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Abstract. Preconditioned gradient iterations for very large eigenvalue problems are efficient solvers
with growing popularity. However, only for the simplest preconditioned eigensolver, namely the precondi-
tioned gradient iteration (or preconditioned inverse iteration) with fixed step size, sharp non-asymptotic
convergence estimates are known. These estimates require a properly scaled preconditioner. In this pa-
per a new sharp convergence estimate is derived for the preconditioned steepest descent iteration which
combines the preconditioned gradient iteration with the Rayleigh-Ritz procedure for optimal line search
convergence acceleration. The new estimate always improves that of the fixed step size iteration. The
practical importance of this new estimate is that arbitrarily scaled preconditioners can be used. The
Rayleigh-Ritz procedure implicitly computes the optimal scaling constant.
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1. Introduction. The topic of this paper is a convergence analysis of a precondi-
tioned gradient iteration with optimal step-length in order to compute the smallest eigen-
value of the generalized eigenvalue problem

Axi = λiBxi(1.1)

for symmetric positive definite matrices A,B ∈ R
n×n. Let T , a preconditioner, approxi-

mate the inverse ofA. Then the preconditioned gradient iteration with optimal step-length
ϑopt reads

x′ = x− ϑoptT (Ax− ρ(x)Bx).(1.2)

The parameter ϑopt is determined in a way that the Rayleigh quotient

ρ(x) =
(x,Ax)

(x,Bx)
(1.3)

of x′ is minimized. The iterate x′ is computed by the Rayleigh-Ritz procedure applied to
the two-dimensional space spanned by x and the preconditioned residual T (Ax−ρ(x)Bx).
This paper provides a new and sharp estimate for the convergence of ρ(x′) towards the
smallest eigenvalue of (1.1). The central result is given in Theorem 1.2. To state this the-
orem some further notation is to be introduced and the assumptions on the preconditioner
are to be fixed.

A typical source of (1.1) is an eigenproblem for a self-adjoint and elliptic partial
differential operator whose weak form reads

(1.4) a(u, v) = λ (u, v), ∀v ∈ H(Ω).

The bilinear form a(·, ·) is associated with the partial differential operator and an L2(Ω)
inner product (·, ·) appears on the right side. Further u is an eigenfunction and λ an
eigenvalue if (1.4) is satisfied for all v in an appropriate Hilbert space H(Ω). A finite
element discretization of (1.4) results in (1.1). Then A is called the discretization matrix
and B the mass matrix. These matrices are typically sparse and very large.

The eigenvalues of (1.1) are enumerated in increasing order 0 < λ1 ≤ λ2 ≤ . . . ≤ λn.
The smallest eigenvalue λ1 and an associated eigenvector can be computed by means of
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an iterative minimization of the Rayleigh quotient (1.3). To this end the simplest pre-
conditioned gradient iteration corrects a current iterate x in the direction of the negative
preconditioned gradient of the Rayleigh quotient to form the next iterate x′

(1.5) x′ = x− T (Ax− ρ(x)Bx).

This fixed-step-length preconditioned iteration is analyzed in [2, 8, 7, 10]; see also the
references in [3]. Embree and Lehoucq demonstrated in [4] a fruitful relationship between
simple preconditioned eigensolvers like (1.5) and nonlinear dynamical systems.

Appropriate preconditioners T are available in various ways; especially for the operator
eigenproblem (1.4) multi-grid or multi-level preconditioners are available. In this context
the quality of the preconditioner is typically controlled in terms of a real parameter γ ∈
[0, 1) in a way that

(1.6) (1− γ)(z, T−1z) ≤ (z, Az) ≤ (1 + γ)(z, T−1z), ∀z ∈ R
n,

or equivalently, that the spectral radius of the error propagation matrix I−TA is bounded
by γ.

The following result for the convergence of (1.5) is known from [8, 10]; the convergence
analysis interprets this preconditioned iteration as a preconditioned inverse iteration and
makes use of the underlying geometry.

Theorem 1.1. The iterates of (1.5) together with (1.6) form a sequence with mono-
tone decreasing Rayleigh quotients. The Rayleigh quotients converge to an eigenvalue and
the iteration vectors converge to an associated eigenvector.

If the Rayleigh quotient of an iterate x satisfies λi ≤ ρ(x) < λi+1, then the Rayleigh
quotient of the next iterate x′ either fulfills ρ(x′) ≤ λi or the following sharp estimate
applies

(1.7)
ρ(x′)− λi
λi+1 − ρ(x′)

≤ σ2 ρ(x)− λi
λi+1 − ρ(x)

, σ = γ + (1− γ)
λi
λi+1

.

Thm. 1.1 is a sharp estimate for the fixed-step-length preconditioned gradient iteration
and serves as an upper estimate for various improved and faster converging preconditioned
gradient type eigensolvers. The most popular of these improved solvers are the precondi-
tioned steepest descent iteration (PSD) and the locally optimal preconditioned conjugate
gradients (LOPCG) iteration (and also their block variants) [7]. All these eigensolvers
apply the Rayleigh-Ritz procedure to proper subspaces of iterates for convergence accel-
eration, see [9]. A systematic hierarchy of these preconditioned gradient iterations and
their variants for exact inverse preconditioning (which amounts to certain Invert-Lanczos
processes [17]) has been suggested in [15]. The aim of this paper is to prove a new sharp
convergence estimate for the preconditioned steepest descent iteration (PSD).

1.1. Assumptions on the preconditioner. A drawback of Thm. 1.1 is its assump-
tion (1.6) on the preconditioner T . The existence of constants 1 ± γ with γ < 1 is not
guaranteed for arbitrary (multigrid) preconditioners, but can always be ensured after a
proper scaling of the preconditioner. To make this clear, take an arbitrary pair of sym-
metric positive definite matrices A, T ∈ R

n×n. Then constants γ1, γ2 > 0 exist, so that
the spectral equivalence

(1.8) γ1(z, T
−1z) ≤ (z, Az) ≤ γ2(z, T

−1z), ∀z ∈ R
n

holds. If a preconditioner T satisfies (1.8), then the scaled preconditioner (2/(γ1 + γ2))T
fulfills (1.6) with

γ =
γ2 − γ1
γ1 + γ2

.(1.9)
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A clear benefit of the preconditioned steepest descent iteration is, that by computing the
optimal step length parameter ϑopt, see Eq. (1.2), the scaling parameter 2/(γ1 + γ2) is
determined implicitly. Therefore, we can use the assumption (1.8) or alternatively the
more convenient form (1.6). This guarantees the practical applicability of the precondi-
tioned steepest descent iteration for any preconditioner satisfying (1.8) or in its scaled
form satisfying (1.6).

1.2. The optimal-step-length iteration: Preconditioned steepest descent.

A disadvantage of the gradient iteration (1.5) is its fixed step length resulting in a non-
optimal new iterate x′. An obvious improvement is to compute x′ as the minimizer of the
Rayleigh quotient (1.3) in the affine space {x − ϑT (Ax − ρ(x)Bx); ϑ ∈ R}. That means
we consider the optimally scaled iteration

(1.10) x′ = x− ϑoptT (Ax− ρ(x)Bx)

with the optimal step length

ϑopt = argmin
ϑ∈R

ρ(x− ϑT (Ax− ρ(x)Bx))

is considered. This iteration is called the preconditioned steepest descent iteration (PSD),
[2, 9, 20]. Computationally one gets x′ and its Rayleigh quotient ρ(x′) by the Rayleigh-
Ritz procedure. If T (Ax − ρ(x)Bx) is not an eigenvector then (x′, ρ(x′)) is a Ritz pair
of (A,B) with respect to the column space of [x, T (Ax − ρ(x)Bx)]. As (1.2) aims at
a minimization of the Rayleigh quotient, ρ(x′) is the smaller Ritz value and x′ is an
associated Ritz vector. The Rayleigh-Ritz procedure computes the optimal step length
implicitly; the step length is determined by the components of the associated eigenvector
of Rayleigh-Ritz projection matrices. Consequently the preconditioned steepest descent
iteration converges faster than the fixed-step-length scheme (1.5) since

ρ(x− ϑoptT (Ax− ρ(x)Bx)) ≤ ρ(x− T (Ax− ρ(x)Bx)).(1.11)

Therefore Thm. 1.1 serves as a trivial upper estimate for the accelerated iteration (1.2).
The aim of this paper is to prove the following sharp convergence estimate for (1.2).

Theorem 1.2. Let x ∈ R
n and x′ be the PSD iterate given by (1.2). The pre-

conditioner T is assumed to satisfy (1.8). If λi ≤ ρ(x) < λi+1, i = 1, . . . , n − 1, then
ρ(x′) ≤ ρ(x) and either ρ(x′) ≤ λi or

(1.12)

ρ(x′)− λi
λi+1 − ρ(x′)

≤ σ2 ρ(x)− λi
λi+1 − ρ(x)

,

with σ =
κ+ γ(2− κ)

(2− κ) + γκ
, κ =

λi(λn − λi+1)

λi+1(λn − λi)

and γ := (γ2 − γ1)/(γ1 + γ2). The estimate is sharp and can be attained for ρ(x) → λi in
the 3D invariant subspace associated with the eigenvalues λi, λi+1 and λn, i+ 1 6= n.

The definition γ := (γ2 − γ1)/(γ1 + γ2) in Thm. 1.2 is consistent with γ in (1.6) if
γ1 = 1 − γ and γ2 = 1 + γ. The limit case γ = 0 of Thm. 1.2 is an estimate for the
convergence of the steepest descent iteration which minimizes the Rayleigh quotient in
the space span{x,A−1Bx}. Then the convergence estimate (1.12) reads

ρ(x′)− λi
λi+1 − ρ(x′)

≤
(

κ

2− κ

)2
ρ(x) − λi
λi+1 − ρ(x)

with κ given by (1.12). A proof of this result (in the general setup of steepest ascent and
steepest descent for A and A−1) has recently been given in [18]; for the smallest eigenvalue
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with i = 1 the estimate was proved in [11]. This paper generalizes this result on steepest
descent for A−1M to the preconditioned variant of this iteration; see also Appendix A for
a comments on the connection of the preconditioned and the non-preconditioned iteration.
For the following analysis we always assume a properly scaled preconditioner satisfying
(1.6). If T fulfills (2.3) we use (2/(γ1+γ2))T (and call the scaled preconditioner once again
T ) so that γ is given by (1.9) and (1.6) is fulfilled. This substitution does not restrict the
generality of the approach since the scaling constant is implicitly computed with ϑopt in
the Rayleigh-Ritz procedure. We prefer to work with (1.6) since this allows to set up the
proper geometry for the following proof.

Only few convergence estimates on PSD have been published. Of major importance
are the work of Samokish [21], the results of Knyazev given in Thm. 3.3 together with
Eq. (3.3) in [6] and further the results of Ovtchinnikov [20]. Knyazev uses similar assump-
tions and applies Chebyshev polynomials to derive the convergence estimate. Ovtchin-
nikov in [20] proves non-asymptotic estimates and also an asymptotic convergence factor
which represents the average error reduction per iteration. Further, Ovtchinnikov repro-
duces the result of Samokish in a finite-dimensional non-asymptotic form as Thm. 2.1 in
[20] and presents a review and comparison of the asymptotic behavior of various estimates
for preconditioned gradient iterations, see Sec. 3 in [20].

Next we compare the estimate given in Thm. 1.2 with the important Corollary 6.4 of
Ovtchinnikov [20]. If µ2 < µ(x) ≤ µ1, then the latter result reads in our notation

µ1 − µ(x′) ≤ τ2(µ1 − µ(x))(1.13)

with τ =
1− ξ

1 + ξ
, ξ =

1

κ(TA)

µ(x)− µ2

µ(x)− µn
.

Therein κ(TA) is the spectral condition number of TA. The estimate (1.13) is formulated
in terms of reciprocal eigenvalues µi = 1/λi together with the reciprocal Rayleigh quotient
µ(x) = 1/ρ(x). A reformulation of our Thm. 1.2 in terms of this reciprocal representation
is given in Thm. 2.2.

In contrast to (1.13), Thm. 2.2 can be applied to any initial iterate x without assuming
µ2 < µ(x) ≤ µ1. The restriction of Thm. 2.2 to i = 1 reads

µ1 − µ(x′)

µ(x′)− µ2
≤ σ2µ1 − µ(x)

µ(x) − µ2
,(1.14)

with σ =
κ+ γ(2− κ)

(2− κ) + γκ
and κ =

µ2 − µn

µ1 − µn
.

In order to convert (1.14) into the form (1.13) we consider the limit µ(x), µ(x′) → µ1 for
the denominators on the left and right side of (1.14). Then the asymptotic behavior for
µ(x) → µ1 of the convergence factors τ in (1.13) and σ in (1.14) can easily be compared.
With ξ = (µ1 −µ2)/(κ(TA)(µ1 −µn)) and κ(TA) = (1+ γ)/(1− γ) from (1.6) we obtain
that

τ =
µ2 − µn + γ(2µ1 − µ2 − µn)

2µ1 − µ2 − µn + γ(µ2 − µn)
= σ.

Hence asymptotically (1.13) and (1.14) coincide. An important difference is that Thm. 1.2
can be applied to any iterate x without assuming the Rayleigh quotient of x between the
largest eigenvalues (µ-representation) or smallest eigenvalues (λ-representation).

1.3. Overview. This paper is organized as follows. In Sec. 2 the geometry of PSD is
introduced. Further the problem is reformulated in terms of reciprocals of the eigenvalues
which makes the geometry of PSD accessible within the Euclidean space. Sec. 3 gives a
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proof that PSD attains its poorest convergence in a three-dimensional invariant subspace of
the Rn. Sec. 4 contains a mini-dimensional analysis of PSD. Finally, the three-dimensional
convergence estimates are embedded into the full Rn which completes the convergence
analysis.

2. The geometry of the preconditioned steepest descent iteration. For the
analysis of the preconditioned steepest descent iteration it is convenient to work with the
linear pencil B−µA (instead of A− λB). The advantage is that the A-norm by a proper
basis transformation turns into the Euclidean norm, see below. A further benefit of this
representation is that a generalization to a symmetric positive semidefinite or even only
a symmetric B is possible (cf. the analysis of (1.5) in [10]). Hence for the pencil B − µA
the eigenvalues µi are given by

Bxi = µiAxi with µi = 1/λi, i = 1, . . . , n.

Therefore the problem is to compute the largest eigenvalue µ1 by maximizing the inverse
of the Rayleigh quotient (1.3)

µ(x) :=
(x,Bx)

(x,Ax)
=

1

ρ(x)
.(2.1)

Lemma 2.1. A proper change of the basis allows to assume for the convergence
analysis of (1.2) that A = I and that B = diag(µ1, . . . , µn). This allows to transform (1.2)
(after multiplication with µ(x) = 1/ρ(x) and by denoting the transformed preconditioner
again by T ) in the simplified form

(2.2) µ(x)x′ = µ(x)x + ϑoptT (Bx− µ(x)x)

with the optimal step length

ϑopt = argmax
ϑ∈R

µ(µ(x)x + ϑT (Bx− µ(x)x)).

The quality constraint (1.6) on the preconditioner T ∈ R
n×n turns into a bound for the

spectral norm ‖ · ‖ of the symmetric matrix I − T which reads

‖I − T ‖ ≤ γ.(2.3)

Further, multiple eigenvalues do not change the convergence estimates. This provides the
justification to assume that µ1 > µ2 > . . . > µn > 0.

Proof. The generalized eigenvalue problem (1.1) is first transformed into a standard
eigenvalue problem C−1BC−T y = µy using the Cholesky factorization A = CCT , y =
CTx and µ = 1/λ. The symmetric matrix C−1BC−T can be diagonalized by means of an
orthogonal similarity transformation. Then all transformations are applied to (1.2). For
convenience, we denote the transformed system matrix by B. Further, the transformed
preconditioner is denoted, once again, by T , since (1.6) still holds with A = I. All this
results in (2.2) and (2.3).

For the fixed step-size gradient iteration with ϑopt = 1 it is known that the multiplicity
of all eigenvalues can be assumed to be equal to 1 for the convergence analysis. The
proof of this fact either uses a projection argument, see Section 3 in [13], or is based on a
continuity argument, see Theorem 2.1 in [10]. These arguments can be transferred to PSD.
In particular, the continuity argument can be applied since the additional Rayleigh-Ritz
procedure, which leads to ϑopt, preserves the continuity of the eigenvalue approximations.

Next the reformulation of Thm. 1.2 in terms of the µ-notation is stated.
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Fig. 2.1. The circular cone Fγ(x).
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Fig. 2.2. The cross section Sc
γ and the line

segment Sγ (bold line).

Theorem 2.2. If µi+1 < µ(x) ≤ µi then µ(x
′) ≥ µ(x) and either µ(x′) ≥ µi or

(2.4)

µi − µ(x′)

µ(x′)− µi+1
≤ σ2 µi − µ(x)

µ(x)− µi+1
,

with σ =
κ+ γ(2− κ)

(2− κ) + γκ
and κ =

µi+1 − µn

µi − µn
.

The estimate is sharp and can be attained for µ(x) → µi in the 3D invariant subspace
associated with the eigenvalues µi, µi+1 and µn, i+ 1 6= n.

2.1. The cone of PSD iterates. The starting point of the geometric description
of PSD is the non-scaled preconditioned gradient iteration (1.5) whose µ-representation
reads

(2.5) µ(x)x′ = µ(x)x + T (Bx− µ(x)x) = Bx− (I − T )(Bx− µ(x)x).

A central idea of its convergence analysis in [13, 14, 8] is to treat the preconditioners on the
whole. This means that all admissible preconditioners satisfying the spectral equivalence
(2.3) are inserted to (2.5) with x being fixed. This results in a set Bγ(x) of all possible
iterates

Bγ(x) := {Bx− (I − T )(Bx− µ(x)x); T s.p.d. with ‖I − T ‖ ≤ γ}.(2.6)

The set Bγ(x) is a full ball with the center Bx and the radius γ‖Bx − µ(x)x‖. The
subject of the convergence analysis of (2.5) in [13, 14] is to localize a vector of poorest
convergence (i.e. with the smallest Rayleigh quotient) in Bγ(x) and to derive an estimate
for its Rayleigh quotient.

In contrast to (2.5) the PSD iteration (2.2) works with an optimal step length pa-
rameter ϑopt in order to maximize the Rayleigh quotient in the one-dimensional affine
space

µ(x)x + ϑT (Bx− µ(x)x), ϑ ∈ R.(2.7)

The union of all these affine spaces for all the preconditioners satisfying (2.3) is the smallest
circular cone with its vertex in µ(x)x which encloses Bγ(x). This cone is denoted by Fγ(x),
see Fig. 2.1, and it holds that

(2.8)
Fγ(x) := {µ(x)x + ϑ(y − µ(x)x); y ∈ Bγ(x); ϑ ∈ R}

= {µ(x)x+ ϑd; ‖Bx− (µ(x)x + d)‖ ≤ γ‖Bx− µ(x)x‖; ϑ ∈ R}.
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2.2. The geometric convergence analysis as a two-level optimization. The
geometric convergence analysis of preconditioned steepest descent consists of estimating
the poorest convergence behavior. Therefore a two-level optimization problem is to be
solved. On the one hand one has to determine this affine space (2.7) in the cone Fγ(x)
in which the maximum of the Rayleigh quotient (i.e. the largest Ritz value in this space)
takes its smallest value; this vector is associated with the poorest convergence due to the
choice of the preconditioner. On the other hand the cone Fγ(x) depends on x; hence one
can analyze the dependence of this vector of poorest convergence on all vectors in the R

n

having the same Rayleigh quotient as x. This amounts to considering the level set of the
Rayleigh quotient of vectors having a fixed Rayleigh quotient µ0, i.e.

L(µ0) := {x ∈ R
n; µ(x) = µ0}.

Let x∗ ∈ L(µ0) be a minimizer representing the poorest convergence and let d∗ ∈ Fγ(x)−
µ(x)x be a search direction of poorest convergence. So the two-level optimization is

µ := min
x∈L(µ0)

min
d∈Fγ(x)−µ0x

µ(µ0x+ ϑoptd).

Therein µ(x)x + ϑoptd is a Ritz vector which is associated with the larger Ritz value
µ(x+ϑoptd) in span{x, d}. Sometimes we write ϑopt = ϑopt[x, d] to express its dependence
on x and d. The minimum µ is now to be estimated from below.

3. The level set optimization - a reduction to 3D. The aim of this section is to
show that the poorest convergence of PSD with respect to the admissible preconditioners
and with respect to all vectors x ∈ L(µ0) is attained in a three-dimensional B-invariant
subspace of the R

n.

The representation (2.7) of the PSD iteration applies the line search to d ∈ Fγ(x) −
µ(x)x. This may result in an unbounded step length. To see this let d = e1 = (1, 0, . . . , 0)T

which is an eigenvector ofB. If γ is close to 1, then e1 ∈ Fγ(x)−µ(x)x can be attained since
limγ→1 Fγ(x) = R

n. The unboundedness is a consequence of limϑ→±∞ µ(µ(x)x + ϑe1) =
µ1. The potential unboundedness of the step length has already been pointed out by
Knyazev [12].

Next we want to avoid this singularity. Therefore let x′ = ϑx + d. Due to µ(x′) >
µ(x) (which is guaranteed by Thm. 1.1) ϑ is bounded. So the minimization problem is
reformulated as

(3.1) µ := min
x∈L(µ0)

min
d∈Fγ(x)−µ0x

µ(ϑopt[x, d]x + d).

In the next theorem a necessary condition characterizing this minimum is derived by
means of the Kuhn-Tucker conditions [19]. The application of the Kuhn-Tucker conditions
in the context of the convergence analysis of the fixed-step size preconditioned gradient
iteration has been suggested by R. Argentati, see [1].

Theorem 3.1. The minimum (3.1) is attained in a three-dimensional B-invariant
subspace of the R

n.

If PSD does not terminate in an eigenvector, then the associated Ritz vector w of
poorest convergence is also contained in the same three-dimensional B-invariant subspace
of the R

n, i.e.

(B + a)w = c(B + b)x

with a, b, c ∈ R and B + a being a regular matrix.
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Proof. The minimization problem (3.1) reads as follows:

Minimize

µ(ϑoptx+ d)

with respect to x, d ∈ R
n satisfying the two constraints:

1. The cone inequality constraint d ∈ Fγ(x) − µ0x

g(x, d) = ‖Bx− (µ0x+ d)‖2 − γ2‖Bx− µ0x‖2

= (1− γ2)‖Bx− µ0x‖2 − 2(Bx− µ0x, d) + ‖d‖2 ≤ 0.

2. The level set constraint x ∈ L(µ0)

h(x, d) = (x,Bx) − µ0(x, x) = 0.

Therein ϑopt = ϑopt[x, d] ∈ R is a functional depending on x and d which maximizes
the Rayleigh quotient in the two-dimensional subspace span{x, d}. Equivalently w :=
ϑoptx+d is a Ritz vector corresponding to the larger Ritz value in just this two-dimensional
subspace. The matrix elements of the Rayleigh-Ritz projection of B with respect to
span{x, d} smoothly depend on x and d and so do the Ritz values and eigenprojections
since the number of distinct Ritz values, which equals 2, does not change, see Kato [5] in the
Supplementary Notes on Chapter II. Thus, ϑopt, which depends on just the eigenprojection
associated with the larger eigenvalue, is a smooth function.

The first constraint guarantees that d is an admissible search direction, i.e. the distance
of µ0x+ d to the center Bx of the ball Bγ(x) is bounded by its radius γ‖Bx− µ0x‖. The
Karush-Kuhn-Tucker stationarity condition for a local minimizer (x∗, d∗) reads

∇(x,d)µ(ϑoptx
∗ + d∗) + α∇(x,d)g(x

∗, d∗) + β∇(x,d)h(x
∗, d∗) = 0

with the multipliers α and β. In order to simplify the notation, the asterisks are omitted
from now on.

Next we derive the gradients of these functions µ, g and h with respect to x and d.
The chain rule gives (for column vectors)

∇x

(

µ(ϑoptx+ d)
)

= (Dx(ϑoptx+ d))
T
(∇µ)(ϑoptx+ d).

It holds that

(Dx(ϑoptx+ d))ij = (x(∇xϑopt)
T + ϑoptI)ij .

With w := ϑoptx+ d we get

∇x

(

µ(ϑoptx+ d)
)

= ϑopt(∇µ)(w) + (∇xϑopt) (x, (∇µ)(w))

= ϑopt(∇µ)(w) = ϑopt
2

(w,w)
(Bw − µ(w)w).

Therein, (x, (∇µ)(w)) = 0 has been used which holds since (∇µ)(w) is collinear to the
residual of the Ritz vector and further, by definition of a Ritz vector, its residual is
orthogonal to the approximating subspace span{x, d}. For the d-gradient it holds that

∇d

(

µ(ϑoptx+ d)
)

= (∇µ)(w) = 2

(w,w)
(Bw − µ(w)w).

The gradients of the constraining functions g and h with r = Bx− µ0x are

∇xg(x, d) = (1− γ2)2(B − µ0)r − 2(B − µ0)d, ∇xh(x, d) = 2r,

∇dg(x, d) = −2(B − µ0)x+ 2d = 2(d− r), ∇dh(x, d) = 0.
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Hence the x-components of the Karush-Kuhn-Tucker stationarity condition are

ϑopt
(w,w)

(B − µ(w))w + α
{

(1− γ2)(B − µ0)
2x− (B − µ0)(w − ϑoptx)

}

+ βr = 0(3.2)

and the d-components read (Bw − µ(w)w) + α(w,w)(d − r) = 0. The equation for the
d-components can be reformulated as

(B + a)w = α(w,w)(B + b)x(3.3)

with a = α(w,w) − µ(w) and b = ϑopt − µ0. Multiplication of (3.2) with B + a and
insertion of (3.3) results in

α
{

(1− γ2)(B − µ0)
2(B + a)x− (B − µ0) [α(w,w)(B + b)x− ϑopt(B + a)x]

}

+ αϑopt(B − µ(w))(B + b)x+ β(B + a)(B − µ0)x = 0.

This can be expressed as

(3.4) p3(B)x = 0

with a third order polynomial p3. Due to the basis assumptions B is a diagonal matrix
and so p3(B) is diagonal. As p3 has at most three different zeros, (3.4) can only hold if x
has at most three non-zero components, which proves the first assertion.

Hence x ∈ span{ej, ek, el} for proper indexes j, k and l. For that x Eq. (3.3) shows
that w has not more than four non-zero components; four non-zero components are only
possible if a = −µs for s 6= j, k, l. Then (3.2) can be written as p1(B)w = p2(B)x ∈
span{ej, ek, el} with a first order polynomial p1 and a second order polynomial p2. The
latter equation implies that p1(µs) = p1(−a) = 0. The s-th component of the polynomial
identity results in a = (αµ0(w,w)−µ(w)ϑopt)/(ϑopt−α(w,w)). Together with the known
form a = α(w,w)−µ(w) we get by direct computation that a = b. Insertion of this result
to (3.3) shows that w = α(w,w)x + Ces for a real constant C. Then x ⊥ es and x and
es are the Ritz vectors. PSD terminates in es and w with not more than three non-zero
components is the normal case.

4. The cone optimization - a mini-dimensional geometric analysis. Next the
convergence behavior with respect to the cone Fγ(x) is analyzed. Some of the following
arguments are valid in the R

n; however we need these properties only for n = 3.
The (half) opening angle ϕ of the cone Fγ(x) is given by sinϕ = γ, since γ is the

ratio of the radius γ‖Bx − µ(x)x‖ of the ball Bγ(x), see (2.6), and its (maximal) radius

‖Bx− µ(x)x‖ for γ → 1. With cosϕ =
√

1− γ2 the cone Fγ(x) can be written as

Fγ(x) := µ(x)x + {z ∈ R
n;
∣

∣

∣(
z

‖z‖ ,
Bx− µ(x)x

‖Bx− µ(x)x‖ )
∣

∣

∣ ≥
√

1− γ2}.

4.1. Restriction to non-negative vectors. The analysis of PSD can be restricted
to component-wise non-negative vectors x ∈ R

n. The justification is as follows. Consider
the Householder reflections Hi = I − 2eie

T
i for which x 7→ Hix changes the sign of the ith

component of x. The Rayleigh quotient is invariant under Hi, i.e. µ(x) = µ(Hix). If v is
an admissible search direction, i.e. v ∈ Fγ(x)− µ(x)x, then

cos∡(v,Bx− µ(x)x) = (
v

‖v|| ,
Bx− µ(x)x

‖Bx− µ(x)x‖ ) = (
Hiv

‖Hiv||
,
BHix− µ(Hix)Hix

‖BHix− µ(Hix)Hix‖
)

= cos∡(Hiv,BHix− µ(Hix)Hix),
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γ‖r‖

γ2‖r‖ (1− γ2)‖r‖

√
1− γ2‖r‖

f

ϕ

ϕ

‖r‖

Bx µ(x)x

d

Fig. 4.1. 3D-geometry with r = Bx−µ(x)x,

f = γ
√

1− γ2 ‖r‖.

Fγ(x)

w(t)
Sγ

µx

Fig. 4.2. The line segment Sγ(x) and the
curve w(t).

which means that Hiv encloses the same angle with the residual vector associated with
Hix. As for all α ∈ R

µ(µ(Hix)Hix+ αHiv) = µ(Hi(µ(x)x + αv)) = µ(µ(x)x + αv)

any Rayleigh quotient in the cone Fγ(x) can be reproduced in the cone Fγ(Hix) and vice
versa. Thus the analysis can be restricted to x ≥ 0.

4.2. The poorest convergence in the three-dimensional cone Fγ(x). Any cir-
cular cross section Sc

γ (with non-zero radius) of Fγ(x) can serve to represent the admissible
search directions, see Fig. 2.2. Next we work with the disc

(4.1) Sc
γ(x) := µ(x)x + (1− γ2)r + {fy; y ∈ R

3, ‖y‖ ≤ 1, y ⊥ r}

with r := Bx− µ(x)x. Its radius f , see Fig. 4.1, is given by

f = γ
√

1− γ2‖r‖.(4.2)

Further we use only search directions d ∈ Sc
γ(x)−µ(x)x which are orthogonalized against

x; this is justified since the Rayleigh-Ritz approximations (and so the PSD iterate x′) only
depend on the subspace. So the set of relevant search directions forms a line segment. By
using the vector v = x × r/‖x × r‖ = x × r/(‖x‖ ‖r‖) one can construct the intersection
of this line segment with the surface of the cone. The points of intersection are d1/2 with

d1 = µ(x)x + (1− γ2)r + γ
√

1− γ2 ‖r‖v,(4.3)

d2 = µ(x)x + (1− γ2)r − γ
√

1− γ2 ‖r‖v,(4.4)

v =
x× r

‖x‖ ‖r‖ .

Therefore the line segment has the form (see Fig. 4.2)

Sγ(x) := {d(t) := td1 + (1 − t)d2; t ∈ [0, 1]}.(4.5)

Lemma 4.1. The poorest convergence of PSD in 3D (aside from the singular cases
that PSD terminates in an eigenvector) is attained in d1 or d2 as given by (4.3) and (4.4).

Proof. The line segment Sγ has the form d(t) with t ∈ [0, 1] by (4.5). The PSD
iteration maps Sγ into a curve w(t), t ∈ [0, 1], where w(t) is the Ritz vector w(t) = µ(x)x+
ϑopt(t)d(t) corresponding to the larger Ritz value in span{x, d(t)}. A singularity like that
mentioned at the beginning of Sec. 3 has not to be considered since otherwise the first
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alternative µ(x′) ≥ µi in Thm. 2.2 applies and nothing is to be proved. Differentiability
of w(t) in t can be assumed as the normalized Ritz vector w(t) = µ(x)x + ϑopt(t)d(t)
smoothly depends on t along the line segment d(t) and also on ϑopt(t), since the two Ritz
values in span{x, d(t)} do not coincide; see Eq. (4.7) for the explicit form of the Ritz
values.

Along w(t) we are looking for a vector w∗ = w(t∗) so that

µ(w(t∗)) ≤ µ(w(t)) ∀t ∈ [0, 1].

Since w(t) is a Ritz vector its residual Bw(t)− µ(w(t))w(t) is orthogonal to the subspace
spanned by x and d(t). As the residual is collinear to the gradient vector ∇µ(w(t)) we get

(∇µ(w(t)), span{x, d(t)}) = 0.(4.6)

A stationary point of the Rayleigh quotient in a t ∈ (0, 1) is attained if

0 =
d

dt
µ(w(t)) = (∇µ(w(t)), w′(t))

= (∇µ(w(t)), ϑ′opt(t)d(t) + ϑopt(t)d
′(t))

= (∇µ(w(t)), ϑopt(t)d′(t))

where (4.6) has been used for the last identity. As d′(t) is collinear to x × r we get from
(∇µ(w(t)), d′(t)) = 0 together with (4.6) that ∇µ(w) = 0 (since x, d and d′ span the R

3).
So any interior stationary point must be an eigenvector and hence µ(w(t)) take the other
extrema on the surface for t = 0 or t = 1 in d1 or d2.

Next we apply the Rayleigh-Ritz procedure to the two-dimensional subspaces [x, di −
µ(x)x], i = 1, 2, in order to determine whether the poorest convergence is attained in d1
or d2. First the Euclidean norm of di − µ(x)x is determined

‖di − µ(x)x‖2 =(1 − γ2)2(r, r) ± (1− γ2)γ
√

1− γ2(r, x× r)/‖x‖
+ γ2(1− γ2)‖x× r‖2/‖x‖2

=(1 − γ2)2‖r‖2 + γ2(1 − γ2)‖r‖2 = (1− γ2)‖r‖2.

Hence the normalized search directions (di − µ(x)x)/‖di − µ(x)x‖ are

d̄1/2 :=
d1/2 − µ(x)x
√

1− γ2‖r‖
=
√

1− γ2
r

‖r‖ ± γ
x× r

‖x‖ ‖r‖

and therefore V1 = [x, d̄1] and V2 = [x, d̄2] ∈ R
3×2 are orthonormal matrices. The Ritz

values of B in the column space of Vi are the eigenvalues of the projection

Bi := V T
i BVi =

(

µ(x) (d̄i, Bx)
(d̄i, Bx) µ(d̄i)

)

.

The larger Ritz value (that is the larger eigenvalue of Bi) reads

θ2,i =
µ(x) + µ(d̄i)

2
+

√

(µ(x) − µ(d̄i))2

4
+ (d̄i, Bx)2.(4.7)

In order to decide whether in d1 or in d2 poorest convergence is taken, we show that the
non-diagonal elements of Bi do not depend on i since

(d̄i, Bx) = (d̄i, Bx− µ(x)x) = ‖r‖(d̄i,
r

‖r‖ ) = ‖r‖ cos∡(d̄i, r) =
√

1− γ2‖r‖.(4.8)
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.

.

.

.
.

el

ekα0

β0

S1

S2

d̃

x

Bx

Fig. 4.3. Geometry in the plane Ej and
Bx /∈ Ej .

L(µ)

L(µ′)

S1 = (1, ck, 0)
T

S2 = (1, 0, cl)
T

x

x′

E

el

ek

Fig. 4.4. Ellipses in Ej ; E and L(µ′)∩Ej
are almost identical

Hence only the (2,2) element of Bi depends on i. As further

dθ2,i

dµ(d̄i)
=

1

2

(

1− 1

1 +
(

2(d̄i,Bx)

µ(x)−µ(d̄i)

)1/2

)

> 0

shows that θ2,i is a monotone increasing function of µ(d̄i) we still have to find the di with
the smaller Rayleigh quotient in order to find the search direction which is associated with
the poorer PSD convergence.

Lemma 4.2. PSD in 3D takes its poorest convergence, i.e. the smallest value of θ2,
in

d = µ(x)x + (1− γ2)r + γ
√

1− γ2
x× r

‖x‖ ,(4.9)

if x ∈ R
n is a component-wise non-negative vector (cf. Sec. 4.1). The associated Ritz

value is accessible from (4.7).
Proof. We show that θ2,1 is the smaller Ritz value by showing (we use the monotonicity

of θ2,i[µ(d̄i)]) that µ(d̄1) ≤ µ(d̄2). This inequality is true if (r, B(x × r)) ≤ 0. By using
span{x, r} ⊥ x× r and r ⊥ x direct computation results in

(r, B(x × r)) = (B(Bx − µ(x)x), x × r) = (B2x, x× r) − µ(x)(Bx, x × r)

= (B2x, x× r)− µ(x)(r + µ(x)x, x × r)

= (B2x, x× r) = (r, B2x× x) = (Bx,B2x× x)

= −x1x2x3(µ1 − µ2)(µ1 − µ3)(µ2 − µ3) ≤ 0.

The last inequality holds since x ≥ 0 and µ1 > µ2 > µ3.

4.3. A mini-dimensional convergence analysis of PSD. Due to Thm. 3.1 the
“mini-dimensional” convergence analysis can be restricted to three-dimensional B-invari-
ant subspaces of the R

n. With respect to the basis of eigenvectors these subspaces have
the form span{ej, ek, el} where e∗ is the ∗-th unit vector. The associated eigenvalues are
indexed so that µj > µk > µl.

Lemma 4.2 delivers for any x ∈ L(µ) in 3D the vector of Bγ(x)-poorest PSD conver-
gence. Next we have to analyze the L(µ)-dependence of the poorest convergence case.

Theorem 4.3. In the three-dimensional space span{ej, ek, el} the following sharp
estimate for PSD holds

∆j,k(µ
′)

∆j,k(µ)
≤
(

κ+ γ(2− κ)

(2 − κ) + γκ

)2
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with

∆j,k(ξ) =
µj − ξ

ξ − µk
and κ =

µk − µl

µj − µl
.

Proof. The starting point of the following analysis are the vectors x and

d = µ(x)x + (1− γ2)r + γ
√

1− γ2
x× r

‖x‖ .

Without loss of generality x can be normalized in a way that

x = ej + α0ek + β0el;

hence x is an element of the affine space Ej := ej +span{ek, el}. The coordinate form of x

in 3D then is x = (1, α0, β0)
T . Further let d̃ = (1, α̃, β̃)T ∈ Ej the corresponding multiple

of d. Since span{x, d} is a tangential plane of the ball Bγ(x) in d and Bx − d is a radius
vector of the ball it holds that

Bx− d ⊥ span{x, d} = span{x, d̃}.(4.10)

Hence Bx− d is collinear to

x× d̃ = (α0β̃ − α̃β0, β0 − β̃, α̃− α0)
T .

By S1 = (1, ck, 0)
T and S2 = (1, 0, cl)

T with S1, S2 ∈ Ej we denote the points of intersec-

tion of span{x, d̃} with ej + span{ek} and ej + span{el}, see Fig. 4.3. Due to (4.10) it
holds that (Bx− d, Si) = 0, i = 1, 2. Since

Bx− d = γ2r − γ
√

1− γ2
x× r

‖x‖
we get with

r =





µj − µ
(µk − µ)α0

(µl − µ)β0



 , x× r =





α0β0(µl − µk)
β0(µj − µl)
α0(µk − µj)





from (Bx − d, S1) = 0 that

ck = − (Bx− d) |1
(Bx− d) |2

=
‖x‖(µj − µ) + Γα0β0(µk − µl)

‖x‖α0(µ− µk) + Γβ0(µj − µl)
.(4.11)

Analogously (Bx− d, S2) = 0 results in

cl = − (Bx− d) |1
(Bx− d) |3

=
‖x‖(µj − µ) + Γα0β0(µk − µl)

‖x‖β0(µ− µl) + Γα0(µk − µj)
(4.12)

with Γ =
√

1− γ2/γ.
Any x ∈ Ej ∩ L(µ) is an element of the ellipse (xk/a)

2 + (xl/b)
2 = 1 with

a =

√

µj − µ

µ− µk
, b =

√

µj − µ

µ− µl
.

As justified in Sec. 4.1 the analysis can be restricted to componentwise non-negative x =
(1, α0, β0)

T so that its components α0 and β0 can be represented in terms of ψ ∈ (0, π/2)
and t = tanψ

α0 = a cos(ψ) = a

√

1

1 + t2
, β0 = b sin(ψ) = b

√

t2

1 + t2
.(4.13)
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Two further ellipses in Ej are relevant for the subsequent analysis. These ellipses are very
similar, each centered in ej (the origin of Ej) and each tangential to the line through S1

and S2. The first ellipse is Ej ∩ L(µ′) with µ′ = µ(x′) and has the semi-axes

a′ =

√

µj − µ′

µ′ − µk
, b′ =

√

µj − µ′

µ′ − µl
.

This ellipse is tangential to the line through S1 and S2 since µ(x′) is associated with the
poorest convergence on the cone Fγ(x) projected to Ej . Direct computation shows that
a′/b′ < a/b.

The second ellipse E, see Fig. 4.4, has the semi-axes ã and b̃ so that the ratio of its
semi-axes equals that of Ej ∩L(µ). This means that ã/b̃ = a/b. It holds that ã ≥ a′, since
otherwise a contradiction can be derived. Assuming ã < a′ for any point (α, β) on the
ellipse E it holds that (by using a′/b′ < a/b)

α2 +
a′2

b′2
β2 < α2 +

a2

b2
β2 = α2 +

ã2

b̃2
β2 = ã2 < a′2

so that α2/a′2 + β2/b′2 < 1. The latter inequality means that the ellipse E is completely
surrounded by the ellipse L(µ′)∩Ej, which contradicts its tangentiality to the line through
S1 and S2. Hence

∆(µ′) =
µj − µ′

µ′ − µk
= a′2 ≤ ã2

and an upper limit for ã2/∆(µ) = ã2/a2 remains to be determined. Next we show that
(the case cl → ∞ is to be treated separately by analyzing the limits of ck and cl)

ã2

a2
=

c2kc
2
l

b2c2k + a2c2l
.(4.14)

To prove this we determine the point of contact of the line through S1 and S2 and the
ellipse E. The semi-axes of E are ã and b̃ = bã/a. By a rescaling of the second semi-axis
with the factor a/b the ellipse becomes a circle with the radius ã and the point of contact
does not change. Further the line segment connecting S1 and S2 is transformed

s(σ) =

(

0
a
b cl

)

+ σ

(

ck
−a

b cl

)

, σ ∈ [0, 1].

The point of contact is that point on s(σ) with the smallest Euclidean norm. From

‖s(σ)‖2 = σ2c2k + (
a

b
cl)

2(σ − 1)2

direct computation shows that the minimum is attained in σ∗ = a2c2l /(b
2c2k + a2c2l ). The

resulting identity ã2 = ‖s(σ∗)‖2 yields (4.14).

Insertion of (4.11), (4.12) and (4.13) in (4.14) and using the variables Γ :=
√

1− γ2/γ
∈ (0,∞], ∆ = a2, b2 = ∆(1 − κ)/(1 + κ∆) with

κ =
µk − µl

µj − µl

results in a representation of ã2/a2 as a function of t, ∆, Γ and κ. (The limit Γ → ∞
needs additional care; however this limit corresponds to γ = 0. For γ = 0 Thm. 2.2 is
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already proved in [18].) The details are as follows. With

A =
√

1 + α2
0 + β2

0 (µj − µ) + Γα0β0(µk − µl),

B =
√

1 + α2
0 + β2

0 α0(µ− µk) + Γβ0(µj − µl),

C =
√

1 + α2
0 + β2

0 β0(µ− µl) + Γα0(µk − µj)

it holds that ck = A/B and cl = A/C. Instead of considering ã2/a2 it is more convenient
to estimate its reciprocal from below. From (4.14) one gets

a2

ã2
=

∆(1 − κ)

1 + κ∆

(

C

A

)2

+∆

(

B

A

)2

with

C

A
=

√

1 + α2
0 + β2

0 β0 + Γα0
µk−µj

µ−µl
√

1 + α2
0 + β2

0 b
2 + Γα0β0

µk−µl

µ−µl

,
B

A
=

√

1 + α2
0 + β2

0 α0 + Γβ0
µj−µl

µ−µk
√

1 + α2
0 + β2

0 a
2 + Γα0β0

µk−µl

µ−µk

.

In these formula the ratios of eigenvalue differences are to be expressed in terms of ∆ and
κ. Therefore let U := µj − µ, V := µ − µk and W := µ − µl so that µk − µl = W − V ,
µj −µl = U +W and µk −µj = −U −V . Since ∆ = U/V and ∆(1−κ)/(1+κ∆) = U/W
we get that

µk − µj

µ− µl
= − U

W
(1 +

V

U
) =

(κ− 1)(1 + ∆)

1 + κ∆
,

µk − µl

µ− µl
= 1− V

U

U

W
=
κ(1 + ∆)

1 + κ∆
,

µj − µl

µ− µk
=
U +W

V
=
U

V
(1 +

W

U
) =

1 +∆

1− κ
,

µk − µl

µ− µk
=
W − V

V
=
W

U

U

V
− 1 =

κ(1 + ∆)

1− κ
.

Therefore we have

a2

ã2
=
∆(1 − κ)

1 + κ∆

( √

1 + α2
0 + β2

0 β0 + Γα0
(κ−1)(1+∆)

1+κ∆
√

1 + α2
0 + β2

0
∆(1−κ)
1+κ∆ + Γα0β0

κ(1+∆)
1+κ∆

)2

+∆

( √

1 + α2
0 + β2

0 α0 + Γβ0
(1+∆)
1−κ

√

1 + α2
0 + β2

0 ∆+ Γα0β0
κ(1+∆)
1−κ

)2

.

Insertion of (4.13) yields f := f(∆, t, κ,Γ) with

f =
a2

ã2
=
(

(1 + ∆)(Γ2(1− κ)2 + κ(1− κ) + Γ2t2) + (1− κ)2 + t2(1− κ)

+ 2κΓt
√

1/(1 + t2)
√

1 + t2 + κ∆
√
1− κ

√
1 + ∆

)

/

(√
1− κ

√

1 + t2 + κ∆+ κΓt
√

1/(1 + t2)
√
1 + ∆

)2

.

This function is monotone increasing in ∆ since ∂f/∂∆ equals

Γ2
√
1− κ

(

(1 − κ)3 + 3(1− κ)2t2 + 3(1− κ)t4 + t6
)

(1 + t2)
√
1 + t2 + κ∆

(√
1− κ

√
1 + t2 + κ∆+ κΓt

√

1/(1 + t2)
√
1 + ∆

)3 > 0.
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Therefore f(0, t, κ,Γ) is a lower bound for a2/ã2 which reads

f(0, t, κ,Γ) =
(1 + t2)

(

Γ2(1− κ)2 + (1 + t2)(1 − κ) + Γ2t2 + 2κΓt
√
1− κ

)

(
√
1− κ(1 + t2) + κΓt)2

.

The parameter t determines the choice of x in the level set L(µ). The derivative with
respect to t reads

∂

∂t
f(0, t, κ,Γ) =

2κΓ2(1− κ+ t2)
(

Γt2 + 2t
√
1− κ− Γ(1− κ)

)

(√
1− κ(1 + t2) + κΓt

)3 .

The two real zeros of this derivative are

t1,2 =

√
1− κ(−1±

√
1 + Γ2)

Γ
.

The global minimum is taken in

0 < t1 =

√
1− κ(−1 +

√
1 + Γ2)

Γ
=

√
1− κ(1 − γ)
√

1− γ2
.

Therefore the minimum is given by

f(0, t1, κ,Γ) =

(

(2− κ) + γκ

κ+ γ(2− κ)

)2

and its inverse yields the desired convergence estimate

∆(µ′)

∆(µ)
≤
(

ã

a

)2

≤
(

κ+ γ(2− κ)

(2− κ) + γκ

)2

.

This estimate is sharp since for ∆ = 0 the right inequality turns into an identity. Further
∆ = 0 implies µ(x) → µj and also µ(x′) → µj so that limµ(x)→µj

ã/b̃ − a′/b′ = 0 and in
this limit L(µ′) ∩ Ej and E coincide; this implies that the left inequality also turns into
an identity.

Proof. [of Theorem 2.2 and Theorem 1.2] Let µ = µ(x) ∈ (µi+1, µi). Theorem 3.1
proves that the poorest convergence is attained in a three-dimensional invariant subspace.
Theorem 4.3 proves in span{ej, ek, el} that

∆j,k(µ
′)

∆j,k(µ)
≤
(

κ+ γ(2− κ)

(2− κ) + γκ

)2

.

It either holds that µl ≤ µi+1 ≤ µ(x) < µi ≤ µk < µj or that µl < µk ≤ µi+1 < µ(x) <
µi ≤ µj . In the first case the Ritz value µ(x′) in span{ej, ek, el} satisfies that µk ≤ µ(x′),
which is the first alternative in Thm. 2.2. To analyze the second case we get that the
convergence factor is a monotone increasing function in κ ∈ (0, 1) since

∂

∂κ

κ+ γ(2− κ)

(2 − κ) + γκ
=

2(1− γ2)

(2 − κ) + γκ
≥ 0.

Further κ = (µk − µl)/(µj − µl) is a monotone decreasing function in µj and µl and a
monotone increasing function in µk. Hence the poorest convergence with the maximal
convergence factor is attained in j = i, k = i+ 1 and l = n which proves Thm. 2.2

∆i,i+1(µ
′)

∆i,i+1(µ)
≤
(

κ+ γ(2− κ)

(2− κ) + γκ

)2

with κ =
µi+1 − µn

µi − µn
.

Thm. 1.2 follows by inserting the reciprocals of the eigenvalues and Ritz values.
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Conclusions. The new convergence bound given in Theorem 1.2 completes the efforts
to find sharp convergence estimates within the hierarchy of preconditioned PINVIT(k)
and non-preconditioned INVIT(k) eigensolvers for the index k = 2; a hierarchy of these
solvers has been suggested in [15]. Next the results are summarized. All these convergence
estimates have the common form

∆i,i+1(ρ(x
′)) ≤ σ2∆i,i+1(ρ(x))

with ∆i,i+1(ξ) = (ξ − λi)/(λi+1 − ξ).
The convergence factor for the non-preconditioned inverse iteration INVIT(1) proce-

dure is (see [16])

σ(INVIT(1)) =
λi
λi+1

.

The associated preconditioned scheme, i.e. the preconditioned inverse iteration PIN-
VIT(1) or preconditioned gradient iteration, has the convergence factor (see [8])

σ(PINVIT(1)) = γ + (1− γ)
λi
λi+1

.

Further the convergence factor of the non-preconditioned steepest descent iteration IN-
VIT(2) reads (see [18])

σ(INVIT(2)) =
κ

2− κ
with κ =

λi(λn − λi+1)

λi+1(λn − λi)
.

The new result on PINVIT(2), which is the preconditioned steepest descent iteration, is
now

σ(PINVIT(2)) =
κ+ γ(2− κ)

(2− κ) + γκ
with κ =

λi(λn − λi+1)

λi+1(λn − λi)
.

All these convergence factors are sharp.
Further progress in deriving convergence estimates for the hierarchy of non-precondi-

tioned and preconditioned iteration is a matter of future work. Especially for the practi-
cally important locally optimal preconditioned conjugate gradient (LOPCG) iteration [7]
sharp convergence estimates are highly desired.

5. Acknowledgment. The author is very grateful to Ming Zhou, University of Ros-
tock, for his help with the introduction of the ellipse E in Section 4.3, which was a valuable
input to finalize the convergence proof.

Appendix A. Preconditioning for the eigenvalue problem. Preconditioning for
linear systems Au = f can be introduced by a left-multiplication with a preconditioner
T ≈ A−1 so that (TA)u = (Tf). If the spectral condition number is decreased, i.e.,
κ(TA) < κ(A), then preconditioning accelerates the convergence of an iterative solver.

The left-multiplication with T does not work for the eigenvalue problem in the same
way. From (1.1) we get with a regular matrix T that

(TA)xi = λi(TB)xi.

The eigenvalues of (A,B) and (TA, TB) coincide. Similarly, the application of the linear
transformation y = T−1/2x to (1.2) results in

y′ = y − ϑopt(Ãy − ρ̃(y)B̃y), ρ̃(y) =
(y, Ãy)

(y, B̃y)
(A.1)
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with Ã = T 1/2AT 1/2 ∼ TA and B̃ = T 1/2BT 1/2 ∼ TB. Thus (A.1) has the form of
the steepest descent iteration for (Ã, B̃) as treated in [18]. However, this transformation
does not simplify the convergence analysis of the preconditioned steepest descent iteration
because of the key role of the level set L(ρ0) = {x ∈ R

n; ρ(x) = ρ0} in the analysis of the
preconditioned iteration, see Section 2.2, and also in the analysis of the steepest descent
iteration in [18]. The basis transformation by T−1/2 maps the level set L(ρ0) to T−1/2L(ρ0)
which is not a level set. Hence the proof techniques from [18] cannot be applied. Further,
we have to analyze the convergence of (A.1) not only for a single preconditioner T , but for
all preconditioners satisfying (1.6). In this paper all these admissible preconditioners are
taken into account by the set of possible iterates Fγ(x) given in (2.8). The transformation
y = T−1/2x applied to Fγ(x) destroys its circular cone geometry. To summarize, the
simple transformation which maps (1.2) to (A.1) appears to be promising, but it is not
clear how this basis transformation can sucessfully be used to simplify the convergence
analysis of preconditioned gradient type iterations for the eigenvalue problem.
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