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Abstract

In 1985 Borgen and Kowalski published a geometry-based mathematical approach in order to determine the set of

feasible solutions of the multivariate curve resolution (MCR) problem for chemical systems with three species. Twenty

years later Rajkó and István devised an algorithm for the analytical derivation of the feasible regions. They showed

that the precise boundary of the solution set is piecewise representable in terms of analytical expressions for the

boundary curve.

This paper generalizes the approach for finding analytical boundary curves by means of duality arguments, pro-

vides the precise functional form of the curves in detail, shows how to determine the contact change values and

suggests improved analytical expressions which can numerically be evaluated in a stable way. Additionally, it offers

detailed instructions for an algorithmic solution and provides the underlying analysis. A program code is presented

which generates a piecewise functional representation of the boundary curve.

Key words: Multivariate curve resolution, nonnegative matrix factorization, pure component decomposition,

Borgen-Rajkó plots, analytical derivation of the set of feasible solutions

1. Introduction

The multivariate curve resolution (MCR) problem in chemometrics consists of factorizing a component-wise

nonnegative data matrix D ∈ Rk×n
+ of spectral data according to the bilinear Lambert-Beer law as

D = CS T
. (1)

If, for instance, D contains row-wise a sequence of spectra taken from an on-going chemical reaction with s chemical

species, then (ideally) the columns of C ∈ R
k×s
+ are the s time concentration profiles of the s chemical species.

Further, the columns of S ∈ R
n×s
+ are the associated pure component spectra. Typically, the factorization problem

(1) has many solutions, namely component-wise nonnegative matrices C and S of the respective dimensions so that

CS T reconstructs D. The chemically true factors are among these solutions. This fact is known under the keyword

of rotational ambiguity [17, 16, 1]. The sets of all feasible nonnegative factors C and S can be represented with

respect to a low-dimensional basis of left- and right singular vectors of D by the Set of Feasible Solutions (SFS), see

among others [6, 24, 25, 9, 26, 20]. For systems with three chemical species (with s = 3) the SFS is a bounded two-

dimensional set. For the basic and important case of three-component systems Borgen and Kowalski [6] published

in 1985 a geometric algorithm to construct the SFS. The construction of the SFS is explained in Section 2 and this

geometric representation is also known as Borgen plots or Borgen-Rajkó plots in literature. A generalization for noisy,

experimental data has been suggested in [12]. Various other geometrical and numerical approaches have already been

developed, see the survey [9] and [27, 13, 26] for some specific techniques. In 2005 Rajkó and István [24] published

analytical expressions for the inner boundary curve (IBC) of the SFS also known as the limiting curve and laid the

foundations for an analytical solution of the three-component MCR problem. An improvement of this method was

provided by Beyramysoltan et. al. in 2014 [5]. Most of the above-mentioned publications underlies the important

case of chemical systems with three species. We also make this restriction for the present work and assume that

rank(D) = rank(C) = rank(S ) = 3. This means for a singular value decomposition of the spectral data matrix D

that three singular values are non-zero. Then the associated three left singular vectors of D are a basis of the column

vectors of C and the associated right singular vectors also form a basis for representing the column vectors of the

matrix factor S .

1.1. Data sets

The analytical studies in this work are accompanied and illustrated by evaluations for model problems. For the

purpose of their comprehensibility the chosen dimensions are relatively small. A nonnegative 9-by-8 model matrix D
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Figure 1: The data matrix and the true pure components of the FT-IR hydroformylation data set.

is introduced in Appendix A. Its small dimensions ensure that the construction steps of the boundary curve elements

of SFS can easily be studied. We remark that this example matrix has no background of a spectroscopic data set;

however, this fact does not imply any restrictions on the generality of our approach.

Moreover, to illustrate practical chemical applications, we apply our approach to an experimental FT-IR spectro-

scopic data set of the catalyst formation within the rhodium-catalyzed hydroformylation process, for more details see

[14]. This reaction subsystem consists of three main absorbing components - the olefin species, the acyl complex and

the hydrido complex. The aldehyde product of this reaction is not seen in the spectral window. The spectral data

matrix D is a 850 × 645 matrix, see Figure 1. The associated time interval for the 850 spectra is [4.7, 883.6]min and

the 645 spectral channels are given in the wavenumber interval [1962.3, 2117.6]cm−1. The ”true” pure component

spectra and concentration profiles are obtained with the help of kinetic hard modelling and are also shown in Figure

1. The results are presented in Chapter 5.1.

1.2. Organization of the paper

First, Section 2 introduces the geometric background of the nonnegative matrix factorization problem underlying

multivariate curve resolution and introduces the set of feasible solutions. The third section presents a geometric

approach to construct the inner boundary curve of the set of feasible solutions together with closed-form expressions of

the coordinates of the boundary curve. So-called contact change values which are the key quantities for an algorithmic

implementation of an IBC computation algorithm are discussed in Section 4. Finally, Section 5 contains a complexity

analysis and proves further properties of the IBC. Complicated mathematical formula, two proofs and the pseudocode

of the algorithms are placed in the appendices.

1.3. Notation

Component-wise nonnegative matrices and vectors are simply called nonnegative and are represented for example

by A ∈ Rc×d
+ . The colon notation [10] is used to specify columns or rows of a matrix. For instance, Ai,: designates the

ith row vector of A and A:, j is the jth column vector of A.

List of variables:

D (spectral mixture) data matrix,

C first factor (columnwise concentration profiles),

S second factor (columnwise spectral profiles),

k number of spectra,

n number of spectral channels,

s number of chemical species, here s = 3,

U,Σ,VT factors of the singular value decomposition of D,

T̂ non-scaled transformation matrix,

T transformation matrix according to first singular vector scaling,

M/Md the primal/dual SFS,

MC/MS the SFS of factor C / factor S ,

F /Fd the primal/dual outer polygon (FIRPOL),

FC/FS the outer polygon (FIRPOL) of factor C / factor S ,

I/Id the primal/dual inner polygon (INNPOL),
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IC/IS the inner polygon (INNPOL) of factor C / factor S ,

T /Td the primal/dual Borgen-2,3-triangle,

B the IBC (of the primal factor),

α rotation angle underlying the boundary curve formula and the IBC al-

gorithm,

t̄, q̄r, q̄l/ṫ, q̇r, q̇l the edges of T / the vertices of Td,

ṗ, ṡr, ṡl/ p̄, s̄r, s̄l the vertices of T / the edges of Td,

t, qr, ql/p, sr, sl parameters for the edges of T / Td in Hesse form and coordinates of

the vertices of Td / T ,

ṗ the free vertex of the primal Borgen-2,3-triangle,

p the analytical expression for IBC,

3̇, ȯl, ȯr/ūl, ūr vertices of I / edges of F for the construction of T ,

3̄, ōl, ōr/u̇l, u̇r edges of Fd / vertices of Id for the construction of Td,

3, ul, ur, ol, or parameter pairs for the analytical expression of IBC,

cx0, cx1, cx2, cy0, cy1, cy2, cd0, cd1, cd2 coefficients of the analytical expression for IBC,

α1/α2/α3 contact change value of the first/second/third kind,

α2l/α2r/α3l/α3l left/right contact change value of the second/third kind,

αi the i-th contact change value,

p[i] analytical IBC on the i-th interval with the i-th set of parameters,

mF /mI number of vertices of F / I,

ma/mb number of half-planes that form F / number of points whose convex

hull results in I,

mc number of contact change values,

m the largest of the following values: mF ,mI,

d, e, g, h further auxiliary variables.

2. Geometric representation of the solution set

2.1. Inner polygon, outer polygon and the SFS

A standard approach to solving the MCR problem is based on singular value decompositions (SVD) [6, 20] for

dimensionality reduction. Let D = UΣVT be a truncated singular value decomposition of the k × n matrix D with the

rank 3. Then the three nonzero singular values form the diagonal of the diagonal matrix Σ ∈ R
3×3. The columns of

U ∈ Rk×3 and V ∈ Rn×3 are the associated left and right singular vectors. An SVD is not unique even if the singular

values are pairwise different. Then there is still an orientation ambiguity, namely that pairs of left and right singular

vectors (U:,i,V:,i) can be substituted by (−U:,i,−V:,i) without changing the properties of an SVD. Within the SVD plane

these substitutions correspond to an axis flip. To ensure that we use fixed axes orientations for the following analysis,

we assume that the SVD satisfies

max(V:,i) ≥ max(−V:,i), i = 1, 2, 3.

In words, the entry with absolute maximum in each column of V is chosen to be positive. This orientation is used in

FACPACK [27]. However it is possible to use different sign conventions depending on the application, for example,

the SignFlip Function as suggested by Bro, Acar and Kolda in [7], which aims to provide stable orientations for series

of slightly altered data matrices. It has to be noted that the orientation has no impact on the resulting nonnegative

factorizations.

Any nonnegative factorization D = CS T can be represented with respect to the bases of left and right singular

vectors [21]. This means that a transformation T̂ ∈ R3×3 exists so that

D = UΣ(T̂−1

︸   ︷︷   ︸
=C

T̂ )VT

︸︷︷︸
=S T

.

The rows of T̂ can be scaled according to

Ti,: =
1

T̂i,1

T̂i,:, i = 1, 2, 3, (2)

which further reduces some degree of freedom of the set of solutions of the MCR problem. Each row of the trans-

formation is element-wise multiplied with the reciprocal of its first element. Thus the first column T:,1 is an all-ones
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vector. This scaling is only permitted under the weak assumption of irreducibility of DT D, see for example Theorem

2.2 in [30], which ensures that the first column T̂:,1 contains no zeros. This mathematical property is a consequence of

the Perron-Frobenius theory of nonnegative matrices. This row-scaling can be called the first singular vector scaling.

Rajkó and István in [24] use a different scaling based on row sums of D. A one-one nonlinear transformation between

these two scaling approaches exists showing their comparability [12]. This is closely related to Borgen norms, see

[23].

Usually many matrices T exist which result in nonnegative factors C and S . This refers to the so-called factor

ambiguity or rotational ambiguity underlying the set of solutions of the MCR problem, see [1] for an overview. For

MCR problems with three chemical species, the set of possible nonnegative factors S , which can be called an SFS,

can be represented by bounded sets in the two-dimensional real space. The same properties hold for the factor C. A

formal definition of the SFS reads as follows.

Definition 1. The SFS (Set of Feasible Solutions) for the factor S is defined as

MS =
{
x ∈ R2×1 : ∃T ∈ R3×3, T1,2:3 = xT , T:,1 = 1, rank(T ) = 3, C = UΣT−1 ≥ 0, S T = TVT ≥ 0

}
(3)

with the three-dimensional all-ones column vector 1. Analogously, the SFSMC for the other (dual) factor C can be

determined by a similar construction based on T−1.

Note that the existence of a regular T in Definition 1 implies the correctness of the equation D = CS T , because

D = UΣVT = UΣ(T−1T )VT = (UΣT−1)(TVT ) = CS T .

The inherent structure of the nonnegative matrix factorization problem imposes various mathematical and geomet-

ric restrictions on the set of feasible solutions. Geometric construction approaches and many numerical approximation

algorithms have been suggested to construct or to compute the SFS. See the references [15, 19, 6, 24, 12] and many

others. A geometrically constructed SFS for noise-free, ideal data goes back to the influential work by Borgen and

Kowalski [6]. A generalization to noisy, experimental data has been suggested in [12, 28].

Key objects for the construction of the SFS are an outer polygon F , where the letter F refers to the outdated name

FIRPOL, and an inner polygon I which stands for INNPOL. These polygons exist for the factor C and also for S .

The respective target can be expressed by an index, that is we consider IC and FC for the factor C and IS and FS for

the factor S . The precise definitions of these polygons read as follows.

Definition 2. The polygon F is the intersection of affine half-planes

F =
{
x ∈ R2 : xT ai ≥ −1, i = 1, . . . ,ma

}

and I is defined as

I = convhull
({

b j ∈ R
2 : j = 1, . . . ,mb

})

where for the factor S the ai and bi are given by

ai =
(VT )2:3,i

(VT )1,i

, ma = n, b j =
((UΣ) j,2:3)T

(UΣ) j,1

, mb = k

and similarly for the factor C

ai =
((UΣ)i,2:3)T

(UΣ)i,1

, ma = k, b j =
(VT )2:3, j

(VT )1, j

, mb = n.

The outer polygon F is a superset ofM. This means that FC ⊃ MC and FS ⊃ MS . Further, F encloses the inner

polygon I, see for example [20]. See Section 2.3 for more details on the geometric construction and in which way the

inner polygon serves as an “interior” restriction for the SFS.

2.2. Duality principles in MCR

Definition 2 strongly motivates the concept of duality, as FC and IS as well as FS and IC are generated by the

same vectors. The duality theory for these pairs of inner and outer polygons has its roots in [11, 22] and has also been

explored in [26]. The basic relations of duality are briefly presented below.
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Definition 3. A nonzero (point) a ∈ R2 is dual to the affine line

{
x ∈ R2 : xT a = −1

}
. (4)

Remark 1. The line construction (4) is closely related to the Hesse normal form of a line. From xT a = −1 we get the

equivalent condition in the shape of the Hesse normal form for a nonzero vector a ∈ R2

xT a

‖a‖
−

(
−

1

‖a‖

)
= 0.

This describes an affine straight line oriented orthogonal to the vector a whose smallest distance 1/‖a‖ to the origin

is attained in the point −a/‖a‖2.

Duality induces various relations between the inner and outer polygon and the SFS for the two factors C and S .

If we want to refer to the so-called primal factor, then we use the notation F ,I,M and add a subscript d for the

dual factor, namely Fd,Id,Md. In the following examples, S is chosen as the primal factor, unless stated otherwise.

Definition 3 enables useful relationships between the two (dual) geometric representations. Most notably, a vertex of

I is dual to a line that contains a facet of Fd and a line that contains a facet of I is dual to a vertex of Fd. Some

duality relations are illustrated in Figure 2. For the mathematical proofs of these relations see [26, 3]; a deepened

analysis is planned for a forthcoming publication. These relations allow us to continue the theoretical and practical

considerations without having to specify which of the two factors is the primal one.

With he help of duality the inner and outer polygon can be determined easily. This as well as the convex hull

algorithm from Matlab [18] was used in the improved method of Beyramysoltan et. al. [5]. In our method we assume

that the inner and outer polygons have already been calculated.

2.3. Geometric construction of the set of feasible solutions

The polygons F and I are the key-geometric objects for the construction of the set of feasible solutions. The

construction approach was introduced by Borgen and Kowalski [6] with their simplex rotation algorithm. According

to (2) and (3) a factorization of D corresponds to a triangle with the three vertices T1,2:3, T2,2:3 and T3,2:3. Such a

factorization D = CS T is feasible, that is it yields nonnegative factors C and S , if and only if the triangle includes the

inner polygon I and is enclosed by the outer polygon F ; for these fundamental relations see for example Theorem

3.11 in [12]. Each vertex of the triangle represents a possible spectral profile or a possible concentration profile of a

pure component. Consequently, the nonnegative matrix factorization problem is equivalent to the geometric problem

of determining a nested triangle with the mentioned properties. The SFS is the set of all vertices of all feasible triangles

and expresses the factor ambiguity of the nonnegative matrix factorization problem. According to [6] the geometric

construction of the set of all factorizations can be achieved by the construction of boundary cases. These boundary

cases are explained next.

A Borgen-a, b-triangle is defined as a triangle that lies between the boundaries of the inner polygon I and the

outer polygon F , that has a vertices located on the boundary of F , and b of its edges touch I. It is a generalization

of the Borgen triangle, as given in [24], [5] or the limiting simplex in [6]. Such triangles approximate the SFS and

are called Borgen-3, 3-triangles according to our definition.

Furthermore, each feasible matrix T , according to Defintion 1, results in a Borgen-a, b-triangle. If the triangle

does not touch neither F nor I, then it is a Borgen-0, 0-triangle.

Main focus for the construction of the the SFS is on Borgen-2, 3-triangles T . They consist of two outermost

vertices with three innermost edges, that is they have two vertices located on the boundary of F , and all their edges

touch the inner polygonI. Without rotation this third vertex is as close as possible to the inner polygon and represents

a boundary of the SFS through the limitations imposed by the positions of F and I, and we call it a free vertex. Such

innermost boundary points of the set of feasible solutions are the free vertices. A typical triangle satisfying these

conditions is illustrated for the primal factor in Figure 3. The primal triangle is plotted green with vertices plotted in

cyan. Figure 3 also shows the dual lines (in cyan) which form the dual triangle Td. Note that the dual triangle of a

Borgen-2, 3-triangle is always a Borgen-3, 2-triangle.

By rotating the Borgen-2, 3-triangle around the inner polygon I a continuous curve of innermost boundary points

is constructed. During the rotation process the two outermost vertices are continuously moved to the boundary of the

outer polygon and the innermost vertex is always constructed according to the rules given above. The curve is given

by the positions of all free vertices which have been constructed during the triangle rotation process. Parts of this

curve form the inner boundary of the SFS whereas the outer boundary of the SFS is determined by the boundary of

the outer polygon. Hence we call the constructed curve the inner boundary curve (IBC) of the given three-component

problem and refer to it as B. If we intersect the IBC with the boundary of the outer polygon F , then the enclosed

finite regions which are located in the outer polygon define the SFS. These areas are plotted gray in Figure 3. In this
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figure, the IBC is plotted by a black line. Its parts in the outer polygon are of importance for the SFS construction.

However, the IBC curve also exists outside the polygon F , see Figure 3.

In many cases the IBC is a continuous (closed) curve. However, in some situations the IBC can tend to infinity

which prevents the existence of a continuous or closed IBC. An example situation is shown in Figure 4. A singularity

of the IBC occurs, if the dual triangleTd does not include the origin for certain rotation angles. The SFS is not affected

by such singularities of the IBC since this occurs outside the outer polygon where the feasibility of triangles is not

satisfied.

3. Function representation of the IBC

In 2005 Rajkó and István [24] published analytical expressions for a piecewise representation of the IBC. Here

we deepen this analysis, introduce a general approach of presenting the IBC by piecewise analytical expressions in

function form on the basis of contact change values, generalize the classical approach by using duality arguments and

derive analytical expressions with a focus on their numerical stability. The goal is to present a simple, efficient and

stable algorithmic implementation by using duality relations.

3.1. Derivation of a closed-form expression for points on the IBC

The Borgen-2, 3-triangles construction only requires the coordinates of the vertices of I and also the edges of F .

The location of the free vertex depends on these given parameters, as well as on the triangle rotation. See Figure 5

for the variable names of the Borgen-2, 3-triangle T and its dual Borgen-3, 2-triangle Td. All points are denoted by

lowercase letters with a dot above. The corresponding dual lines are written with a bar above the same lowercase

letter. The edges of the polygons are also represented by their corresponding line equations and no further distinction

between lines and edges is required. The subscript letters l and r stand for left and right with the view direction from

the point ṫ of the dual plot.

Rajkó and István [24] and Beyramysoltan et. al. [5] use coordinate pairs for the points ė = (x, y) and slope-intercept

form for lines

ē = {(x, y) : y = g + hx} .

We prefer to write line equations in the Hesse form, see (4),

ē =
{
(x, y)T ∈ R2 : e1x + e2y = −1

}
, ė = (e1, e2)T ∈ R2 \ (0, 0)T . (5)

This offers a double advantage. The line ē is dual to the point ė; compare this with Definition 3. Consequently, no

computation is required for this transformation and no numerical precision is lost. Only lines passing through the

origin cannot be of the form (5). However, duality does not allow lines through the origin. Thus (5) is the appropriate

notation for our scope of application and increases the numerical stability.

The approach [24] considers a rotation of a triangle as a function of the x-coordinate of ṡl. Here we choose the

angle α between the positive x-axis and a vector towards ṫ in the dual plot as the free variable. This representation has
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some advantages with respect to the piecewise boundary construction. Thanks to duality the change in α corresponds

to the rotation of t̄ around I. Thus, a full rotation of the tangent around the I takes place for α ∈ [−π, π). This is

possible because the origin is included in I and F , see [20].

The goal is to construct a closed-form expression for the points ṗ on the IBC that depends on α and has five

additional parameters 3, sl, sr, ol and or. These parameters fix the local geometric setup and allow us to determine

the associated point on the IBC. Both the point form and the line form can be used for the parameter representation

because they are equivalent. The construction begins with the calculation of the point ṫ = (t1, t2)T . For this purpose

we consider the geometric situation shown in Figure 5 where the intersection of the vertex ṫ with the line 3̄ is to be

determined. The line equation reads

31t1 + 32t2 = −1 (6)

with ṫ = (t1, t2)T . The relation

tanα = t2/t1 (7)

simply holds in the first quadrant, but is also true in all other quadrants. These quadrants refer to a coordinate system

fixed at the origin (0, 0). Figure 5 shows (upper plot) a case in which ṫ is located in the second quadrant. Elimination

of t1 and t2 in Equations (6) and (7) results in

t1 =
−1

31 + 32 tan(α)
, t2 =

− tan(α)

31 + 32 tan(α)
. (8)

Among other mathematical representations, we prefer (8) due to its numerical stability for α values close to ± π
2
, since

for ṫ =
(
0, −1
32

)
and in the limit α→ ± π

2
we get

t1 =
−1

31 + 32 tan(α)

α→± π
2

−−−−−→ 0,

t2 =
− tan(α)

31 + 32 tan(α)
=

−1
31

tan(α)
+ 32

α→± π
2

−−−−−→
−1

32

.

Further construction steps consist of two generic, repeated operations:

1. Calculate the point ė = (e1, e2)T of intersection of the two lines ḡ =
{
(x, y)T ∈ R2 : g1x + g2y = −1

}
and h̄ ={

(x, y)T ∈ R2 : h1x + h2y = −1
}

by solving a 2-by-2 linear system of equations

(
e1

e2

)
=

(
g1 g2

h1 h2

)−1 (
−1

−1

)
=

1

g1h2 − g2h1

(
g2 − h2

h1 − g1

)
, (9)

where degenerate cases of identical or non-crossing lines are excluded if g1h2 − g2h1 , 0.

8



ṫ(α, 3̄)

ṡl(t̄, ūl)

ṡr(t̄, ūr)
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ṗ(q̄l, q̄r)

#7

p̄(q̇l, q̇r)

#8

Figure 6: Possible derivation routes for the boundary curve by using duality relations underlying the nonnegative matrix factorization problem.

Some of the steps refer to the primal triangle and others to the dual triangle. Green color is used if the coordinates of a point are calculated from

two lines. Blue color indicates if a line is calculated from two points.

2. Solving the dual problem of determining a line ē =
{
(x, y)T ∈ R2 : e1x + e2y = −1

}
that passes through two

different points ġ = (g1, g2)T and ḣ = (h1, h2)T . This yields the same linear system of equations as considered

above with the solution

e1 =
g2 − h2

g1h2 − g2h1

, e2 =
g1 − h1

g1h2 − g2h1

. (10)

Numerical stability is a critical issue in the evaluation of the various mathematical terms derived here. In general,

we present a set of expressions with the best numerical stability as found by testing various ways of computing the

IBC curve. The steps for the construction of the IBC point ṗ can be accomplished via the primal triangle T and/or the

dual triangle Td, as the choice of line equation allows a simple transformation from one to another. All the possible

construction routes for ṗ = (p1, p2) are illustrated in Figure 6. Route #3 in Figure 6 only performs computations

within the primal plot to determine ṗ, and this route is similar to the approach of Rajkó and István [24] as well as

Beyramysoltan et. al. [5]. A discussion on the best route for an algorithmic implementation follows below.

In dependence on the angle α and the two-dimensional vector parameters 3, sl, sr, ol and or we get the following

analytical expressions for ṗ = (p1, p2)T

p1 =
cx0 + cx1 tan(α) + cx2 tan2(α)

cd0 + cd1 tan(α) + cd2 tan2(α)
,

p2 =
cy0 + cy1 tan(α) + cy2 tan2(α)

cd0 + cd1 tan(α) + cd2 tan2(α)
,

(11)

where complicated formula for the nine coefficients cx0, cx1, cx2, cy0, cy1, cy2, cd0, cd1 and cd2 are given in Appendix B.

3.2. Contact change values

The IBC is the set of all constructable points ṗ. The true complexity of the Expression (11) lies in the fact that the

parameters 3, sl, sr, ol and or change in dependence on the angle α. The reason for this is that the contact conditions of

the Borgen-2, 3-triangle changes with the rotation angle α and so do the parameter values. This concept of parameter

values underlying ṗ changing at certain values of α is similar to the approach of contact change points by Aggarwal

et. al. [2].

Definition 4. A value αi ∈ [−π, π) for i = 1, . . . ,mc is called the i-th contact change value if one of the vertices of the

corresponding Borgen-2, 3-triangle coincides with a vertex of F or if one of the edges of the Borgen-2, 3-triangle is

collinear with an edge of I. The corresponding point ṗ(α) on the IBC is called the contact change point. If more than

a single vertex or edge is responsible for the same contact change value, then they are still counted separately.

The contact change values αi partition the angle interval [−π, π) in subintervals

−π = α0 ≤ α1 ≤ · · · ≤ αi ≤ αi+1 ≤ · · · ≤ αmc
≤ αmc+1 = π.

Each subinterval [αi, αi+1) stands for a unique set of parameters used in the construction of the Borgen-2, 3-triangle.

The parameters change at each contact change value. Closed-form expressions can be derived for ṗ in each interval.

All this results in the IBC function for all angle values α ∈ [−π, π).
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Definition 5. The IBC function is an interval-wise defined function with changing sets of parameters depending on

the interval. The dependence on the particular interval is expressed by an additional superindex in brackets. Thus we

consider

p : [−π, π)→ R
2, α 7→



p[mc](α) for α ∈ [α0, α1) ,

p[1](α) for α ∈ [α1, α2) ,
...

p[i](α) for α ∈ [αi, αi+1) ,
...

p[mc](α) for α ∈
[
αmc
, αmc+1

)
,

where p[i](α) equals ṗ by (11) in the i-th interval α ∈ [αi, αi+1) with its specific (and in this interval constant) set of

parameters.

The repetition of the function p[mc](α) in the first and the last subinterval of [−π, π) reflects the fact that α = π is

not necessarily a contact change value, but only a point in which the upper and lower semicircles meet.

The approach of Beyramysoltan et. al. [5] suggests to only calculate the IBC function for the intervals which result

in the points ṗ that are located in F , however this requires the search for all Borgen-3, 3-triangles. This method does

not provide any significant improvement of the calculation time for our implementation.

4. Algorithmic approach for constructing the boundary curve

The main complexity of the boundary curve construction consists in finding the contact change values αi. Interval-

wise the associated parameter sets are fixed and they change from one to the next interval. This section deals with some

overall considerations of an algorithmic solution of this problem, but is not an attempt at a complete generalization of

all possible approaches. We explain an approach based on determining tangents of a polygon by using a convex hull

construction. Alternative algorithms are possible, for instance those which are based on determining the intersection

of an affine line with a general polygon. Here, we prefer to compute the contact change values by means of a convex

hull algorithm. This provides the parameters for the construction route #1 shown in Figure 6.

Contact change values can be categorized into three main types and different steps are to be taken to find them all.

The pseudo-code for the three types and both approaches can be found in Appendix C.

4.1. Contact change values of the first kind α1: Primal inner edge coincidence

The contact change values of the first kind represent the changing parameter values in the top level of Figure 6.

This is a situation in which an edge of the primal triangle T completely covers an edge of the inner polygon. This

situation is dual to the geometric incidence of a vertex of the dual outer polygon with a vertex of the dual triangle

Td. Hence, each vertex of the dual outer polygon Fd corresponds to a specific contact change value of the first kind.

Therefore, we find all contact change values α1 by calculating the two-argument arctangent values (inverse tangent

value) of each vertex of Fd. By running through such contact change values of the first kind, the present parameter

3 is replaced by the next, directly following edge of Fd. Figure 7 illustrates such a contact change value of the first

kind α1 in the primal and dual representation. Additionally, see Figure 8 for the construction. We call this situation a

primal inner edge coincidence.

4.2. Contact change values of the second kind α2: Primal outer vertex coincidence

Contact change values of the second kind concern a primal outer vertex coincidence, which is explained next.

Such contact change values correspond to changing parameter values in the second level (from the top) of Figure 6,

that is, u̇l or u̇r changes its value or equivalently ūl or ūr in the dual plot. We calculate two tangents of I for each

vertex of F by computing the convex hull of vertices of I together with a single vertex of F . Two edges of this

convex hull are the desired tangents t̄. The algorithmic pseudocode of these steps is listed in Appendix C and contains

the details on the convex hull construction.

Without additional effort we transform the two tangents to the line t̄ and the dual point ṫ. Then α2 is the two-

argument inverse tangent value of the point ṫ. The change of parameters ul or ur for the inner boundary curve function

is given by the following edge of F . See Figure 9 for an illustration and Figure 10 for the construction.
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Figure 7: A contact change value of the first kind α1 for the model problem is illustrated in the primal SFS (left) and the dual SFS (right). For such

contact change values an edge t̄ of T completely covers an edge of the primal triangle I, see the lowermost green line in the left plot. In the dual

plot this corresponds to a vertex ṫ of Td (uppermost green circle in the right plot) which coincides with a vertex of Fd .
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Figure 8: Calculation of a contact change value of the first kind α1 from Figure 7 by computing the inverse tangent (arctan) value which corresponds

to the (marked) vertex of the dual outer polygon (right subplot).
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Figure 9: A left contact change value of the second kind α2l for the model problem. The vertex ṡl of T coincides with a vertex of F and the edge

s̄l of Td contains an edge of Id .
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Figure 10: The calculation of the left contact change value of the second kind α2l from Figure 7.

4.3. Contact change values of the third kind α3: A second primal inner edge coincidence

The contact change values of the third kind represent the changing parameter values in the third level (from the

top) of Figure 6, that is, ol or or changes its value. So we distinguish such contact change values of the left and the

right type. See Figure 5 on ol or or and all further variables. The contact change values of the third kind refer to a

geometric setup which is similar to that of the first kind. However, due to a different orientation of the inner edge

coincidence an active edge ol or or changes its value. Compare this with Section 4.1 where the edge 3 is changed.

We calculate the two tangents of Id for each vertex of Fd with the convex hull algorithm. If the left contact change

value of the third kind is obtained by constructing the dual triangle Td, then the respective vertex of Fd represents the

point q̇l and the tangent stands for the line s̄l.

Then we use the dual point ṡl of the line s̄l. The point ṡl lies on F and it allows us to obtain the left and the right

tangents of I by means of the convex hull algorithm. One of the tangents is the line q̄l and can be discarded. The other

tangent is t̄. Then it can be transformed to the dual point ṫ and its 2-argument inverse tangent is the desired contact

change value α3. A right contact change value of the third kind can be obtained by following the same steps with the

other tangent of the Id.

The change of either parameter ol or or for the construction of the inner boundary curve function consists of

substituting the present edge by the following edge of F . See Figure 11 for an illustration of the geometric setup and

Figure 12 for the construction.

4.4. Computing the IBC function

Once we have determined all contact change values together with their corresponding changing parameters, they

are sorted in ascending order. Each contact change value changes only a single pair of parameters whereas the

remaining parameters can be adopted from the previous subinterval. This easily allows us to fill the parameter table

for all subinterval as introduced in Definition 5. A subsequent evaluation of the analytical expressions (11) yields the

IBC as a function of the rotation angle α in each of the subintervals.

The IBC function can be evaluated with any desired precision. The precision is only limited by the computer

arithmetic used. Hence the presented approach is a truly analytical approach. Further, the accuracy of the IBC curve

can be adapted to any level of precision for regions of particular interest. However, in most practical situations the

double precision (64 bit) arithmetic of a standard personal computer appears to be sufficient for most applications. In

a final step the SFS is found as the intersection of the exterior of the IBC curve with the outer polygon F .

5. Discussion and further result

Next, an application is presented for the three-component consecutive chemical reaction system as introduced in

Section 1.1. Further, we provide some properties of the IBC functions and of its algorithmic evaluation. Our analysis

also encompasses a complexity analysis of the algorithm and the discussion of some problematic cases.
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Figure 11: A right contact change value of the third kind α3r for the model problem. The edge q̄r of T covers an edge of I and the vertex q̇r of Td

coincides with a vertex of Fd .
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Figure 12: The calculation of the right contact change value of the third kind α3r for the geometric situation as shown in Figure 7.
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Figure 13: The IBC I, the outer polygon F , the inner polygon I, the SFSM for both factors of the experimental FT-IR spectroscopic data set as

introduced in Section 1.1. Furthermore, the triangles that correspond to the true pure components in Figure 1 are shown and are denoted by T̂S and

T̂C respectively.

5.1. Application to an experimental problem

The structure of the FT-IR data set is explained in 1.1 and the three concentration profiles and the associated

spectra of the pure components are shown in Figure 1. Here the analysis with the IBC algorithm follows. FS is

spanned by 217 points and FC - by 103 points. The outer boundaries required for our algorithm are calculated using

the polygon inflation algorithm for noisy data, see [27, 30, 28] and then the inner boundaries are found wiht the help

of duality. This step is also very similar to the use of duality in [5]. Then the IBC algorithm is applied and Figure 13

shows the resulting SFS for both factors in gray color. BS contains 743 subintervals and subfunction. BC contains 857

subintervals. The total calculation time for the IBC of both factors typically was less than 0.6 seconds in a Matlab

2019b (single core) implementation running on a standard desktop computer (3.6GHz Intel CPU).

5.2. Number of contact change values

The number of contact change values equals the number of subfunctions of the piecewise-defined IBC function.

Hence this number is a meaningful key indicator for the total computing time.

Let mI be the number of vertices of I and mF be the number of vertices of F . The number of the contact change

values of the first kind is exactly mI. The number of the left contact change values of the second kind is mF . The

same holds for the right contact change values of the second kind. The number of the left and also that of the right

contact change values of the third kind equals mI. Therefore, the total number of contact change values mc sums up

to

mc = 3mI + 2mF ≤ 3mb + 2ma, (12)

including possibly overlapping values. The constants ma and mb in Eq. (12) are introduced in Definition 2 and equal

the dimensions k or n of the k × n spectral mixture data matrix D. If the SFS for the spectral factor S is considered,

then an upper bound on the number of subfunctions equals 3k+ 2n. For the concentration factor C the number of IBC

subfunctions is always less or equal to 3n + 2k. For large k and n the analytical approach to determining the IBC may

be too expensive. Then a purely numerical SFS approximation, for example by the polygon inflation [27], may seem

more appropriate.

5.3. Time and computer storage complexity of the IBC algorithm

Computational complexity theory is concerned with the required computer resources for the solution of a problem,

mainly the computing time and required computer storage. We discuss these issues by using basic concepts of the

complexity theory and algorithms, for example see [31, 8].

First, computer storage is not a problematic resource for the IBC algorithm because it scales only linearly with

the dimension of the input data. Roughly, for each interval with constant contact change values ten parameters are

to be stored in a table. Second, the time complexity class of the IBC calculation is determined by the choice of the

algorithm for solving the contact problem, namely the convex hull algorithm or a comparable line-polygon intersection

algorithm.
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Theorem 1. Let alg(n) be the time complexity class of a convex hull algorithm or a line-polygon intersection algo-

rithm. Further, let mI be the number of vertices of I and mF be the number of vertices of F . Then the time complexity

class of the IBC algorithm is

O(mF alg(mI) + mI (alg(mI) + alg(mF )) + (mI + mF ) log(mI + mF )).

If only m with m = max(mF ,mI) is known, then the time complexity class of the IBC algorithm is

O(m alg(m) + m log(m)).

Therein, the big O notation, which is also called the Landau notation, serves to describe the asymptotic growth

behavior. The proof of Thm. 1 is given in the Appendix D. The selection of the convex hull algorithm and of the

line-polygon intersection algorithm significantly influence the asymptotic computing time. This was the reasoning for

providing the pseudo-code of both versions in Appendix C. In our implementation the convex hull algorithm uses the

Quickhull algorithm as implemented in Matlab [18]. For the sake of simplicity we assume that the balance conditions

hold and that all points are processed. Then the complexity class of the Quickhull algorithm equals O(m log(m)) for

m points, see [4]. This results in the time complexity class O(m2 log(m)). m can be estimated to be less or equal than

the maximal dimension of the matrix D.

5.4. Intersection of the outer polygon with the IBC

As explained in Section 4.4, the SFS is the intersection of the outer polygon F and the exterior of the IBC, which

is the unbounded set if the IBC is considered to split the plane R2 into two sets (namely a set around the origin which is

enclosed by the IBC and its unbounded complement). The SFS contains the full information on the factor ambiguity

of the nonnegative matrix factorization problem. If the IBC is determined, then the SFS can easily be computed

numerically. However, the IBC also devises an analytical route for a precise (analytical) representation of the SFS.

This approach is explained next.

Each edge of the outer polygon F is given by an affine line of the form e1x + e2y = −1 with proper parameters

e1 and e2. Furthermore, let us substitute z = tan(α) in Equation (11). Then the precise coordinates of a point of

intersection of an edge of F with the IBC are given by the solution of the equation

e1 p1(z) + e2 p2(z) = −1

if the considered subfunction of the inner boundary curve and the considered edge of F intersect. The solution can be

derived by solving the quadratic equation

0 = (e1cx2 + e2cy2 + cd2)z2 + (e1cx1 + e2cy1 + cd1)z + (cx0 + cy0 + cd0).

The result can be interpreted as Borgen-3, 3-triangles from [24]. We note that the advantages of this approach are

limited to certain problematic cases. In general, the numerical approach is much faster and some minor loss of

precision is not meaningful.

5.5. A conic section approach to the IBC

The IBC representation (11) has a parametric form. It is also possible to represent it in the form of an implicit

equation. This allows us to prove an interesting geometric property, namely that the IBC is composed of conic

sections, see Figure 14.

Theorem 2. Each of the IBC subfunctions is a segment of a conic section (namely an ellipse or circle, parabola or

hyperbola or also a degenerate conic section as a line segment or a point).

The proof is given in Appendix E. This theorem has some intriguing implications, as it places the IBC construction

in a classical branch of mathematics. Possibly, this can provide more insight into the problem and to prove additional

mathematical properties. If the conic section is non-degenerate (not just a line or single point), then the coefficients ol

and or lie on the conic section defined by the inner boundary curve subfunction. Further, the intersection of the lines

that are given by the coefficients ul and ur (if it exists), also lies on the conic section. This can be proved by inserting

them in Equation (14).
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Figure 14: An ellipse (left, green) and a hyperbole (right, green) are drawn. They contribute in certain intervals to the inner boundary curve

(magenta).
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Figure 15: If a vertex of the inner polygon coincides with a vertex of the outer polygon, then an ambiguous free vertex can occur. Two possible

free vertices (cyan dots in the left and right plot) are shown for possible Borgen-2, 3-triangles T between the fixed polygons I and F .

5.6. Poorly conditioned cases of a numerical implementation of the IBC algorithm

The IBC algorithm is by its nature a precise analytical approach. However, the numerical and graphical represen-

tations require that the IBC is evaluated numerically. Some geometrical situations can result in poorly conditioned

numerical computations. This is more or less inevitable for the suggested and other algorithms working with triangle

constructions and rotations. Most of these cases occur if a vertex of I is located very close to F or if a vertex of

I coincides with a vertex of F . To discuss this point, we recall that the triangle construction for finding the IBC

parameters consists of finding tangents of the inner polygon through a given point of the outer polygon. If a vertex

of I is located close to F , then this tangent can be defined by two points that are close to each other. Therefore, a

small numerical error in one of those points can result in a large error for the tangent and for the IBC coordinates.

In numerical mathematics such a problem is called ill-conditioned and so is the construction of certain triangles if

vertices of I are close to those of F . In particular, if single-point or line-shaped subsets of SFS are expected, then

numerical approximation methods, such as polygon inflation [27] should be preferred.

The limit case of coinciding vertices of I and F can occur if the spectral data matrix D contains multiple zero

entries. Then Borgen-2, 3-triangles are not necessarily unique as illustrated in Figure 15. We assume that this case

corresponds to a degenerated cone intersection with line shape. The suggested algorithmic implementation of the

IBC construction cannot deal with this special situation and constructs only a single point. The algorithmic extension

would be a linear interpolation in order to close gaps in the IBC curve which originate from this special geometric

constellation. Further, we must expect a reduced numerical accuracy of a possible numerical implementation of the

IBC algorithm in the case of coinciding vertices of I and F . This problem cannot be avoided easily.
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6. Conclusion

The analytical boundary curve construction is not only an absolutely precise method in order to determine the

set of feasible solutions for a nonnegative matrix factorization problem with three chemical species, but can also be

practically implemented by the suggested algorithm. Closed-form expressions for the coordinates of the IBC have

been derived which have revealed that the IBC piecewise consists of conic sections. This result joins the chemometric

factor ambiguity problem with the classical field of mathematical geometry.

The IBC algorithm can support theoretical and analytical investigations with a focus on special and limit cases.

For practical applications on high-dimensional experimental data the IBC algorithm is still applicable, but a numerical

approximation approach might prove to be more robust. Nevertheless the IBC algorithm is promising in both the

computing time and the precision of the results. The Matlab Code of our implementation can be found on the

FACPACK homepage [29]. This program code computes the list of sorted contact change values for a given (chemical

data) matrix and provides a Matlab function which enables the user to evaluate the boundary of the SFS with a high

precision.

Appendices

A. Model matrix

We consider the following 9 × 8 nonnegative model matrix with the rank 3. This matrix has many nonnegative
factorizations with factors also of the rank 3.

D =



54 53 129 169 110 70 42 42

33 41 63 75 48 43 46 53

96 222 106 65 61 111 142 151

69 116 74 54 30 91 172 213

69 97 139 166 113 86 64 64

42 80 72 75 57 49 34 29

42 62 82 96 66 52 40 40

45 89 55 43 32 55 78 89

45 66 80 90 60 57 60 67



. (13)

B. Coefficients of the IBC for Equation (11)

The following eight coefficients underlying the IBC coordinates as given in (11) have the following form:

cx0 = −ol1or1ul1ur231 + ol1or1ul2ur131 + ol1or2ul2ur231 + ol1ul1ur23
2
1 − ol2or1ul2ur231

+ ol2ul2ur23
2
1 − or1ul2ur13

2
1 − or2ul2ur23

2
1 + ol1or1ul2 − ol1or1ur2 + ol1ur231 − or1ul231,

cx1 = −ol1or1ul1ur232 + ol1or1ul2ur132 − ol1or2ul1ur231 + ol1or2ul2ur232 + 2ol1ul1ur23132

+ ol2or1ul2ur131 − ol2or1ul2ur232 + 2ol2ul2ur23132 − 2or1ul2ur13132 − 2or2ul2ur23132

− ol1or1ul1 + ol1or1ur1 + ol1or2ul2 + ol1ul131 + ol1ur232 − ol2or1ur2 + ol2ul231

+ ol2ur231 − or1ul232 − or1ur131 − or2ul231 − or2ur231 + ol1 − or1,

cx2 = −ol1or2ul1ur232 + ol1ul1ur23
2
2 + ol2or1ul2ur132 + ol2ul2ur23

2
2 − or1ul2ur13

2
2

− or2ul2ur23
2
2 − ol1or2ul1 + ol1ul132 + ol2or1ur1 + ol2ul232 + ol2ur232 − or1ur132

− or2ul232 − or2ur232 + ol2 − or2,

cy0 = −ol1or2ul1ur231 − ol1ul1ur13
2
1 + ol2or1ul2ur131 − ol2ul2ur13

2
1 + or1ul1ur13

2
1

+ or2ul1ur23
2
1 − ol1or2ur2 − ol1ul131 − ol1ur131 + ol2or1ul2 − ol2ul231 + or1ul131

+ or1ur131 + or2ur231 − ol1 + or1,

cy1 = ol1or2ul1ur131 − ol1or2ul1ur232 − 2ol1ul1ur13132 − ol2or1ul1ur131 + ol2or1ul2ur132

− ol2or2ul1ur231 + ol2or2ul2ur131 − 2ol2ul2ur13132 + 2or1ul1ur13132 + 2or2ul1ur23132

+ ol1or2ur1 − ol1ul132 − ol1ur132 − ol2or1ul1 + ol2or2ul2 − ol2or2ur2 − ol2ul232

− ol2ur131 + or1ul132 + or1ur132 + or2ul131 + or2ur232 − ol2 + or2,

cy2 = ol1or2ul1ur132 − ol1ul1ur13
2
2 − ol2or1ul1ur132 − ol2or2ul1ur232 + ol2or2ul2ur132

− ol2ul2ur13
2
2 + or1ul1ur13

2
2 + or2ul1ur23

2
2 − ol2or2ul1 + ol2or2ur1 − ol2ur132 + or2ul132,

cd0 = ol1or2ul2ur2 + ol1ul2ur131 − ol2or1ul2ur2 + ol2ul2ur231 − or1ul1ur231 − or2ul2ur231

+ ul1ur23
2
1 − ul2ur13

2
1 + ol1ul2 − or1ur2 − ul231 + ur231,
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cd1 = −ol1or2ul1ur2 − ol1or2ul2ur1 − ol1ul1ur131 + ol1ul2ur132 + ol2or1ul1ur2 + ol2or1ul2ur1

− ol2ul1ur231 + ol2ul2ur232 + or1ul1ur131 − or1ul1ur232 + or2ul2ur131 − or2ul2ur232

+ 2ul1ur23132 − 2ul2ur13132 − ol1ul1

+ ol2ul2 + or1ur1 − or2ur2 + ul131 − ul232 − ur131 + ur232,

cd2 = ol1or2ul1ur1 − ol1ul1ur132 − ol2or1ul1ur1 − ol2ul1ur232 + or1ul1ur132 + or2ul2ur132

+ ul1ur23
2
2 − ul2ur13

2
2 − ol2ul1 + or2ur1 + ul132 − ur132.

C. Pseudocode for determining contact changes values

The following five pseudocode elements serve to determine the contact change values of the first up to the third

kind. For explanations and details see Section 4. An implementation in Matlab using the convex hull approach can

be found on the FACPACK homepage [29].

Algorithm 1 Computing α1

Require: Fd.

Ensure: A list of contact change values of the first kind α1
i

with the corresponding parameters (v)i, i = 1, . . . ,mI.

1: Set i = 1.

2: for t as a vertex of FD do

3: Set α1
i
= atan2(t).

4: Save the edge of FD that follows ṫ counter-clockwise as (3)i.

5: Set i = i + 1.

6: end for

Algorithm 2 Computing α2 with the convex hull

Require: F ,I.

Ensure: A list of the left contact change values of the second kind α2l
i

with the corresponding parameters (ul)i

and a list of the right contact change values of the second kind α2r
i

with the corresponding parameters (ur)i,

i = 1, . . . ,mF .

1: Set i = 1.

2: for slr as a vertex of F do

3: Find the left tangent tr and the right tangent tl of I from slr with a convex hull algorithm. (The orientation is

towards the origin.)

4: Set α2l
i
= atan2(tl).

5: Save the edge of F that follows slr counter-clockwise as (ul)i.

6: Set α2r
i
= atan2(tr).

7: Save the edge of F that follows slr counter-clockwise as (ur)i.

8: Set i = i + 1.

9: end for

Algorithm 3 Computing α2 by line-polygon intersection

Require: Fd,Id.

Ensure: A list of the left contact change values of the second kind α2l
i

with the corresponding parameters (ul)i and list

of the right contact change values of the second kind α2r
i

with the corresponding parameters (ur)i, i = 1, . . . ,mF .

1: Set i = 1.

2: for slr as a line that contains an edge of Id do

3: Find the left intersection tr and the right intersection tl of slr withFd using a line-polygon intersection algorithm.

4: Set α2l
i
= atan2(tl).

5: Save the right vertex of the chosen edge of Id as (ul)i.

6: Set α2R
i
= atan2(tR).

7: Save the right vertex of the chosen edge of Id as (ur)i.

8: Set i = i + 1.

9: end for
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Algorithm 4 Computing α3 by a convex hull approach

Require: F ,I, Fd,Id.

Ensure: A list of the left contact change values of the third kind α3l
i

with the corresponding parameters (ol)i and a list

of the right contact change values of the third kind α3r
i

with the corresponding parameters (or)i, i = 1, . . . ,mI.

1: Set i = 1.

2: for qlr as a vertex of Fd do

3: Find the left tangent sr and the right tangent sl from qlr to Id with a convex hull algorithm.

4: Find the left tangent qlr and the right tangent tl from sl to I with a convex hull algorithm.

5: Set α3l
i
= atan2(tl).

6: Save the edge of Fd that follows qlr counter-clockwise as (ol)i.

7: Find the left tangent tr and the right tangent qlr from sr to I with a convex hull algorithm.

8: Set α3r
i
= atan2(tr).

9: Save the edge of Fd that follows qlr counter-clockwise as (or)i.

10: Set i = i + 1.

11: end for

Algorithm 5 Computing α3 by a line-polygon approach

Require: F ,I, Fd,Id.

Ensure: A list of the left contact change values of the third kind α3l
i

with the corresponding parameters (ol)i and a list

of the right contact change values of the third kind α3r
i

with the corresponding parameters (or)i, i = 1, . . . , kI.

1: Set i = 1

2: for qlr as a line that contains an edge of I do

3: Find the left intersection sr and the right intersection sl of qlr withF using a line-polygon intersection algorithm

4: Find the right intersection tl of sl with Fd using a line-polygon intersection algorithm (the left intersection is

qlr)

5: Set α3l
i
= atan2(tl)

6: Save the right vertex of the chosen edge of I as (ol)i

7: Find the left intersection tr of s2 with Fd using a line-polygon intersection algorithm (the right intersection is

qlr)

8: Set α3r
i
= atan2(tr)

9: Save the right vertex of the chosen edge of I as (or)i

10: Set i = i + 1

11: end for

D. Proof of Theorem 1

Proof. Each step of the construction of the IBC is considered concerning its computing time complexity, starting with

the computation of the contact change values.

To compute the contact change values of the first kind, mI iterations with a constant number of operations are

performed. Therefore, this step has the time complexity class O(mI).

To determine the contact change values of the second kind, mF iterations are performed. Each of the iterations

consists of either a convex hull algorithm over mI + 1 vectors or a line-polygon intersection algorithm over mI + 1

lines and a constant number of further operations. Thus, this step has the time complexity class O(mF alg(mI)).

To compute the contact change values of the third kind, mI iterations are performed. Each of the iterations

consists of either a convex hull algorithm over mF + 1 vectors and two more repetitions of a convex hull algorithm

over mI + 1 vectors or a line-polygon intersection algorithm over mF + 1 lines and two more repetitions of a line-

polygon intersection algorithm over mI + 1 lines. There is also a constant number of further operations. Therefore,

O(mI(alg(mI) + alg(mF ))) is the time complexity class of this step.

Further, the sorting of the 3mI + 2mF contact change values is required. A good sorting algorithm has the time

complexity of O(n log(n)), see [8]. Thus, this step has the time complexity class O((mI + mF ) log(mI + mF )).

Finally, the resulting functions have to be calculated for each of the 3mI + 2mF subintervals. This requires a

constant number of operations for each iteration. Therefore, this step has the time complexity class O(3mI + 2mF ).

The resulting time complexity of the IBC algorithm is given by

O(mF alg(mI) + mI(alg(mI) + alg(mF )) + (mI + mF ) log(mI + mF )).

The second result follows from this.
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E. Proof of Theorem 2

Proof. The theorem is proven by bringing the parametric curve by Equation (11) in the general Cartesian form

dx2x2 + dxyxy + dy2y2 + dxx + dyy + d0 = 0. (14)

This equation defines a conic section problem and all possible cases of conic sections can be described in this way.

Due to the complexity of the expressions we prefer to work with the symbolic algebra program tool Maple and its

eliminate and collect functions. The coefficients of the Cartesian form (14) are given by

dx2 = c2
y0c2

d2 − cy0cy1cd1cd2 − 2cy0cy2cd0cd2 + cy0cy2c2
d1 + c2

y1cd0cd2 − cy1cy2cd0cd1 + c2
y2c2

d0,

dy2 = c2
x0c2

d2 − cx0cx1cd1cd2 − 2cx0cx2cd0cd2 + cx0cx2c2
d1 + c2

x1cd0cd2 − cx1cx2cd0cd1 + c2
x2c2

d0,

dx = cx0cy1cy2cd1 + cx1cy0cy1cd2 + cx1cy1cy2cd0 + cx2cy0cy1cd1 + 2cx0cy0cy2cd2 − cx0c2
y1cd2

− 2cx0c2
y2cd0 − 2cx1cy0cy2cd1 − 2cx2c2

y0cd2 + 2cx2cy0cy2cd0 − cx2c2
y1cd0,

dy = −2c2
x0cy2cd2 + cx0cx1cy1cd2 + cx0cx1cy2cd1 + 2cx0cx2cy0cd2 − 2cx0cx2cy1cd1

+ 2cx0cx2cy2cd0 − c2
x1cy0cd2 − c2

x1cy2cd0 + cx1cx2cy0cd1 + cx1cx2cy1cd0 − 2c2
x2cy0cd0,

dxy = −2cx0cy0c2
d2 + cx0cy1cd1cd2 + 2cx0cy2cd0cd2 − cx0cy2c2

d1 + cx1cy0cd1cd2 − 2cx1cy1cd0cd2

+ cx1cy2cd0cd1 + 2cx2cy0cd0cd2 − cx2cy0c2
d1 + cx2cy1cd0cd1 − 2cx2cy2c2

d0,

d0 = c2
x0c2

y2 + c2
x2c2

y0 − cx0cx1cy1cy2 − 2cx0cx2cy0cy2 + cx0cx2c2
y1 + c2

x1cy0cy2 − cx1cx2cy0cy1

where all coefficients are listed in Appendix B. These relations can be verified by observing that the parametric form

(x, y) = (x(z), y(z)) fulfills Equation (14) with z = tan(α).

Declarations

Conflict of interest: The authors declare that they have no conflict of interest or other ethical conflicts concerning this

paper.

References

[1] H. Abdollahi and R. Tauler. Uniqueness and rotation ambiguities in multivariate curve resolution methods. Chemom. Intell. Lab. Syst.,

108(2):100–111, 2011.

[2] A. Aggarwal, H. Booth, J. O’Rourke, S. Suri, and C. K. Yap. Finding minimal convex nested polygons. Inf. Comput., 83(1):98–110, 1989.

[3] T. Andersons. Analytical boundary curve construction for the solution set of nonnegative matrix factorisations. Master’s thesis, Universität

Rostock, 2020.

[4] C.B. Barber, D.P. Dobkin, and H.T. Huhdanpaa. The Quickhull algorithm for convex hulls. ACM Trans. Math. Softw., 22(4):469–483, 1996.
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