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Abstract

Modern computerized spectroscopic instrumentation gtjyicesults in high volumes of spectroscopic data. Such
accurate measurements rise computational challenges ditivaniate curve resolution techniques since high-
dimensional constrained minimization problems are to beesb The computational costs for these calculations
rapidly grow with an increased time or frequency resolutibthe spectral measurements.

The key idea of this paper is to solve the curve resolutiobler for high-dimensional spectroscopic data by means
of a sequence of lower-dimensional subproblems with redluesolutions. The suggested multiresolution approach
works as follows: First the curve resolution problem is sdl¥or the coarsest problem with lowest resolution. The
computed coarse level solution is then used as an initiasdgfm the next problem with a finer resolution. Good
initial values allow a fast solution of this refined problerihis procedure is repeated. Finally, the multivariate
curve resolution problem is solved for the initial data wiighest dimension. The multiresolution approach yields a
considerable convergence acceleration. The new compugtprocedure is analyzed and tested not only for model
data, but also for experimental spectroscopic data fromttbdium-catalyzed hydroformylation.

Key words: chemometrics, factor analysis, pure component deconipiositon-negative matrix factorization,
multiresolution methods.

1. Introduction But the resulting small matrices constitute only a poor
approximation of the continuous model. In contrast to
this, a high time-frequency resolution with potentially
oversampled data can yield accurate results at the cost
of time-consuming computations. Typically the number

k of spectra and the numberof channels are deter-

The Lambert-Beer law determines the absorption
d(t, v) for an s-=component system with time-dependent
concentration profilesi(t), i = 1,..., s, and frequency-
dependent pure component specifa) in the form

s mined by the experimental setup and the spectrometer.
d(t,v) = Z ci(a(v) +e. (1) The key point of this paper is to develop a computational
i=1 strategy which uses a sequence of submatrices
with small error termse. The continuous-time- DW p@ DO

frequency model is approximated in practical spectro-
scopic measurements if spectroscopic data is recordedof the spectral data matri@ € R®" in order to acceler-
on a discrete time-frequency grid. Hoseparate spec- ate the pure component factorization. These submatri-
tra which include a number of spectral channels the  cesD( are representations of the initial matfx= D©
measurements can be recorded kitanesn matrix D. with lower resolutions. The nonnegative factorization
Multivariate curve resolution methods aim at a fac- problem is solved in a way that first the matB%) with
torization of thisk x n matrix D in a nonnegative matrix ~ the lowest resolution, which is the smallest submatrix,
C e R**s of concentration profiles and a nonnegative is factored. Then the factorization with respect to the
matrix A € R¥" of pure component spectra. If a coarse current grid is used as the starting point for the iterative
time-frequency grid is selected, i.e. the numkaris factorization procedure on the next finer time-frequency
small, then the computational costs for the determina- grid. The resulting iterative procedure is much faster
tion of a feasible factorizatio® A are relatively small. compared to a direct computation of the factorization of



the initial high-dimensional matri® = D©. 1.2. Organization of the paper

Such a successive approximation of the solution of . . )
a general optimization problem (not necessarily related ~ The paper is organized as follows: In Section 2 a
to chemometrics) with respect to the finest grid by shortmt.rod_uctlon to mqltwanate curvelresfolutlon tech-
means of a sequence of relaxed subproblems, whichniques is given which includes the principles of soft-
are cheaper or easier to solve, is a well-known iterative @nd hard-modeling. - The central multiresolution ap-
technique for high-dimensional problems. For some proach is introduced in 'Sectlon 3. lIts appllcanon to
classes of problems the sequence of coarsened griddnodel data and to experimental data from the rhodium-
can be used in order to construct veffeetive solvers  catalyzed hydroformylation process is presented in Sec-
for the problem. This is especially the case for the fa- tion 4. Different strategies for the refinement steps are
mous multigrid or multilevel methods for the solution ~analyzed.
of boundary value and eigenvalue problems for elliptic
partial diferential operators by means of a finite ele-
ment method [10]. For these problems one has to solve a2- Multivariate curve resolution methods
minimization problem for the elliptic energy functional
or for the Rayleigh quotient [4]. Multivariate curve resolution methods are powerful

The present chemometric matrix factorization prob- tools to extract pure component information from spec-
lem, which is essentially a multicomponent decomposi- troscopic data of chemical mixtures. The spectroscopic
tion, can also be formulated as a minimization problem. measurements are recorded ik>an absorption matrix
For high-dimensional data the solution of such mini- D with k points in time of measurement along the time
mization problems can be extremely time-consuming. axis andn spectral channels along the frequency axis.
A severe obstacle to a fast numerical solution of the non- Whereas the continuous form of the Lambert-Beer law
negative matrix factorization is the non-uniqueness of is given in (1) its discrete matrix form reads
its solutions. This fact is paraphrased by thtional
ambiguityof the solution [1, 2, 18, 25]. A possible ap- D~CA+E.
proach to single out specific important solutions from
the continuum of feasible nonnegative solutions is the The small error terne collects all measurement errors
usage of hard or soft models [5, 12, 17]. Finally, a con- and nonlinearities. The matri@ € RS of concen-
strained minimization problem is to be solved and the tration profiles and the matriA € R¥" of the spectra
computational costs for the minimization of the target contain columnwise or rowwise the information on the
function depend on the dimension Bfand on the the  pure components. The factdfsandA and the spectral
number of necessary iterations. The number of itera- data matrixD are componentwise nonnegative matrices.
tions decreases if the quality of the initial approximation The mathematical problem is to compute a chemically

increases. meaningful nonnegative matrix factorizatieGm from a
givenD. The most common way to compute this factor-
1.1. Central idea ization is to start with a singular value decomposition

(SVD) of D with the formD = UXVT, [8]. If D has
The aim of this paper is to introduce a multiresolution the ranks, then the matrix can also be represented by a
method for the convergence acceleration of a multivari- truncated SVD. This truncated SVD uses only the first
ate curve resolution method. The key idea is to utilize columns ofU andV. ThenX is ansx sdiagonal matrix
a sequence of coarsened factorization problems in ordercontaining thes largest singular values on its diagonal.
to compute an associated sequence of gradually refinedwith these matrices the desired fact@sandA can be
approximations of the solution. The coarsest problem constructed with a regular matrix € R as follows
can be solved with relatively low computational costs
and provides good starting values for the factorization C=C[T]=UZT}, A=AT]=TV", (2
problem for the next refined resolution level. These
two steps of a correction of the solution with respect see e.g. [16, 15]. Sometimes we WIGET] and A[T]
to a given resolution level together with the subsequent in order to express the functional dependenc€ afnd
refinement form a “correction-refinement cycle”. This A onT. If the spectral data includes noise, then one
cycle is applied on the sequence of refined grids until can alternatively use a number of> s left- and right
a nonnegative matrix factorization of the initial spectral singular vectors. In this cageis an 6 x z)-matrix and
data matrixD is computed, see Figure 1. T-!is substituted by the pseudoinvei&e
2



Final solution:

D =DO = cOAO0

T Solution refinement

D@ DO = cWAD
¢ Problem coarsening T Solution refinement
L =—cbab | =
DL, L=2 D™ =CWHWAWM L =2.

Factorization w.r.t. lowest resolution

Figure 1: The multiresolution approach for the pure compofectorization and with three levels of resolution, seeti®a 3.

2.1. Softand hard models weight factor. An important example of a hard con-
straint is a kinetic model whose consistency with the

The computation of a specific matrixwhich deter- i i )
solutionC is required.

mines a factorization in the sense of (2)fsus from the o
rotational ambiguity of the solution [1, 2, 14, 18, 25]. Le(gdlé) be the vector of the kinetic parameters and
Approximation techniques have been developed which '€tC™* be the associated S?l‘;i'gn of the kinetic model.
aim at a representation of the full rangeaif feasible, | s allows © computd :T(C )*UI(;, 1 s) as wel
nonnegative factorizations [3, 7, 19, 21, 22, 24]. asC = UXT " andA =TV". Then the function

Here our focus is on the computation o$iagle so-
lution which should fit to the chemical reaction system
under investigation in the best possible way. The most js taken as a measure how well a kinetic model
common approach in order to favor a single solution is parametrized wittK fits to a nonnegative factorization.
to minimize a weighted sum of regularization functions The penalty terms in (3) are used to suppress negative

(soft-modeling) or to apply hard models like a kinetic - matrix entries. All this results in an optimal fit with the
model. Then the resulting facto@sandA are the solu-  kinetic model [5, 9, 20].

tions of a numerical optimization process.
For the soft model approach the target function reads 2 2. Computational costs

G:RISR: K ||C-CO%)L + pen. terms  (3)

p The costs for the computation 6fandA depend on
FIRS SR, T F(T)= ) yifi(T)2

= - computational costs for one evaluation of the func-

tion F and

If a minimum of F(T) is taken inT, thenC = C['IA']
andA = A[ﬂ. Therein thep regularization functiong
are weighted with nonnegative parametgrsRegular-
ization functions can be formulated for instance on the In general it holds thas < k, n so that the dependence
nonnegativity of the factors or on their smoothness or of the costs on the dimension parameteasdn is deci-
unimodality. Typically, the nonnegativity of the factors sive. In Section 3.1 of [21] a detailed discussion shows
is the most important constraint so that the associatedthat the computational costs for a proper implementa-
weight factor is relatively large. tion increase linearly itk + n if a small negative lower

Hard constraints are much more restrictive than soft bound is used for the acceptable relative negativeness of
constraints. Approximately hard constraints can be im- the factor<C andA. Additionally the number of neces-
plemented by means of a constraint with a very large sary iterations for the minimization &f is decisive for

3

- the number of necessary function calls for its iter-
ative minimization.



the computational costs of the numerical algorithm. A
good initial value can be expected to result in a small
number of iterations for the correction.

The multiresolution approach reduces the costs on
both fronts: for low-resolution factorization problems
the costs for single function calls are relatively small
and at each refined level reliable initial values are pro-
vided for the iterative minimization.

3. The multiresolution approach for the pure com-
ponent factorization

Modern computerized spectroscopic devices can pro-
duce considerable amounts of data, e.g. UV-Vis diode
array systems can generate several megabyte of dat
within short time periods. Hence the dimensidrend
n of the spectral data matri® € R*" can be large

and high computational costs are to be expected for a

direct nonnegative factorizatiod = CA of the high-
dimensional matrixD.

The general approach for our multiresolution tech-
nigue for the pure component factorizatibn= CA €
Rk is as follows:

Algorithm: Multiresolution factorization

. Starting from D = D© a sequence of lower
dimensional submatrices®,...,D® is gener-
ated. These matrices represent D on coarser time-
frequency grids, see left side of Figure 1.

. Compute a pure component factorizatiod’D=
CMLAW for the coarsest problem of lowest resolu-
tion, see right lower part of Figure 1.

. Prolongate this solution in order to generate ini-
tial values of the iterative minimization for the fac-
torization problem on the next finer time-frequency
grid.

. Compute the pure component factorization with re-
spect to the current grid.

. Repeat steps 3 and 4 until a factorization B
D@ = COAO® with respect to the finest grid is
determined, see right upper part of Figure 1.

Step 2 for a small matriD® can be completed
rapidly. With a proper prolongation of the solution in
step 3 the factorization in step 4 requires few iterations.
In the following we demonstrate that the multiresolution

approach can result in a considerable convergence ac-

celeration. However, the whole procedure requires that
4

the time and frequency discretization parameters (sam-
pling rates) are small enough that they can resolve the
signals along the time and frequency axes.

3.1. Sequence of coarsened subproblems

The multiresolution approach requires that the sam-
pling rates along the time axis and the frequency axis
are small enough so that the sampled signal can still
approximate (by interpolation) the original signal; this
prerequisite is related to the Nyquist-Shannon sampling
theorem of digital signal processing [23]. The theorem
says that the sampling frequency of a signal should be
at least twice the maximal frequency of the signal in
order to guarantee an exact reconstruction. Practically

a{he time step between two spectra should be small com-

pared to the change of the concentration values and the
frequency step should be small compared to the change
of the absorption values.

Figure 2 demonstrates that the singular value decom-
position is not very sensitive with respect to the data
coarsening. To this end we consider the spectral data for
the hydroformylation process; the details on this data set
are explained in Section 4.3. This data set comes with
k = 2621 spectra and = 664 wavenumbers. If we use
a coarsening only along the time axis and if the subma-
trices have the dimensiofi2621/2"1xnfori = 0,...,9,
then the properly scaled singular vectors of these matri-
ces look very similar and the singular values show only
small variations. (In the last sentence the ceiling func-
tion [q], which is the smallest integer number larger or
equal toq, is introduced in Definition 3.1.)

3.2. Notation for the coarsened problems

Next the level index is introduced in order to enu-
merate the dferent levels of resolution of the factor-
ization problem. This indeX is added in brackets to
the related matrices, singular value decomposition and
to the associated target function. The starting point for
the multiresolution approach is the initial spectral data
matrix D = D@ e R®*". The level¢ = 0 is the level
of highest resolution. The levels of coarsened problems
aref =1,2,...L upto a maximal index.

- The submatriD® of D represents a sampling with
respect to the time and frequency index vectts
andA®, i.e. DO = D(t®, 19). The vectort® is
a subvector of the vector 1k = (1,2,...,k) and
the vectora® is a subvector of the vector 1n: =
1,2,...,n).

- The SVD ofD® reads

DO — YOO\O" 4)
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Figure 2: Rescaled singular values and rescaled singutémngeofD and its submatrices for a coarsening along the time axisR&eeark 3.3 and

Equation (8) for the proper scaling.

- The target function for the hard- or soft modeling
optimization is denoted by

FO:RP SR (5)

wherepis the number of unknown parameters. For
the soft-modeling method, see Section 2.1, it holds
thatp = s? or p = szand for the a kinetic hard
modelp is the number of kinetic parameters.

- The sequence of matric&s see Equation (2), with
respect to the coarsening leveand theith itera-
tion step isT¢), i = 0,...,N,. The number of
iterations on levef is N,. The optimal and final
matrix is denoted .

- The pure component factors a2&) and A,

3.3. Definition of the multiresolution hierarchy

Next we define the hierarchy of subproblems for the
factorization problem. For the coarsening it is impor-
tant that the reduction of the dimension is large enough
so that the computing time saving is significant. The re-
duction should also be small enough so that the solution
with respect to a certain levél after its prolongation
is a good initial estimate for the levél- 1 of the next
problem with a higher resolution.

Next the colon notation as well as the floor and ceil-
ing functions are introduced.

Definition 3.1. For an integer number m the notation
1: mdefinesthe vectdt, 2, ..., m) of integers. Further
1:6 : mwith the increment denotes the vectdd, 1 +
6,1+ 26,...,1+ ké) with the largest possible k so that
1+ ks < m. For exampld : 3 : 9represents the integer
vector(1,4,7). Further the floor and ceiling functions
are given by

Floor function |X]=maxXmeZ: m< x},
Ceiling function[x] = minime Z : m> x}.

The principles of the problem coarsening are as fol-
lows:

1. The original spectral data matrix = D@ e R

can formally be written as
DO = D(t©, 1)

witht@® =1 :kanda©® =1 :n.

. The diferent levels of resolution are enumerated

by¢=0,...,L.

. Two monotone increasing sequences of index in-

crements determine the coarsening process. For
the time axis let be the vector of increments, and
for the frequency axis leg be the vector of incre-
ments. This reads

7= [10,71,..., 7], ¥ =vox1,----xL]l- (6)

With 79 = yo = 1 itis assumed that

N, Xty )
Te Xt

fore=0,...,L-1.

. For the levet let

t0=1:7,:k A9 =1:y,:n

be sequences of subindexes ofkland 1 :n. (The
first index set consists dk/7;| elements and the
second index set ¢fh/y,| elements.)

5. The submatrixD® is

DO = D(t®, 1Oy ¢ R x ixel,

Example 1. A possible choice for the spectral data ma-
trix from Section 4.3 with k 2621and n= 664is

t=[1,2,4,8,...,256] and y=1[1,1,1,...,1].



This results in a sequence of eight submatrices of Dby We do not only need” for the prolongation of

taking from leve¥ to level¢ + 1 only every second spec-

D@D to DO, but we must also prolongate the factors

trum and by letting the spectra along the frequency axis C“* andA‘*? to the resolution level. The key point

unchanged. The nine girent matrices including the
original data matrix D= D© have the following di-
mensions:

DO ¢ R262:x664 D) c RILXE64 (2) o R656<664
DO ¢ R328<664

D6) ¢ R41x664

D(4) c R164><664 D(5) c R82><664

D) ¢ R21x664 DO ¢ R11x664

Definition 3.2. The resolution levef together with the
definitions from above can formally be written as a
triplet

8O = (0, 20, D).

The hierarchy of resolution levels is nested in the sense

that
SH «st-D <. <8O = (1 'k1:n, D(O)).
The relationS®) < SU) is satisfied for i> j if and only

if t% is a subsequence dPtandA() is a subsequence of
20

Remark 3.1. The assumptions on the nested sequence

of subproblems witl8® < SO implies that I is a
submatrix of ). Thus the coarsest matrix(® is a
submatrix of IP).

3.4. Prolongation and restriction operations for con-
secutive resolution levels

Having defined the dierent levels of resolution for

is to execute this prolongation in an implicit manner by
considering the associated matrides.e. an initial es-
timate forT“9 is computed. Next three fiérent ap-
proaches are suggested for the computatioR(@?.

Definition 3.4. For given factors &*1 and A with
respect to the resolution levét 1 three alternative tech-
niques for the prolongation to the leveare suggested;
this is formally written as a prolongatiof(® of C(*+1)
and A™D to T¢9), For each technique a least squares
problem is to be solved. Hence,

7O = D, AY) = argming(T)
with optionally (fori= 1, 2 or 3)
o(T) = A - T

$a(T) = D — MTHZ
#3(T) = ¢1(T) + ¢2(T)

:{ n J,l:z),
Xe+1

and

Mlzv“’)(l:)@

Xt
k
M, = U® (1 Ay {—J , :)Z(")(:, 1:2).
Te Te+1

The first target functio,; only uses the structure of
A, namely A is approximated in the least squares
sense by right singular vectors of the higher resolution
level. These vectors form the columns Mf. Simi-
larly ¢, uses the structure i@ in order to construct *
from the augmented left singular vectors composed in

the pure component factorization problem, we still need M,. Finally ¢3 uses an averaging @ and¢,. These
operations to restrict the problem from one resolution prolongation strategies can be applied along the time
level to the next coarser level and to transfer the result or frequency axis irrespective of whether a resolution

from one level to the next finer resolution level. Fol-
lowing the common terminology in multigrid methods
[10] we denote these transfer processeseasriction
andprolongationoperations.

Definition 3.3. A mappingP® : 8@ — SO from

a coarse resolution problem to the next finer resolution
is called a prolongation. The restriction operation is a
mappingR® : S — S+,

Remark 3.2. The prolongation and restriction opera-
tors should naturally satisfy the®®) o ) is the iden-
tity operator onS“*V). HoweverP) o RO is usually
not the identity operator o8,

coarsening has previously been executed along this axis.
Each of these strategies to find a profér® can be
very useful.

Remark 3.3. For a direct comparison of the singular
vectors and singular values with respect tgfetient lev-
els of resolution one has to take into account their po-
tentially difering orientation by a multiplication with
—1. Furthermore, the gierent dimensions of the singu-
lar vectors, which are all normalized with respect to the
Euclidean norm, results in the following rescaling
Lo,

1 )
—U('),
VXi

" i=0,...,L (8)



The insertion of columns or rows td'Dalso results in a
rescaling of the singular values. The simplest way to see
this is to consider eithefD")"D® or DV(DM)T whose
roots of the eigenvalues are (at least) the nonzero singu-
lar values of ¥). For the singular values the rescaling

is

VTixi 2, i=0,...,L. (9)

3.5. Algorithm of the multiresolution procedure

The multiresolution procedure can be applied to any
SVD based multivariate curve resolution method in-
cluding the matrixXT by (2) and regardless of the used
regularization. The algorithmic steps are as follows:

1. The multiresolution sequence of matrid@¥ is
determined by fixing the number of resolution lev-
els L and the vectors andy of increments, see
Equation (6).

. On the coarsest levél = L with the lowest res-
olution an initial nonnegative factorizatidd® =
CBAWL is computed by means of a minimization
of the target functiorir ©.

. Thenfort =L-1,L-2,...,0the following steps
are executed

(a) The prolongatio® with one of the target
functions ¢, ¢> and ¢3 is used in order to
compute the initial matrixr 9 on the level
L.

(b) The iterative minimization for the target func-
tion F© is executed. The minimum is at-
tained in the factor€© andA® for the reso-
lution level¢.

4. The final solutions ar€ = C@ andA = A© on

the level¢ = 0 of highest resolution.

3.6. Benefit of the multiresolution procedure

The multiresolution procedure serves to accelerate
the computation of nonnegative factorizations of the
spectral data matrix of medium- and high-dimensional

the low resolution problems. Below the line, computa-
tional costs are saved by introducing additional levels of
resolution.

One could object that the multiresolution procedure is
applied tooversampled datand that any savings of the
computational costs originate from reducing the prob-
lem to a reasonable level of resolution. To some ex-
tent this is true. However, modern computerized spec-
troscopic instruments usually result in high-resolution
data. Then it is not clear a-priori which level of reso-
lution is suficient in order to extract the desired spec-
troscopic detail information. To be on the safe side,
one usually accepts oversampling and applied the MCR
method to the full data set. Further on, poorly resolved
data can even allow to compute good initial approxima-
tions for pure component factorizations with respect to
the next level of resolution. Thus the multiresolution
procedure can also work without oversampled data.

3.7. Multiresolution techniques and hard-modeling

The underlying idea of the multiresolution procedure
can be extended to hard-modeling [5, 15]. To this end
the hard model is implanted into each level of reso-
lution. On the coarsest level a first approximation of
the kinetic parameters is calculated and these values are
used as initial values on the next refined resolution level.
This procedure is repeated level by level. Hence the
prolongatior is not needed for the implementation of
a hard modelComputationally, the problem is to mini-
mize the functior(K) as introduced in (3). This results
in a vectorK of kinetic parameters so that the associated
solutionC©) optimally fitsC. The computational costs
for the solution of this optimization problem depends
on the number of function evaluatio®K). The costs
for a single function evaluation consist of the compu-
tational costs for the ODE solver (these costs are more
or less constant and do not depend on the level of res-
olution) and on the costs for computing the approxima-
tion errorC — C9) with optimally scaledC(©%). The
costs for the latter computations are proportional to the

data. The computational costs, see Section 2.2, dependdimension of the current level of resolution, namkly
on the computational costs for a single step and on the andn or a fraction of these numbers. This dependence

total number of required iterations.

onk andn is the crucial point why the multiresolution

The multiresolution procedure reduces these costs byapproach can accelerate the computations. Once again,
generating a sequence of coarse resolution approxima-good initial approximations foK can be computed on

tions, which can each be computed with drastically re-
duced computational costs. Moreover, the final iterate
with respect to a certain resolution levdk a good ini-
tial estimate for the next resolution leve} 1. An fi-
cient and fast-converging multivariate curve resolution

the coarse levels and these results are reused by prolon-
gation on the levels of higher resolution. The number
of coarse level iterations has a minor impact on the to-
tal computational costs due to the smaller dimensions
of DO, Finally, on higher levels of resolution only few

method can be constructed by a suitable combination of of the more costly iterations are needéu Section 4.5

the problem coarsening and the approximate solution of
7

this technique is demonstrated for experimental spectral



Concentration profiles Spectra The concentration profiles of the four components are
' o /\ Jﬂ\ determined by the rate constakis= 1,k = 2, ks = 1

' ! | and by the initial concentrations,(@, O, 0). The time in-

06 NN tervalt e [0, 10] is subdivided by = 1001 equidistant
04 f )\A ,\ grid points. The pure component spectra are Gaussian

02 / profiles within the intervall e [0, 100] with n = 2001
VANY/ANSAN N equidistant grid points. Hende = CA e R100%2001

channels The pure component spectra and concentration profiles
are shown in Figure 3.

The relatively large dimension parametkrs 1001
andn = 2001 indicate that the spectra and concentra-
tion profiles are oversampled; cf. the discussion on over-
data. This leads to savings of about 90% of the comput- sampling in Section 3.6. Thus the acceleratifieet of
ing time. the multiresolution factorization can clearly be demon-
strated. Next two coarsening strategies are tested:

4. 6
time

Figure 3: The pure component fact@sandA of the four component
model problem from Section 4.2.

3.8. Selection of the coarsening increments

A proper selection of the vectors of coarsening incre-
ments (6) appears to be decisive for a successful mul-
tiresolution procedure. In our experiment®r y be-
ing equal to [12,4,...] always work in a stable way. For these computations nine fidirent runs of the
In some instances the vector of coarsening incrementsmultiresolution factorization with the numbets =
[1,4,8,...] appears to result in an over-coarsening of 0,1,...,8 of resolution levels are used. The computa-
the problem so that the final iterates cannot result in re- tion for L = O represents the case of a direct compu-
liable initial estimates on the next finer resolution level. tation of the pure component factorization without any
However, all this depends on the relation of the amount coarsening of the time-frequency grid.
of data and the variability or dynamics of the data,
cf. the discussion in the first paragraph of Section 3.3. 4.2.1. Active soft constraints and evaluation criteria

For all computations soft constraints are used on the
nonnegativity of the factorS andA. The reconstruction
error||D — CAJ|g is controlled by evaluatin — T T*||¢
4.1. Hard- and software information whereT* is the pseudoinverse df. Additionally we

All computations have been performed on a PC with use a constraiqt on the .integral of thg spectra (where
an Intel Quadcore 64bit processor with 3.4Ghz and ©2ch spectrum is normalized to a maximum equal to 1)

16GB RAM. Without parallelization only one core has in order to favor spectra with a small number of sharp
been used for the computations. The program code hasPeaks. With these constraints the original factors can be

been written in C and uses a nonlinear least-squares op-€constructed in all program runs.

timizer code NL2SOL of the ACM [6] written in FOR- __FO the purpose of a comparison of the numerical
TRAN. For the solution of the initial value problems for  "€Sults, the computation times are recorded together
ordinary diferential equations, which are kinetic hard with number of inner iterations until termination of the
models in Section 4.3, we use the prominent RADAU NL2SOL code, see Section 4.1. Moreover, the compu-
lla codes [11]. The veryféective FORTRAN imple-  tationtimes for all intermediate levels are collect€uh

mentation of the RADAU algorithms is available under the coarsest grid level with = L the computation of a
the web address first solution starting from an initial random guess de-

cisively influences the computational costs of the opti-

httpy/www.unige.clihairefprog/stiff/radau.f . mization algorithm. Typically no good initial estimates
are available on the coarsest level of resolution. These
can be produced by a genetic algorithm. On all finer
levels with¢ < L we only used the Gauss-Newton al-
gorithm for the minimization in the form of its sophisti-
cated implementation in the NL2SOL code [6].

In order to avoid any influence of poor initial esti-
mates the multiresolution program, including the ge-

1. Simultaneous coarsening in the time and in the fre-
guency direction.
2. Coarsening only in the frequency direction.

4. Numerical results

4.2. Application to a model problem

Next the multiresolution approach is applied to the
consecutive reaction system wih= 4 components

A BE S D



netic algorithm, is run 20 times'he two program runs
with the highest computation times are ignored, and also
the two program runs with the minimal computation
times are dropped. For the remaining 16 program runs
we tabulate the mean values of the computation times
and for the required number of iterations.

4.2.2. Multiresolution factorization in time and in fre-
guency direction
First the time-frequency grid is coarsened in each of
the coordinate directions. Together with= 9 the vec-
tors of coarsening increments, see (6), are

T=x=(1, 2 4,8, 16, 32 64, 128 256)

Hence the number of grid points is doubled along the
time direction and also along the frequency direction for
every transition from one level of resolution to the next
refined level. ThuD® = D e R10X2001 5nd DO ¢
R4><8_

Tables 1 and 2 show the mean values for the com-

absorption

2000 2050 2100

wavenumbers [tm]

Figure 4: FT-IR spectroscopic data from the rhodium catdyhy-
droformylation process [13]. Only every 50th of tke- 2621 spectra
is plotted.

4.3. Application to experimental data from the hydro-
formylation process

putation times and the associated numbers of necessary In this section the multiresolution factorization is

iterations with respect to all intermediate levels of reso-
lution. These data indicate that the multiresolution fac-
torization works very well. The computation times for
L = 2,...,8 are about a third of the computation time
without any multiresolution computation, i.e. the case
L = 0. If for L = 1 only a single grid coarsening is

tested for FT-IR spectroscopic data from the hydro-
formylation of 3,3-dimethyl-1-butene with a rhodium
monophosphite catalyst ([RR] 3 x 10-*mol/L) in n-
hexane at 30, p(CO)= 1.0 MPa and p(k) = 0.2
MPa; for the details see [13]. Figure 4 shows a sub-
set of the sequence &f = 2621 spectra. Each spec-

used, then the saving of the computation time are aboutfum hasn = 664 Chan?els in the wavenumbers win-
50%. The results also show that there are nearly no sav-dow [19601,2120Q0]cnT™. In this window the absorp-

ing beyondL = 2 with D@ ¢ R25x501,

4.2.3. Multiresolution factorization in frequency direc-
tion
The multiresolution factorization can alternatively be
applied either to the frequency direction or to the time
direction. To demonstrate this, we set the coarsening
increments to

r=(1....1), x = (L 2 4, 8, 16, 32, 64, 128 256)

which amounts to a coarsening in the frequency direc-
tion. The computation times and the numbers of nec-
essary iterations for all intermediate levels are listed in
Tables 3 and 4.

For this coarsening strategy the multiresolution fac-
torization works best fot. = 2, ..., 4 with savings for
the computational costs of about 50%. If lardeare

tion by the reaction product, the aldehyde, is negligible.
A number ofs = 3 dominant components, namely the

olefin, the acyl complex and the hydrido complex, con-
tribute to the absorption in the selected frequency win-
dow.

4.3.1. The multiresolution hierarchy

In the first experiment we use soft-modeling with
a constraint function which penalizes negative compo-
nents. We also use a constraint function on the distance
of the concentration profiles to the Michaelis-Menten
model

ke

S+K

[S-K] % P+ K (10)

1

with a simultaneous optimization of the kinetic param-

used, then the computational costs increase again as neters [20]. The components are the substrate (S), the
coarsening is applied along the time direction. Then the catalyst (K), the substrate-catalyst complex (S-K) and

computational costs fiier from relatively large costs for
the prolongation operations and for the refinement iter-
ations which still work with the full resolution along the
time direction.

9

the product (P)Since the produd® does not contribute

to the absorption in the selected wavenumbers window,
this component is considered in the model but is not a
part of the regularization function.



level index¢ times [s] for
L 0 1 2 3 4 5 6 7 8 all levels
0| 2494 24.94
1| 697 7.39 14.36
2] 539 152 1.39 8.30
3| 585 120 0.28 0.36 7.69
4| 6.46 1.13 0.24 0.07 0.15 8.04
5| 533 122 0.24 0.08 0.02 0.08 6.96
6| 592 126 0.27 0.08 0.02 0.00 0.05 7.60
7] 699 116 0.28 0.09 0.02 0.01 0.00 0.02 8.56
8| 542 132 0.28 0.08 0.02 0.02 0.01 o0.00 0j02 7.17

Table 1: Computing times [s] for the self-modeling multolegion factorization with respect to all levels of resaut The fastest computation
with L = 5 needs only 6.96 seconds (mean value). This is more thaa tihmes faster than solving the original problem with respeche level
of highest resolutior. = 0.

level indext
L{0O 1 2 3 4 5 6 7 8
0|20
1(1 22
2|11 1 23
311 1 1 26
411 1 1 2 32
5|1 1 1 2 1 41
6|1 1 1 3 1 2 39
712 1 1 4 1 4 2 37
8|1 1 1 3 1 6 6 12 57

Table 2: Numbers\, of iterations with respect to the single levels for the miiiation of F). A relatively large number of iterations is required
only for ¢ = L. These iterations are computationally much cheaper withee to larger level indexéscompared to smaller level indexes.

level index¢ time [s] for
L 0 1 2 3 4 5 6 7 8 all levels
0 | 25.37 25.37
1| 545 10.10 15.55
2| 456 2.06 6.08 12.69
3] 520 171 123 552 13.66
4| 519 166 1.03 1.00 4.67 13.56
5| 456 163 1.04 094 0.95 09.08 18.19
6| 534 168 0.97 082 0.77 0.90 7.60 18.07
7| 540 2.03 098 084 0.80 0.76 272 9.30 22.83
8| 564 208 099 085 080 0.76 205 276 12|37 28.29

Table 3: Computing times [s] for the self-modeling multoksion factorization. Grid coarsening is only used alohg frequency axis. Best
results are achieved far= 2,..., 4. A stronger coarsening in the frequency direction wittgotultaneous coarsening along the time axis turns
out to be infective.
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level indext
LI0O 1 2 3 4 5 6 7 8 9
0|21
1/1 25
211 1 24
3/1 1 1 25
411 1 1 1 24
511 1 1 1 1 48
61 1 1 1 1 1 41
711 1 1 1 1 1 10 49
8|2 2 1 1 1 1 8 12 66

Table 4: NumbeiN, of iterations with respect to the single levels for the mikiation of F). In all cases a relatively large number of the
computationally cheap iterations is required onlyfet L, whereas fo¢ < L in most cases a single iteration igftient.

The multiresolution procedure is tested for a grid an acceptable approximation of the "true” solutions for
coarsening only in the time direction and for a simulta- D = DO,
neous coarsening in the time and in the frequency direc-
tions. The numerical results are presented in the form 4.3 3. Multiresolution in time and frequency directions
of mean values as explained in Section 4.2.1. For a simultaneous grid coarsening along the time di-

rection and the frequency direction we set

4.3.2. Multiresolution in time direction

For a grid coarsening only in the time direction we 7=[1,2,4,...,2"] and

= x=1[1.24,...,min(162")]

t=[124,...27 x=[11....1] (11) for L = 0,1,...,8. With these vectors of index incre-
ments the grid coarsening along the frequency direction
is stopped for > 5. Together witm = 664 this selec-

. tion guarantees that always a minimum of 42 absorption
and Table 6. The results show an acceleration of the ;05 are ysed for the computations. The computation

cpmputauon t?y a ff"‘CtOf of about 5 for a multiresolu- times and the numbers of iterations until termination are
tion computation withL = 6. These results are to be listed in Table 7 and in Table 8

compared with the cade= 0 which corresponds to the
standard multivariate curve resolution method without
any multiresolution acceleration. The numerical data
on the numbers of required iterations show for increas-
ing L that the numbers of the computationally expensive
iterations on levels with small indexésare decreasing.
ForL > 1 not more that six iterations are required on the
level¢ = 0. This expresses the acceleratitiget of the
multiresolution factorization: A relatively large number
of iterations is only used on the coarsest lefrel L of

the lowest resolution. For all other level is much
smaller since a reliable initial estimate from the coarser
levels results in a relatively small number of iterations.
These results clearly indicate the acceleratiffaat of

the multiresolution procedure.

The computational results for all resolution levels for For an dfective numerical minimization of the func-
the casd. = 8 are shown in Figure 5. The variations of tions F) our program code uses the adaptive non-
the diferent curves are small. This demonstrates that linear least-squares minimization algorithm NL2SOL,
the submatrixd® of D for the coarsest level allows cf. Section 4.1. The convergence history is monitored

11

forL=0,1,...,8. The computation times and the num-
bers of iterations until termination are listed in Table 5

Once again the numerical results show an accelera-
tion of the computation by a factor of about 5. All these
results are to be compared with the céase 0 which
corresponds to the standard multivariate curve resolu-
tion method without any multiresolution acceleration.
The interpretation of the numbers of iterations is very
similar to that given in Section 4.3.2. We conclude that
the two coarsening strategies work very well. The sav-
ing in the computational time for the given spectral data
with k = 2621 separate spectra and= 664 spectral
channels for each spectrum are primarily determined by
the coarsening along the time direction.

4.4. Convergence history



level index¢ time [s] for
L 0 1 2 3 4 5 6 7 8 | alllevels
0 | 53.90 53.90
1| 563 16.03 21.66
2| 6.01 285 4.99 13.85
3| 870 262 091 141 13.64
41 923 213 0.77 043 1.23 13.78
5| 707 261 089 050 064 1.29 13.01
6| 616 238 0.76 0.36 056 0.71 0.54 11.49
7| 867 221 069 061 055 037 032 0.37 13.81
8| 680 205 062 033 039 038 0.25 031 058 11.71

Table 5: Computation times [s] for the soft-modeling mekiolution procedure for each level. The last column costtie total times for the
differentL. The fastest computation with= 6 levels of resolution needs only 11.49 seconds. This ist®@¥ of the total computation time for
solving the original problem with respect to level of highessolution [ = 0).

Table 6: Numbers\; of iterations for the minimization of(®) for each level = 0

.

level indext
LIo 1 2 3 5 6 7 8
0| 37
13 39
2|1 4 6 40
3/ 6 6 7 26
4/ 6 5 6 7 35
5/ 5 5 6 9 18 50
6| 4 5 5 6 16 27 24
716 5 5 11 15 13 13 17
8/ 5 5 5 6 11 13 10 14 37

., L for the case of soft modeling. In all but one the largest

number of iterations is used on the coarsest level of résaldt= L. These data clearly indicate that the multiresolution edoce accelerates the
computation. FoL = 0 a number of 37 iterations on the finest level with high corapamnal costs is needed. Fbr= 1 only 3 iterations on the
finest level are required together with 39 (computationallych cheaper) iterations on the levet 1.

Conc. profiles olefin

I o o
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Figure 5: Concentration profiles and spectra for the purepoorants with respect to all levels of resolution for a corapiah withL = 8. The
color assignment is as follows: Red - olefin, blue - acyl camnd green - hydrido complex.
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level index¢t time [s] for
L 0 1 2 3 4 5 6 7 8 | alllevels
0 | 53.90 53.90
1| 540 12.79 18.19
2| 746 213 361 13.20
3| 897 202 0.60 0.8 12.49
4| 980 186 0.84 042 0.44 13.37
5| 751 214 080 0.27 0.33 0.28 11.34
6| 801 245 0.75 033 024 013 0.11 12.02
7| 683 252 1.03 043 0.24 0.09 0.06 0.07 11.27
8| 872 217 048 0.27 0.19 0.13 0.07 0.04 0{10 12.17

Table 7: Computation times [s] for the soft-modeling mekiolution factorization with grid coarsening along thegtiamd along the frequency axis.
The fastest computation with = 7 levels of resolution needs only 11.27 seconds (mean Jalwésch is a considerable acceleration compared to
a direct factorization with respect to level of highest tegon (L = 0) with 53.90s.

level indext
Lo 1 2 3 4 5 6 7 8
0| 37
13 33
2| 5 5 36
3/ 6 5 5 25
417 4 7 12 30
5|5 5 7 7 21 39
6| 5 5 6 9 15 17 24
7174 6 9 12 15 12 10 23
8/ 5 5 4 7 12 17 13 10 33

Table 8: Number$\, of iterations for the minimization df(® for each levek = 0, .. ., L. In all cases the largest number of iterations is used on the
coarsest level of resolutioh= L. For larger¢ the computational costs for the computation of the init@dr@ximation are considerably decreasing.
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by means of two error measures. On the one hand thethis clearly indicates that the multiresolution procedure
squared target function is a successful strategy for the convergence acceleration.

1 .
€= é|:(é’)('|'(é’,l))2 '
5. Conclusion
is traced for¢ = L,...,0 and for everyf with | =
0,...,N;. On the other hand the distance of the iterates

TN to the final matrixT© at the end of the iteration

= lreo- 7]

Multigrid, multilevel and multiresolution methods
are dfective numerical algorithms for the solution of
a range of high-dimensional optimization and related
problems. In the present paper a multiresolution ap-
proach to the solution of pure component factorization
problems for bivariate spectral data sets has been pre-
sented. This algorithm can considerably accelerate the
convergence for medium- and high-dimensional spec-

Ef gr|d. clcl)arsenr:ng only alor?téze;'mi 2);3'5. for; 6. tral data sets. The method has successfully been applied
specially on the coarsest le wit lterations to multivariate curve resolution methods including soft

the convergence history shows a significant decrease Ofand hard models.

the error. For the prolongated prob.lems on the levels Perspectively, multiresolution techniques can also be
¢ =5,...0the reduction of the errorsis relatively small. . . ;
applied to the complicated and costly computations of
the area of feasible solutions (AFS), see [7, 21]. How-
) o o ever, such an area of application is not straightforward
In Section 3.7 the principles of a combination of a 5 requires further investigations and the development

is recorded forf = 0,...,L and j
Therein|| - || is the Frobenius norm.
Figure 6 shows the convergence history for the case

0,....,N, - 1.

4.5. Hard-modeling and multiresolution

hard model and the multiresolution approach are ex-
plained. Next this is demonstrated numerically. The
vectors of increments are= [1,2,4,....2 ] andy =
[1,1,...,1] which are the same values as in Section
4.3.2. On each level the problem is forced to be con-
sistent with the kinetic hard model and the results in the
form of three kinetic parameters are used as the initial
values for the next finer level of resolution. In nine dif-
ferent numerical experiments the numbers of levels are
L=0,...,L=8. ForL = 0 the kinetic parameters are
computed with respect to the problem of highest resolu-
tion, and forL = 8 the coarse grid solutions are used in
8 cycles as initial values for the next higher resolution
problem. For each of these experiments additionally a
genetic algorithm has been used for the first steps on the
coarsest level in order to solve the optimization problem
in a fast and reliable way.

Figure 7 shows the solution€® and AY), ¢ =
1,...,L, for the experiment with. = 8. The solu-
tions show only small variations which indicates that
even the coarsest level of resolution provides fi-su
cient approximation of the problem. Table 9 contains
the computation times for nine fiiérent program runs
with L =0,...,8. The computation times for the single
levels¢ = 0,..., L are listed rowwise. The fastest com-
putation forL = 7 needs only 2.79 seconds compared
to 26.64 seconds for the original problem on the finest
level of resolution.

Finally Table 10 presents the numbers of iterations |1,

required forL = 0,...,8 and¢ = 0,...,L. Once again
14

of proper numerical tools.
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level index¢ time [s] for
L 0 1 2 3 4 5 6 7 8 | alllevels
0 | 26.64 26.64
1| 111 1351 14.63
2| 085 058 7.49 8.91
3|1 094 049 031 387 5.62
41 091 052 0.28 014 192 3.76
5] 082 052 030 019 014 1.27 3.23
6| 090 051 029 019 0.14 0.10 0.89 3.01
7| 089 049 025 0.16 0.12 0.11 0.08 0.68 2.79
8

087 049 030 0.18 0.12 0.10 0.10 0.09 0/63 2.88

Table 9: Computation times [s] for the hard-modeling apphoand for nine dferent program runs fdr = 0,...,8. The computation times for

the single levelg = 0,...,L are listed rowwise. The fastest computation for 7 needs only 2.79 seconds compared to 26.64 seconds for the
original problem on the finest level of resolution.
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level indext
Lo 1 2 3 4 5 6 7 8
0| 65
1|15 61
2110 15 49
3112 12 14 48
4112 13 13 10 40
5110 13 13 13 18 39
6|12 12 12 13 18 20 37
7112 12 11 10 15 22 21 35
811 11 14 11 14 21 27 30 25

Table 10: Numbers\; of iterations for the minimization df(? for each level levef = 0, ... L for the hard-modeling case. A genetic algorithm is
used for each program run on the coarsest level of resoldtioh.. The mean values of the numbers of iterations are listed inyaas explained
in Section 4.2.1.
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