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ABSTRACT. The discretization of eigenvalue problems for partiafedéntial operators
is @ major source of matrix eigenvalue problems having vargd dimensions, but only
some of the smallest eigenvalues together with the eigesrgeare to be determined.
Preconditioned inverse iteration (a “matrix factorizatifree” method) derives from the
well-known inverse iteration procedure in such a way thatabsociated system of linear
equations is solved approximately by using a (multigriddgenditioner.

A new convergence analysis for preconditioned inversatitam is presented. The
preconditioner is assumed to satisfy some bound for thetrsheadius of the error prop-
agation matrix resulting in a simple geometric setup. Is first part the case of poorest
convergence depending on the choice of the preconditismanalyzed. In the second
part the dependence on all initial vectors having a fixed &gkl quotient is considered.
The given theory provides sharp convergence estimatebdaigenvalue approximations
showing that multigrid eigenvalue/vector computations ba done with comparable effi-
ciency as known from multigrid methods for boundary valuebpems.

1. INTRODUCTION

The discretization of eigenvalue problems for partialetintial operators leads to ma-
trix eigenvalue problems having large dimensions in pcagctfairly often more thano®
or 108. A finite element discretization, for instance, of an eigdne problem for a selfad-
joint and coercive elliptic partial differential operatgives a generalized matrix eigenvalue
problem of the form
Ax =AMz,

where A, M are symmetric and positive definite matrice$.is called the discretization
matrix andM is called the mass matrix. Typically, only a few of the sntlieigenvalues
together with its eigenvectors are to be determined. Iniegipbns these eigenvalues are
often the base frequencies of some vibrating mechanicadtsire, possibly of a turbine or
an aircraft represented by finite element models.

The numerical treatment of these eigenvalue problemsmesjappropriate algorithms,
since the matricesl and M are sparse with only a small, bounded number of nonzero
elements per row. Therefore, these matrices are not stapididly, but only routines are
provided to compute the matrix vector produets and M x. Classical methods for the
solution of the eigenvalue problem inasmuch they requiyen@anipulation or factorization
of A cannotbe applied, since the computer storage for full iwegris not available. Hence,
the QR method is not applicable. Moreover, the Lanczos methodstourt to converge
slowly since the condition number of increases for decreasing mesh stzefor a 2D
Laplacian on a uniform mesh the condition number behave#lik. Finally, the Rayleigh
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guotient method with its tempting cubic convergence in tlgem@value approximations
cannot be applied since the solution of equations withirstiited discretization matrix,
which is then an indefinite matrix, is a critical step [29, 38].

On the other hand, systems of linear equations within therelization matrix can be
solved efficiently by using multigrid or domain decompasitmethods [2, 4, 31, 34]. The
application of these methods can be represented by somexampiate inverse, also called
preconditioner, of the system matrix Therefore, in order to solve our eigenvalue problem
we take up the well-known inverse iteration procedure ahgedbe associated system of
linear equations iM approximately by using a preconditioner.

To introduce inverse iteration and for the following anédyse restrict the eigenvalue
problem to the standard one, i.e. we 8ét= I, wherel denotes the identity matrix. This
assumption is nonrestrictive; the generalized eigenvadollem is treated in [21]. Inverse
iteration [5, 11, 12, 23] maps a given iteratéo the next iterata by solving the system
of linear equations

(1.1) Az = Az,

with some subsequent normalizationiaf For our purposes we have slightly modified
the standard representation of inverse iteration in a walyah additional scaling constant
A = A(x) appears on the right-hand side of (1.1). Thergim) denotes the Rayleigh
guotient

(1.2) A(z) =

of the actual nonzero iteration vecter The constanf\ in Equation (1.1) has no effect
on the convergence properties of inverse iteration, butiressstationarity = z) in
any eigenvector ofd. It is well known that inverse iteration converges to the kasa
eigenvalue\; and to a corresponding eigenvector if the initial vectoras perpendicular
to the invariant subspace of eigenvectors belonging t{23].

To solve Equation (1.1) approximately we apply a symmeinit positive definite pre-
conditionerB~! for A which is assumed to satisfy

(1.3) 11 =B~ Alla <~

for some constant with 0 <~ < 1. Therein,|| - || 4 denotes the operator norm induced by
A. The assumption (1.3) is typical for multigrid or domain detposition preconditioners.
(E.g. for A being the discretization of the Laplacian, a standeretycle with Jacobi
smoothing leads tg ~ 0.2.) The best preconditioners satisfy (1.3) witbbounded away
from 1 independently on the mesh size or the number of unke¢84]. We note, in case
of having a spectral equivalence

1.4) v (z, Az) < (z, Bz) < y2(z, Az), forallz #0, ~1,72 >0,
instead of (1.3), the following analysis is applicable taalsd preconditioner [21].

The assumption (1.3) on the preconditiodr! expresses that the error propagation
matrix] — B~! A is a reducer: In terms of the error propagation equation

(1.5) ' —MAT'z =T - B 'A)(xz — \A" "),

I — B~'A being a reducer means that the initial erso XA~ 'z, i.e. the difference
of the vectorz and the exact solutiohA 'z of (1.1), is reduced to the final erref —
AA~'z, wherez' denotes the approximate solution of (1.1). In the case diéiseépossible
preconditioner, i.ey = 0 or B = A, one has the maximal error reduction or, equivalently,
in one step the result of inverse iteratioh= \A~'z.



A GEOMETRIC THEORY FOR PRECONDITIONED INVERSE ITERATION 3

We rewrite the error propagation equation in the form (cimirig no inverse ofd)
(1.6) ¥ =x— B YAz — \z),

and call the iterative schenpgeconditioned inverse iteratioor abbreviated PINVIT. To
iterate this scheme one has to provide routines computirtgxmaector products with
A andB~'. These matrices are neither stored explicitly nor modifiEdr this reason
PINVIT is a “matrix—free” method.

In this work we analyze the convergence behavior of precamgid inverse iteration
using the simple constraint (1.3) on the quality of the pretitoner. Our central task is to
derive a sharp estimate for the relative decrease of the Rayleigh quoti®ft’) towards
the next smaller eigenvalug in terms of eigenvalue approximations, as given by
Alz') =N

ey <P <1
Therefore it is assumed that and \;;, are the nearest eigenvalues fenclosing),
Ai < A < Ayp1. To derive the sharp bound one determines the supremum of the
Rayleigh quotieni\(z") with respect to the choice of the preconditioner as well athen
choice ofx having the Rayleigh quotient The important result is that only depends on
the two eigenvalues; and ;11 enclosing\ as well as ony and), i.e.

D = B(Ai, Aig1,7,A)-

This independence on all the other eigenvalues, and incpéatithe independence on the
largest eigenvalue ofi, qualifies PINVIT as an effective algorithm for grid eigelua
problems, since the convergence estimiatsan be bounded away from 1 and does not de-
pend on the mesh size and hence the number of unknowns. Tgemvalue computations
with preconditioned inverse iteration can be done with diciehcy as known from multi-
grid methods for boundary value problems [21]. By using thiingate on the eigenvalue
approximations we can also determine a simple convergesticeate for the eigenvector
approximations.

As expressed by Equation (1.7), the Rayleigh quotientseftdrates of PINVIT form
a monotone decreasing sequence. For an initial vacteith A = A(z) €]\;, A1 the
Rayleigh quotients of the iterates at least convéirgearly down to A; by (1.7), but in
the case of a faster decrease of the Rayleigh quotient thgyjungp from the interval
JAis Air1[ to [A1, ;[ In principle, it cannot be said, when the Rayleigh quosenbve
from the interval[\;, \;;+1] to the next interval\;_;, A;] of smaller eigenvalues, since
this depends on the actual choice of the preconditioner artie (unknown) eigenvector
expansion of the actual iterate. But in any case it is guashthat PINVIT converges to
an eigenvector/value; usually as an effect of roundingretimthe smallest eigenvalue and
a corresponding eigenvector. The convergence propeftlI&NVIT, its interpretation and
how to define aonvergence ratéor PINVIT is discussed in detail in the introduction of
Part I1.

We do not claim to introduce a new or better converging eigknes, but we hope
that the analysis increases the understanding of what catHieved with this form of
preconditioning for the eigenproblem. We note that thailiee eigensolver analyzed here
is in some sense the most simple one and that more refinedngliéoaing strategies
for iterative eigenvalue solvers are known [27, 28]. Newelgss, our theoretical analysis
provides the basis for the convergence analysis of an amasogubspace iteration in [20],
where sharp convergence estimates for the Ritz valuesdpalpto the actual subspace are
derived.

(1.7)
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Furthermore, we do not discuss the question on how to carisirgelect an appropriate
preconditioner for the PINVIT algorithm since this questie separated from our analysis
by inequality (1.3) and the constantThere is no need to construct special preconditioners
to solve our eigenvalue problem, since any (multigrid) pretitioner satisfying (1.3) or
(1.4) will work. For a discussion of more practical quesi@nising while constructing an
adaptivemultigrid subspace eigensolver, see [21].

We emphasize that the iteration (1.6) is by no means new.kih@svn as a precondi-
tioned gradient method. This nhaming derives from the faatttie gradient of the Rayleigh
guotient is given by
(1.8) VA(@) = ——(Az — \(2)z).

(z,z)
Hence one expects that the Rayleigh quotient of the iteratath
(1.9) 2 =12 —w(Az — \(z)2)

is decreased. The convergence depends on a proper chdiessocfling constant. A vast
literature can be found on gradient methods for the eigelevatoblem, discussing differ-
ent scaling strategies, convergence properties, adoptitre conjugate gradient method
[1, 8, 10, 17, 18, 25, 32]. Nevertheless, gradient methoffersinvom their poor conver-
gence properties; for mesh eigenproblems the convergateeanverges tb if the mesh
sizeh decreases t0, [22].

Preconditioning of gradient methods (by premultiplying tesidual by a preconditioner
for A) leads to the iterative scheme (1.6) and results in sulbialigninproved convergence
properties, see the discussion above. Preconditionedegtadethods for the eigenvalue
problem were first studied by Samokish [26] and later by Rétyg [24]. Estimates on
the convergence rate were given by Godunov et. al. [9] and@gov et. al. [7, 6]. See
Knyazev for a survey on preconditioned eigensolvers [18esE preconditioned gradient
methods have been generalized to a subspace iterationd,19]. 1Applying the analysis
of this work to the iterative subspace scheme of Bramble,agay and Pasciak [3] one
can remove some restrictive assumptions and can derive shtimates for the Ritz values
[20].

This paper is organized as follows: In Section 2 we give a eorant representation
of PINVIT and present its simple geometry. In Section 3 thdtiple eigenvalue case is
treated. In Section 4 a detailed analysis describing thetpoif suprema of the Rayleigh
guotient with respect to the choice of the preconditiongiven. The points of suprema
are characterized by a Lagrange multiplier ansatz basedmstraints which derive from
the geometric description of PINVIT. We obtain the surprisfact that these suprema are
taken in points which can be represented by inverse iteratith apositiveshift if applied
to the given iterate. Finally Section 5 contains a mini—disienal analysis of PINVIT
which leads to sharp convergence estimateRin

In Part Il we derive sharp convergence estimates for PINVYHerefore we vary not
only the preconditioner but additionally the vectowhose Rayleigh quotient is assumed
to have a fixed value. The analysis is based on the representdithe points of suprema
gained in this part. Finally, by using predominantly geanieenethods, we derive sharp
convergence estimates for the Rayleigh quotient of thatiger Additionally, we show that
the acute angle between the actual iteration vector (ieeeitlienvector approximation) and
the invariant subspace to the smallest eigenvalue is nargiy monotone decreasing in
the course of the iteration. Nevertheless, the convergehttee eigenvector approxima-
tions results from the convergence of the eigenvalue afpiations.
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E,(x) E1()
A AX

FIGURE 1. The setE,, () with respect to thd - || 4 norm.

2. THE GEOMETRY OF PRECONDITIONED INVERSE ITERATION

Consider a symmetric positive definite matrdxe R™*™ with n different eigenvalues
0 <A1 < Ag <...< A, and assume the multiplicity of theth eigenvalue to be denoted
by m(i) so thatm = Y, m(i).

Furthermore let preconditioned inverse iteration be given

(2.1) ¢ =z — B (Az — \z),

and assume that a symmetric and positive definite m&@xd a constant with 0 < v <
1 are given so that

(2.2) 11 =B~ Alla <~

holds.

Applying preconditioned inverse iteration (2.1) to a givearatez for all admissible
preconditioners satisfying (2.2) gives rise to the defnitf the set, (z) which contains
all possible iterates

(2.3) E,(z):=={M 'z + (T - B AT - A Ya; || - B *Al|la <7}

In the following we analyze the extremal behavior of the Rat quotient on the set
E.(z). The detailed analysis of this extremal behavior and itseddpnce on: finally
leads to the required convergence estimates for PINVIT.

Figure 1 illustrates the séf. (x) with respect to the vector norm induced Hy The
next lemma provides some orthogonal decomposition andsttwat the null vector is not
contained inE, ().

Lemma2.1. Forz € R™\ {0} holds

1) (I =AA"Hz)4 =0,
@) AT 2l = Izl + I = ATz,
(3) 0¢ E,(x) forallye][0,1].

Therein,|| - || 4 and(+,-) 4 denote the norm and the inner product induceddy
Proof. Properties (1) and (2) follow from

(z, (I =XA Na) g = (z,2)4 — M) (z, A 2)4 = 0.
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Using the triangle inequality, (2.2) and (2) give for norzer
I#]la = [AA" 2+ (T - B A)(I - A )z|la
> [IAAT zlla = 1T = XA )zla
(INA" ]l + (T = XA )alla) " 2]} > 0.

O

In order to show thaf, (x) is a ball with respect to thg - || a4—norm (whose center is
AA~1z and whose radius i$(7 — AA~1)z|| 1) we construct a specific class of precondi-
tioners built from Householder reflections.

Lemma2.2. Consider a Householder reflectidi = I — 2uu® foru € R™, uTu = 1,
and lety € [0, 1[. Then

(2.4) B l=A1434712HA?
is symmetric and positive definite and
11— B~ Alla = 4.
Proof. Symmetry of B follows from the definition. For any nonzero € R™ and with
y = A~1/2z follows
(¢,B7'2) = (2, A7'x) +4(x, AVPHAT P2) = (y,9) +4(y, Hy)
> (y,9) =yl [Hyl = (1 = A)|y[> >0

which shows thaB is positive definite. Furthermore it holds that denotes the Euclidean
norm)

I(I = B™' A)z|la = AIATPHAY 22| 0 = 4/ HA' 22| = 4|z -

Using these preconditionef one obtains the required characterizatioEgf z).

Lemma2.3. E,(z) is a ball with respect to thg- || s4—norm with centeA A~z and radius
Y = XA~z 4, i.€.

Ey(z) = { M 'z +y;y € R™, |lylla < AII(T = XA ")z]|4}-

Proof. By definition (2.3) obviouslyE,, (x) is a subset of the ball. To show the opposite
inclusion consider a poitA~'z + y in the ball. Then determingwith 0 < 4 < ~ from
lylla = AN = XAT )z 4.

Moreover, a Householder reflectidh can be determined which mapsl'/2(I — XA~ 1)z
to —A'/2y so that

—AY2y = AHAY?(I — XAz,
We conclude thar Atz +y € E, (z) since
y=—FATVPHAY2 (I = XA N2 = (I — B~ A)(I — AA™ Dz,
using a preconditione’% as considered in Lemma 2. O

As a consequence of Lemma 2.3 preconditioners built fromsdbalder reflections
generate the complete bdl, (). We thus restrict the analysis of PINVIT to this type of
preconditioners in order to simplify the iterative scheme give its representation with
respect to the basis of—orthonormal eigenvectors df in the next lemma.
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Lemma 2.4. Preconditioned inverse iteration (2.1) with the precoiatfier (2.4) takes
with respect to thel—orthonormal basis of eigenvectors.4the form

(2.5) d=XM"te— AT = 2007 (T =AY,
wherec and¢’ are the coefficient vectors within this basisicodndz’, respectively. More-
over, A = diagA1,...,A,) € R™™, 4 < yandv € R™, |v] = 1. The Rayleigh
quotient of a nonzerd € R™ with respect to this basis is given by

(d,d)
(d,A1d)’
Proof. Let X be the orthogonal matrix containing in the columns the aigetors ofA so

thatXTAX = A andX7 X = I. Then for the coefficient vecterof = with respect to the
basis ofA—orthonormal eigenvectors df holds

(2.7) z= XA,

(2.6) Ad) =

From (2.1) and foB = B by (2.4) we obtain
(2.8) ¢ =c—A'2XTBT'XAY2(IT =M "Ye=M"Te—4XTHX (T — A "")e.

Equations (2.5) follows since bofth and X" H X are Householder reflections. Evaluating
the Rayleigh quotient (1.2) of¥ A—/2d results in (2.6). O

In the sequel, the convergence analysis is representedaesitiect to the—basis intro-
duced in Lemma (2.4). For the sake of convenience we dédfif(e) to be thec—basis
representation (the basis introduced in Lemma 2.8.dfr), i.e.

(2.9) E,(c) == {AY?XTz; 2 € E, ()} = {¢ given by (2.5}.

We finally note that the maximal Rayleigh quotientBr(c) does not depend on the sign
of any component of, since a change of the sign of tiketh component ot leads to
a reflection ofE,,(¢) by a hyperplane orthogonal to tfie-th unit vector through the ori-
gin. Furthermore, the Rayleigh quotient (2.6) is purelydpatic in the components of its
argument so that any sign dependence vanishes.

Therefore, we restrict the convergence analysis to norativegcoefficient vectors.

3. MULTIPLE EIGENVALUES

In this section we give a justification for restricting thether convergence analysis of
PINVIT to matrices with only simple eigenvalues. Now let ustesthe diagonal matrix,
which contains the eigenvalues 4f in the form

A :dlag()\l, ,)\1,... ,)\n,... ,)\n) € Rmxm-
—— ———
m(1) m(n)
In the same way letl = (di,1,... ,digm(1)s - >dnity- - ,dn:m(n))T for a coefficient

vectord € R™, whered;,; denotes thg—th component corresponding to tixdh eigen-
value of multiplicitym (). Now consider the mapping : R™ — R™ which defines a
problem of smaller dimension with simple eigenvalues bydamsing components belong-
ing to a multiple eigenvalue in a joint component.

(3.1) (Pd)|; = d; == (Z d?,j)1/2'
=1
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The Rayleigh quotient in thR" with A = diag(\;, A2, ..., \,) is denoted by

(7 (dd)
Ad) = ——=.
D= A
PINVIT for the reduced problem with:= P(c) reads
(3.2) @ =XeA'e—4H(I - XE)A e

for arbitrary Householder reflectiorid € R™*". Note that (3.2) defines a bdll, (¢) C
R™. The next lemma shows that the suprema in the case of simpéenalues domi-
nate those of the multiple eigenvalue case. To make the ogewee analysis of PINVIT
complete, we show later in Section 3.3 of Part Il that the gltanvergence estimates (as
derived for the case of simple eigenvalues) are also sharpdtrices with eigenvalues of
arbitary multiplicity.

Lemma3.1. Letc € R™, then

sup A(E, (c)) < sup A(E, (?)).
Proof. From definition (3.1) we obtain by direct calculation
(3.3) Ad) = \(Pd) foranyd € R™

and thus\ = A(c) = A(Pc). Moreover,P maps the center of, (c) to the center of
E.(¢), i.e. P(AA"1c) = AA 1. Both balls have the same radius, sifice- AA~lc| =
le— AA"1el.

The mappingP preserves or reduces any distance, since ford&myc R™ (with
d = Pd andé = Pe) we have by using the Cauchy—Schwarz inequality

n m(i)

le—d’ = > (e —diy)

i=1 j=1

Y%

n n n m(i) m(i)
SEEDSLEE o1 (b RIEH ST
i=1 =1 i=1 j=1

Jj=1
= |e—d> =|Pe— Pd*.

The combination of all these geometric properties gives®i&, (c)) is a subset oE, (¢).
Hence

sup A(P(E, () < sup M(E, (2)),

from which with (3.3) the proposition follows. O

4. CHARACTERIZATION OF SUPREMA OF THERAYLEIGH QUOTIENT ON E, (c)

By using the abbreviation (AC) we summarize three nonmste assumptions on the
vectorc € R™.

1.lce2=1,
(AC) 2. cis not equal to any unit vectet, i = 1,... ,n,
3. cis componentwise nonnegative.

The first assumption is justified since PINVIT is homogeneaitis respect to scaling.
By the second assumption we exclude that PINVIT is statpimaan eigenvector. The
third assumption is justified in Section 2.
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4.1. Localization of pointsof supremain E.(c).

The gradient and the Hessian of the Rayleigh quotient anecteized by the following
lemma.

Lemma4.1. For any nonzere € R"” the Rayleigh quotient (2.6) fulfills:
(@) VA(e) = (C/\Zflc)(f — A bHe.
(b) VA(e) = 0ifand only ifc = fe;, 1 < i < n, for some nonzerg € R.
(c) The HessiarH (¢) of (2.6) is given by
4.2) H(c) = ﬁ [(I =AM (e, A 0)
—2(A7'e)[(I = A" = 2[(T = MDA )]

Proof. (a) and (c) follow from (2.6) by direct computation. Furthmere, all eigenvalues
are simple so that (b) results. O

The next lemma shows that all points of suprema of the Rdylgigtient onE, (c),
which represent the case of poorest convergence of PINVETogated on its surface or
more precise on the surface of the circular c6hgc) enclosingE, (c¢). The coneC', (c)
is defined by

(4.2) Cy(c) == {dd; d € E,(c), ( > 0}.

Since the Rayleigh quotient (2.6) is invariant with resgeatonzero scaling of its argu-
ment, the suprema with respectfig (¢) andC, (c) coincide.

Lemma4.2. Let (AC) be fulfilled and letv € arg sup A(E,(c)). Thenw € 0E,(c),
i.e. the boundary oF, (c).

Proof. Letw € arg sup A(E,(c)) and assume in the interior ofE, (c). ThenVA(w) =
0 and thusw = fe; for a nonzerd by Lemma 4.1. We first assumie= n and derive a
contradiction: The angle of openirgof the circular con€; (¢) is given by

(e, A1) 1
lc|[AMLe| A Le|

cos ¢ =

Furthermore, the acute angleenclosed by\A~'c andw = fe,, reads

cosy = Myl en
XTI
Since|c| = 1 by (AC), we have\)\,'¢,, < 1 and sop < x. Hencefe, ¢ C,(c) and thus
Pe, ¢ E.(c). Inthe remaining cases$, < i < n — 1, the Hessian (4.1) in the stationary
pointsfe; is a diagonal matrix
2); _

which has at least one positive eigenva%e(l - ;n ) > 0, so thatw = fe; is not a point
of a supremum. O

The fact that any point of a supremum is located on the boynofaE., (c) leads to
some orthogonal decomposition characterizing these goint
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Theorem 4.3. Letc satisfy (AC);y € [0, 1] andw € arg sup A(E,(c)). Then
(4.3) (a) (w,w —AA"te) =0,

(4.4) (b) lw|® + [w — A" e]? = M e]?,
(4.5) (c) |w — A" e| = (T = AA7Y)¢,
(4.6) (d) |w]| > |c].
Proof. Assume(w,w — AA"tc) # 0, thenkw (with k = % # 0) is an element of
the interior ofE, (c) because
. . 1 .
|w— A" e]? — |kw — AT ) = Tl (jwl? - (w,)\A_lc))2 > 0.

Moreover,A\(kw) = A(w) holds, so thakw as a point of a supremum in the interior of
E., (c) contradicts Lemma 4.2. The orthogonal decomposition (B)dgect consequence
of (a). Equation (c) only expressese 0E, (c), see Lemma 4.2. Finally,

w? = AL el = 2(I = AL D)ef? > A Tef? — (T — A H)ef? = [ef?.

4.2. Characterization of suprema by the method of L agrange multipliers.

The next lemma explicitly describes the points of supremadigg the method of La-
grange multipliers.

Lemma4.4. Letc satisfy (AC), and assume € arg sup A(E,(c)). Then there are con-
stantsy, v € R, so that

4.7) 2+ p+v)w =vAA e
Proof. By (4.4) and (4.5) the left-hand sidke|> of
wl* = AT e — [T = A7)l

has a fixed value for given and~. Hence, the functiom (w) := (w, A 'w) takes its
extrema in the same arguments as the Rayleigh quotiemt The method of Lagrange
multipliers applied tos(w) with respect to the constraints (4.3) and (4.4) leads to a La-
grange functiorl = L(w, u, v) with multipliersp andv in the form

L= (w,A7"w) + p (Jw> +7?|(I = XA Ye]? — AT e]?) + v(w,w — A" 'e).
The gradient of with respect tav reads
VL =2A"' 4+ p+v)w —vAA e
FromV L = 0 the assertion follows. O
The following analysis distinguishes the caseg 0 andv = 0. Next we treat = 0.

Lemma4.5. Letc satisfy (AC) and letv € arg sup A(E,(c)). Assumings = 0 in (4.7)
anyw has the form

—1
w = A\, crep,

for somek with 1 < k& < n and nonzerey,. (e, denotes thé—th unit vector.)
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Proof. Forv = 0 from (4.7) we have

(A +p)w=0.
By (4.6) the vectonv has at least one nonzero componenptfor 1 < k < n. Hence,
u = —1/Xg. All eigenvalues\; are simple, so that = fe,, for nonzerdd. From (4.3) we

obtaing = A/\,;lck. We also havey, # 0 since otherwisey = 0.

The cases = 1 andk = n are impossible: Fok = 1 a point of a supremum in
w = A\ 'cre; contradicts\(AA~'¢) > A\; = A(w). Furthermore, the proof of Lemma
4.2 excludes fok = n a point of a supremum iw = AA;lcnen. O

Remark4.6. Assumingy = 0 in Lemma 4.5 leads to a maximumof— 2 candidates for
points of suprema of the Rayleigh quotientBr(c). In the sequel we assume# 0 and
derive a continuum of points of extrema depending on a raalrpater. Later in Appendix
A of Part Il we show that only these points are suprema andheoténdidates obtained in
Lemma4.5.

Lemma4.7. Letc satisfy (AC)w € arg sup A(E,(c)) and assume # 0. Then for any
positive component, > 0 of the nonnegative vecterholds

Av
4.8 p = > 0.
(48) = T At )™
Furthermore, ife, = 0 thenwy, =0fork=1,... ,n —1.

Proof. If ve,, # 0, then/\,:1 + p + v andwy, are nonzero by (4.7) from which the form
of wy, follows. If wy, < 0, then definap to be equal tav but with a positive sign of the
k—th component. A comparison of the distancesvodindw to the centenA~'c of the
ball E,(c) shows

Jw = A" e* — | = M e* = —dwp A\ ey, > 0,

so thatp is an element of the interior &, (¢). Moreover\(w) = A(w), which contradicts
Lemma 4.2 since all points of absolute extrema are locatetherboundary off, ().
Hencew; > 0.

Next assumey, ¢ = 0 andwy, wy # 0. Then (4.7) implies

O+ 4wy =0= A\t + p+ v)wp,
so that\;, = A/, or equivalentlyk = k’. Hence there is at most one component for which
cp. =0 andwk 75 0.
Now [ denote the smallest index so tliat> 0 and letl’ the largest index witl; > 0.

We assume;, = 0 andw;, # 0forl < k < I'. From (4.7) we deduce+ v = —1/\; and
thus obtain forw; andwy

w = VAR a S VAR ar
D VI VS % TN = 2
Sinceqy, ¢, w; andwy: are positive and; < A\; < Ay one obtains
wp 2(Ak — Al) wyr 2(Ak — Al’)
S e S A PN ) =L 2VF )
Cy >\k>\ > 9 v Ccyr >\k>\ <5

which contradicte # 0. Hencew;, = 0.

Now consider the casg, = 0 andw,, # 0 with !’ < m < n. Definew to be equal
to w with exception of the components with indexaesandn which have changed their
places. Since,, = ¢, = 0 one has

M e —w| = A te—w),
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and thusp € E, (c) holds, but due ta\,, < A, we have\(w) > A(w), which contradicts
w € arg sup A(E,(c)).
In the remaining case: < [, definew to be equal tav except for then—th component

which is set equal to zero. Sineg = ... = ¢,, = 0, and thus\(AA~'¢) > )\, we
conclude\(w) = sup A(E, (¢)) > A, Hence, from)\,,, < (w(’[’{’f'i)w) we obtain

[(w, w) — w2, )(w, A~ w) > [(w, A7 w) — w2, /Am] (w, w)
and thus\(w) > A(w). Additionally,w € E.,(c) since
|w— A "te]? — | — A e = w2, >0
which contradictsy € arg sup A(E(c)). O

In the next theorem we show that any point of a supremum hasgettyesimple repre-
sentation (4.9). So we obtain the somewhat surprisingtrésatl any point of a supremum
w can be represented by application of inverse iteration avihift toc. A similar analysis
shows that such a result doesn’t hold in general for poinisfoha.

Theorem 4.8. On the assumptions of Lemma 4.7 amye arg sup A\(E,(c)) can be re-
presented as resulting from inverse iteration with a shit, there are real constants,
B € R such that

(4.9) w=Bla+A)""c

Proof. If ¥ = 0 thenw = AA !¢, so thain = 0 and3 = \. If ¥ > 0 then due to Lemma
4.7 representation (4.9) may only be violated assumijpg= 0 together withw,, # 0.

From (4.7) we have. + v = —1/),. Hence the remaining components, . .. ,w,_1
read
Ac;
(4.10) Wy =
21— X\ An)

Inserting (4.10) in (4.3) we obtain fow|?
2 v\ic?
= —t > 0.
el ; (1 — A

We haver = @ withw =37, % Elimination ofv in (4.10) results in

w|* e
2w(1— XNAnt)

w; =

Then forw,, holds

2 2 2 |w|2 AQC?
= |w|” — w; = |w 1—-—- — | -
| | #Zn 3 | | ( wz ; 4(1 _ >\z>\r_11)2
We show next that

(4.11) w? < |wl? Z i “
- n

which impliesw? < 0 in contradiction twaL > 0. Using (4.6) we see that from

: ( : )2 ( ) .
G — 9
(1= XAyt St S (=)
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inequality (4.11) follows. The last inequality is equivai¢o

) c2 i c2 ’ c2
4.12 ‘ -t < _t S S
@12 > allin ) S\ 2o
i#n i#n i#n i#n
In Appendix A Lemma A.2 proves inequality (4.12) for=n — 1 andr = \,,. O

4.3. Continuous curve of points of suprema.

In the previous section points of suprema are shown to beedbtimw = B(a+A)~'c
for real constanta and3. But so far the constants and 3 are unknown. In this section
we determine the constafitand show that there is a uniqu€or eachy € [0, 1[.

Lemma4.9. Letc € R™ (with n > 2) satisfy (AC). Then the function
p:[0,00[= R:a= A(a+A)"e)

is strictly monotone increasing in. Therein(-) denotes the Rayleigh quotient (2.6).
Moreover,p([0, 0o[) = [A(A™1e), A(c)].

Proof. The diagonal matriXa + A) is invertible fora: > 0. Hence consideb < a; < a»

be given and define!) := (a; + A)"'candw® := (ay + A)~'c. Then we have for
1=1,...,n
Ai (8
wa) — 2T + sz@)a
ap + A
wherein the sequence of positive coefficiegﬁi—i, e 3311‘: is strictly monotone de-

creasing. Hence, due to Lemma A.1 the functiois strictly monotone increasing. Fur-
thermore,

p(0) =X(A"'¢) and lim A((a+A)7'e) = A(o).

a—00

O

By using Lemma (4.9) we see in the next theorem that the pofrdaprema represent
a continuous curve as a functionpf The curve connects the centek~'c of E, (c) for
~ = 0 and the vectoe for v = 1.

Theorem 4.10. Let ¢ satisfy (AC). Then for each € [0, 1] there are uniquex > 0 and
B > 0 with
o (ATle (@t A7)

A CES VS VEr )
so thatw = B(a+ A)tc € arg sup A(E, (c)). Furthermore, thisv is the unique point of
a supremum ot (c).

Proof. Forw = B(a + A)~'c we haves/(a + X;) > 0 for any nonzero component

by Lemma 4.7. Ifg < 0, thena < —X\; (wherel is the largest index so that > 0) and
the sequencg% only for indexes with ¢; > 0 is strictly monotone increasing. Hence
from Lemma A.1 one obtains(w) > A(c¢). Such a result contradicts the convergence
estimates of D’yakonov and Orekhov [7], since adapting tlaaivergence analysis to the
given assumption (1.3) and removing the scaling constamtskhat the Rayleigh quotient
never increases while applying PINVIT to Thus3 > 0 anda > —);, wherel is the
smallest index so thag # 0. Since

p:]=Apoo[= R:am AM(a+A) te)
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is strictly monotone increasing i (confer Lemma 4.9) and since far = 0 we have
ABAte) = A(AAte) = M(Ep(c)) we conclude that only nonnegatiwemay represent
points of a suprema. Furthermore, the formgaf 0 directly follows from (4.3). Unique-
ness of the point of a supremum follows from the fact that) for positive« is strictly
monotone increasing. O

4.4. Reduction to alower dimensional positive problem.

As a result of Theorem 4.10 the case of poorest convergene&\fIT can be rep-
resented by inverse iteration with a positive shift if apglito the given iterate. Hence
zero components of remain to be zero componentsof For this reason the conver-
gence analysis of PINVIT can be restricted to the nonzerbgfar i.e. to the contributing
eigenfunctions. The next lemma formally describes the ctgdn of the dimension and
provides the basis for the convergence analysis of PINVIFart 1l. There we show that
the Rayleigh quotient of the new iterate of PINVIT, underadl R™ with a fixed Rayleigh
guotient, takes its maximum in a vector with only two nonzesmponents. Applying the
mini—dimensional analysis given in the next section ondlfirabtains sharp convergence
estimates.

For a given nonnegative € R" let S, be the operator which reduces the dimension
of a vectorv € R" by eliminating all components af which are zero components of
In the same ways. is applied to the diagonal matrix leading to a diagonal matrix of
lower dimension. If, for example, = (c;,0,0,c4)7, ¢1,c4 # 0thenS.(vy,... ,v)T =
(v1,v4)T. The nextlemma describes the geometryof S..c).

Lemma4.11. Letc € R™\ {0} be a nonnegative vector anlt= S.c, A; := S.A. Then
(¢,c) (d,d)
(@ A=NI =TT T @At
()  S:(AAte) = M;'S(¢) = M d,
(@  Se((I=2A"")e) = (I = A 1),
(d) 1 =XATel =|(I = A7 )],
() Se(By(c) = Ey(d).
Hence the suprema of the Rayleigh quotienfbiic) and onE., (S.c) coincide.

Proof. Properties (a)—(e) follow from the definition 6f. The rest follows from Theorem
4.10. O

5. MINI-DIMENSIONAL CONVERGENCE ANALYSIS OFPINVIT

The objective of this section is to derive a sharp convergestimate for preconditioned
inverse iteration in the case of the smallest nontrivialetision of the eigenvalue problem,
that is in theR2. The following “mini—dimensional analysis” is a first stepaards a
complete analysis of PINVIT. In Part |l the convergencereate given here turns out to
be fundamental for the analysis in tR&*. The concept of a mini—-dimensional analysis is
in some sense typical of the analysis of iterative eigeresslvit is well-known that the
convergence rate of the power method (or inverse iteraisagtermined by the two largest
(or by the two smallest) eigenvalues of the given matrix. e proof shows that the
convergence rate estimate takes its maximal value in gxtimike vectors which belong
to that extremal eigenvalues. For the steepest ascent théthithout preconditioning)
to determine the maximal eigenvalue of a given matrix, Kieyaand Skorokhodov [15]
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Ey(c)

FIGURE 2. Geometric setup.

have also used a mini—-dimensional technique to determaedhvergence rate; for mini—
dimensional analysis of a steepest descent method fomsysitlinear equations see [14].

Theorem5.1. Letc € R* with \; < A = X(c) < Xy and|c| = 1. Letc' be defined by
(2.5) as the result of preconditioned inverse iterationvétpreconditioner fulfilling (2.2)
for somey € [0, 1[. Then

(5.1) ') < A2(A7)
with
AL A:
(5.2) Ai2(A,y) = ﬁ
2 1+m?2

Thereinm is the slope of that straight line through the origin and tingh E., (¢) which
maximizes the Rayleigh quotient. It holds

(5.3) _ yl —rx

xl +ry

wherez, y, r andl are given by Equations (5.8)—(5.10).
One explicitly obtains\;, as a function of\, v, A; and X\, in the form

Aa(N ) = A (A + A — N2/
(VA2 = MDA = A1) M + A = A =A%)
(5.4) =27V A (A = A1) (A2 — A)

VAo + (1= (A=A)(hz — N

The estimate is sharp in a way that a preconditioner fulil{#.2) can be constructed such
that/\(c’) = A2 ()\, "}/)

Proof. Due to Theorem (4.3) our task is to determine the unique pafinhtersection
of E,(c) with a straight line through the origin which is tangential £, (¢) and max-
imizes the Rayleigh quotient. The geometric setup of thélera is shown in Figure
2. Therefore, we first construct the points of intersectibthe circle E, (c) with radius

r = v|(I — AA~1)c| with a second circlé( of radiusl := /22 + y2 — r2 centered at the
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origin; therein the center df., (c) is given by(y, z)T = AA~!c. The point of intersection
maximizing the Rayleigh quotient dfi, (¢) has the form

xzl? +ryl
(55) (77,5) = (Vl2_£2, 3327_'_2)
Y
Thus the Rayleigh quotient (2.6) 6f, £) reads
2 2
A2, = AM(n,&T) = A
12(A, ) ((m,8)") /A + /X
/\1>\2 (1‘2 + y2)2
Ao (22 +y2)2 + (M1 — o) (lz + yr)?’

from which we obtain (5.2) and (5.3).
The components of the positive vectoe R? are determined bje| = 1 andA(c) = A.
Hence,

For the center ofZ, (c) one obtaingy, )7 = A~ (c;, )7 or

(5.6) =

A=) _ [Ae -

(5-8) =V R0 YTV N0

Thus for the radius holds

A=) =)
A1 A2 '

(5.9) r=v|I - )\A_l)c| = 7\/

Finally, we have

(5.10)

[ = Y2 = AN A2 = A) +F A+ A =)
B A1 '

Inserting (5.8), (5.9) and (5.10) in (5.6) we obtain aftemgsaedious but elementary sim-
plifications A;2 (A, ) in the form (5.4). Finally, by Lemma 2.2 a Householder reftect
exists, so that is mapped in the point of intersectian = (,¢)7 so thatA(¢') =
)\12()\,’)/). O

We note that with respect to the initial basis the theorens shgt forz € R? (with
A1 < XA = X(z) < \2) and a preconditioneB ! fulfilling (2.2) for the Rayleigh quotient
of the iteratex’ by (2.1) the sharp estimate

Az") < A2 (A, )

holds.

The function\{> has two representations: In Equation (5.2) the slaps the decisive
factor. We have\i; = A\» for m = 0 andAi2 — A asm — oo. To understand the
dependence ofi on+y one observes that = y/x for v = 0, which is the result of inverse
iteration, and thatn = ¢;/cq for v = 1, which corresponds to stationarity of PINVIT.
For v €]0, 1] the slopem depends ony as described by Equations (5.3), (5.8)—(5.10).
The square roots in and! are responsible for the somewhat unreadable representdtio
A2 by Equation (5.4), which results from (5.6) by inserting emmetric quantities and
performing then extensive and tedious simplifications. &yrbe seen as a drawback of
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FIGURE 3. Comparison of convergence estimates. Abscisia:e
[A1, A2] = [1,3]. Solid lines: Optimal convergence estimate, (), v)
defined by (5.12). Broken lines: Estimaié)\, v) by Equation (5.11).

this analysis that (5.4) is a lengthy formula, since it is @ady to see by direct calculation
thatA12(\,v) < A, which implies convergence of PINVIT.

Therefore, we conclude this section with a comparison ofthgsical convergence esti-
mate by D’yakonov and Orekhov [7] and the estimate (5.4) tvhiecns out as a significant
improvement. By using the assumption (1.3) on the precmmgit and with a scaling con-
stantw = ﬁ the analysis in [7] leads to the following estimate for thiatige decrease
of A(z') to \y

1—y A=)

Aa') — M T Ty X é
(.11) S v ey e v TEvES VIR AR
14y A1 A2

Now we compare the convergence estinbta, v) and the optimal estimate;, (), v)

A2(A,y) — A
(5.12) B15(\,y) = Az(A7) =M
A=\

with A12(), v) derived in Theorem 5.1. As a concrete example we ke 1 and\; = 3.
In Figure 3 fory = 1’“—0, k=0,...,10, the optimal estimat&;,(}, ) is charted by solid
lines while® (), 7) is represented by broken lines. Anticipating the resultBart Il we
note that®»(\,v) as derived by the mini—-dimensional analysis remains to éegtimal
estimate in th&.™. For this reason we make a comparison with the estimate ard]not
with the more recent estimate (6.4) in [13]. The latter eatamdoes not only depend on
the two nearest eigenvalues enclosing the Rayleigh quati¢he given iterate but also on
the largest eigenvalue.

For v = 0 the estimated;»(),0) corresponds to inverse iteration and derives from
(5.12) and (5.4) fory = 0.

AMAT ) — N A2
Az) = A X2+ =N+ M)

(5.13) ®15(A,0) = < 1.
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In the limiting casey = 1 the convergence estimadg (), 1) equals 1. Then PINVIT
is stationary. Let us compare the convergence estimatdsvfosituations, explicitly. If
A = 2.0 andy = 0.1 one obtains ~ 0.571 and®, = 0.244, while for A\ = 1.2 and

v = 0.2 holds® ~ 0.556 and®;, ~ 0.223.

6. CONCLUSION

Application of PINVIT to a given initial vector with a precditioner satisfying the
simple constraint (1.3) leads to a ball of iterates, wheeecnter is defined by the result
of inverse iteration. The Rayleigh quotient on this ballgslkts supremum in a vector
which can be represented as resulting from application ®TNwith a positive shift to
the initial vector. For the smallest nontrivial dimensioslerp convergence estimate for
PINVIT has been given.

In Part Il we analyze the dependence of these suprema orosaé thitial vectors whose
Rayleigh quotient has a fixed value. We finally derive shameagence estimates for
PINVIT by applying the results of the mini—dimensional aysig given here.

APPENDIXA. INEQUALITIES ON WEIGHTED MEANS OF EIGENVALUES

We give two auxiliary lemmas used in Theorem 4.8 and in Seeti8. The firstlemma
investigates the effect of a monotonous weighting funatiothe Rayleigh quotient.

LemmaA.l. Letec € R™ and let the Rayleigh quotient-) be given by (2.6). Moreover,
defined € R™ byd; := a;¢; fori = 1,... ,n with a monotone increasing sequence of
positive numbere < a1 < a2 < ... < a,. Then for the Rayleigh quotients eandd
holds that

Ae) < A(d).

Furthermore, if there are nonzerg, ¢; for i < j with a; < a;, then we even havgc) <
A(d). Analogously, if thei; are monotone decreasing the Rayleigh quotient decreases.

Proof. If A(c) = A, thenc = fe,, (6 # 0) andA(c) = A(d). Thus assuma(c) < A,.
Hence there is a unique, so that\,, < A(c) < Ap,+1. Writing the Rayleigh quotient of
d in the form

a; .2

i

2
)\(d) _ E?:l d% _ Zi<m oil?n C% + an + Zi>m aic
B n 2/ 7 2 . ’
Limt G/ i<m ;Tmcf//\z G Am + Y im ;Tmcf//\z

2 2
we have(;—i) <lfori=1,...,m-1 and(;—i) > 1fori =m+1,...,n. Bydirect
calculation one can easily see that decreasing the abs@llue of a componerit< m or
increasing the absolute value of a comporientm increases the Rayleigh quotient. Thus
A(c) < A(d). Finally, for nonzera; ande; the increase of the weighted mean is nonzero

if a; < a;.
For a decreasing sequenceagfconsider the increasing sequerige= 1/a; and the
result from above te; = b;d;. O

The second lemma proves an inequality on various weightethme

LemmaA.2. Forc € R¥ and0 < A\ < Xa < ... < X\ letT > \.. Then we have

k k 2 2 k2 2/ k 2
wo - (59) (Bwts) < (25) ()
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Proof. The proposition is equivalent to

k C? 2 k c?
Lzt Xt | Zis oA
P & S 5

Ei:1 ;_i Ei:l Cz%

At first we show
k c; k c;
Zi:l Xi(T=X;) < Zi:l T—\;

2 =

£ o k.
>ic1 ;_ Dim €

(A.2)

or equivalently

2
. k 2 k ci
Y & < Yici oy 2ict (m)
ko 2y, = ok c? - , 2 :
Y CGN Y N Ele ( rci)\i) oy

Both sides of this inequality are Rayleigh quotients of thief (2.6). The coefficients on
the right—hand side are weighted by the monotone increasiqgence

/N1 =21, o, 1N T = Ay

so that application of Lemma A.1 proves (A.2). We concludegloof by estimating the
square of the right—hand side of (A.2) by applying the CauSthwarz inequality to the
nominator

2 2 2
k c? k . ci k c;
Yim1 TN _ (zi:l ci (T*’\i)) < 2zt (T=Xi)?
k 2 - . . 2 — k 2 :
Ei:l ci (Zle Cf) Zi:l ci
O
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