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MULTILEVEL METHOD FOR MIXED EIGENPROBLEMSR. HIPTMAIR� AND K. NEYMEYRyAbstra
t. For a Lips
hitz-polyhedron 
 � R3 we 
onsider eigenvalue problems 
url� 
urlu =�u and grad� divu = �u, � > 0, set in H(
url; 
) and H(div; 
). They are dis
retized by meansof the 
onforming �nite elements introdu
ed by N�ed�ele
. The pre
onditioned inverse iteration inits subspa
e variant is adapted to these problems. A standard multigrid s
heme serves as pre
on-ditioner. The main 
hallenge arises from the large kernels of the operators 
url and div. However,thanks to the 
hoi
e of �nite element spa
es these kernels have a dire
t representation through thegradients/rotations of dis
rete potentials. This makes it possible to use a multigrid iteration in poten-tial spa
e to obtain approximate proje
tions onto the orthogonal 
omplements of the kernels. Thereis ample eviden
e that this will lead to an asymptoti
ally optimal method. Numeri
al experiments
on�rm the ex
ellent performan
e of the method even on very �ne grids.Key words. Mixed eigenvalue problems, edge elements, Raviart-Thomas elements, mixed �niteelements, pre
onditioned inverse iteration, multigrid methodsAMS subje
t 
lassi�
ations.1. Introdu
tion. Let 
 � R3 be a Lips
hitz-polyhedron [33℄, whose boundaryis partitioned into �D and �N . Our fo
us is on the ve
tor-valued eigenvalue problems
url� 
url u = �u in 
 ;divu = 0 in 
 ; u� n = 0 on �D ;� 
url u� n = 0 on �N ; (1.1)and grad� divu = �u in 
 ;
url u = 0 in 
 ; u � n = 0 on �D ;� divu � n = 0 on �N : (1.2)Here, the ve
tor�elds u is an eigenfun
tion, � � 0 stands for the eigenvalue and� 2 L1(
) is a uniformly positive 
oeÆ
ient.We seek approximations of a few of the smallest non-zero eigenvalues and 
or-responding eigenfun
tions. This problem is of 
onsiderable relevan
e in several areasof s
ienti�
 
omputing. For instan
e, (1.1) des
ribes so-
alled ele
tromagneti
 res-onators, if u is regarded as the (s
aled) ele
tri
 �eld. We refer to [1, Se
t. 1℄ for moredetailed explanations. When we want to determine a 
ouple of the lowest resonantmodes for a given 
avity 
, we en
ounter exa
tly the eigenvalue problem (1.1). Be-yond the 
al
ulation of resonant modes, approximations of the lowest eigenmodes arethe basis for modal approa
hes: A set of dominant modes is 
omputed on
e, and the�elds at other frequen
ies are then approximated by a superposition of these modes.This 
an be used to extra
t lumped parameters for ele
tromagneti
 devi
es in thefrequen
y domain. A 
ompletely di�erent appli
ation emerges in the study of 
oupledsolid-
uid systems. When one tries to �nd their eigenmodes, the eigenvalue problem(1.2) pops up [7℄.Of 
ourse, there is a 
lose relationship between (1.1) and (1.2) and eigenvalue prob-lems for se
ond order ellipti
 di�erential operators. For the latter 
ase, whi
h amountsto a generalized eigenvalue problem for large sparse symmetri
 positive de�nite ma-tri
es, a huge body of work about numeri
al solution methods has been 
ompiled overthe years [4, 5, 20, 35, 44, 46℄. The driving for
e was the sheer size of the eigenproblems�SFB 382, Universit�at T�ubingenyMathematis
hes Institut, Universit�at T�ubingen1
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retized PDEs. Millions of unknowns rule out the use of methods thatrely on dense matri
es or fa
torizations. In addition, it is highly desirable to avoid adeterioration of the 
onvergen
e of the iterative s
hemes for large problems. As faras the solution of dis
retized ellipti
 boundary value problems is 
on
erned, multigridmethods meet this requirement. It turned out that the multigrid idea 
an be graftedonto solution methods for dis
rete ellipti
 eigenproblems in several ways resulting ineigensolvers with optimal or quasi{optimal 
omputational 
omplexity. For instan
e,Ha
kbus
h [35, 36℄ applies multigrid prin
iples dire
tly to the nonlinear eigenvalueproblem to 
ompute eigenvalue/ve
tor approximations on the �nal grid by 
ombininga multigrid iteration and nested iteration. Let us also mention the multigrid minimiza-tion te
hnique of Mandel and M
Cormi
k [46℄, its extension by Deu
hard et al. [25℄,as well as the 
lass of methods whi
h apply multigrid as a linear solver. Essentially,the idea underlying this last 
lass is to linearize the dis
rete eigenvalue problem bymethods like inverse iteration [54℄ and to solve the asso
iated system of linear equa-tions approximately by multigrid [5℄. Representing the appli
ation of the multigridpro
edure by a multigrid pre
onditioner and taking inverse iteration (without a shift)as an outer iteration de�nes pre
onditioned inverse iteration (PINVIT). Re
ently, anew 
onvergen
e theory for pre
onditioned inverse iteration has been devised provid-ing sharp 
onvergen
e estimates and substantial insight into the underlying geometry[52, 53℄.The s
heme of pre
onditioned inverse iteration is also known in the literature aspre
onditioned gradient method for the eigenvalue problem. The idea behind this termis to 
ompute a sequen
e of iterates with de
reasing Rayleigh quotients by su

essively
orre
ting the iterates in the dire
tion of the negative pre
onditioned gradient of theRayleigh quotient. By doing so, one expe
ts that the sequen
e of iterates 
onverges toan eigenve
tor while the Rayleigh quotients tend to the smallest eigenvalue. Pre
ondi-tioned gradient methods have been studied predominantly by Russian authors, see forinstan
e Samokish [56℄, Petryshyn [55℄, Godunov et al. [32℄, D'yakonov et al. [26, 28℄,Knyazev [43, 44℄ as well as the monograph of D'yakonov [27℄ in
luding an extensivebibliography. Knyazev in [44℄ gives a survey on pre
onditioned eigensolvers.Pre
onditioned inverse iteration has been generalized to a subspa
e algorithm for
omputing some of the smallest eigenvalues together with the eigenve
tors by emulat-ing the subspa
e variant of inverse iteration [54℄. On
e again, the asso
iated matrixequation is solved approximately. After ea
h subspa
e 
orre
tion step the Rayleigh{Ritz pro
edure is applied. It provides the Ritz values and Ritz ve
tors spanning theapproximating subspa
e. Convergen
e estimates have been presented in [18, 50℄. Insum, the resulting pre
onditioned eigensolver inherits the typi
al asymptoti
 multigrideÆ
ien
y from the multigrid pro
edure used to solve the asso
iated linear equations.On a smaller s
ale, resear
hers have also investigated ways to 
ompute solutionsto (1.1) and (1.2) [1, 58℄. It is obvious that the large kernels of the di�erential opera-tors 
url and div pose the main 
hallenge: A straightforward appli
ation of iterativete
hniques developed for the symmetri
 positive de�nite 
ase is doomed, be
ause thesemethods single out the smallest eigenvalues and will invariable 
hurn out kernel ve
-tors in the end. However, as � > 0 is requested, these are not the desired answer. Weare left with the task of steering the iterations away from the kernels.One option is regularization, i.e. adding a term 
orresponding to a weak ver-sion of grad div � for (1.1) and 
url 
url � for (1.2) to the di�erential operator (
f.[1, Se
t. 4.1℄ and [8℄). This will make the kernel \visible" and 
onvert the probleminto a standard positive de�nite one. Thus it be
omes amenable to \shift-and-invert"
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hniques 
ombined with, e.g., an impli
itly restarted Lan
zos method. The result-ing inde�nite linear systems of equations 
an be solved by means of Krylov-subspa
emethods, whose 
onvergen
e will degrade for very large problems, however.An alternative option is proje
tion of approximate eigenve
tors onto a 
omple-ment of the kernels. This is the gist of our method, whi
h we 
all proje
ted pre
on-ditioned inverse iteration (PPINVIT). The idea to forgo regularization in favor ofproje
tions is fairly natural. For instan
e, it is used in [57℄ for 2D problems arising inwaveguide design. Yet, little is gained, unless a fast proje
tions and good pre
ondi-tioners are at our disposal.Re
ently, multilevel methods for the solution of H(
url; 
)- and H(div; 
)-ellipti
 boundary value problems have be
ome available [3, 38, 40℄, if dis
retizationis based on spe
ial 
onforming �nite elements. The goal of this paper is to demon-strate how they 
an be forged into eigenproblem solvers featuring multigrid eÆ
ien
y.The key idea is to 
ombine the subspa
e variant of pre
onditioned inverse iteration[50℄ with an inexa
t multigrid proje
tion onto the orthogonal 
omplements of thekernels.As the approa
h 
ru
ially hinges on parti
ular properties of the �nite elements,those are reviewed in the next se
tion. Then we give a detailed des
ription of the algo-rithm, 
omplete with proje
tion 
ontrol and termination 
riteria. The fourth se
tionis dedi
ated to some theoreti
al investigations into the 
onvergen
e of the method.Yet, we have not su

eeded in providing a 
omprehensive theoreti
al analysis. To
ompensate for this, we report quite a few numeri
al experiments in the �nal se
tion.They give eviden
e of the eÆ
a
y and satisfa
tory performan
e of the method forsome typi
al large eigenvalue problems.2. Dis
rete eigenvalue problems. The Galerkin-dis
retization starts from theweak form of the eigenvalue problems: In the 
ase of (1.1) we seek u 2H�D (
url; 
),� > 0 su
h that(� 
url u; 
url v)0 = � (u;v)0 8v 2H�D (
url; 
) : (2.1)If (1.2) is of 
on
ern the weak form reads: Seek u 2H�D (div; 
), � > 0 su
h that(� divu; divv)0 = � (u;v)0 8v 2H�D (div; 
) : (2.2)As usual, we adopt the notation (�; �)0 for the L2(
)-inner produ
t. By testing (2.1)with gradients and (2.2) with 
urls we observe that solutions u are either weaklydivergen
e-free or weakly 
url-free. AsH�D (
url; 
)\H(div; 
) andH�D (div; 
)\H(
url; 
) are both 
ompa
tly embedded in L2(
) [42℄, the Riesz-S
hauder theoryguarantees the existen
e of in
reasing sequen
es of nonzero eigenvalues �1 � �2 � : : : .Sin
e the bilinear forms on the left hand sides of (2.1) and (2.2) are symmetri
, we
an also 
on
lude that the 
orresponding eigenspa
es are L2(
)-orthogonal.This 
arries over to the dis
rete eigenfun
tions obtained through a Galerkin-dis
retization of (2.1) and (2.2). In parti
ular, we use 
onforming �nite elements basedon a hexahedral or simpli
ial triangulation Th = fTigi of 
. Its fa
es and edges haveto be equipped with an interior orientation. Then, using the 
onstru
tions proposedby N�ed�ele
 in [49℄, we obtain the �nite element spa
es W1p(Th) � H(
url; 
) andW2p(Th) �H(div; 
) of any polynomial order p 2 N0 . Details and des
riptions of thedegrees of freedom are given in, e.g. [19, 31, 47, 49℄. Diri
hlet boundary 
onditions 
anbe enfor
ed by setting the degrees of freedom (d.o.f.) on �D to zero.



4 R. Hiptmair and K. NeymeyrIn the 
ase of lowest polynomial order p = 0 the �nite elements are either knownas Whitney-forms [14℄ or, in the engineering literature, as edge elements (H(
url; 
)-
onforming s
heme) and fa
e elements (H(div; 
)-
onforming s
heme), respe
tively.They owe these names to the de�nition of their d.o.f., whi
h are given by path integralsalong edges of the mesh and 
ux integrals over its fa
es, respe
tively( W10 7! Ruh 7! Re uh � te d�; e edge ; ( W20 7! Ruh 7! Rf uh � nf dS; f fa
e :The �nite element spa
es form aÆne equivalent families, if spe
ial transformationsare used [39℄. This makes it possible to show approximation properties (
f. [24℄) andthe inverse inequalitiesk
url uhk0 �Ch�1 kuhk0 8uh 2W1p(Th) ;kdivuhk0 �Ch�1 kuhk0 8uh 2W2p(Th) ;where h := maxfdiamT; T 2 Thg is the meshwidth and C > 0 are generi
 
onstants.By this terminology we mean that C may only depend on 
;�D; �; p, and the shape-regularity of the �nite element mesh. On the other hand, the value of generi
 
onstantsC may 
hange between di�erent o

urren
es.Despite the glaring di�eren
es in their de�nitions, the �nite element spa
es forH(
url; 
) and H(div; 
) introdu
ed above are 
losely related. As dis
ussed in [16,17, 39℄, they all 
an be viewed as spa
es of dis
rete di�erential forms. This is therationale behind our de
ision to treat both (1.1) and (1.2) in a 
ommon framework.In a sense, we will adopt the 
ommon notation Vh for bothW1p(Th) orW2p(Th) withsuitable Diri
hlet boundary 
onditions imposed.Hitherto, dis
rete di�erential forms supply the only 
onforming �nite elementdis
retization of (2.1) and (2.2) that 
an steer 
lear of so-
alled spurious modes. Forinstan
e, if one uses H1(
)-
onforming �nite elements to dis
retize the Cartesian
omponents of the ve
tor�elds u, the dis
rete spe
trum may feature eigenvalues thatare not related to an eigenvalue of the 
ontinuous problem [12, 15, 30℄. On the 
on-trary, in re
ent years rigorous arguments have been found, why dis
rete di�erentialforms ensure a 
orre
t approximation of the spe
trum [10, 13, 21, 22, 30, 48℄. For qua-siuniform and shape-regular families of meshes 
onvergen
e of the eigenvalues will bequadrati
 in the meshwidth [21℄ under mild assumptions on the smoothness of theeigenfun
tions.A key role in the 
onvergen
e theory is played by dis
rete potentials. They referto an ex
eptional property of dis
rete di�erential forms, namely that they give riseto analogues to de Rham's exa
t sequen
es in a purely dis
rete setting [11, 17℄. Inparti
ular, for 
ontra
tible 
, �D = �
 or �N = �
,fuh 2W1p(Th); 
url uh = 0g = gradW0p (Th) ; (2.3)fuh 2W2p(Th); divuh = 0g = 
urlW1p(Th) ; (2.4)where W0p (Th) stands for the spa
e of 
ontinuous �nite element fun
tions, pie
ewisepolynomial of degree p+ 1 over Th, the 
onventional Lagrangian �nite elements (see[23℄). A proof of these identities 
an be found in [39℄. Now it is 
lear, why W0p (Th)and W1p(Th) have been dubbed spa
es of dis
rete potentials. Those will be denotedby Sh and Gh : Sh 7! Vh is the related di�erential operator mapping into the kernelof Ah, that is, Gh := grad or Gh := 
url.
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ase of 
omplex topologies and Diri
hlet boundary 
onditions on parts of�
, the kernels of the di�erential operators are no longer 
ompletely given by suit-able dis
rete potentials. What is still missing are low-dimensional spa
es of harmoni
ve
tor�elds, H1(Th) � W10(Th) and H2(Th) � W20(Th), whose dimensions dependon the topology of 
 and the arrangements of the 
onne
ted 
omponents of �D. Forinstan
e, if �D = �
 the dimension of H1(Th) is equal to the number of 
onne
ted
omponents of �
. A basis for H1(Th) is given by the gradients of pie
ewise linear
ontinuous fun
tions that assume the value 1 on one 
onne
ted 
omponent of �D andvanish on the other. Evidently, this basis 
an be 
onstru
ted with little e�ort. In the
ase of Neumann boundary 
onditions throughout, dimH1(Th) is equal to the num-ber of homology 
lasses of boundary 
y
les that are bounding relative to 
. To �nd abasis, we asso
iate a 
utting surfa
e to ea
h homology 
lass and 
ompute the gradientof a pie
ewise linear fun
tion that is 
ontinuous ex
ept for a jump of height 1 a
rossthe 
utting surfa
e [2℄. The surfa
es 
an be determined by means of graph-theoreti
algorithms [34℄. In 
ase of mixed boundary 
onditions the situation is more involved[29℄, but for 
on
rete geometries the harmoni
 ve
tor�elds 
an usually be found easily.In the sequel we will write Hh for a spa
e of harmoni
 ve
tor�elds and will take forgranted that a basis fh1; : : : ;hqg of Hh has been 
omputed.In sum, we fa
e the abstra
t dis
rete eigenvalue problem: Seek uh 2 Vh su
h thata(uh;vh) = � (uh;vh)0 8vh 2 Vh ; (2.5)where a(�; �) stands for the positive semide�nite bilinear form from (2.1) or (2.2). Weasso
iate operators Ah : Vh 7! V 0h and Mh : Vh 7! V 0h with the bilinear forms in(2.5), whi
h 
onverts it into an operator equationAhuh = �Mhuh : (2.6)The basis of Vh dual to the set of degrees of freedom is 
alled the nodal basisfb�g�2J , with J a suitable index set. The basis fun
tions are lo
ally supported andsatisfy kb�k0 � C diam supp(b�) kb�kA � 2 J ; (2.7)with k�kA the energy-seminorm indu
ed by a(�; �). Given the nodal basis, (2.6) 
analso be read as a matrix equation, Ah being the sti�ness matrix and Mh the massmatrix, whi
h are both large and sparse.We follow the 
onvention that fun
tions will be given Roman symbols, whereasGreek letters are used for fun
tionals. Those related to the base spa
e Vh will begiven bold tokens, whereas entities from the potential spa
e Sh are printed in plainstyle.3. Proje
ted pre
onditioned inverse iteration (PPINVIT). Standard in-verse iteration (without shift) for an eigenvalue problem Ahuh = �Mhuh with sym-metri
 positive de�nite operators Ah : Vh 7! V 0h, Mh := Vh 7! V 0h 
omputes a newiterate xnewh 2 Vh from the old xh 2 Vh throughyh = �A�1h Mhxoldh ; xnewh := yh= kyhk0 ;for some � 6= 0. First, observe that the 
hoi
e of � is immaterial. Therefore, we mayset � = r(xh), where r(xh) = hAhxh;xhihMhxh;xhi (3.1)



6 R. Hiptmair and K. Neymeyrdenotes the Rayleigh quotient and h�; �i the duality pairing. This 
hoi
e of � has thee�e
t that yh � xh 
onverges to zero when r(xh) approa
hes the smallest eigenvalue.Thus we re
over the typi
al situation, where a 
orre
tion is determined by solving alinear system with a small residual as right hand side. This paves the way for theappli
ation of a pre
onditioner Bh : V 0h 7! Vh, an approximate inverse of Ah, to
ompute yh. We arrive at the update formulayh = xh �Bh(Ahxh � r(xh)Mhxh) ; xnewh := yh= kyhk0 ; (3.2)whi
h is the basi
 building blo
k for the algorithm of the pre
onditioned inverseiteration [52℄. The iterates will 
onverge linearly to an eigenve
tor belonging to thesmallest eigenvalue. The theoreti
ally possible but unlikely 
ase that pre
onditionedinverse iteration gets stu
k in a higher eigenvalue does not take pla
e in pra
ti
ethanks to rounding errors. If an invariant subspa
e 
orresponding to the s smallesteigenvalues is desired, we 
an resort to the subspa
e variant. After a Rayleigh{Ritzproje
tion, it updates ea
h of the s Ritz ve
tors x1h; : : : ;xsh a

ording to (3.2) withr(xh) repla
ed by the Ritz-values [18, 50℄.Let us return to the a
tual setting, in whi
h Ah is only positive semide�nite. Then,it is natural to demand that yh is 
ontained in the L2(
)-orthogonal 
omplement ofKer(Ah), as this is satis�ed for any eigenve
tor belonging to a nonzero eigenvalue.In other words, the (exa
t) inverse iteration should be based on the pseudo-inverseAyh : V 0h 7! Vh. Then xh will 
onverge to an eigenve
tor 
orresponding to �1 as longas the starting ve
tor (for the 
ase of exa
t arithmeti
) is not orthogonal to thateigenve
tor.Well, the pseudo-inverse Ay is elusive and has to be approximated. We suggestto do so by means of a plain multigrid method. It relies on a hierar
hy of nestedmeshes T0 � T1 � : : : � TL := Th and the 
orresponding �nite element spa
esV0 � V1 � : : : � VL := Vh. The natural way to 
reate su
h meshes is throughsu

essive re�nement of an initial rather 
oarse mesh T0, as des
ribed in [6, 9℄ fortetrahedral meshes. The re�nement strategies make sure that the shape regularity ofT0 is almost preserved for all �ner meshes.We instantly get a sequen
e of operators Al : V l 7! V 0l generated by the bilinearform a(�; �) on V l. The embedding of the spa
es V l�1 � V l spawns the 
anoni
alprolongation operators Il : V l�1 7! V l, l = 1; : : : ; L. Their adjoints I�l : V 0l 7! V 0l�1are known as restri
tions [37, Se
t. 3.6℄. These operators are purely lo
al and 
heaplyimplemented [40℄.The de�nition of the symmetri
 multigrid pre
onditioner is based on the re
ursivealgorithm sket
hed in �gure 3.1. There RTl is de�ned by 
�l; RTl �l� = h�l; Rl�li,�l;�l 2 V 0l. Then the appli
ation of the multigrid pre
onditioner Bh : Vh 7! V 0h 
anbe realized as follows
h := Bh�h () 
h := 0; mg
y
le(L; 
h;�h) : (3.3)The operators Rl : V 0l 7! V l o

urring in the algorithm are 
onventional smoothingoperators on level l, l = 1; : : : ; L. We will only 
onsider point smoothers of Ja
obi- orGau�-Seidel-type. For the latter, one sweep on level l, l = 1; : : : ; L, with initial guessul 2 V l and right hand side �l 2 V 0l readsforea
h(� 2 Jl) f ul  ul + h�l;ulia(b�;b�) � b� g :
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y
le< A > (int l,referen
e ul 2 V l, 
onst �l 2 V 0l)f if(l == 0) f u0 = Ay0�0 gelse f// Pre-smoothingfor(int i = 0 ; i < �1 ; + + i) f ul  ul +Rl(�l � Alul) g// Coarse grid 
orre
tion�l := �l �Ahul�l�1 := I�l �l
l�1 := 0 2 V l�1for(int i = 0 ; i < � ; + + i) mg
y
le< A >(l � 1,
l�1,�l�1)ul  ul + Il
l�1// Post-smoothingfor(int i = 0 ; i < �2 ; + + i) f ul  ul +RTl (�l �Alul) gggFig. 3.1. Multigrid algorithm de�ning the pre
onditioner Bh. The parameters �1; �2; � 2 Nde�ne the type of the 
y
le. For � = 1 we get a V (�1; �2)-
y
le, for � = 2 a W (�1; �2)-
y
le.Though Ah is singular, relaxation will go smoothly, as (2.7) guarantees a(b�;b�) >0. However, this inno
ent looking pro
edure disrupts everything, be
ause b� doesnot exa
tly belong to Ker(Al)?. Thus, the a
tion of Bh will invariably introdu
e
omponents in Ker(Ah) into the iterates. Eventually the iterates might tumble intothe kernel.To prevent this, we have to weed out the kernel 
ontributions as soon as they areintrodu
ed. Formally, this 
an be done by proje
ting yh from (3.2) onto Ker(Ah)?.Fortunately, if 
 is 
ontra
tible, the representation of Ker(Ah) through dis
rete po-tentials a

ording to Ker(Ah) = GhSh enables us to express the L2(
)-orthogonalproje
tion Ph : V 7! Ker(A)? throughPh := Id�GhT yhG�hMh ; (3.4)where Th : Sh 7! S 0h is the operator asso
iated with the bilinear formd : S � S 7! R ; d(uh; vh) = (Ghuh; Ghvh)0 ; uh; vh 2 Sh : (3.5)Yet, the exa
t 
omputation of T yh�h for some �h 2 S 0h is all but impossible. Just re
allthat in the 
ase of the eigenvalue problem inH(
url; 
) the operator Th is the dis
reteLapla
ian, i.e. in general des
ribed by a huge sparse sti�ness matrix. Therefore, we
annot help using an approximate pseudo-inverse also in this 
ase. A multigrid s
hemeanalogous to the one outlined in �gure 3.1 
omes handy, this time to be 
ondu
ted inthe potential spa
e with the operators Al repla
ed by their 
ounterparts Tl : Sl 7! S 0l .This will yield an approximate proje
tion ~PhePh := Id�GhChG�hMh ; (3.6)where Ch stands for the approximate (pseudo-)inverse of Th furnished by the multigrid
y
le. Reassuringly, we do not have to worry about pollution in Ker(Gh) this time,
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ause in (3.4) the operator Gh is applied to the result, suppressing any kernel
omponent.If we have to take into a

ount harmoni
 ve
tor�elds inHh := Span fh1; : : : ;hqg,their basis should be approximately orthogonalized to GhSh. This 
an be done on
eand for all before the a
tual eigenvalue 
omputations utilizing a few steps of theapproximate multigrid proje
tion ePh. For the sake of eÆ
ien
y, a nested iterationapproa
h should be employed. Eventually, the basis fun
tions should be L2(
)-orthonormalized to ea
h other by solving a small linear system of equations. Ifeh1; : : : ; ehq are the fun
tions thus obtained, eHh := Spanneh1; : : : ; ehqo will be an-other suitable spa
e of harmoni
 ve
tor�elds. Given this prepro
essing, orthogonalityto eHh 
an be easily enfor
ed.The �nal algorithm implementing the inexa
t proje
tion is given in �gure 3.2(right). We point out that Gh is a lo
al operator, too, whose matrix representation
an be derived from the embedding GhSh � Vh [40, Se
t. 6℄. Let us elu
idate thisfor edge elements: Assuming nodal bases of Vh and Sh the evaluation of Gh boilsdown to simply distributing the nodal values from verti
es (to whi
h d.o.f. of Sh areasso
iated) to edges, taking into a

ount their orientations by means of weights +1or -1.In the end, in
orporating the total a
tion of proje
t into ~Ph, we get the followingupdate formula for an approximate eigenve
toryh = ~Ph(Id�Bh(Ah � �Mh)) ~Phxh ; xnewh = yh= kyhk0 : (3.7)Cast into an algorithm, this yields the pro
edure update displayed in �gure 3.2 (left).update(referen
e xh 2 Vh,� 2 R)f proje
t(xh)�h := Ahxh ;  h :=Mhxh�h := �h � � �  h
h := 0 2 Vhmg
y
le< A >(L,
h,�h)xh  xh � 
hproje
t(xh)xh  xh=jxhjg
proje
t(referen
e xh 2 Vh)f // Treat harmoni
 ve
tor�eldsfor(int i = 1; i � q; + + i)f xh  xh � �ehi;xh�0 � ehi g�h :=Mhxh�h := G�h�h
h = 0 2 Shmg
y
le< T >(L,
h,�h)xh  xh �Gh
hgFig. 3.2. Update pro
edure for the proje
ted pre
onditioned inverse interationIt is hazardous to repla
e � in (3.7) by the plain Rayleigh quotient (3.1), be
ausesigni�
ant kernel 
omponents might remain after the inexa
t proje
tion. If we set� = r(xh), we might en
ounter �� � though Ahxh = �MhPhxh, i.e. the 
omponentsof xh in Ker(Ah)? already provide the desired eigenve
tor. Guided by the idea that thes
heme should 
ome 
lose to inverse iteration in the 
omplement Ker(Ah)? we should
hoose � = r?(xh) = hAhxh;xhi = (Phxh; Phxh)L2(
). In pra
ti
e, we are denied thisoption as Phxh is not available. However, we still want a repla
ement for r? that isinsensitive to kernel 
omponents. A promising 
andidate is the \two-step Rayleigh
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AhM�1h Ahxh;xh�hAhxh;xhi ; (3.8)with rQ(x) � r?(xh) � r(xh). Obviously, it yields an eigenvalue, if we have alreadyhit an eigenve
tor in Ker(Ah)?. Two issues arise, nevertheless: First, there is a riskof breakdown, if Ahxh = 0. This means that the 
urrent approximate eigenve
torlies in Ker(Ah), whi
h hints at inadequate approximate proje
tions. A way to dete
tand 
ure this 
ondition will be dis
ussed in se
tion 5. The se
ond problem is that theevaluation of (3.8) entails the solution of a linear system Mhzh = Ahxh for the massmatrix Mh. As Mh is well 
onditioned, a few steps of an iterative method (CG,Gau�-Seidel) will give a reasonable approximate solution. Moreover, if (�;xh) is already
lose to an eigenvalue/eigenve
tor pair, �xh is an ex
ellent initial guess.With all building blo
ks in pla
e, we 
an now state the 
ru
ial update step ofthe algorithm for the 
omputation of the s, s 2 N, smallest nonzero eigenvalues and
orresponding eigenve
tors of (2.6). Its details are given in �gure 3.3. The pro
e-dure ppinvit step is meant to improve on approximations �i and xih, i = 1; : : : ; s, foreigenvalues and eigenve
tors.ppinvit step (referen
e (�1; : : : ; �s)T 2 Rs , referen
e (x1h; : : : ;xsh) 2 (Vh)s)f // Ritz-proje
tionfor(i = 1 ; i � s ; + + i) f�ih := Ahxih; zih = �ixih; 
gm < Mh > (zih;�ih)aii := 
�ih; zih�; mii := 
�ih;xih�for(j = 1 ; j < i ; + + i) f aij = aji := D�jh; zihE; mij = mji := D�jh;xihE gg// Rayleigh{Ritz pro
edureAs := (aij) 2 Rs;s ; Ms := (mij) 2 Rs;s ;Find Y 2 Rs;s and Ritz values � = diag(�1; : : : ; �s) su
h that AsY = YMs�// Ritz ve
tors(x1h; : : : ;xsh) (x1h; : : : ;xsh) � Y// Approximate proje
ted inverse iterationfor(i = 1 ; i � s ; + + i) f update(xih; �i) gg Fig. 3.3. One step of the subspa
e variant of the algorithm for proje
ted pre
onditioned inverseiteration. 
gm < Mh > (zh;�h) refers to m 2 N CG-steps for the solution of Mhzh = �h.The dis
ussion of termination 
riteria is postponed to se
tion 5. Initial guessesfor the eigenve
tors 
an easily obtained through nested iteration by prolongatingapproximate eigenfun
tion from 
oarser grids.Remark. For positive de�nite operators the Rayleigh{Ritz method is often appliedto a modi�ed/enlarged subspa
e (
onsisting of the a
tual subspa
e, the a
tual sear
hdire
tions and possibly the old iterates). This is known to improve 
onvergen
e [44, 45℄if Ah > 0. Yet, this tri
k is not advisable for the semide�nite problem, be
ause amassive ampli�
ation of kernel 
omponents might o

ur.



10 R. Hiptmair and K. Neymeyr4. Convergen
e. The theoreti
al examination of the algorithm starts with theL2(
)-orthogonal de
omposition and dual polar de
ompositionVh = X h 
Zh ; Zh := Ker(Ah) ; V 0h = X 0h 
Z 0h : (4.1)With respe
t to the splittings (4.1) the operators 
an be written in blo
k form. For asymmetri
 pre
onditioner it readsBh = �B?? B0?BT0? B00� : X 0h 
Z 0h 7! X h 
Zh ; (4.2)and for the other operatorsAh = �A? 00 0� ; Mh = �M? 00 M0� ; Ayh = �A�1? 00 0� ; ePh = �Id? 00 P0�These formulas are immediate from the de�nition of the operators and the propertiesof the splittings. Be aware that B0? 6= 0 
auses the pollution by kernel 
omponents,and P0 6= 0 hints at an inexa
t proje
tion.Using AhAyh +Q�h = Id�h, where Qh : Vh 7! Zh is the L2(
)-orthogonal proje
-tion, we obtain from (3.7) with � = rQ(xh)yh = ePh �(Ih �BhAh)(Ih � �AyhMh) + �BhQ�hMh + �AyhMh� ePhxh :Splitting yh = y0 + y?, xh = x0 + x?, x0;y0 2 Zh, y?;x? 2 X h, and plugging inthe blo
k forms of the operators leads to�y? � zhy0 � = �Id? 00 P0� �Id?�B??A? 0�BT0?A? Id0��Id?� �A�1? M? 00 Id0�++�0 �B0?M00 �B00M0�!�Id? 00 P0��x?x0�with zh := �A�1? M?x?. This results in a kind of error propagation equation�y? � zhy0 � = �Id? �B??A? �B0?M0P0�P0BT0?A? P0(Id0 + �B00M0)P0��x? � zhx0 � : (4.3)Note that (zh; 0)T is what an exa
t inverse iteration for the pseudo-inverse would giveus before s
aling. Thus (4.3) re
e
ts how mu
h the proje
ted pre
onditioned inverseiteration di�ers from an exa
t inverse iteration. Next, we aim at quantitative estimatesof this deviation. To this end we seek bounds for norms of the blo
k-operators in (4.3).Various norms need to be 
onsidered for operators Xh : Vh 7! VhkXhk0!0 := supvh2Vh kXhvhk0kvhk0 ; kXhkZ!0 := supvh2Zh kXhvhk0kvhk0 ;kXhkA!A := supvh2Vh kXhvhkAkvhkA ; kXhkA!0 := supvh2Vh kXhvhk0kvhkA ;kXhkZ!A := supvh2Zh kXhvhkAkvhk0 :



Multilevel Method for Mixed Eigenproblems 11In order to bound the operator norm kI �B??A?kA!A we remember that k�kA is theenergy-seminorm inH(
url; 
) andH(div; 
), respe
tively. In other words, this normagrees with the 
onvergen
e rate of the multigrid method in the energy-seminorm. In[38, 40, 41℄ it was shown that this 
onvergen
e rate is bounded away from 1 indepen-dently of the number L of grid levels involved in the multigrid s
heme. This justi�esthe assumption kId? �B??A?kA!A � 
 < 1 : (A1)In fa
t numeri
al experiments give eviden
e that we 
an expe
t 
 to be smaller than0:5, at worst.Next, we have to gauge the impa
t of the inexa
t proje
tion. Again, we 
an relyon theoreti
al results and pra
ti
al experien
e with multigrid methods to justifykGh(Idh � ChTh)uhk0 � � kGhuhk0 8uh 2 Sh (A2)for � < 1 uniformly in L. Note that � is the 
onvergen
e rate of the iterative solver inpotential spa
e. The pra
ti
al range for � will be the same as for 
. From (A2) andTh = G�hMhGh we 
on
lude�max(Gh(T yh � Ch)G�hMh) = �max(G�hMhGh(T yh � Ch)) = �max(Idh � ThCh) = � :Be
ause of (Idh �GhT yhG�hMh)x0h = 0 for x0h 2 Zh, this tea
hes us that

P0x0h

0 = 

x0h �GhChG�hMhx0h

0� 


(Idh �GhT yhG�hMh +Gh(T yh � Ch)G�hMh)x0h


0� 


Gh(T yh � Ch)G�hMhx0h


0 � � 

x0h

0 : (4.4)The remaining terms involving the multigrid pre
onditioner will be ta
kled under therestri
tive assumption of uniform re�nement. That is, we take for granted a geometri
de
rease of the meshwidths a

ording to hl � 2�l.Under these 
ir
umstan
es, the bilinear form sl : V l � V l 7! R that de�nes thesmoother Rl via sl(Rl�l;vl) = �l(vl) 8vl 2 V l; �l 2 V 0lful�lls Ch�2l (ul;ul)0 � s(ul;ul) � Ch�2l (ul;ul)0 8ul 2 V l :For the point smoothers that we have in mind, this is a 
onsequen
e of (2.7). Inparti
ular, s(�; �) turns out to be positive de�nite. Then the Cau
hy-S
hwarz inequalitygives for x0l 2 Zl

RlMlx0l 

20 � Ch2l s(RlMlx0l ; RlMlx0l ) = Ch2l supwl2Vl s(RlMlx0l ;wl)2s(wl;wl)� Ch4l supwl2Vl 
Mlx0l ;wl�2kwlk20 � Ch4l 

x0l 

20 ;



12 R. Hiptmair and K. Neymeyrfrom whi
h we inferkRlMlkZ!0 � Ch2l and kRlMlkZ!A � Chl : (4.5)The latter estimate is a 
onsequen
e of the inverse inequalities (2) that involvea(ul;ul) � Ch�2l kulk20 : (4.6)The same arguments revealkRlAlxlk20 � Ch2l s(RlAlxl; RlAlxl) = Ch2l supwl2Vl s(RlAlxl;wl)2s(wl;wl)� Ch4l supwl2X l hAlxl;wli2kwlk20 � Ch2l kxlk2A :The inverse inequality in V l is 
on
ealed in the �nal estimate. Eventually,kRlAlkA!0 � Chl and kRlAlkA!A � C : (4.7)The estimates 
arry over to RTl , of 
ourse. Now we are in a position to examine thefull multigrid 
y
le. For the sake of simpli
ity we 
on�ne ourselves to a V(1,1)-
y
le:Lemma 4.1. Assume that the smoother alone provides a 
onvergent iteration inthe k�kA-seminorm. ThenkBlAlkA!0 � KA ; kBlMlkZ!0 � K0 ; kBlMlkZ!A � K? ;with 
onstants KA > 0, K0 > 0 and K? > 0 that depend on the shape-regularity ofthe meshes T0; : : : ; TL, but not on l.Proof. The re
ursive nature of the multigrid algorithm suggests that we study twosubsequent levels l and l � 1. For ease of notation, we will use a subs
ript h to referto level l (�ne grid), and H will tag entities asso
iated with level l � 1 (
oarse grid).We retra
e the single steps of the algorithm of �gure 3.1 and start with �h := Ahxhfor some xh 2 Vh. Presmoothing takes it to wh := RhAhxh sin
e a zero ini-tial guess has to be used. Afterwards, the 
oarse grid 
orre
tion will result in
H := BHI�hAh(xh�wh). Then, with PHh : Vh 7! XH denoting the a(�; �)-orthogonalproje
tion, we infer from I�hAh = AHPHh
H = BHAHPHh (Idh �RhAh)xh :As the multigrid method is supposed to 
onverge in the k�kA-seminorm,kIdH �BHAHkA!A < 1 is guaranteed, so thatkBHAHkA!A � 2 : (4.8)The smoother alone also provides a 
onvergent iteration, i.e kIdh �RhAhkA!A < 1,su
h that k
Hk0 � kBHAHkA!0 kxhkA ; k
HkA � 2 kxhkA :With uh := wh + Ih
H , whi
h ful�lls due to (4.7)kuhk0 � (kBHAHkA!0 + Ch) kxkA ; kuhkA � 4 kxhkA ;



Multilevel Method for Mixed Eigenproblems 13we 
an express the result of post-smoothing asBhAhxh = uh +RTh (Ahxh �Ahuh) = wh + uh �RThAhuh :Again, we invoke (4.7) and seekBhAhxhk0 � (kBHAHkA!0 + Ch) kxkA+ Ch kuhkA � (kBHAHkA!0+ Ch) kxkA :Consequently, kBhAhkA!0 � kBHAHkA!0+Ch. Taking into a

ount that B0 = Ay0,i.e. kBhAhkA!0 = 0, and the geometri
 de
rease of the meshwidth, this ensureskBhAhkA!0 � KA, for KA > 0 independent of the level.Analogous 
onsiderations 
an be 
arried out with �h :=Mhx0h for some x0h 2 Zh.Presmoothing yields wh := Rh�h, and after the 
y
le on the 
oarse grid we end upwith 
H = 
1 + 
2 := BHI�hMhx0h +BHI�hAhwh :As I�hMh = MHQHh , where QHh : Vh 7! VH is the L2(
)-orthogonal proje
tion, weget for the �rst 
ontribution to 
Hk
1k0 � kBHMHkZ!0 

x0h

0 ; k
1kA � kBHMHkZ!A 

x0h

0 :Similarly, from I�hAh = AHPHh , (4.5) and (4.8) follows thatk
2k0 � 

BHAHPHh wh

0 � kBHAHkA!0 kwhkA � Ch kBHAHkA!0 

x0h

0 ;k
2kA � 

BHAHPHh wh

A � kBHAHkA!A kwhkA � Ch 

x0h

0 :In sum, based on earlier estimates,k
Hk0 � (kBHMHkZ!0 + ChKA) 

x0h

0 ;k
HkA � (kBHMHkZ!A + Ch) 

x0h

0 :Next we 
onsider the 
oarse grid 
orre
tion uh = wh + Ih
H . As the prolongation isan identity mapping in disguise, the following estimates are straightforward:kuhk0 � �kBHMHkZ!0 + ChKA + Ch2� 

x0h

0 ;kuhkA � (kBHMHkZ!A + Ch) 

x0h

0 :The postsmoothing results inBhMhx0h = uh +wh �RhAhuh :By (4.7) and (4.8) we knowkRhAhuhk0 � Ch kuhkA ; kRhAhuhkA � C kuhkA :We end up with the estimates

BhMhx0h

0 � �(1 + Ch) kBHMHkZ!0 + Ch((1 + Ch)KA + Ch2 + Ch3� 

x0h

0 ;

BhMhx0h

A � (kBHAHkZ!A + Ch) 

x0h

0 :



14 R. Hiptmair and K. NeymeyrOn the 
oarsest grid l = 0, we have B00M0 = 0 and B0?M0 = 0. Then the geometri
de
rease of the meshwidth leads to the assertion of the lemma for kBlMlkZ!A. Forthe other norm, we observekBhMhkZ!0 � (1 + Ch) kBHMHkZ!0 + Ch :In 
losed form this amounts tokBlMlkZ!0 � C lXi=0 lYj=i(1 + C2�j) � 2�i :As lQj=i(1+C2�j) � exp(2C), the bottom line is that kBlMlkZ!0 is uniformly bounded.Now, we 
an 
onvert (4.3) into the estimates�

y?h � �A�1? M?x?h 

A

y0h

0 � � � 
 �K?�KA� �2(1 + �K0)��

x?h � �A�1? M?x?h 

A

x0h

0 � :(4.9)All the 
onstants are basi
ally independent of the meshwidth and the number L oflevels involved in the multigrid solvers. Heuristi
 insights into the signi�
an
e of (4.9)
an be gained from the theory of pre
onditioned inverse iteration in the positivede�nite 
ase [52, 53℄. If, with � = r?, for some positive � < 1

y?h � �A�1? M?x?h 

A � � 

x?h � �A�1? M?x?h 

A (4.10)the PINVIT 
onvergen
e theory gives some lengthy, sharp estimate for the Rayleighquotient r? of the new iterate y?h demonstrating that PINVIT 
onverges at leastlinearly to the eigenvalue �i. Here, we 
ite only the asymptoti
ally sharp estimatefrom [51℄. In the 
ase of a subspa
e iteration let �j (�0j) be the j{th Ritz value (orderedby magnitude) of a given (and the next) subspa
e and let �i and �i+1 be the nearesteigenvalues en
losing �j . Then�i;i+1(�0j) � �� + (1� �) �i�i+1�2�i;i+1(�j) ; �i;i+1(�) := � � �i�i+1 � � : (4.11)In the PINVIT theory, � is the spe
tral radius of its error propagation matrix. Forthe best multigrid or domain de
omposition pre
onditioners � is bounded away from1 independently on the meshwidth. Having in mind the 
onvergen
e fa
tor presentedin Eq. (4.11), we 
on
lude that PINVIT 
onverges mesh-independently. To illustratethese results 
onsider the dis
rete Lapla
ian on [0; �℄2 whose smallest eigenvalues(with multipli
ity) tend to 2; 5; 5; 8; 10; 10; 13; 13; : : : . Figure 4.1 displays upper bounds�(�;�), 
f. Theorem 2.1 in [50℄, for the relative de
rease of �0j towards the next smallereigenvalue �i, i.e. �0j � �i�j � �i � �(�;�):In the semide�nite 
ase Eq. (4.9) applies to PINVIT in Ker(A)? only for theunrealisti
 
hoi
e of a perfe
t proje
tion, i.e. � = 0. For a small � > 0 the iterates
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Fig. 4.1. Estimates �(�;�) for �h on [0; �℄2.in Ker(A)? will inevitably be perturbed by the term �B0?M0P0x0 in Eq. (4.3).Nevertheless, (4.10) may hold with � < 1 throughout the iteration. Then 
onvergen
ea

ording to the PINVIT theory is guaranteed (apart from the minor modi�
ation ofrepla
ing r? by rQ). Unfortunately, if 

x?h � �A�1? M?x?h 

A � 

x0h

0 the 
onstantin (4.10) may blow up. However, (4.9) tea
hes that in this 
ase a signi�
ant redu
tionof the kernel 
omponent will be a
hieved, provided that � is suÆ
iently small. Hen
e,� > 1 might happen in a single step, but in the next step (4.10) is likely to hold witha rather small �. In other words, for a � � 1 the kernel 
omponents are damped outin the 
ourse of the iteration. Therefore, the perturbations be
ome more and moreinsigni�
ant. This e�e
t is elusive and we have not su

eeded in giving a rigorousanalysis.
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kernel components) 
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0.9Fig. 4.2. Relative damping of the kernel 
omponent forthe model problem.

Let us study as a modelsystem the eigenvalue problemfor Ah = diag(2; 5; 8; 0) with
 = 0:5. Then the pre
ondi-tioner is a 4 � 4 matrix. Wetake bmax as the bound for theabsolute value of B00 and forthe A{norm of B0?. Note thatthe low dimension of the modelproblem is motivated by the fa
tthat pre
onditioned inverse it-eration takes its extremal 
on-vergen
e in a 2D spa
e whi
his spanned by those eigenve
-tors whose 
orresponding eigen-values en
losing the Rayleighquotient of the a
tual iterate.Moreover, as a result of [52℄ theassumption that all eigenvaluesare of the algebrai
 multipli
ity1 is non-restri
tive. In �gure 4.2



16 R. Hiptmair and K. Neymeyrthe maximal ratio jx0hj=kxhk0 after 10 steps of PPINVIT is displayed in a 
ontour plotfor � 2 [0; 1℄ and bmax 2 [0; 1℄. For ea
h point of the underlying 50� 50 mesh 150000
ombinations of random pre
onditioners and random start ve
tors with a �xed initialkernel 
omponent have been tested. For � < 0:2 the kernel is damped out very wellindependently on the 
hoi
e of bmax.
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Fig. 4.3. Components of the iterate xh for the model problem. Components to (�1; �2; �3; 0)
orrespond to symbols (o; x;+; �). Left: 1st step of PPINVIT Right: 4th step of PPINVIT.The 
omponents of the iterates within the 1st and 4th step of PPINVIT in the
ase of poorest 
onvergen
e 
an be looked up in �gure 4.3. For 107 
ombinations ofrandom pre
onditioners (
 = 0:5, � = 0:25, bmax = 0:2) the 
omponents of thoseve
tors whi
h are responsible for the poorest de
rease of the Rayleigh quotient aredisplayed against their two-step Rayleigh quotient. While in the �rst step of PPINVITthe kernel 
omponents appear as the dominating part, we identify in the 4th stepwithin the interval [�i; �i+1℄ the ith and i + 1th 
omponents as the prevailing ones.Su
h a result does not 
ome as a surprise, and 
an be understood by the distin
tivefeature of pre
onditioned inverse iteration to take its extremal 
onvergen
e in exa
tlythis 2D spa
e. The kernel has all but disappeared. Thus, �gure 4.3 highlights a keytrait of PPINVIT: Convergen
e is brought about by the subtle intera
tion of multiplesteps.Some quantitative 
on
lusions 
an also be drawn from (4.9).Theorem 4.2. If � := �Q < �� for all steps of the iteration and the initial iteratexh satis�es 

x0h

0kxhkA � (1� 
)2��K?then this will hold for all other iterates, provided that the approximate proje
tion issuÆ
iently a

urate.Proof. Given xh = x0h + x?h 2 Vh, x0h 2 Zh, x?h 2 X h, 
omputing yh = y0h + y?ha

ording to (4.3), we obtain from (4.9)

y?h 

A �kzhkA � 
 

x?h � zh

A � ��K?� 

x0h

0 ;

y0h

0 �KA� 

x?h � zh

A + �2(1 + ��K0) 

x0h

0 ;



Multilevel Method for Mixed Eigenproblems 17where zh := rQ(xh)A�1? M?x?h . This de�nition immediately implies

zh � x?h 

2A = kzhk2A � 2 
A?z?h ;x?h �+ 

x?h 

2A= kzhk2A � (2rQ(xh)r?(xh) � 1) 

x?h 

2A :Owing to the Cau
hy-S
hwarz-inequality, we have rQ(xh) � r?(xh) and thus

zh � x?h 

A � kzhkA ; kzhkA � 

x?h 

A (4.12)The above estimates 
an be blended into

y0h

0

y?h 

A � KA� 

x?h � zh

A + �2(1 + ��K0) 

x0h

0kzhkA � 
 

x?h � zh

A � ��K?� kx0hk0� KA� + �2(1 + ��K0)

x0h

0=kzhkA(1� 
)� ��K?�kx0hk0=kzhkAFrom (4.12) and the assumptions of the theorem, we 
on
lude

x0h

0kzhkA � (1� 
)2��K?� =) (1� 
)� ��K?� 

x0h

0kzhkA � 12 (1� 
) ;whi
h implies 

y0h

0

y?h 

A � �� 2KA1� 
 + 1 + ��K0��K? � :The ratio 

y0h

0=

y?h 

A will remain below the threshold (1� 
)=2��K?�, if�2 � (1� 
)24��K?KA + (1� 
)(1 + ��K0) :This states the 
ondition on the a

ura
y of the approximate proje
tion. As the ratioin the statement of the theorem is not a�e
ted by s
aling, the proof is �nished.The previous theorem guarantees that the iterates 
annot plunge into the kernel,if a suÆ
ient damping of kernel 
omponents is a
hieved by the proje
tion.5. Proje
tion 
ontrol and termination 
riteria. The theoreti
al 
onsidera-tions highlight the importan
e of a good proje
tion: It goes without saying that themethod will fail, if the proje
tion is too weak to reign in kernel 
omponents. Takingthe 
ue from theorem 4.2, we aim to for
e the ratio kx0hk0 : kxhkA below a thresholdÆ > 0 for all iterates.From the properties of the inexa
t proje
tion ePh and (4.4) we learn that�1� � � kxh � ePxhk0kxhkA � Æ =) kP0xhk0kxhkA � Æ : (5.1)Of 
ourse, good bounds for � are hard to get. We take a 
rude estimate based on thede
rease of the L2(
)-norm of the residual during a multigrid sweep. It is 
omputedwhenever a proje
tion is 
arried out, and � is 
hosen to be the maximum of allestimates thus obtained. The �nal adaptive proje
tion is depi
ted in �gure 5.1. There,� 2℄0; 1[ is a safety fa
tor intended to prevent gross underestimation of �.



18 R. Hiptmair and K. Neymeyrproje
t(referen
e xh 2 Vh,Æ > 0,� 2 [0; 1[)f for(int i = 1; i � q; + + i) f xh  xh � �ehi;xh�0 � ehi g� := hAhxh;xhido f�h := G�hMhxh; 
h = 0 2 Shmg
y
le< T >(L,
h,�h); zh := Gh
h; xh  xh � zh�h := �h � Th
h; � := h�h; �hi = h�h; �hi; ��  maxf��; (1� �)� + �g� := ��(1� ��) � hMhzh; zhi�gwhile (� > Æ);gFig. 5.1. Enhan
ed proje
tion with adaptive 
ontrol. The global variable �� is set to 0 initially.Our next 
on
ern is the termination of the iteration. After the 
ompletion of theRayleigh Ritz pro
edure, 
f. �gure 3.3, there are on hand the Ritz values �i and theRitz ve
tors xih with 

xih

0 = 1, i = 1; : : : ; s. The M�1h {norm of the residual rih =Ahxih��iMhxih provides a simple residual bound [54℄ for the quality of the Ritz value�i. It is guaranteed that in ea
h interval [�i � 

rih

M�1h ; �i + 

rih

M�1h ℄ an eigenvalueof (Ah;Mh) is 
ontained. For disjoint intervals the �i provide s approximations to sdi�erent eigenvalues of (Ah;Mh). In pra
ti
e the inverse of the mass matrix may beapproximated through one Gau�-Seidel step. This yields a quantity that is equivalentto the M�1h -norm independent of the meshwidth.Beyond, we suggest that the ratio r=rQ of Rayleigh-quotients of approximateeigenfun
tions is used to judge whether the iteration has been su

essful. Only if it isvery 
lose to 1 the results 
an be trusted.Remark. It is not a moot point that Æ should be redu
ed during the iteration asthe approximate eigenve
tors get 
loser and 
loser to the exa
t eigenve
tors. However,we failed to �nd a strategy with heuristi
, let alone rigorous, underpinning.6. Numeri
al experiments. For all numeri
al experiments 
overed in this se
-tion we relied on lowest order edge/fa
e elements on uniform Cartesian grids. Ritzproje
tions and eigenvalues/eigenfun
tions on the 
oarsest grids were determined bymeans of suitable LAPACK routines. All 
omputations were 
arried out in doublepre
ision arithmeti
, whereas the matri
es were stored in single pre
ision format. Ho-mogeneous Diri
hlet boundary 
onditions were imposed throughout. We 
omputed 7eigenfun
tion/eigenvalue pairs in ea
h 
ase.For the tests we resorted to three di�erent settings: Setting A used the unit 
ube
 =℄0; 1[3 and 
onstant 
oeÆ
ient � � 1. The uniform grid on level l, l = 0; : : : ; 5
onsisted of 27 � 8l equal 
ubes. This means that for l = 5 the dis
retized problems(1.1) and (1.2) feature 2599200 and 2626560 degrees of freedom, respe
tively.Setting B sports the dis
ontinuous 
oeÆ
ient�(x) = (100 if jx� ( 13 ; 13 ; 13 )T j � 13 ;1 elsewhere ;



Multilevel Method for Mixed Eigenproblems 19and retains the unit 
ube as 
omputational domain. The grids are the same as forsetting A. We study this situation, be
ause dis
ontinuous 
oeÆ
ients are notoriousfor a�e
ting multigrid 
onvergen
e.In setting C we set � � 1, but used the \L-shaped" 
omputational domain 
 :=℄0; 1[3n([0; 12 ℄� [0; 13 ℄� [0; 12 ℄) equipped with a 
oarsest Cartesian grid with meshwidth12 in x1- and x3-dire
tion, and meshwidth 13 in x2-dire
tion, leading to 1048800 edgesthat bear degrees of freedom on level 5.Nested iteration with a tight termination threshold (see below) was used to obtainthe \exa
t dis
rete eigenvalues" for ea
h setting. Those for problem (1.1) are listed intable 6.1.Setting Level #1 #2 #3 #4 #5 #6 #7l = 3 19.76 19.76 19.76 29.65 29.65 49.58 49.58A l = 4 19.74 19.74 19.74 29.61 29.61 49.40 49.40l = 5 19.74 19.74 19.74 29.61 29.61 49.36 49.36l = 3 20.02 20.02 20.02 29.71 29.71 49.76 49.76B l = 4 20.00 20.00 20.00 29.68 29.68 49.58 49.58l = 5 19.99 19.99 19.99 29.67 29.67 49.53 49.53l = 3 15.19 22.77 22.91 34.35 35.14 44.58 49.80C l = 4 15.17 22.71 22.85 34.25 35.01 44.21 49.35l = 5 15.11 22.70 22.83 34.23 34.97 44.11 49.20Table 6.1The seven smallest nonzero \exa
t dis
rete eigenvalues" of problem (1.1) 
omputed by nestediteration (
f. experiment 2)Experiment 1. To begin with, we monitored the behavior of the \two-step"Rayleigh quotients rQ from (3.8) and the M�1l -norms 
M�1l �l;�l� 12 of the residuals�l := Alxl� rQ(xl)Mlxl of approximate eigenfun
tions xl 2 V l, l = 3; 4; 5. Of 
ourse,M�1l �l 
ould not be 
omputed exa
tly, but was realized by two Gau�-Seidel-sweeps(GS). Both quantities were tra
ked for 3 eigenfun
tions (belonging to eigenvalues#1,#3, and #5) during 15 iterations of PPINVIT. Random grid fun
tions with theirdegrees of freedoms uniformly distributed in [0; 1℄ served as initial guesses for theeigenfun
tions. We observed no qualitative di�eren
es between the data re
orded indi�erent runs of the 
ode.Single symmetri
 multigrid V(1,1)-
y
les with lexi
ographi
 GS-smoothers wereused both in V l and potential spa
e. The inverse mass matrix required for the 
al
u-lation of the two-step Rayleigh quotient was approximated by three steps of the pre-
onditioned 
onjugate gradient (PCG) method with a symmetri
 GS-pre
onditioner.The values of rQ were 
onsidered as useful approximations of eigenvalues andthus it makes sense to examine their relative errors with respe
t to the \exa
t dis
reteeigenvalues" from table 6.1. The results for problem (1.1) are plotted in �gures 6.1,6.2. First of all, after the e�e
t of the random initial guesses has abated, a ratheruniform de
rease of the errors/residual norms takes pla
e. Next, we note that theM�1l -norm of the residual permits us to assess the a

ura
y of the approximate eigen-value very well. As expe
ted, the larger the eigenvalue the poorer the 
onvergen
e (upto a total failure to 
onverge for the 7th eigenvalue). One should follow the 
ustomaryadvi
e that dimension of the subspa
e should be 
hosen somewhat larger than thenumber of eigenvalue one is interested in.
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Fig. 6.1. Experiment 1, setting A, problem (1.1). Left: Relative errors of two-step Rayleigh quo-tients when 
ompared with \exa
t dis
rete eigenvalues". Right: Approximate M�1l -norms of residualsExperiment 2. Of 
ourse, 
hoosing random initial guesses is foolish, in parti
ular,as a nested iteration approa
h will do mu
h better in a multilevel environment. Thebehavior of the approximate M�1l -norms of the eigenfun
tion residuals during nestediteration was re
orded for the various settings. On ea
h level l the iteration wasterminated, if 
M�1l �l;�l� � � for eigenfun
tion #1 through #5, where � > 0 is apres
ribed threshold.
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Fig. 6.2. Experiment 1, settings B(left) and C(right), problem (1.1): Approximate M�1l -normsof residualsThe same multigrid 
y
les as before were employed. Moreover, we 
hose � = 10�4and � = 10�3. In the latter 
ase the evaluation of M�1h in the 
omputation of rQwas based on only one symmetri
 GS-sweep, whi
h is mu
h 
heaper than the threePCG-steps used for the former 
ase. The results 
an be looked up in �gures 6.3-6.6.
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Fig. 6.3. Experiment 2, setting A, edge elements: Nested iteration (Left: M�1h realized by 3PCG-steps. Right: M�1h realized by 1 GS-sweep.)The data strikingly 
on�rm that the 
onvergen
e of multigrid-PPINVIT is inde-pendent of the depth of re�nement: About the same number of iterations is requiredon ea
h level to a
hieve the pres
ribed redu
tion of the norm of the residuals.Experiment 3. Next, we studied the impa
t of 
hoi
es of di�erent multigrid 
y
lesfor both the update and proje
tion step in setting A. Everything else is like in the�rst experiment. In table 6.2 we report the rate of 
onvergen
e of the eigenvalueapproximations between the 3rd and 5th step of the iteration� =vuutrQ(x(5)h )� �exa
trQ(x(3)h )� �exa
t : (6.1)
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Fig. 6.4. Experiment 2, setting A, fa
e elements: Nested iteration (Left: M�1l realized by 3PCG-steps. Right: M�1l realized by 1 GS-sweep.)
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Fig. 6.5. Experiment 2, setting B, edge elements: Nested iteration (Left: M�1l realized by 3PCG-steps. Right: M�1l realized by 1 GS-sweep.)
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Fig. 6.6. Experiment 2, setting C, edge elements: Nested iteration (Left: M�1l realized by 3PCG-steps. Right: M�1l realized by 1 GS-sweep.)



Multilevel Method for Mixed Eigenproblems 23Level Bh Ch #1 #2 #3 #4 #5 #6 #7l = 3 V(1,1) V(1,1) 0.10 0.17 0.22 0.24 0.35 0.45 0.47W(2,2) V(1,1) 0.03 0.12 0.16 0.21 0.26 0.41 0.61V(1,1) W(2,2)2 0.09 0.20 0.38 0.30 0.41 0.38 0.65l = 4 V(1,1) V(1,1) 0.08 0.21 0.28 0.24 0.39 0.44 0.45W(2,2) V(1,1) 0.03 0.09 0.12 0.26 0.30 0.46 0.57V(1,1) W(2,2)2 0.10 0.16 0.31 0.29 0.29 0.45 0.42l = 5 V(1,1) V(1,1) 0.10 0.19 0.38 0.24 0.74 0.42 0.41W(2,2) V(1,1) 0.03 0.11 0.26 0.22 0.45 0.51 0.56V(1,1) W(2,2)2 0.10 0.16 0.19 0.35 0.43 0.39 0.49Table 6.2Experiment 3, setting A, edge elements: Di�erent rates of 
onvergen
e � a

ording to (6.1) foreigenvalue approximations.The e�e
t of very a

urate pre
onditioners/proje
tions seems to be limited, aspredi
ted by the theory of PINVIT: As 
an be seen from �gure 4.1 we 
annot bebetter than exa
t inverse iteration and, for instan
e, de
reasing 
 from 0.3 to 0.1 haslittle impa
t.
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Fig. 6.7. Experiment 4: Impa
t of approximation of M�1hExperiment 4. In experiment 2 we boldly relied on a single symmetri
 GS-sweep toget an approximation for rQ. Now, we aim to investigate, how di�erent approximationsof M�1h perform in setting A. In parti
ular, we used either one, two, or three stepsof GS or PCG. The remainder of the algorithm is just borrowed from experiment 1.All 
omputations were 
ondu
ted on level 5 and for edge elements and the results aredisplayed in �gure 6.7. The message is that spending mu
h e�ort on M�1h does notpay o�.Experiment 5. The �nal experiment s
rutinizes whether proje
tion 
ontrol as di-
ussed in se
tion 5 
an really o�set poor proje
tions. To that end we used a plainsymmetri
 Gau�-Seidel sweep for Ch, whi
h yields an outrageously bad ePh on �negrids. Otherwise, the algorithm of the �rst experiment was retained and we fo
usedon level 4.Proje
tion 
ontrol with Æ = 0:05, Æ = 0:01 and a safety fa
tor � = 14 was enabled.In addition, as we observed wild 
u
tuation of the number of GS-steps suggested by



24 R. Hiptmair and K. Neymeyrthe proje
tion 
ontrol, we imposed that this number 
ould not shrink by more than afa
tor of two between to subsequent proje
tions (zig-zag-evasion). In �gures 6.8, 6.8,and 6.10 the behavior of relative errors of eigenvalues and the norms of eigenfun
tionresiduals were logged. Some ratios r(xh) : rQ(xh) are re
orded in �gure 6.11. Numberof GS sweeps enfor
ed by the proje
tion 
ontrol are plotted in �gure 6.12.
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Fig. 6.8. Experiment 5: Proje
tion 
ontrol with Æ = 0:1
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Fig. 6.9. Experiment 5: Proje
tion 
ontrol with Æ = 0:05SuÆ
iently tight proje
tion 
ontrol ensures 
onvergen
e. However, the results alsohighlight the need for an adaptive 
hoi
e of Æ, be
ause it seems hard to determine inadvan
e, when Æ will be suÆ
iently small. This experiment also hints that the ratioof Rayleigh quotients, whi
h is to tend to 1, 
an help dete
t ine�e
tive proje
tions.Finally, the enhan
ed robustness of the method due to the 
hoi
e of the two-stepRayleigh quotient is 
onveyed in �gure 6.13. If we 
hoose � = r(xh) with r from (3.1)the method will be way more sensitive to poor proje
tions.7. Con
lusion. We presented a multigrid-pre
onditioned inverse iterationmethod for the solution of large dis
rete semide�nite eigenvalue problems inH(
url; 
) and H(div; 
). Though a 
omplete theoreti
al analysis is still missing,there is strong numeri
al eviden
e that the method inherits the eÆ
ien
y of multi-
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Fig. 6.10. Experiment 5: Proje
tion 
ontrol with Æ = 0:01
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Fig. 6.11. Experiment 5: Ratios of Rayleigh quotients in the 
ase of loose (Æ = 0:1) and tight(Æ = 0:01) proje
tion 
ontrol.
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Fig. 6.12. Experiment 5: Numbers of GS-sweeps for proje
tion
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e when using standard Rayleigh quotient from (3.1) for �grid based iterative solution pro
edures. Besides a thorough theoreti
al understandingmany issues remain to be examined: Among others, improved adaptive proje
tion 
on-trol, dete
tion of topologi
al 
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ations, and potential a

eleration by means ofpre
onditioned steepest des
ent or various kinds of subspa
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