditioned inverse
iteration [52]. The iterates will converge linearly to an eigenvector belonging to the
smallest eigenvalue. The theoretically possible but unlikely case that preconditioned
inverse iteration gets stuck in a higher eigenvalue does not take place in practice
thanks to rounding errors. If an invariant subspace corresponding to the s smallest
eigenvalues is desired, we can resort to the subspace variant. After a Rayleigh—Ritz
projection, it updates each of the s Ritz vectors xj,...,x; according to (3.2) with
r(xp) replaced by the Ritz-values [18, 50].

Let us return to the actual setting, in which Ay, is only positive semidefinite. Then,
it is natural to demand that y;, is contained in the L*(Q)-orthogonal complement of
Ker(Ay), as this is satisfied for any eigenvector belonging to a nonzero eigenvalue.
In other words, the (exact) inverse iteration should be based on the pseudo-inverse
A}LL : V), = V;. Then x; will converge to an eigenvector corresponding to A; as long
as the starting vector (for the case of exact arithmetic) is not orthogonal to that
eigenvector.

Well, the pseudo-inverse AT is elusive and has to be approximated. We suggest
to do so by means of a plain multigrid method. It relies on a hierarchy of nested
meshes 7o < 71 < ... < Tr := Tx and the corresponding finite element spaces
Vo C V1 C ... C Vy := V;. The natural way to create such meshes is through
successive refinement of an initial rather coarse mesh 7y, as described in [6,9] for
tetrahedral meshes. The refinement strategies make sure that the shape regularity of
To is almost preserved for all finer meshes.

We instantly get a sequence of operators A; : V; — V; generated by the bilinear
form a(-,-) on V;. The embedding of the spaces V;—1 C V; spawns the canonical
prolongation operators I[; : Vi + Vi, 1 =1,..., L. Their adjoints I} : V=V
are known as restrictions [37, Sect. 3.6]. These operators are purely local and cheaply
implemented [40].

The definition of the symmetric multigrid preconditioner is based on the recursive
algorithm sketched in figure 3.1. There R} is defined by (p,, Rl ¢;) = (¢, Rip;),
p;, @; € V). Then the application of the multigrid preconditioner By, : Vj, +— V), can
be realized as follows

cp:=Bpp;, <= cp:=0; mgeycle(L,cy,py) - (3.3)

The operators R; : V] = V; occurring in the algorithm are conventional smoothing
operators on level [, [ =1,... , L. We will only consider point smoothers of Jacobi- or
Gauf}-Seidel-type. For the latter, one sweep on level [, | = 1,... , L, with initial guess
w; € V; and right hand side p, € V; reads

<pl7ul>

foreach(t € J;)) { w <« w+ m

b, 1.
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mgcycle< A > (int l,reference u; € V;, const p, € V))

{
i ==0){ w=4jp, }

else {
// Pre-smoothing
for(int i=0;i<pm ;++4){ w <+ w+R(p—Aw) }
// Coarse grid correction
o] = pP; — Ahul
pi—1 =10
c_1:=0€V,_1
for(int i =0;i<wv; ++1i) mgeycle< A >( — 1,¢;-1,p;_1)
w — u + e 4
// Post-smoothing
for(int i =0;i<pa;++i){ w <+ w+R(p—Aw) }

Fi1g. 3.1. Multigrid algorithm defining the preconditioner Bjp. The parameters pi,p2,v € N
define the type of the cycle. For v = 1 we get a V(u1,p2)-cycle, for v =2 a W (1, p2)-cycle.

Though A}, is singular, relaxation will go smoothly, as (2.7) guarantees a(b,,b,) >
0. However, this innocent looking procedure disrupts everything, because b, does
not exactly belong to Ker(4;)*. Thus, the action of Bj will invariably introduce
components in Ker(Ap) into the iterates. Eventually the iterates might tumble into
the kernel.

To prevent this, we have to weed out the kernel contributions as soon as they are
introduced. Formally, this can be done by projecting y; from (3.2) onto Ker(A4y)>.
Fortunately, if Q is contractible, the representation of Ker(Ay) through discrete po-
tentials according to Ker(A,) = G1Sy enables us to express the L?(Q)-orthogonal
projection P, : V — Ker(A)+ through

Py :=Id — GyT/ G My, (3.4)
where T}, : S, — Sj, is the operator associated with the bilinear form

d:SxS—R , d(uh,vh) = (Ghuh,Ghvh)O , Up,Vp € Sh . (3.5)

Yet, the exact computation of T,]: pr, for some py, € S} is all but impossible. Just recall
that in the case of the eigenvalue problem in H (curl; ) the operator T}, is the discrete
Laplacian, i.e. in general described by a huge sparse stiffness matrix. Therefore, we
cannot help using an approximate pseudo-inverse also in this case. A multigrid scheme
analogous to the one outlined in figure 3.1 comes handy, this time to be conducted in
the potential space with the operators A; replaced by their counterparts 7; : S — §.
This will yield an approximate projection P,

Py :=Id — GyChGi My | (3.6)

where C}, stands for the approximate (pseudo-)inverse of T}y, furnished by the multigrid
cycle. Reassuringly, we do not have to worry about pollution in Ker(G},) this time,
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because in (3.4) the operator GGy is applied to the result, suppressing any kernel
component.

If we have to take into account harmonic vectorfields in ‘H, := Span {hy,... ,h,},
their basis should be approximately orthogonalized to G Sp. This can be done once
and for all before the actual eigenvalue computations utilizing a few steps of the
approximate multigrid projection P,. For the sake of efficiency, a nested iteration
approach should be employed. Eventually, the basis functions should be L?(f)-
orthonormalized to each other by solving a small linear system of equations. If
El, - ,Eq are the functions thus obtained, Hy = Span {fll, cen ,Eq} will be an-
other suitable space of harmonic vectorfields. Given this preprocessing, orthogonality
to Hp, can be easily enforced.

The final algorithm implementing the inexact projection is given in figure 3.2
(right). We point out that G}, is a local operator, too, whose matrix representation
can be derived from the embedding G,S;, C Vj [40, Sect. 6]. Let us elucidate this
for edge elements: Assuming nodal bases of YV, and S the evaluation of G}, boils
down to simply distributing the nodal values from vertices (to which d.o.f. of S; are
associated) to edges, taking into account their orientations by means of weights +1
or -1.

In the end, incorporating the total action of project into Py, we get the following
update formula for an approximate eigenvector

Yi = Po(Id = Bp(An — 6Mp))Poxp . 3™ =yu/ llyally - (3.7)

Cast into an algorithm, this yields the procedure update displayed in figure 3.2 (left).

update(reference x5, € Vj,k € R) project(reference x5, € Vp)
{ {
project(xy) // Treat harmonic vectorfields
¢y, = Apxp 5 Py, = Mpxy, for(inti=1;1<g¢q; ++1)
ph::qsh_l{'d)h {Xh%Xh—(Hi,Xh) fll}
Cp = 0 € Vh — Mix 0
mgcycle< A >(L,cp,pp) T T
- _ on = Grmy,
h < Xp —Cp
roject(xp,) cn =0 € Sy
i J(_ N 7|x | mgcycle< T' >(L,cp,0n)
} h h h Xp < Xp — thh
}

F1G. 3.2. Update procedure for the projected preconditioned inverse interation

It is hazardous to replace k in (3.7) by the plain Rayleigh quotient (3.1), because
significant kernel components might remain after the inexact projection. If we set
k = r(xp,), we might encounter k < A though A,x;, = AM}y, Ppxy, i.e. the components
of xp, in Ker(Ay)* already provide the desired eigenvector. Guided by the idea that the
scheme should come close to inverse iteration in the complement Ker(Ay)+ we should
choose k =1 (x) = (Apxp, xp) [ (PrXp, PhXh)L2(Q). In practice, we are denied this
option as Ppxy is not available. However, we still want a replacement for r; that is
insensitive to kernel components. A promising candidate is the “two-step Rayleigh
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quotient”

(ApM, " Apxp, xp)

(ApXn,Xp)

ro(x) = (3.8)

with rq(x) > ri(x5) > r(xp). Obviously, it yields an eigenvalue, if we have already
hit an eigenvector in Ker(A4y)L. Two issues arise, nevertheless: First, there is a risk
of breakdown, if Apx, = 0. This means that the current approximate eigenvector
lies in Ker(Ap), which hints at inadequate approximate projections. A way to detect
and cure this condition will be discussed in section 5. The second problem is that the
evaluation of (3.8) entails the solution of a linear system Mz, = Apx; for the mass
matrix Mpy. As My, is well conditioned, a few steps of an iterative method (CG,Gauf3-
Seidel) will give a reasonable approximate solution. Moreover, if (A,xp) is already
close to an eigenvalue/eigenvector pair, Axj, is an excellent initial guess.

With all building blocks in place, we can now state the crucial update step of
the algorithm for the computation of the s, s € N, smallest nonzero eigenvalues and
corresponding eigenvectors of (2.6). Its details are given in figure 3.3. The proce-
dure ppinvit_step is meant to improve on approximations §; and x%, i =1,... s, for
eigenvalues and eigenvectors.

ppinvit_step (reference (61,...,05)1 € R, reference (x},...,x5) € (V1)*)
{
// Ritz-projection
for(i=1;i<s;++1i) {
bp, = AnX}; 7y, = Aixj; g™ < My > (2, dp)
Qi -= <¢27Z2>; My ‘= <¢27X2>
for(j=1;7<i;++1i) {aj=aj:= < %,z2>; Mmij = Mj; i= < ‘;Z,X;L> }
}
// Rayleigh—Ritz procedure
A = (aij) e R%; M, := (m”) € R#%;
Find Y € R** and Ritz values © = diag(fy,...,0s) such that A,Y = YM,0
// Ritz vectors
(xh, .o, x5)  (xh,...,x5)-Y
// Approzimate projected inverse iteration
for(i=1;i<s;++1i) {update(xi,0;) }

F1Ga. 3.3. One step of the subspace variant of the algorithm for projected preconditioned inverse
iteration. cg™ < My, > (zp,, ¢p,) refers to m € N CG-steps for the solution of Mz, = ¢y, .

The discussion of termination criteria is postponed to section 5. Initial guesses
for the eigenvectors can easily obtained through nested iteration by prolongating
approximate eigenfunction from coarser grids.

Remark. For positive definite operators the Rayleigh—Ritz method is often applied
to a modified/enlarged subspace (consisting of the actual subspace, the actual search
directions and possibly the old iterates). This is known to improve convergence [44, 45]
if A, > 0. Yet, this trick is not advisable for the semidefinite problem, because a
massive amplification of kernel components might occur.
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4. Convergence. The theoretical examination of the algorithm starts with the
L?(Q)-orthogonal decomposition and dual polar decomposition

Vy,=Xr,® 2y, 2 = Ker(Ah) , V;Z:X;L(@Z;L . (41)

With respect to the splittings (4.1) the operators can be written in block form. For a
symmetric preconditioner it reads

Bh:<BJL BOL): LR Z, X ® 2y, (4.2)

and for the other operators

AL 0 M, 0 ATV 0 5 Id, 0
Ah:(o o) ’Mh:<0 MO) ’AL:(OL 0) ’Ph:<o Po)
These formulas are immediate from the definition of the operators and the properties
of the splittings. Be aware that By, # 0 causes the pollution by kernel components,
and Py # 0 hints at an inexact projection.
Using AhA}LL + Q; = Id;, where Qp : Vy — 2y is the L?(Q)-orthogonal projec-
tion, we obtain from (3.7) with x = r¢(xs)

Yn = ]Bh ((Ih — BhAh)(Ih — lﬁ:A;rth) + lﬁ:BhQ;;Mh + I{A};Mh) Ighxh .

Splitting y, = y° +y*, x5, = x* +x+, x0,y° € Z4,, y*+,x+ € X}, and plugging in
the block forms of the operators leads to

yt—z,\ _ (Id. 0 Id,—BiA, 0 Id,—kAT'M 0 N
yO B 0 PO _BELAL Ido 0 Ido

4 (0 #BoLMo Id;, 0 (xt
0 IQBO()MO 0 PO XO

with z, = liAJ__lMJ_XJ‘. This results in a kind of error propagation equation
yJ‘—Zh o IdJ_—BJ_AJ_ I{B()J_M()PO XJ‘—Zh (43)
yO _POB(?J_AJ_ Po(Id() + IQBO()M())PO XO ) )
Note that (zp,,0)7 is what an exact inverse iteration for the pseudo-inverse would give
us before scaling. Thus (4.3) reflects how much the projected preconditioned inverse
iteration differs from an exact inverse iteration. Next, we aim at quantitative estimates

of this deviation. To this end we seek bounds for norms of the block-operators in (4.3).
Various norms need to be considered for operators X, : V, — Vj,

1 Xrvally 1 Xnvellg
Xy ‘= sup ———— Xy = sup —————
IXlloso = sup Tty o Hallzso = sup ST
| Xnvall | Xnvall
||Xh||A—>A ‘= sup 4 ’ ||Xh||A—>O ‘= sup 2
vaevn  IValla vieve Vil 4
X
Xl q = sup IrYVilla

viezn |[Vallg



Multilevel Method for Mixed Eigenproblems 11

In order to bound the operator norm || — By A, || ,_, , we remember that ||-|| , is the
energy-seminorm in H (curl; Q) and H (div; ), respectively. In other words, this norm
agrees with the convergence rate of the multigrid method in the energy-seminorm. In
[38,40,41] it was shown that this convergence rate is bounded away from 1 indepen-
dently of the number L of grid levels involved in the multigrid scheme. This justifies
the assumption

||IdJ_—BJ|_AJ_||A_>AS'Y<1. (A].)

In fact numerical experiments give evidence that we can expect v to be smaller than
0.5, at worst.

Next, we have to gauge the impact of the inexact projection. Again, we can rely
on theoretical results and practical experience with multigrid methods to justify

||Gh(fdh — OhTh)Uh“O < ﬂ ||Ghuh||0 Vuh c Sh (A2)

for # < 1 uniformly in L. Note that S is the convergence rate of the iterative solver in
potential space. The practical range for # will be the same as for v. From (A2) and
Ty = G MGy, we conclude

Amax(Gh (T} = Ch)GH M) = Amax (G MyGr(T} — Ch)) = Amax(Idn — ThChr) = 8 .
Because of (Idy, — GhT,‘:G,’;Mh)xg =0 for xY € Z}, this teaches us that
[Poxilly = [lxh — GhChGrMaxi
< H(Idh — Gy TIGE My, + G(T) - Ch)GZMh)x%HO (4.4)

g A T

The remaining terms involving the multigrid preconditioner will be tackled under the
restrictive assumption of uniform refinement. That is, we take for granted a geometric
decrease of the meshwidths according to h; ~ 27,

Under these circumstances, the bilinear form s; : V; X V; — R that defines the
smoother R; via

si(Ripy,vi) = ¢ (vi) Yvi€Vi, ¢ €V,
fulfills
Ch; ? (w,w)y < s(w, ) < Chy 2 (w, ), Y € V.
For the point smoothers that we have in mind, this is a consequence of (2.7). In

particular, s(-, -) turns out to be positive definite. Then the Cauchy-Schwarz inequality
gives for x? € Z;

. R/ M, 0 2
||R1M5X?||; S Ch?S(RlMlX?,RlMZX?) = Chlg sup S( d le;Wl)
wEV, S(wla Wl)
Mx0, w 2
< Chi sup (M wi)”

< ond %0
wiEV, ||wz||(2) - HXl HO 7
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from which we infer
\RMi||l, o <Chi and ||RM], 4, <Ch. (4.5)
The latter estimate is a consequence of the inverse inequalities (2) that involve
a(u;,w) < Ch 2 |lwf? (4.6)

The same arguments reveal

A 2
||R1A1Xl||(2) S Chl2 S(RlAle,RlAle) = Chlz Sup S(Rl thWl)

wi eV, S(Wl7wl)

A 2
SC’hZ1 sup 7< X1, Wi)

2
5 — < Chi [Ixlly -
wiex;  |lwillg

The inverse inequality in V; is concealed in the final estimate. Eventually,
||RlAl||A_>0 < Chl and ||R1Al||A_>A < C. (47)

The estimates carry over to RlT, of course. Now we are in a position to examine the
full multigrid cycle. For the sake of simplicity we confine ourselves to a V(1,1)-cycle:

LEMMA 4.1. Assume that the smoother alone provides a convergent iteration in
the ||-|| ,-seminorm. Then

IBiAill s4oso S Ka , 1BiMilly0 <Ko, [1BiMill ;40 <Ko,

with constants K4 > 0, Ko > 0 and K, > 0 that depend on the shape-regularity of
the meshes To, ... ,Tr, but not on l.

Proof. The recursive nature of the multigrid algorithm suggests that we study two
subsequent levels [ and [ — 1. For ease of notation, we will use a subscript h to refer
to level [ (fine grid), and H will tag entities associated with level [ — 1 (coarse grid).

We retrace the single steps of the algorithm of figure 3.1 and start with p, := Apxy
for some x5, € V. Presmoothing takes it to w, := RjpApx, since a zero ini-
tial guess has to be used. Afterwards, the coarse grid correction will result in
cy = Byl; Ap(xp — wp). Then, with P : V), = X denoting the a(-, -)-orthogonal
projection, we infer from I} A, = Ag Pl

Cyg = BHAHP,{{(Idh - RhAh)Xh .

As the multigrid method is supposed to converge in the |[|-||,-seminorm,
[ Ideg — BuAm|| 4, 4 <1 is guaranteed, so that
1BrAnllasa <2 (4.8)

The smoother alone also provides a convergent iteration, i.e ||Idy, — RpAp|| 4,4 < 1,
such that

lcrlly < 1BarArllaollxnlla 5 lerlla <210xall, -
With uy := wy, + Ipcy, which fulfills due to (47)

lunlly < ([BrAallaso + Ch) x4 5 llanlly < 4fxnll4
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we can express the result of post-smoothing as
BhAhXh =up + Rg(AhXh — Ahuh) = Wy +up — R%Ahuh .
Again, we invoke (4.7) and see

1BrAnxnllo < (|1BaAn| 40 + Ch)[IX| 4+ Chllunll 4, < (I1BaAmll 40+ Ch)[Ix]] 4 -

Consequently, ||BrAn|| 4o < ||BaAH|| 4_ + Ch. Taking into account that By = Al
e. ||BrAnll4_o = 0, and the geometric decrease of the meshwidth, this ensures
|BrAnl| 4_o < Ka, for K4 > 0 independent of the level.
Analogous considerations can be carried out with p;, := M hx% for some X?L € Zy.
Presmoothing yields wy, := Rpp,,, and after the cycle on the coarse grid we end up
with

Cg =C1 +¢Co := BszMhX?l + BszAhWh .

As Iy My = MuQ¥H, where QY : V), — Vi is the L?(Q)-orthogonal projection, we
get for the first contribution to cg

ledlly <NBaMull ;o Ix2lly -+ lledlla < IBrMull,_ 4 |x3], -
Similarly, from I} A, = AgPH, (4.5) and (4.8) follows that

lleally < | BaAuPiwil|, < 1BuAnlloso IWall4 < ChIBuAnl 4o X3, -
leall 4 < | BuAuPy Wl , < 1BaAnll g lwally < CR|XD, -

In sum, based on earlier estimates,

lewlly < (1BaMull ;o + CREA) |,
el s < (IBaMull,_ 4+ ChY |0, -

Next we consider the coarse grid correction u, = wp + Icp. As the prolongation is
an identity mapping in disguise, the following estimates are straightforward:

[unlly < (IBa Ml ;0 + CRE 4 + CR?) [|X3]],
lunlly < (IBeMpll ;4 + CR) ||IX0], -

The postsmoothing results in
BpMyx) = up +wy — RpApuy,
By (4.7) and (4.8) we know
1BrApapllg < Chllunlly 5 [|[BrApus]ly < Cllapll4 -
We end up with the estimates

|BrMyx3||, < (1 + Ch) |IBuMyll,_,o + Ch{(1+ Ch)K4 + Ch*> + CE’) ||x3 |,
HBthXhHA |BHAH||Z—>A +Ch HXhHO :
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On the coarsest grid | = 0, we have BogMp = 0 and By My = 0. Then the geometric
decrease of the meshwidth leads to the assertion of the lemma for ||B;M;||,_, 4. For
the other norm, we observe

| BnMpllz_o < (1+ Ch)[|BuMullz_o + Ch.

In closed form this amounts to

l l
IBiMi]| o <CY JJ(1+C277)- 270

i=0 j=i

l .
As [T (14+C277) < exp(2C), the bottom line is that || B; M;|| ,_, , is uniformly bounded.

j=i

d
Now, we can convert (4.3) into the estimates

(Hyﬁ —/iAIlMLXﬁHA> < < 0% kK| B ) <Hxﬁ —KJAIlMLXﬁHA)
¥4 1l Kap B*(1+ kKo) xXhl '

(4.9)

All the constants are basically independent of the meshwidth and the number L of
levels involved in the multigrid solvers. Heuristic insights into the significance of (4.9)
can be gained from the theory of preconditioned inverse iteration in the positive
definite case [52,53]. If, with k = r , for some positive I < 1

||y# - KZAIIMJ_X#HA <T ||X# — HAllMLXﬁHA (4.10)
the PINVIT convergence theory gives some lengthy, sharp estimate for the Rayleigh
quotient r; of the new iterate th demonstrating that PINVIT converges at least
linearly to the eigenvalue \;. Here, we cite only the asymptotically sharp estimate
from [51]. In the case of a subspace iteration let 8; (¢}) be the j—th Ritz value (ordered
by magnitude) of a given (and the next) subspace and let A; and A;11 be the nearest
eigenvalues enclosing 6;. Then

Ai
Aig1

¢— A
Aig1 —C

In the PINVIT theory, I' is the spectral radius of its error propagation matrix. For
the best multigrid or domain decomposition preconditioners I' is bounded away from
1 independently on the meshwidth. Having in mind the convergence factor presented
in Eq. (4.11), we conclude that PINVIT converges mesh-independently. To illustrate
these results consider the discrete Laplacian on [0,7]?> whose smallest eigenvalues
(with multiplicity) tend to 2,5, 5,8,10,10,13,13, . ... Figure 4.1 displays upper bounds
©(A,I), cf. Theorem 2.1 in [50], for the relative decrease of #’ towards the next smaller
eigenvalue A;, i.e.

Ajiy1(05) < (F +(1-T) ) Ajiy1(05),  Aiira(Q) = (4.11)

6 — X

<O(\I).

In the semidefinite case Eq. (4.9) applies to PINVIT in Ker(A4) only for the
unrealistic choice of a perfect projection, i.e. 5 = 0. For a small g > 0 the iterates
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0.9
0.8
0.7
0.6
OM,MNgsk
0.4F
0.3
0.2f

0.1

Fic. 4.1. Estimates ©(\,T) for Ay on [0,7]2.

in Ker(A)+ will inevitably be perturbed by the term kBy, MyPyx° in Eq. (4.3).
Nevertheless, (4.10) may hold with I' < 1 throughout the iteration. Then convergence
according to the PINVIT theory is guaranteed (apart from the minor modification of
replacing 71 by rg). Unfortunately, if ||Xh — kAT 1M¢XﬁHA < ||Xh||0 the constant
in (4.10) may blow up. However, (4.9) teaches that in this case a significant reduction
of the kernel component will be achieved, provided that § is sufficiently small. Hence,
[' > 1 might happen in a single step, but in the next step (4.10) is likely to hold with
a rather small I'. In other words, for a 8 < 1 the kernel components are damped out
in the course of the iteration. Therefore, the perturbations become more and more
insignificant. This effect is elusive and we have not succeeded in giving a rigorous

analysis.

Let us study as a model
system the eigenvalue problem
for A, = diag(2,5,8,0) with
v = 0.5. Then the precondi-
tioner is a 4 x 4 matrix. We
take bpax as the bound for the
absolute value of Bgy and for
the A-norm of By, . Note that
the low dimension of the model
problem is motivated by the fact
that preconditioned inverse it-
eration takes its extremal con-
vergence in a 2D space which
is spanned by those eigenvec-
tors whose corresponding eigen-
values enclosing the Rayleigh
quotient of the actual iterate.
Moreover, as a result of [52] the
assumption that all eigenvalues
are of the algebraic multiplicity
1 is non-restrictive. In figure 4.2

|21 /11 %, Il after 10 steps of PPINVIT

09f
08l
07l
06l
=y
0af
03f
02l

0.1r

=1 8
(iterates swamped by 1
~ kernel components)

Fia. 4.2. Relative damping of the kernel component for
the model problem.
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the maximal ratio |29 |/||zs|lo after 10 steps of PPINVIT is displayed in a contour plot
for 5 € [0,1] and bmax € [0, 1]. For each point of the underlying 50 x 50 mesh 150000
combinations of random preconditioners and random start vectors with a fixed initial
kernel component have been tested. For 8 < 0.2 the kernel is damped out very well
independently on the choice of by ax.

Components: 1st step of PPINVIT Components: 4th step of PPINVIT
ir et
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.
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Fia. 4.3. Components of the iterate x for the model problem. Components to (A1, A2, As,0)
correspond to symbols (o0, x,+,*). Left: 1st step of PPINVIT Right: 4th step of PPINVIT.

The components of the iterates within the 1st and 4th step of PPINVIT in the
case of poorest convergence can be looked up in figure 4.3. For 107 combinations of
random preconditioners (v = 0.5, § = 0.25, byax = 0.2) the components of those
vectors which are responsible for the poorest decrease of the Rayleigh quotient are
displayed against their two-step Rayleigh quotient. While in the first step of PPINVIT
the kernel components appear as the dominating part, we identify in the 4th step
within the interval [A;, A\;+1] the ith and i + 1th components as the prevailing ones.
Such a result does not come as a surprise, and can be understood by the distinctive
feature of preconditioned inverse iteration to take its extremal convergence in exactly
this 2D space. The kernel has all but disappeared. Thus, figure 4.3 highlights a key
trait of PPINVIT: Convergence is brought about by the subtle interaction of multiple
steps.

Some quantitative conclusions can also be drawn from (4.9).

THEOREM 4.2. If k := kg < k* for all steps of the iteration and the initial iterate
Xy satisfies

il _ (-9
Ixnlly — 267K

then this will hold for all other iterates, provided that the approximate projection is
sufficiently accurate.

Proof. Given x, = X% + xi- € YV, X € Zp,, xit € X}, computing y, = y) +yr
according to (4.3), we obtain from (4.9)

[yilla = llzalla = v [lxi =2, = 5" K LB|xhll, -
yilly <KaB i —za], + 871+ &Ko) <3|, -



Multilevel Method for Mixed Eigenproblems 17
where zj, := rg(x;) A" M x;-. This definition immediately implies

7n — x|, = lzall — 2 (Avzibxi ) + x|

rQ(Xh)

Tl (Xh)

Owing to the Cauchy-Schwarz-inequality, we have rg(xp) > r1 (x5) and thus

= llzall% — (2 — ) [t -

Iz — k|, <lznlly » lznlla > [t (4.12)
The above estimates can be blended into
I¥illy _ Kablxic = za] 0 +5%(1+ £ Ko) x4l
lyills = lzally — 7|5 — 20|, — s KL B1Ixl,
KaB+ 821+ &*Ko)||x% || o/ l1zall 4
(1 =7) = &K1 Blx} o/ 120l 4

From (4.12) and the assumptions of the theorem, we conclude

Ixhllo _ (1-2)
lznllg — 267 K.

Il

120l 4

= (1-9)—r"K.p >1(1-7),

which implies

Hy?LHO <2KA 1+/€*K0>
< + .
vl = O\T=7 " RS

will remain below the threshold (1 —v)/2x*K | 3, if

ﬂ2 < (1 — 7)2 ]
T AR K Kg + (1 —9)(1 4 k*Ky)

The ratio Hy%HO/HYﬁHA

This states the condition on the accuracy of the approximate projection. As the ratio
in the statement of the theorem is not affected by scaling, the proof is finished. O

The previous theorem guarantees that the iterates cannot plunge into the kernel,
if a sufficient damping of kernel components is achieved by the projection.

5. Projection control and termination criteria. The theoretical considera-
tions highlight the importance of a good projection: It goes without saying that the
method will fail, if the projection is too weak to reign in kernel components. Taking
the cue from theorem 4.2, we aim to force the ratio ||x ||, : ||xs]| 4 below a threshold
0 > 0 for all iterates. N

From the properties of the inexact projection P, and (4.4) we learn that

B lIxn — Pxallg
1-p [1%nl 4

Of course, good bounds for 8 are hard to get. We take a crude estimate based on the
decrease of the L?(Q2)-norm of the residual during a multigrid sweep. It is computed
whenever a projection is carried out, and [ is chosen to be the maximum of all
estimates thus obtained. The final adaptive projection is depicted in figure 5.1. There,
o €]0,1] is a safety factor intended to prevent gross underestimation of 3.

F
1Poxally _ s

<6 =
1%l 4

(5.1)
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project(reference x5, € Vp,0 > 0,0 € [0,1])
{
for(inti=1;i < q; ++1i) { xp xp — (Ei,xh) flz }
0
v:= (Apxp, Xp)
do {
Op = GZMhXh; c, =0€ 8,
mgcycle< T >(L,ch,pp); zn := Gpep; Xp — Xp — Zp

pr = b — Thens B 1= (bn, dn) [ (pn, pn); B < max{B,(1 —0) + o}

_ B (Mnzn,2s)
}“' -5 v

while (u > 6);

FiG. 5.1. Enhanced projection with adaptive control. The global variable B is set to 0 initially.

Our next concern is the termination of the iteration. After the completion of the
Rayleigh Ritz procedure, cf. figure 3.3, there are on hand the Ritz values ; and the
Ritz vectors xj with ||X§Z||0 =1,¢+=1,...,s. The Mh_l—norm of the residual rj =
Apxi —0;Mpx} provides a simple residual bound [54] for the quality of the Ritz value
6;. It is guaranteed that in each interval [6; — Hr}lﬂ M ,0; + ||r§lH M;fl] an eigenvalue

of (An, My) is contained. For disjoint intervals the #; provide s approximations to s
different eigenvalues of (A, M}). In practice the inverse of the mass matrix may be
approximated through one Gauf3-Seidel step. This yields a quantity that is equivalent
to the M, L_norm independent of the meshwidth.

Beyond, we suggest that the ratio r/rg of Rayleigh-quotients of approximate
eigenfunctions is used to judge whether the iteration has been successful. Only if it is
very close to 1 the results can be trusted.

Remark. It is not a moot point that § should be reduced during the iteration as
the approximate eigenvectors get closer and closer to the exact eigenvectors. However,
we failed to find a strategy with heuristic, let alone rigorous, underpinning.

6. Numerical experiments. For all numerical experiments covered in this sec-
tion we relied on lowest order edge/face elements on uniform Cartesian grids. Ritz
projections and eigenvalues/eigenfunctions on the coarsest grids were determined by
means of suitable LAPACK routines. All computations were carried out in double
precision arithmetic, whereas the matrices were stored in single precision format. Ho-
mogeneous Dirichlet boundary conditions were imposed throughout. We computed 7
eigenfunction /eigenvalue pairs in each case.

For the tests we resorted to three different settings: Setting A used the unit cube
Q =]0,1[® and constant coefficient a = 1. The uniform grid on level I, [ = 0,...,5
consisted of 27 - & equal cubes. This means that for [ = 5 the discretized problems
(1.1) and (1.2) feature 2599200 and 2626560 degrees of freedom, respectively.

Setting B sports the discontinuous coefficient

3°3

a(x) =
1 elsewhere ,

{100 if |x — (1,1, L7 <1
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and retains the unit cube as computational domain. The grids are the same as for
setting A. We study this situation, because discontinuous coefficients are notorious
for affecting multigrid convergence.

In setting C we set a = 1, but used the “L-shaped” computational domain €2 :=
10; 1\ ([0, 1] x [0, £] x [0, 3]) equipped with a coarsest Cartesian grid with meshwidth
% in x1- and z3-direction, and meshwidth % in xs-direction, leading to 1048800 edges
that bear degrees of freedom on level 5.

Nested iteration with a tight termination threshold (see below) was used to obtain
the “exact discrete eigenvalues” for each setting. Those for problem (1.1) are listed in

table 6.1.

| Setting | Level || #1 | #2 | #3 | #4 | #5 | #6 | #7 |
1=3|19.76 [ 19.76 | 19.76 | 29.65 | 29.65 | 49.58 | 49.58
A [=4 11974 [ 19.74 [ 19.74 | 29.61 | 29.61 | 49.40 | 49.40
[=5 | 19.74 [ 19.74 | 19.74 | 29.61 | 29.61 | 49.36 | 49.36
1 =3 | 20.02 | 20.02 | 20.02 | 29.71 | 29.71 | 49.76 | 49.76
B I =4 ] 20.00 | 20.00 | 20.00 | 29.68 | 29.68 | 49.58 | 49.58
I=5119.99 [ 19.99 | 19.99 [ 29.67 | 29.67 | 49.53 | 49.53
1=3 | 15.19 | 22.77 | 22.91 | 34.35 | 35.14 | 44.58 | 49.80
C 1=4 1517 [ 22.71 | 22.85 [ 34.25 | 35.01 [ 44.21 | 49.35
I=5 || 1511 [ 22.70 | 22.83 [ 34.23 | 34.97 | 44.11 | 49.20

TABLE 6.1
The seven smallest nonzero “exzact discrete eigenvalues” of problem (1.1) computed by nested
iteration (cf. experiment 2)

Ezxperiment 1. To begin with, we monitored the behavior of the “two-step”

1

Rayleigh quotients r¢g from (3.8) and the Ml_l—norms <Ml_1 pi,p;)° of the residuals
p; = Aix; —ro(x;)Mix; of approximate eigenfunctions x; € V;, [ = 3,4, 5. Of course,
Ml_1 p; could not be computed exactly, but was realized by two Gauf}-Seidel-sweeps
(GS). Both quantities were tracked for 3 eigenfunctions (belonging to eigenvalues
#1,#3, and #5) during 15 iterations of PPINVIT. Random grid functions with their
degrees of freedoms uniformly distributed in [0, 1] served as initial guesses for the
eigenfunctions. We observed no qualitative differences between the data recorded in
different runs of the code.

Single symmetric multigrid V(1,1)-cycles with lexicographic GS-smoothers were
used both in V; and potential space. The inverse mass matrix required for the calcu-
lation of the two-step Rayleigh quotient was approximated by three steps of the pre-
conditioned conjugate gradient (PCG) method with a symmetric GS-preconditioner.

The values of rg were considered as useful approximations of eigenvalues and
thus it makes sense to examine their relative errors with respect to the “exact discrete
eigenvalues” from table 6.1. The results for problem (1.1) are plotted in figures 6.1,
6.2.

First of all, after the effect of the random initial guesses has abated, a rather
uniform decrease of the errors/residual norms takes place. Next, we note that the
M l_l—norm of the residual permits us to assess the accuracy of the approximate eigen-
value very well. As expected, the larger the eigenvalue the poorer the convergence (up
to a total failure to converge for the 7th eigenvalue). One should follow the customary
advice that dimension of the subspace should be chosen somewhat larger than the
number of eigenvalue one is interested in.
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F1a. 6.1. Experiment 1, setting A, problem (1.1). Left: Relative errors of two-step Rayleigh quo-
tients when compared with “exact discrete eigenvalues”. Right: Approximate Ml_l—norms of residuals

Ezxperiment 2. Of course, choosing random initial guesses is foolish, in particular,
as a nested iteration approach will do much better in a multilevel environment. The
behavior of the approximate M, l_l—norms of the eigenfunction residuals during nested
iteration was recorded for the various settings. On each level [ the iteration was
terminated, if <Ml’1pl,pl> < 7 for eigenfunction #1 through #5, where 7 > 0 is a
prescribed threshold.
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Fi1G. 6.2. FExzperiment 1, settings B(left) and C(right), problem (1.1): Approzimate lel-norms
of residuals

The same multigrid cycles as before were employed. Moreover, we chose 7 = 10™*
and 7 = 1072, In the latter case the evaluation of M, ' in the computation of rq
was based on only one symmetric GS-sweep, which is much cheaper than the three
PCG-steps used for the former case. The results can be looked up in figures 6.3-6.6.
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10"
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10 15
Step of nested iteration Step of nested iteration

FiGc. 6.3. Ezperiment 2, setting A, edge elements: Nested iteration (Left: Mh_1 realized by 3
PCG-steps. Right: Mh_1 realized by 1 GS-sweep.)

The data strikingly confirm that the convergence of multigrid-PPINVIT is inde-
pendent of the depth of refinement: About the same number of iterations is required
on each level to achieve the prescribed reduction of the norm of the residuals.

Ezxperiment 3. Next, we studied the impact of choices of different multigrid cycles
for both the update and projection step in setting A. Everything else is like in the
first experiment. In table 6.2 we report the rate of convergence of the eigenvalue
approximations between the 3rd and 5th step of the iteration

p= TQ(XS)) — Aexact (6 1)
rQ (ng)) — Aexact
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Fig. 6.4. Ezperiment 2, setling A, face elements: Nested iteration (Left: Ml_1 realized by 3
PCG-steps. Right: Ml_1 realized by 1 GS-sweep.)
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Fia. 6.5. Ezperiment 2, setting B, edge elements: Nested iteration (Left: Ml_l realized by 3
PCG-steps. Right: Mfl realized by 1 GS-sweep.)
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Fia. 6.6. Ezperiment 2, setting C, edge elements: Nested iteration (Left: Ml_1 realized by 3
PCG-steps. Right: Ml_1 realized by 1 GS-sweep.)
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| Level | B, | Cn || #1 | #2 | #3 | #4 | #5 | #6 | #7 |
=3 | V(1,1) | V(1,1) [[0.10 | 017 | 0.22 | 0.24 | 0.35 | 0.45 | 0.47
W(2.2) | V(1,1) || 0.03 ] 0.12 | 0.16 | 0.21 | 0.26 | 0.41 | 0.61

V(1,1) | W(2,2)7 || 0.09 | 0.20 | 0.38 | 0.30 | 0.41 | 0.38 | 0.65

=4 | V(1,1) | V(1,1) [[0.08 | 0.2 | 0.28 | 0.24 | 0.39 | 0.44 | 0.45
W(2.2) | V(1,1) |[0.03]0.09 | 0.12 [ 0.26 | 0.30 | 0.46 | 0.57

V(1,1) | W(2,2)? [ 0.10 | 0.16 | 0.31 | 0.29 | 0.29 | 0.45 | 0.42

I=5 | V(1,1) | V(1,1) [ 0.10 | 0.10 | 0.38 | 0.24 | 0.74 | 0.42 | 0.41
W(2.2) | V(1,1) |[0.03]0.11 | 0.26 | 0.22 | 0.45 | 0.51 | 0.56

V(1,1) | W(2,2)? [ 0.10 | 0.16 | 0.19 | 0.35 | 0.43 | 0.39 | 0.49

TABLE 6.2
Ezperiment 3, selting A, edge elements: Different rates of convergence p according to (6.1) for
eigenvalue approxrimations.

The effect of very accurate preconditioners/projections seems to be limited, as
predicted by the theory of PINVIT: As can be seen from figure 4.1 we cannot be
better than exact inverse iteration and, for instance, decreasing v from 0.3 to 0.1 has
little impact.
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Fi1Gc. 6.7. Experiment 4: Impact of approzimation of Mh_1

Ezxperiment 4. In experiment 2 we boldly relied on a single symmetric GS-sweep to
get an approximation for rg. Now, we aim to investigate, how different approximations
of M, ! perform in setting A. In particular, we used either one, two, or three steps
of GS or PCG. The remainder of the algorithm is just borrowed from experiment 1.
All computations were conducted on level 5 and for edge elements and the results are
displayed in figure 6.7. The message is that spending much effort on M, ! does not
pay off.

Ezxperiment 5. The final experiment scrutinizes whether projection control as di-
cussed in section 5 can really offset poor projections. To that end we used a plain
symmetric Gauf3-Seidel sweep for C}, which yields an outrageously bad P, on fine
grids. Otherwise, the algorithm of the first experiment was retained and we focused
on level 4.

Projection control with § = 0.05, § = 0.01 and a safety factor o = i was enabled.
In addition, as we observed wild fluctuation of the number of GS-steps suggested by
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the projection control, we imposed that this number could not shrink by more than a
factor of two between to subsequent projections (zig-zag-evasion). In figures 6.8, 6.8,
and 6.10 the behavior of relative errors of eigenvalues and the norms of eigenfunction
residuals were logged. Some ratios 7(xp,) : rg(xp) are recorded in figure 6.11. Number
of GS sweeps enforced by the projection control are plotted in figure 6.12.
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FiG. 6.8. Experiment 5: Projection control with § = 0.1
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Fia. 6.9. Fxperiment 5: Projection control with § = 0.05

Sufficiently tight projection control ensures convergence. However, the results also
highlight the need for an adaptive choice of §, because it seems hard to determine in
advance, when § will be sufficiently small. This experiment also hints that the ratio
of Rayleigh quotients, which is to tend to 1, can help detect ineffective projections.

Finally, the enhanced robustness of the method due to the choice of the two-step
Rayleigh quotient is conveyed in figure 6.13. If we choose A = r(x,) with r from (3.1)
the method will be way more sensitive to poor projections.

7. Conclusion. We presented a multigrid-preconditioned inverse iteration
method for the solution of large discrete semidefinite eigenvalue problems in
H(curl; Q) and H(div;{2). Though a complete theoretical analysis is still missing,
there is strong numerical evidence that the method inherits the efficiency of multi-
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FiG. 6.10. Ezperiment 5: Projection control with § = 0.01
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Fia. 6.11. Ezperiment 5: Ratios of Rayleigh quotients in the case of loose (6 = 0.1) and tight

(6 = 0.01) projection control.
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Fi1a. 6.12. Ezperiment 5: Numbers of GS-sweeps for projection
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6.13. Ezperiment 5: Convergence when using standard Rayleigh quotient from (3.1) for A

grid based iterative solution procedures. Besides a thorough theoretical understanding
many issues remain to be examined: Among others, improved adaptive projection con-
trol, detection of topological complications, and potential acceleration by means of
preconditioned steepest descent or various kinds of subspace enlargements and, last
but not least, the benefit of shift strategies.
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