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Abstract

In Multivariate Curve Resolution (MCR), Borgen plots represent the regions of feasible pure component profiles

underlying spectral mixture data. A Borgen plot can be constructed geometrically in the low-dimensional U- and

V-spaces if the so-called outer polygon (representing nonnegativity constraints) and the inner polygon (that is the

convex hull of the data representing points) are given.

This paper asks whether only from given data representing points in the U-space and the V-space, a generator

matrix can be found that reconstructs the given polygons and the associated Borgen plot. A partially positive answer

is given.
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1. Introduction

In 1985 Borgen and Kowalski [3] introduced the geometric construction of Borgen plots for the analysis of the

factor ambiguity problem in multivariate curve resolution. Starting from a given spectral data matrix D, Borgen plots

can geometrically be constructed within the low-dimensional abstract spaces spanned by the left and right singular

vectors of D. These spaces are often called the U- and the V-space. In a first step, the inner and outer polygons,

which are denoted INNPOL and FIRPOL in [3], are determined in the U- and the V-space. The vertices of the inner

polygons represent certain projections of the rows or columns of D in the spaces spanned by the singular vectors, and

the outer polygons represent the nonnegativity constraints in the respective spaces. The feasible regions can then be

constructed by the so-called triangle rotation algorithm. These regions are the sets of the vertices of all triangles that

enclose the inner polygon and that are enclosed in the outer polygon.

Here, we consider the question whether there is a way back from the representation in the abstract plane to an

underlying spectral data matrix. To explain this question, we have reproduced the two polygons as used by Borgen

and Kowalski in their exclusive example, see Fig. 6 in [3]. The entries of the spectral data matrix determine the vertices

of the inner polygon (here a quadrangle) and the edges of the outer polygon (here a triangle). However, Borgen and

Kowalski do not present the matrix in [3]. Is it nevertheless possible to find a matrix that leads to these polygons? If

such a matrix exists, we call it a generator matrix. Fig. 1 shows the abstract plane together with a 4 × 3 generator

matrix with smallest possible dimensions as found by our algorithms.
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Figure 1: The classical polygons INNPOL (blue) and FIRPOL (red) as used by Borgen and Kowalski and a possible generator matrix of smallest

dimensions as found by our algorithm. It is a 4 × 3 matrix according to the 4 vertices of the inner polygon and the 3 edges of the outer polygon.

The inner and outer polygons can be constructed not only in the 2D plane of a Borgen plot. In general, for

chemical systems with s chemical species the so-called Area of Feasible Solutions (AFS) is constructed in the (s− 1)-

dimensional spaces of the left and right singular vectors with a fixed contribution equal to 1 from the first right (or

left) singular vector. Considering such a fixed contribution from the first singular vectors justifies working in (s − 1)-

dimensional spaces instead of s-dimensional spaces. For s > 3 the polygons become inner and outer polytopes, see
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[12, 15] for details. The following analysis is formulated for arbitrary s ≥ 3 and also applies to the elementary case of

Lawton-Sylvestre plots with s = 2.

1.1. Polygons and polytopes in the U- and V-space

Let a nonnegative (spectral) data matrix D ∈ Rk×n be given, which has a nonnegative factorization D = CS T with

the concentration factor C ∈ R
k×s and the spectral factor S ∈ R

n×s. The ranks of these three matrices are equal to

s. The truncated SVD is D = UΣVT with the orthogonal matrices of left and right singular vectors U ∈ R
k×s and

V ∈ R
n×s. The s × s diagonal matrix Σ has the singular values σi on its diagonal. It is a known fact that then there

exists a regular s × s matrix T that allows to express the pure component factors as C = UΣT−1 and S T = TVT . See

[1, 3, 7, 11] for details.

These matrices determine the outer polytopeFS and the inner polytopeIS in the V-space. For s = 3 the polytopes

are 2D polygons and for s = 4 the geometric objects are 3D polyhedra

IS = convhull({ai ∈ Rs−1, i = 1, . . . , k}), with ai =
((UΣ)(i, 2 : s))T

(UΣ)(i, 1)

FS = {x ∈ Rs−1, so that (1, xT )VT ≥ 0}.
(1)

A similar construction holds in the U-space. By duality [5, 9, 12] the vertices of the inner polytope IC are dual to

the edges of FS . Analogously the nonnegativity constraints on C lead to the outer polytope FC which is dual to IS

IC = convhull({b j ∈ Rs−1, j = 1, . . . , n}), with b j =
(V( j, 2 : s))T

V( j, 1)

FC = {y ∈ Rs−1, so that UΣ

(

1

y

)

≥ 0}.
(2)

This representation in the U- and V-space is called the low-dimensional representation. The ai and b j are called data

representing points or just data points, because they are related to the rows and columns of the data matrix D. The

polytopes IC and IS are sufficient to determine all polytopes as IC is dual to FC and IS is dual to FC.

1.2. Problem definition

Having defined the data points ai and b j and the polytopes IS , FS , IC and FC, we can give the Borgen plot

reconstruction problem a precise form.

Problem 1.1 (From ai and b j to D ). Let only the data points ai, b j ∈ Rs−1 by Eq. (1) and Eq. (2) be given. We do not

assume to know the original matrix D that defines these data points. Is it possible to find a rank-s generator matrix

D̂ so that its data points âi and b̂ j have the same convex hull than the original data points? Hence D and D̂ have the

same four polytopes (the outer polytopes by duality) and D̂ reproduces the original Borgen plot/AFS.

Why do we ask this question? First, we want to know if the U- and V-space representation of the data points

inevitably leads to a loss of information contained in the spectral data matrix. Second, in theoretical studies, we

are sometimes faced with the problem of whether certain polytopes IS , FS , IC and FC or a resulting AFS of a

certain shape (e.g., hand-drawn polytopes/AFS in 2D or 3D) can be meaningful. In other words, does a corresponding

generator matrix exist? This brings us to a second problem.

Problem 1.2 (From hand-drawn polytopes to D). Let one polytope (the outer polytope) enclose a second polytope

(the inner polytope) in the Rs−1. The inner polytope contains the origin (the null vector). The polytopes are only given

in terms of their shape, e.g., by the Euclidean coordinates of their vertices, and we do not suppose that the polytopes

originate from a certain data set. Is it possible to find a corresponding rank-s generator matrix D that reproduces

these polytopes?

1.3. Organization of this paper

First, Problem 1.1 is traced back to a nonlinear system of equations with additional nonnegativity constraints, see

Sec. 2. Solutions can be found by numerical optimization. Second, the reconstruction problem of polytopes with

0 ∈ I ⊂ F without assuming that they originate from a matrix D is posed in Problem 1.2. A solution is suggested in

Sec. 3. In both cases, the goal is to construct a generator matrix. This paper presents an analytical solution approach

together with numerical solution algorithms.
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2. Solution of problem 1.1 by constructing a generator matrix

Our starting point is the data point representation

ai =
((UΣ)(i, 2 : s))T

(UΣ)(i, 1)
=

((DV)(i, 2 : s))T

(DV)(i, 1)
∈ Rs−1, i = 1, . . . , k,

b j =
(V( j, 2 : s))T

V( j, 1)
=

((DT UΣ−1)( j, 2 : s))T

V( j, 1)
∈ Rs−1, j = 1, . . . , n.

(3)

We assume that we know ai and b j, but that we do not know the SVD factors U, Σ and V . However, the relations

between the data points and the SVD factors are given by (3). The ai are the representations of the rows of D in terms

of the right singular vectors, and the b j are the representations of the columns of D in terms of the scaled left singular

vectors. These representations are scaled in a way that the contributions by the first left/right singular vector are equal

to 1 and all these first components are truncated by accessing only to the components 2:s (this is expressed by using

the colon notation). Such a scaling is possible because the Perron-Frobenius spectral theory of nonnegative irreducible

matrices guarantees a nonzero contribution to any nonnegative profile from the first left/right singular vectors [8, 13].

Hence the data points ai and b j are (s− 1)-dimensional vectors, namely projections from the Rs. However, the scaling

removes the information contained in the first left singular vector u1 and the first right singular vector v1. Can this

information be recovered? This problem is discussed next.

Assuming that the data points b j = (b j1, . . . , b j (s−1))
T are given, we can write the matrix V of the right singular

vectors as follows

V = (v1, . . . , vs) =
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1

...
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vn1 vn1 bT
n

























=

























v11 v11 · b11 . . . v11 · b1,s−1

...
...

...

vn1 vn1 · bn1 . . . vn1 · bn,s−1

























∈ Rn×s. (4)

The n components of the first right singular vector v1 are the unknowns. The orthogonality of V leads to the equations

(v1, v1) =

n
∑

j=1

v2
j1 = 1,

(v1, vℓ) =

n
∑

j=1

v2
j1b j,ℓ−1 = 0, ℓ = 2, . . . , s, (5)

(vr, vt) =

n
∑

j=1

v2
j1b j,r−1b j,t−1 = δrt, r, t = 2, . . . , s,

where (·, ·) is the Euclidean inner product. Therein δrt is the Kronecker delta that equals 1 if r = t and 0 otherwise.

The number of equations is 1 + (s − 1) + (s − 1)s/2 = (s2 + s)/2.

Second, the left singular vectors can be expressed in terms of the data points ai = (ai1, . . . , ai(s−1))
T as follows

U = (UΣ)Σ−1 = σ1
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Σ−1 ∈ Rk×s (6)

where Σ = diag(σ1, . . . , σs). The k unknown components of the first left singular vector u1 satisfy the orthogonality

conditions on U, namely

(u1, u1) =

k
∑

i=1

u2
i1 = 1,

(u1, uℓ) =

k
∑

i=1

u2
i1ai,ℓ−1 = 0, ℓ = 2, . . . , s, (7)

(ur, ut) =
σ1

σr

σ1

σt

k
∑

i=1

u2
i1ai,r−1ai,t−1 = δrt, r, t = 2, . . . , s.

Again, these are (s2 + s)/2 equations so that the total number of equations is s2 + s. In total, s2 + s equations are

available to determine the k+n components of u1 ∈ Rk, v1 ∈ Rn and the s−1 unknown ratiosσ1/σr for r = 2, . . . , s. In
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most cases, the number of unknowns is much larger than the number of equations. Nonlinear numerical optimization

can be used to find feasible solutions. This optimization has to take into account the constraint of componentwise

positive vectors u1 > 0 and v1 > 0, as required by the Perron-Frobenius theory for the so-called Perron vectors

and that the singular values form a decreasing sequence in i. For such nonlinear, constrained optimization problems

multiple solutions can be expected. Therefore, multiple feasible solutions D̂ are possible.

2.1. Reconstruction of a generator matrix with smallest dimension for s = 2

There is only one case with more equations than unknowns. This is a rank-2 matrix (s = 2) with the smallest

matrix dimensions k = n = 2. Then the number of equations is 6 and the number of unknowns is k + n + 1 = 5. Then

the original data matrix can be recovered up to scaling. The remaining scaling nonuniquess of D does not affect the

data reconstruction problem as the data vectors are not changed if D is substituted by a positive multiple of D; for a

detailed explanation see Lemma Appendix A.4. In the case s = 2 the counterpart of a Borgen plot is the Lawton-

Sylvestre plot [6]. In this simple case the inner and outer polytopes are just intervals that are each determined by their

two endpoints. These endpoints are the scalar data points ai, b j ∈ R1 with s − 1 = 1. These points are shown in Fig. 2

for the V-space with IS = [a1, a2] andFS = [b̃1, b̃2]. Using duality, the data points of IC = [b1, b2] satisfy bi = −1/b̃i,

i = 1, 2.

b̃1 b̃2
a1 a20

Figure 2: Lawton-Sylvestre plot in the V-space of the 2 × 2 matrix D. IS is indicated by the dashed red line and FS by the blue line.

Eq. (5) determines the two component of the first right singular vector v1, and Eq. (7) determines the first left

singular vector u1. Their components are given by

v11 =
(

1 − b̃2

b̃1

)− 1
2
, v21 =

(

1 − b̃1

b̃2

)− 1
2
,

u11 =
(

1 − a1

a2

)− 1
2
, u21 =

(

1 − a2

a1

)− 1
2
.

Thus D is uniquely determined, except for scaling, since only the ratio σ1/σ2 of the singular values is part of the

system of equations (7). For this ratio we get

(σ1/σ2)−1 =
√
−a1a2. (8)

The square root can be taken since IS = [a1, a2] with a1 < 0 and a2 > 0 (the null is in the interior of I). The more

general case s = 2 and k, n > 2 can be reduced to k = n = 2, since the endpoints of the intervals (the intervals are the

inner polytopes) relate to only two (essential) data points. But then only a 2 × 2 generator matrix can be found.

2.2. Solution of Problem 1.1 by numerical optimization

Except for the trivial case s = 2 = k = n, the constrained nonlinear equations (5) and (7) are to be solved by

numerical techniques. More precisely, Eq. (5) is a linear system in the squared variables v2
j1

, which is underdetermined

if (s2 + s)/2 < n, and Eq. (7) is a nonlinear system in the variables ui1 and the ratios σ1/σr, r = 2, . . . , s. A numerical

solution can be found by numerical optimization under the constraints u1, v1 > 0 and σ2/σ1 ≥ . . . ≥ σs/σ1. The goal

is to find a generator matrix D̂ that leads to the same data points ai and b j. Since σ1 remains unknown, we scale the

resulting matrix D̂ so that its maximum entry is 1.

Fig. 3 shows a three-component model data set along with the data points in the U- and V-space marked by gray

circles. The original data matrix D is a solution to the optimization problem, but there are also very different generator

matrices, see Fig. 4. The results depend on the chosen optimization algorithm and the initial values for the first

singular vectors and the first singular value. If we take the all-ones vectors (1, . . . , 1)T as initial vectors we get much

smoother spectral profiles than if we start the numerical optimization with uniformly distributed random numbers in

[0, 1], see Fig. 4 (right) with its highly oscillatory profiles. These results show that the reconstruction problem has

many solutions, most of which are not chemically interpretable. For large data dimensions k and n there are too many

degrees of freedom for the generator matrices. One way to reduce some of these degrees of freedom is to remove all

data points from the inner polytopes that are not vertices. This means that the data is reduced to the so-called essential

data [10, 14].
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Figure 3: Left: Data of a three-component model system with rank(D) = 3. Center and right: The data points are marked by gray circles. The pairs

of the dual inner and outer polygons are plotted in blue (or red) in the U- and the V-space.
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Figure 4: Left: The original data matrix D together with two generator matrices D̂1 and D̂2. D̂1 has found by starting the iterative optimization

with normalized all-ones vectors (1, . . . , 1)T for u1 and v1. D̂2 has found by using normalized vectors of uniformly distributed random numbers

between 0 and 1 as initialization. We used the MatLab optimizer fminunc for the computations.

3. Solution of Problem 1.2 by polytope adaptation from an initial reference problem

In simplified words, Problem 1.2 asks for the constructability of a generator matrix for freely designed polygons

satisfying the inclusion 0 ∈ I ⊂ F . It has to be stated, however, that a solution not always exists. This is illustrated

by a simple example shown in Fig. 5.

3.1. A polytope adaptation algorithm

The key idea of how to solve Problem 1.2 is motivated by the procedure used when a spectral data matrix is

augmented by additional spectra or when all spectra are considered on an extended spectral interval. Such data

expansion amounts to adding more rows (spectra) or columns (spectral channels) to the spectral data matrix. These

matrix expansion operations correspond to adding points in the U- and V-space and vice versa [2]. For given polytopes

in the (s−1)-dimensional space, our polytope adaptation algorithm starts with a nonnegative initialization matrix with

the rank s, which is then replaced by a matrix whose rows are filled with the spectral profiles represented by the vertices

of the given (hand-drawn) inner polytope. A similar operation is then performed in the column space for the given

dual inner polytope. The algorithm cannot be guaranteed to generate a matrix D that precisely reproduces the given

polytopes, but numerical experiments for s = 3 indicate that the shape of the polygons is reproduced qualitatively.

We denote the two given target polytopes in the V-space by ĨS and F̃S . These two polytopes determine the dual

target polytopes ĨC and F̃C in the U-space. The steps of the polytope adaptation algorithm are as follows:

1. An initial nonnegative matrix D0 with rank(D0) = s is chosen and the corresponding V-space is calculated by

the SVD D0 = U0Σ0VT
0
∈ Rk0×n0 . Its polytopes can be very different from the target polytopes. (There is only

one condition on the outer polytope of the initialization matrix, namely that it contains the given inner polytope

ĨS as otherwise the data points would represent profiles with negative entries. If this condition does not hold,

then the given polytopes can be multiplied by a fixed positive constant less than 1, which will bring all points

closer to the origin so that the inclusion condition can finally be satisfied.)

2. Let y j ∈ Rs−1, j = 1, . . . , k, be the data points spanning the target polytope ĨS .

3. The k row vectors (1, yT
j
)VT

0
, j = 1, . . . , k, are the spectral profiles represented by the data points of ĨS . These

profiles are stored row by row in the intermediate matrix D1 ∈ Rk×n0 .

4. An SVD D1 = U1Σ1VT
1
∈ R

k×n0 of D1 is computed and then the V-space of DT
1
= V1Σ1UT

1
is considered.

(Alternatively it is possible to consider the U-space of D1, which is the same space up to scaling by Σ1.)

5. Let zi ∈ Rs−1, i = 1, . . . , n be the data points of the dual target polytope ĨC .

6. The row vectors (1, zT
i

)UT
1

, i = 1, . . . , n, are stored row by row in the matrix DT resulting in the final matrix D.
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(x1, y1)
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(x3, y3)

Figure 5: Three data points in the U-space spanning an inner polygon whose convex hull as marked by the dotted lines contains the origin. A feasible

generator matrix must satisfy Eq. (5). The orthogonality of the second and third column of V requires ϑ := v2
11

x1y1 + v2
21

x2y2 + v2
31

x3y3 = 0 .

However, this condition cannot be satisfied since vi,1 > 0 for i = 1, 2, 3 for the componentwise positive Perron vector v1 and since for the shown

choice of the coordinates it holds that xiyi > 0. So ϑ is strictly positive. No matrix V can be found and thus no generator matrix exists.

These steps are illustrated for an example data matrix in Fig. 6. The initial data matrix D0 with rank s can be taken

as

D0 = tridiag(1, 3, 1) ∈ Rs×s.

This matrix is nonnegative. Its rank equals s because the Gerschgorin criterion limits its smallest eigenvalue from

below by 1. Furthermore, D0 = D0Is×s is a nonnegative matrix factorization of D0 where Is×s is the s × s identity

matrix.

This construction always yields a nonnegative matrix, because the data points on which the matrices are based

are always inside of the outer polytopes and thus, the resulting spectra and concentration profiles that yield the data

matrices are nonnegative. The inner and outer polytopes ĨS and F̃S can be chosen (almost) arbitrarily.

3.2. Why does the polytope adaptation algorithm work?

Next we show that the polytope adaptation algorithm maps the vertices of the initial polytopes (the data points

underlying ĨS and ĨC) to the vertices of the final polytopes of the generator matrix D. It is this vertex transformation

property that allows us to consider the polytope adaptation algorithm to qualitatively preserve the original polytopes.

For this purpose, we consider the cones spanned by all linear combinations of the rows of a matrix with nonneg-

ative coefficients. See the Definition Appendix A.2. The inner polytope IS is the intersection of rowcone(UΣ) with

the (s − 1)-dimensional affine hyperplaneH = {x ∈ Rs : x1 = 1}. This can also be described in a way that the linear

combinations with positive coefficients of the data points underlying IS (and augmented by a first component equal

to 1) form the cone rowcone(UΣ). In order to study these cones we analyze the related matrices.

The mathematical analysis of the steps of the polytope adaptation algorithm is as follows: Starting from an SVD

of the initial matrix D0, steps 3 and 4 of the polytope adaptation algorithm result in

D0 = U0Σ0VT
0

D1 =
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VT
0 = (U1Σ1VT

1 )VT
0 = U1Σ1(V0V1)T where the data points yi define the target polytope ĨS

The key point is that U1Σ1(V0V1)T is an SVD of D1, because orthonormal V0 ∈ Rn0×s and orthogonal V1 ∈ Rs×s result

in the orthonormal matrix V0V1. The further steps of the polygon adaptation algorithm result in

DT
1 = (V0V1)Σ1UT

1

DT =

























1, zT
1
...

1, zT
n

























UT
1 = (V2Σ2UT

2 )UT
1 = V2Σ2(U1U2)T where the zi define the target polytope ĨC

Again, V2Σ2(U1U2)T is an SVD of DT , because orthonormal U1 ∈ R
k×s and orthogonal U2 ∈ R

s×s result in an

orthonormal matrix U1U2.

These steps involve certain transformations of the data points of the target polytopes by the matrices from the different

SVDs

























1, yT
1
...

1, yT
k

























= U1Σ1VT
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= V2Σ2UT
2 , with V2 ∈ Rn×s,Σ2, U2 ∈ Rs×s.
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selected ĨC−−−−−−−−→

-2 0 2 4 6

-4

-2

0

2

4

6

α

β

U-space of new selected D

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

α

β

V-space of new selected D

Figure 6: Illustration of the polytope adaptation algorithm. The chosen data points in the U-space and the V-space are marked with purple asterisks.

First row: Left: V-space of the initialization matrix D0. The outer polygon of D0 is drawn in blue, the inner polygon in red, and the data points

underlying ĨS are the purple asterisks. Right: V-space of D1, whose inner polygon (in red) approximately reproduces ĨS . The β-axis has a flipped

orientation. This orientation has no effect on the profile representation, but is a consequence of a convention on how to orientate the singular

vectors. Second row: Left: V-space of DT
1

with the data points underlying the dual polytope ĨC . Right: The U- and the V-spaces for the final

generator matrix D together with the inner and outer polygons.

The SVD of the generator matrix D reads

D = U1U2Σ2VT
2 = U3Σ3VT

3 , where U3 = U1U2, Σ3 = Σ2, V3 = V2.

Thus, the polytopes of D are based on the row-cones rowcone(U3Σ3) (belonging to IS ) and rowcone(V3) (corre-

sponding to IC). See Lemma Appendix A.3 for the relation between the edges of the row-cones and vertices of the

polytopes. These cones result from the data points with

U3Σ3 =
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1 U2Σ2, V3 =

























1, zT
1
...

1, zT
n

























U2Σ
−1
2 .

We conclude that the data points underg linear transformation with the two regular s× s matrices Σ−1
1

U2Σ2 and Σ−1
2

. As

shown in Lemma Appendix A.4, these transformations preserve the property of points of a polytope to be vertices.

This is a qualitative property of the original polytopes that is preserved. Moreover, the vertices are the so-called

essential data points, which finally determine the factor ambiguity.

3.3. Optimization-based construction of a generator matrix

An alternative to the geometry-inspired polytope adaptation algorithm, see Sec. 3.1, is an application of the

optimization-based approach as explained in Sec. 2.2. Starting with any two polytopes IS and FS with 0 ∈ IS ⊂ FS ,

duality relations determine the data points b j [5, 9, 12]. Since it is not certain that the polytopes originate from a

matrix, it is not guaranteed that a generator matrix exists, cf. with Fig. 5.

Numerically, we sometimes observed that the optimization stopped with large residuals and even negative entries

of the computed generator matrix. This was observed mainly with global optimization algorithms and for randomly

chosen data points without a stronger structure as can be expected for chemical data. It is also possible, that the

polygons (or polytopes) of the resulting matrix are inverted along the coordinate axes, but this is only a consequence

of the convention how to orientate the singular vectors in an SVD, see [13].

A useful application of the generator matrix construction is data sets with Borgen plots having unusual properties,

for example MCR problems with a rank deficiency. Such examples are rather rare in experimental data sets, but

provide interesting properties for the theoretical study of Borgen plots. We have chosen to illustrate this with two

nested hexagons as the inner and outer polygons, see Fig. 7. A similar Borgen plot was given in Fig. 2.6 in [4]. The

reconstructed generator matrix D (using the optimizer fminunc and initializing with normalized ones vectors) has a

similar structure to the data matrix in [4]. This supports the use of this approach to construct or adapt model problems

with special properties.
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Figure 7: Left: Constructed inner and outer polygon in the V-space. The data points in the U-space are not needed due to duality. Right: The

constructed data matrix corresponding to the V-space using the optimization approach.

3.4. Software availability

The software developed for the numerical experiments in this work is available from

https://www.math.uni-rostock.de/facpack/Downloads.html

The software is written in MatLab and can be operated via two simple GUIs. One for solving the problem via polygon

adaptation and one using the optimization-based approach. The polygon adaptation GUI works just as described in

Sec. 3.1. Starting from D0 = tridiag(1, 3, 1) ∈ R
3×3 the data points for ĨS and ĨC can be selected by hand and after

confirming these, the final matrix D is computed. For the optimization-based approach, the user can load a rank-3

data matrix for which the inner and outer polygons are plotted. These polygons can then be modified by adding and

removing any vertices, without breaking the 0 ∈ I ⊂ F inclusion relations. The associated spectral data matrix can

then be recalculated with user-selectable initial estimates and for various optimization routines. Additionally, the user

can start with a free geometric construction of the inner and outer polygons, for which the program will try to find a

corresponding generator matrix.

4. Conclusion

Yes, it is possible to find a generator matrix underlying a Borgen plot and its generating polytopes. However, the

problem is ill-posed in the sense that there are often many solutions and that the found numerical solution may show

a strong dependence on the initial approximation. Sometimes the numerical algorithm finds only an approximate

solution. We hope that this work will stimulate scientific discussions among “Borgen-plot-experts” about questions

what potential Borgen plot structures are possible and what happens when data points in existing data sets are changed,

and thus to investigate properties of Borgen plots and the associated data matrices. The supplied software invites you

to experiment.

Appendix A. Some properties of polytopes and cones

Lemma Appendix A.1. Let Y ∈ Rd×d be a regular matrix. The pairwise different vectors zi ∈ Rd, i = 1, . . . ,m, are

the vertices of a polytope P if and only if Yzi, i = 1, . . . ,m, are the vertices of a polytope YP.

Proof. Let w ∈ P be a vertex of P. Then w cannot be represented by convex combination of vertices zi , w. Thus

any representation
m

∑

i=1

cizi − w = 0 with ci ≥ 0 and

m
∑

i=1

ci = 1

implies that all but one ci are equal to zero. Since

Y















m
∑

i=1

cizi − w















=

m
∑

i=1

ciYzi − Yw = 0

if and only if
∑m

i=1 cizi − w = 0 completes the proof because, again, any convex combination representing Yw implies

that all but one ci are equal to zero.

Next we define the row-cone which is spanned by all nonnegative linear combinations of the rows of a matrix.
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Definition Appendix A.2 (see [2]). Let a nonzero matrix A ∈ Rk×n be given. The row-cone generated by the rows of

A, namely rowcone(A) ⊆ R
1×n, is defined as

rowcone(A) =















k
∑

i=1

αiA(i, :) : for all αi ≥ 0















=















∑

i∈E
αiA(i, :) : for all αi ≥ 0















,

where E denotes a smallest subset of the index set {1, . . . , k}. If all rows of A are pairwise different, then the subset E
is unique. A vector A(i, :) with i ∈ E lies on an edge of rowcone(A) and the set of all positive multiples of A(i, :) forms

the edge.

The next lemma shows that the vertices of the convex hull of the data points ai according to (3) are related to the

edges of rowcone(UΣ).

Lemma Appendix A.3. A row vector y ∈ R1×s
+ lies on an edge of rowcone(UΣ) if and only if the corresponding data

point (y(2 : s))T/y(1) is a vertex of IS .

Proof. A vector ỹ lies on an edge of rowcone(UΣ) if and only if the representation

ỹ =

k
∑

i=1

c̃iUΣ(i, :), c̃i ≥ 0

implies that all but one of the c̃i are equal to zero. Within the affine plane of vectors whose first components are all

equal to 1, this means that the representation

y =

k
∑

i=1

ci

UΣ(i, :)

UΣ(i, 1)
,

k
∑

i=1

ci = 1, ci ≥ 0, with y(1) = 1

implies that all but one of the ci are equal to zero. Considering only the components 2, . . . s of the expansion of y reads

y(2 : s) =

k
∑

i=1

ci

UΣ(i, 2 : s)

UΣ(i, 1)
=

k
∑

i=1

cia
T
i ,

k
∑

i=1

ci = 1, ci ≥ 0

where the vectors ai are given by Eq. (3). This completes the proof.

Lemma Appendix A.4. A nonnegative matrix D and its positive multiple αD with α > 0 have the same data vectors

as given by Eq. (3).

Proof. A singular value decomposition (SVD) D = UΣVT of D leads to the SVD (αD) = U(αΣ)VT of αD with the

same matrices of left and right singular vectors. The vectors b j = (V( j, 2 : s))T/V( j, 1) depend only on V , and in the

data vectors ai = (((αD)V)(i, 2 : s))T/((αD)V)(i, 1) the scalar α can be reduced from the fraction.
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