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ABSTRACT. Multigrid techniques can successfully be applied to mesh eigenvalue prob-
lems for elliptic differential operators. They allow to compute a few of the smallest eigen-
values and the eigenfunctions within optimal or quasi-optimal computational complexity.
A review is given on three multigrid solvers for elliptic eigenproblems. Numerical results
are presented for a simple model problem.

1. INTRODUCTION

Consider the eigenvalue problem for an elliptic partial differential operator. Numerical
approximations of its eigenvalues and eigenfunctions can be gained by a finite element
discretization of the variational problem associated with the differential operator. The
discretization results in a generalized matrix eigenvalue problem of the form

(1.1) Ax = λMx.

The discretization matrixA and the mass matrixM are sparse with only a small number
of nonzero elements per row. In typical applications, the dimension of these matrices
may exceed106 − 109 and, at the same time, only a few of the smallest eigenvalues (in
modulus) together with the eigenvectors are to be determined. These smallest eigenvalues
characterize, for example, the base frequencies of a vibrating mechanical structure modeled
by an eigenvalue problem for an elliptic partial differential operator.

Most of the “classical” methods of numerical linear algebra for solving a generalized
matrix eigenvalue problem cannot be applied to (1.1) because typically, the computer stor-
age for a full representation ofA and M or any factorization of these matrices is not
available. TheQR method, the Rayleigh quotient iteration or inverse iteration, for ex-
ample, would all demand to generate matrix factorizations and to store the more dense
matrix factors. In any case, none of these iterations would allow to determine an eigenpair
within O(n) floating point operations forA andM beingn × n matrices. In contrast to
this, boundary value problemsfor the same elliptic partial differential operators can be
solved with optimal complexity or quasi-optimal computational complexity (i.e.O(n) or
O(n log n)) by means of multigrid or domain decomposition methods.

The aim of this paper is to rivet on eigensolvers forelliptic eigenvalue problemswith
“multigrid efficiency”, i.e. with optimal or quasi-optimal complexity. In Section 2 we first
point out common elements of eigensolvers for mesh eigenvalue problems and then we
briefly review and classify the following eigensolvers:

(I) TheRayleigh quotient multigrid minimization, [4, 5, 16],
(II) Direct multigrid eigensolvers, [3, 7, 8, 10],

(III) Eigensolvers using multigrid as a linear solver, [14, 19].

Finally, Section 3 contains numerical results for the Laplacian in 2D.
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2. MULTIGRID EIGENSOLVERS

In order to give a concise description of multigrid eigensolvers we first separate those
parts which are common to any such iteration:

(1) Subspace extension: Any eigensolver for computing only a single eigenvalue/eigen-
vector pair (typically the smallest eigenvalue), can simply be extended to a sub-
space iteration in order to determine a modest number of the smallest eigenvalues
and eigenvectors. One can implement a subspace eigensolver by applying a given
vector iteration to each of the Ritz vectors spanning an actual approximating sub-
space. Subsequent application of the Rayleigh-Ritz procedure serves to compute
the new Ritz values and Ritz vectors. Alternatively, subspace computations can be
realized by using the less stable deflation technique.

(2) Nested iteration and adaptivity: The concepts ofnested iterationandadaptivity,
which are well known from boundary value problem solvers, can be transferred to
the eigenvalue problem. Then nested iteration starts with the solution of a coarse
grid eigenproblem. The following steps are successive prolongations of the actual
eigenvector approximations to refined grids in combination with sufficiently many
iterations of the eigensolver on each grid level.

Nested iteration can be combined with the concept of adaptivity. By means of
adaptively generated grids, numerical approximation of eigenvalues and eigenvec-
tors within a prescribed tolerance can often be gained with only a small portion
of the work necessary if uniform grid refinement is employed. An adaptive al-
gorithm requires appropriate error estimators for the iteration error and for the
discretization error. The first estimator is used to define a stopping criterion for
the iterative eigensolver on the actual grid whereas the second estimator controls
the mesh refinement. Realizations of such estimators are, for example, suggested
in [5, 11, 20].

Let us turn to the multigrid eigensolvers I–III, whose discussion because of (1) can be
restricted to a single-vector iteration.

I. Rayleigh quotient multigrid minimization (RQMG): We consider the eigenvalue prob-
lem for aself-adjointelliptic partial differential operator. Then the discrete eigenproblem
(1.1) can be treated as an optimization problem for the Rayleigh quotient

(2.1) λ(x) =
(x,Ax)
(x, Mx)

.

By the Courant-Fischer principle the minimum of (2.1) equals the smallest eigenvalue of
(A,M) and is taken in the corresponding eigenvector. Hence iterative minimization of
(2.1) can serve as an eigensolver.

This minimization can be realized by means of a multigrid procedure. One applies a
coordinate relaxation scheme, i.e. for each coordinate directiondk

i (which is associated
with thei-th finite element function on a certain grid levelk) one computes the minimum

(2.2) λ(x + ϑ∗dk
i ) = min

ϑ∈R

(x + ϑdk
i , A(x + ϑdk

i ))
(x + ϑdk

i ,M(x + ϑdk
i ))

,

which is at the same time the smallest Ritz value of(A,M) in the 2D spacespan{x, dk
i }.

The new iterate isx+ϑ∗dk
i . A multigrid cycle of RQMG consists in a successive minimiza-

tion of λ(x) for all finite element functions on all grid levels [4, 16, 18]. Grid independent
convergence estimates for RQMG have been presented in [18]. For a generalization of
RQMG to non-selfadjoint elliptic operators see [5].
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II. Direct multigrid eigensolvers: Direct multigrid eigensolvers and the third class of
eigensolvers (see III) are related to approximate variants of “classical” iterative eigen-
solvers, namely inverse iteration and the Rayleigh quotient iteration [23]. Inverse iteration
applied to (1.1) generates a sequence of iteratesx(k) by solving the linear systems

(2.3) (A− σM)x(k+1) = Mx(k), k = 0, 1, 2, . . . ,

whereσ denotes an eigenvalue approximation. In practice, the iterates are normalized af-
ter each step. The main hurdle emerging from (2.3) is that ifσ is near to an eigenvalue,
thenA − σM is almost singular, cf. [17]. For instance, for the Rayleigh quotient itera-
tion it holdsσ = λ(x(k)). Solving such equations with multigrid methods is a hard task
[21, 25, 26]. To overcome this difficulty, one can either bound awayσ from the eigenvalues
of (A,M), see [1]. Alternatively, one can solve (instead of (2.3)) a non-singularcoarse
grid correction equationwithin theorthogonal complementof the actual eigenvector ap-
proximation. The latter approach provides the basis for thedirect multigrid eigensolver
introduced in [7, 8]. In order to realize such a coarse grid projection on the orthogonal
complement, the algorithm is closely related to nested iteration which serves to provide
sufficiently accurate eigenfunctions for building reliable coarse grid projections.

The resultingtwo-grid methodmaps a given iteratex having the Rayleigh quotientλ(x)
to the new eigenvector approximationsx′. It is given by

x̃ = Sx, (Smoothing step),

dc = R(A− λ(x)M)x̃, (Coarse grid projection of the residual),

d⊥c = Qcdc, (M -orthogonal projection),

vc = (Ac − λ(x)Mc)−1d⊥c , (Solution of correction equation),(2.4)

x′ = x− PQcvc, (Prolongation and correction).

Therein, the indexc denotes coarse grid quantities.R is a restriction operator,P is a pro-
longation andQc is the orthogonal projection operator to theM -orthogonal complement
of the actual eigenvector approximation. The coarse grid problem (2.4) in the orthogo-
nal complement is quite different from (2.3) and can be solved by a multigrid scheme for
singular equations [8].

III. Eigensolvers using multigrid as a linear solver: Let us consider an alternative way
of solving (2.3) without getting into trouble due to singularity ofA− σM . We can do this
by ignoring the shift parameter, i.e.σ = 0. Additionally, we assume an eigenproblem for a
coercive and self-adjoint partial differential operator so thatA andM are symmetric posi-
tive definite matrices. Now we apply multigrid preconditioning forA in order to determine
an approximate solution of the linear system

(2.5) Ax(k+1) = λ(x(k))Mx(k), k = 0, 1, 2, . . . .

In comparison to (2.3), we have introduced the scaling constantλ(x(k)) on the right hand
side of (2.5) in order to achieve its stationarity in eigenvectors. Such a scaling prepares the
approximate solution of (2.5) by means of preconditioning.

The multigrid preconditionerB−1 is an approximate inverse ofA which is assumed to
be a symmetric positive definite operator and which is characterized by a spectral equiva-
lence

γ0(x,Bx) ≤ (x,Ax) ≤ γ1(x,Bx), ∀x ∈ Rn,
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for positive constantsγ0 andγ1. It is often more convenient to assume a properly scaled
preconditioner in such a way that

(2.6) ‖I −B−1A‖A ≤ γ,

for a constantγ ∈ [0, 1); therein‖ · ‖A denotes the operator norm induced byA. This
assumption is typical of multigrid and domain decomposition preconditioners. The best
preconditioners satisfy (2.6) withγ bounded away from 1 independently of the mesh size
and hence the number of unknowns [2]. The approximate solution of (2.5) forx = x(k)

and by usingB−1 as a preconditioner yields a new iteratex′ approximatingx(k+1)

(2.7) x′ = x−B−1(Ax− λ(x)Mx).

The iteration (2.7) can be considered as the most simple eigensolver embodying the idea
of multigrid as a linear solver. It can be interpreted as a (multigrid)preconditioned variant
of inverseiteration (PINVIT) [19]. In principle, its behavior can be understood by the
associatederror propagation equation

(2.8) x′ − λ(x)A−1Mx = (I −B−1A)(x− λ(x)A−1Mx),

which maps the error of the initial iteratex − λ(x)A−1Mx to the error of the new iterate
x′−λ(x)A−1Mx by premultiplying the error propagation matrixI−B−1A. We can also
derive from (2.8) that

‖x′ − λ(x)A−1Mx‖ ≤ r ‖A−1 −B−1‖,

which shows the Lipschitz continuity inA−1 of the mapping from the set of admissible
preconditioners, as characterized by (2.6), to the set of possible new iterates. The Lipschitz
constantr equals the norm of the residual vectorAx− λ(x)Mx.

Keeping these interpretations in mind, it is not surprising that the convergence estimates
for (2.7) are closely related to inverse iteration. Sharp convergence estimates in terms of
the Rayleigh quotients of the iterates are available. If the Rayleigh quotientλ(x) is located
between the smallest eigenvalueλ1 and the next larger eigenvalueλ2 then it holds

(2.9)
λ(x′)− λ1

λ2 − λ(x′)
≤

(
γ + (1− γ)

λ1

λ2

)2
λ(x)− λ1

λ2 − λ(x)
,

see [14, 19]. This estimate can be applied recursively and guarantees linear convergence of
the eigenvalue approximationsλ(x(k)) to the eigenvalueλ1. The caseγ = 0 corresponding
to an exact solution of (2.5) leads to the convergence factor(λ1/λ2)2 of inverse iteration.
For the other extreme case of poorest preconditioning, i.e.γ → 1, the convergence factor
tends to1.

We have assumed in (2.7) a symmetric positive definite preconditionerB−1. But there
is no consent in the literature whether positive definite or indefinite preconditioners lead to
more efficient eigensolvers, cf. [12]. This has also opened the question of how accurately
(2.5) is to be solved in order to achieve reasonable convergence estimates [6, 15, 22, 24].
In any way the cubic convergence of the Rayleigh quotient iteration cannot be transferred
to the preconditioned multigrid case.

A significant acceleration of (2.7) can be achieved by minimizing the Rayleigh quotient
with respect to a certain search subspace. The idea of the Locally Optimal Block Pre-
conditioned Conjugate Gradient method (LOBPCG, [13]) is to determine the new eigen-
value/vector approximation as the smallest Ritz value/vector with respect to the three-
dimensional space

(2.10) span{x, B−1(Ax− λ(x)Mx), x−},
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wherex− denotes the iterate precedingx. To implement the latter iteration only one ad-
ditional vector (compared to (2.7)) is to be stored (i.e. the old iterate) and few additional
inner products are to be computed to determine the Rayleigh-Ritz projections. It has been
observed that these additional costs are more than compensated by a characteristic speedup
of convergence. Practically, the LOBPCG scheme behaves like apreconditioned conjugate
gradient iterationfor boundary value problems [13].

3. NUMERICAL EXPERIMENTS

All numerical experiments covered in this section treat the eigenproblem for the Lapla-
cian on[0, 1]2 with homogeneous Dirichlet boundary conditions as a simple model prob-
lem. See [5, 20] for adaptive multigrid eigensolvers on non-convex domains and with
discontinuous coefficient functions. The eigenproblem is discretized by using linear finite
elements on uniform triangle meshes with mesh sizeshl = 2−l. The initial grid consists
of 9 interior nodes forl = 2. Computations are presented up tol = 12 corresponding to a
grid with 16769025 interior nodes.

Table 1 lists the convergence history of RQMG, PINVIT and LOBPCG for the smallest
eigenvalue and the corresponding residuals forl = 6 (3969 inner nodes). We use a unigrid
version of RQMG, which is easy to code but which is computationally expensive, see [16]
for the details. The coordinate relaxation scheme is applied to a black-white ordering of the
finite element functions. The preconditioned eigensolvers are equipped with a multigrid
V (2, 2)-cycle preconditioner working on the sequence of grids forl = 2, . . . , 6. Pre- and
postsmooting is done by each 2 steps of the weighted Jacobi method. For all computations
the initial function in each node(x1, x2) is given byx2

1 + x2
2. Table 1 contains the eigen-

value approximations, i.e. the Rayleigh quotients of the iterates, and the corresponding
Euclidean norms of the residualsAx − λ(x)Mx with ‖x‖M = 1. RQMG and LOBPCG
converge within 5 iterations to a six-digit accuracy, whereas more than 10 iterations of
PINVIT are required to reach the same accuracy. All these iterations are guaranteed to
generate a sequence of monotone decreasing Rayleigh quotients.

Rayleigh quotientsλ(x(k)) Residuals‖Ax(k) − λ(x(k))Mx(k)‖
k RQMG PINVIT LOBPCG RQMG PINVIT LOBPCG

0 426.5873 426.5873 426.5873 2.07 · 101 2.07 · 101 2.07 · 101

1 19.787335 23.621502 22.7037191.97 · 10−3 5.32 · 10−1 6.79 · 10−1

3 19.751232 19.897647 19.7555099.53 · 10−5 4.50 · 10−2 8.62 · 10−2

5 19.751101 19.760942 19.7511015.21 · 10−6 9.08 · 10−3 5.80 · 10−4

10 19.751101 19.751117 19.7511014.18 · 10−9 3.48 · 10−4 5.03 · 10−8

TABLE 1. RQMG, PINVIT and LOBPCG convergence history forl = 6.

Mesh independence of the convergence of (2.7) is illustrated by Table 2. On each grid
with h = 1/2l, l = 4, . . . , 12, the iteration is started with the restriction ofx2

1 + x2
2 to the

nodes. Then 25 iterations of (2.7) withV (2, 2)-Jacobi preconditioning have been applied
resulting in a final iteratexh. The final eigenvalue approximationsλ(xh) are listed in Ta-
ble 2. They reflect thatλ(xh)− λ1 = O(h2), whereasλ1 denotes the smallest eigenvalue
of the continuous problem. Moreover, the norms of the residuals (defined as above) are
shown, too. Note that theM−1 norm of the residual is an upper estimate for the error of
the eigenvalue approximations. As the condition number ofM is bounded independently
of h, the last column of Table 2 indicates the mesh independent convergence, since the final
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Level l Grid Inner nodes λ(xh) ‖Axh − λ(xh)Mxh||
4 17× 17 225 19.9297898 7.14 · 10−8

5 33× 33 961 19.7867923 4.53 · 10−8

6 65× 65 3969 19.7511008 2.41 · 10−8

7 129× 129 16129 19.7421816 1.23 · 10−8

8 257× 257 65025 19.7399520 6.20 · 10−9

9 513× 513 261121 19.7393946 3.12 · 10−9

10 1025× 1025 1046529 19.7392553 1.56 · 10−9

11 2049× 2049 4190209 19.7392204 7.85 · 10−10

12 4097× 4097 16769025 19.7392117 2.08 · 10−10

TABLE 2. Eigenvalues and residuals after 25 iterations of(2.7)for hl =
2−l, l = 4, . . . , 12.

residuals do not deteriorate as the mesh size gets smaller. Let us finally mention that it is
a nontrivial task to give a fair comparison (in terms of total computational costs and effi-
ciency) of the direct multigrid eigensolver [7, 8] with those eigensolvers discussed above.
This is the case since the direct multigrid scheme is inseparably connected with nested
iteration in order to generate the required projection operators. Therefore, we only refer to
[9], where the direct multigrid eigensolver is applied to the biharmonic plate equation.

4. SUMMARY

A review has been given on three quite different multigrid techniques for solving the
eigenvalue problem for a (coercive and self-adjoint) elliptic partial differential operator.
Each of these solvers achieves optimal or quasi-optimal complexity for thepartial eigen-
problem, i.e. to compute only a small number of eigenpairs. These multigrid eigensolvers
can be considered as the eigenproblem-counterparts of the celebrated, highly efficient
multigrid solvers for boundary value problems.

Eigensolvers using multigrid as a linear solver are conceptually very simple, and recent
results allow a new theoretical understanding. They can be implemented easily: For the
multigrid part one can adopt any existing program code realizing multigrid precondition-
ing. The remaining task is only to implement the linear algebra of (2.7) or (2.10).
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