
.

ITERATIVE MINIMIZATION OF THE RAYLEIGH QUOTIENT

BY BLOCK STEEPEST DESCENT ITERATIONS

KLAUS NEYMEYR∗ AND MING ZHOU∗

Abstract. The topic of this paper is the convergence analysis of subspace gradient iterations for
the simultaneous computation of a few of the smallest eigenvalues plus eigenvectors of a symmetric and
positive definite matrix pair (A,M). The methods are based on subspace iterations for A−1M and use
the Rayleigh-Ritz procedure for convergence acceleration. New sharp convergence estimates are proved
by generalizing estimates which have been presented for vectorial steepest descent iterations (see SIAM
J. Matrix Anal. Appl., 32(2):443-456, 2011).
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1. Introduction. The generalized matrix eigenvalue problem

Axi = λiMxi(1.1)

is of fundamental importance for numerous applications. An exemplary application is the
molecular electronic structure theory, where the computation of stationary states of atoms
and molecules requires the solution of such matrix eigenvalue problems. Some references
on the numerical solution of (1.1) in the context of the molecular quantum theory are
[3, 4, 5, 8, 30, 21].

Typically, A and M are large and sparse matrices and only a few of the smallest
eigenvalues together with the eigenvectors are to be determined. If (1.1) results from a
finite element discretization of an operator eigenvalue problem, then A is called the dis-
cretization matrix and M the mass matrix. Here we assume that A and M are symmetric
and positive definite matrices. If in a more general case A is an indefinite and symmet-
ric matrix, then the eigenvalue problem can be transformed to one with positive definite
matrices by means of a proper shift.

Our aim is a fast, storage-efficient and stable numerical computation of the smallest
eigenvalues of (1.1). If these matrices are not too large, then the Lanczos and the block-
Lanczos procedures [2, 10, 29] may be considered as proper numerical eigensolvers. Here we
assume that n is so large that computer storage is available only for a very small number of
n-vectors. Then the m-step Lanczos process may be used as a storage-efficient alternative;
this method can be interpreted as a gradient iteration for the Rayleigh quotient.

1.1. Gradient type minimization of the Rayleigh quotient. Golub and van
Loan in Sec. 9.1.1 of [10] introduce the Lanczos iteration by an optimization for the
Rayleigh quotient for a symmetric matrix A

ρA(x) = (x,Ax)/(x, x), x 6= 0, A = AT ∈ R
n×n.

Consecutive corrections in the directions of negative gradients of ρA(·) result in iterates
which span the Krylov subspace underlying the Lanczos algorithm.

For the generalized eigenvalue problem (1.1) the Rayleigh quotient reads

ρA,M (x) = (x,Ax)/(x,Mx), x 6= 0.(1.2)

Here we are interested in various gradient iterations for the minimization of ρA,M .
We denote the eigenpairs of (A,M) by (λi, xi) and assume all eigenvalues to be simple.

The enumeration is 0 < λ1 < λ2 < . . . < λn. Multiple eigenvalues do not add difficulties
to the analysis of gradient eigensolvers as the case of multiple eigenvalues can be reduced
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to that of only simple eigenvalues by a proper projection of the eigenvalue problem. Al-
ternatively, a continuity argument can be used to show that colliding eigenvalues do not
change the structure of the convergence estimates, cf. Lemma 2.1 in [24].

The iterative minimization of (1.2) results in the smallest eigenvalue λ1 and the min-
imum is attained in an associated eigenvector. A correction of a current iterate x in the
direction of the negative gradient

−∇ρA,M (x) = −2(Ax− ρA,M (x)Mx)/(x,Mx)

allows to construct a new iterate x′ = x−ω∇ρA,M(x) with ρA,M (x′) < ρA,M (x) if x is not
an eigenvector. Therein ω ∈ R is the step length. The optimal step length ω∗ minimizes
ρA,M (x′) with respect to ω ∈ R. Formally, ω∗ may be infinite if ∇ρA,M (x) is a Ritz vector
corresponding to the smallest Ritz value in the 2D subspace span{x,∇ρA,M (x)}. This
problem disappears if the Rayleigh-Ritz procedure is applied to span{x,∇ρA,M (x)}.

For the case M = I such a gradient iteration using the Euclidean gradient vector
of (1.2) converges poorly if the largest eigenvalue λn is very large. For convergence es-
timates see [12, 13, 14, 27, 32, 17, 19]; convergence estimates for general M are given
in [11, 20]. A typical example is the eigenvalue problem for a second order elliptic par-
tial differential operator (like the Laplacian) for which the largest discrete eigenvalue λn

behaves like O(h−2) in the discretization parameter h. As D’yakonov pointed out in
[7], Chap. 9, §4.1, the Euclidean gradient iteration can be accelerated considerably by
using modified gradient methods, see also the early work of Samokish [28]. D’yakonov
stated for a symmetric and positive definite model operator B that the use of B-gradients
∇BρA,M (x) := B−1∇ρA,M (x) can be interpreted as a change of the underlying geome-
try. The A-gradient is of special importance since using A-gradients can result in grid-
independent convergence behavior. Further, A-gradients constitute the limit case of exact
“preconditioning” with the inverse A−1. Using approximate inverses of A represents the
general case of preconditioning.

The A-gradient steepest descent iteration works with the optimal step length ω∗

x′ = x− ω∗A−1∇ρA,M (x)(1.3)

in a way that x′ attains in ω∗ the smallest possible Rayleigh quotient with respect to a
variation of the step length. Then x′ is a Ritz vector of (A,M) in the two-dimensional
subspace span{x,A−1Mx} corresponding to the smallest Ritz value. Computationally x′

is determined by the Rayleigh-Ritz procedure.
For the vectorial A-gradient iteration (1.3) in the case M = I a sharp convergence es-

timate has recently been proved by Theorem 4.1 in [25], which generalizes the convergence
estimate of Knyazev and Skorokhodov in [19] where only the final eigenvalue interval is
considered, i.e. (λ1, λ2) for steepest descent and (λn−1, λn) for steepest ascent. Here we
analyze the general case of intervals (λi, λi+1) with i ∈ {1, . . . , n − 1}. The estimate in
[19] provides the analytical ground for the formulation of four Ritz value estimates, which
read as follows (see also Theorem 4.1 in [25]):

Theorem 1.1. Consider a symmetric matrix A with eigenpairs (λi, xi), λ1 < λ2 <
. . . < λn. Let x ∈ R

n with the Rayleigh quotient λ := ρA(x) ∈ (λi, λi+1) for a certain
index i ∈ {1, . . . , n − 1}. Further let ∆p,q(θ) := (θ − λp)/(λq − θ), and denote by Ej,k,l
the invariant subspace spanned by the eigenvectors being associated with the eigenvalues
λj < λk < λl.

1. Steepest descent iteration:
1a) Let x′ be the new iterate of the Euclidean gradient steepest descent iteration
so that x′ is a Ritz vector of A in span{x,Ax} and λ′ := ρA(x

′) is the associated
Ritz value. Then either λ′ < λi or λ′ is bounded from above as follows

0 ≤
∆i,i+1(λ

′)

∆i,i+1(λ)
≤

(
κ

2− κ

)2

with κ =
λn − λi+1

λn − λi
.



Block steepest descent iterations 3

1b) Let A additionally be a positive definite matrix and let x′ be the new iterate
of the A-gradient steepest descent iteration so that x′ is a Ritz vector of A in
span{x,A−1x} and λ′ := ρA(x

′) is the associated Ritz value. Then either λ′ < λi

or λ′ is bounded from above as follows

0 ≤
∆i,i+1(λ

′)

∆i,i+1(λ)
≤

(
κ

2− κ

)2

with κ =
λi(λn − λi+1)

λi+1(λn − λi)
.

The bounds cannot be improved in the eigenvalues λi, λi+1 and λn and can be
attained for λ → λi in Ei,i+1,n.

2. Steepest ascent iteration:
2a) Let x′ be the new iterate of the Euclidean gradient steepest ascent iteration
so that x′ is a Ritz vector of A in span{x,Ax} and λ′ := ρA(x

′) is the associated
Ritz value. Then either λ′ > λi+1 or λ′ is bounded from below as follows

0 ≤
∆i+1,i(λ

′)

∆i+1,i(λ)
≤

(
κ

2− κ

)2

with κ =
λi − λ1

λi+1 − λ1
.

2b) Let A additionally be a positive definite matrix and let x′ be the new iterate
of the A-gradient steepest ascent iteration so that x′ is a Ritz vector of A in
span{x,A−1x} and λ′ := ρA(x

′) is the associated Ritz value. Then either λ′ >
λi+1 or λ′ is bounded from below as follows

0 ≤
∆i+1,i(λ

′)

∆i+1,i(λ)
≤

(
κ

2− κ

)2

with κ =
λi+1(λi − λ1)

λi(λi+1 − λ1)
.

The bounds cannot be improved in the eigenvalues λ1, λi and λi+1 and can be
attained for λ → λi+1 in E1,i,i+1.

There are close relations between these four estimates. Essentially, only one estimate
has to be proved from scratch, and the remaining estimates follow by simple transfor-
mations. For the details see the proof of Theorem 4.1 in [25]. See also [19, 25] for the
tangent estimates for these gradient iterations. Furthermore, the estimate 1b can easily
be reformulated into an estimate for the vectorial A-gradient iteration (1.3) with a general
symmetric and positive definite mass matrix M , cf. section 3.1.

1.2. Aim of this paper. The aim of this paper is to analyze A-gradient and
Euclidean-gradient subspace iterations and to prove subspace convergence estimates which
generalize the vectorial convergence estimates given in Theorem 1.1.

In all the eigensolvers an initial s-dimensional subspace is iteratively corrected so
that the sequence of subspaces converges to the invariant subspace which is spanned by
the eigenvectors corresponding to the s smallest eigenvalues. The Rayleigh-Ritz proce-
dure is used in each step to extract the Ritz values and Ritz vectors as proper eigenpair
approximations. We consider the standard as well as the generalized eigenvalue problem.

The central Theorem 3.1 of this paper contributes new sharp subspace estimates to
the hierarchy of non-preconditioned and preconditioned vector and subspace solvers for
eigenproblems. All these convergence estimates have the standardized form

∆i,i+1(λ
′) ≤ σ2∆i,i+1(λ)

with ∆i,i+1(ξ) = (ξ − λi)/(λi+1 − ξ). For the non-preconditioned gradient iteration with
fixed step-length the convergence factor is σ = λi/λi+1, see [23], while for the precon-
ditioned inverse iteration, also called preconditioned gradient iteration, the convergence
factor reads σ = γ + (1 − γ)λi/λi+1, see [18]. The latter estimate also applies to the
corresponding subspace iteration; a discussion follows in Section 3.1. The convergence
of non-preconditioned gradient iterations with optimal step-length is analyzed in [25],
cf. Theorem 1.1. Estimates for the preconditioned optimal step-length gradient iterations
are given in [24].
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1.3. Notation and overview. We use the following notation for subspaces: Calli-
graphic capital letters denote subspaces; the column space of a matrix Z is Z = span{Z}.
Similarly, span{Z, Y } is the smallest vector space which contains the column spaces of Z
and of Y .

The paper is structured as follows: The subspace iterations and their relations to
the truncated block-Lanczos iteration are introduced in Section 2. The new convergence
estimates on A-gradient and Euclidean gradient block steepest descent/ascent are pre-
sented in Section 3; Theorem 3.1 provides new sharp convergence estimates for the Ritz
values. Some numerical experiments presenting the sharpness of the estimates and the
cluster-robustness of the A-gradient subspace iteration are presented in Section 4.

2. Subspace iteration with Rayleigh-Ritz projections. We generalize the vec-
tor iteration (1.3) to a subspace iteration. The starting point is an s-dimensional subspace
V of the R

n which is given by the column space of the M -orthonormal matrix V ∈ R
n×s.

The columns of V are assumed to be the M -normalized Ritz vectors of (A,M) in V . Fur-
ther Θ = diag(θ1, . . . , θs) is the s × s diagonal matrix of the corresponding Ritz values.
The matrix residual

AV −MVΘ ∈ R
n×s

contains columnwise the residuals of the Ritz vectors. By solving s linear systems in A one
gets the subspace correction term A−1(AV −MVΘ) of an A-gradient subspace iteration.
Optimal eigenpair approximations are to be determined in

span{V, A−1(AV −MVΘ)} = span{V, A−1MV }.

The desired optimal eigenpair approximations are just the s smallest Ritz values and the
associated Ritz vectors. These can be computed by applying the Rayleigh-Ritz procedure
for (A,M) to the subspace span{V, A−1MV }.

This subspace iteration can be understood as a 2-step block-invert-Lanczos process
with respect to the matrices Ã = M−1/2AM−1/2, Ṽ = M1/2V . To explain this let us first
consider a one-dimensional subspace: An m-step vectorial Lanczos iteration starts with
an initial vector ṽ(0) from which the Krylov subspace

Km(Ã, ṽ(0)) = span{ṽ(0), Ãṽ(0), . . . , Ãm−1ṽ(0)}

is built. A Ritz vector corresponding to the smallest Ritz value of Ã in this Krylov space
constitutes the next iterate ṽ(1). Such a Ritz pair corresponds to a Ritz pair of (A,M)
in the Krylov subspace Km(M−1A, v(0)) with M1/2v(0) = ṽ(0) because of ρÃ(M

1/2v) =
ρA,M (v) and

span{ṽ(0), Ãṽ(0), . . . , Ãm−1ṽ(0)} = M1/2span{v(0), (M−1A)v(0), . . . , (M−1A)m−1v(0)}.

The memory requirements for the m-step Lanczos scheme is foreseeable and relatively
small whereas for the classical Lanczos scheme in each step a further n-vector is to be
stored. Some references on the m-step Lanczos iteration are [6, 15, 32, 31].

The block variant of an m-step iteration substitutes the initial vector v(0) by an initial
subspace V(0) with the Ritz basis V (0) ∈ R

n×s which leads to the block-Krylov subspace

Km(M−1A, V (0)) = span{V (0), (M−1A)V (0), . . . , (M−1A)m−1V (0)}.(2.1)

The Rayleigh-Ritz procedure for (A,M) is used to extract from Km(M−1A, V (0)) the next
subspace V(1). This space is spanned by the s Ritz vectors of (A,M) which correspond
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to the s smallest Ritz values. See [9, 10] for block-Lanczos iterations. For m = 2 the
invert-Lanczos process uses

K2(A
−1M,V (0)) = span{V (0), A−1MV (0)}

with constant and minimal memory requirements throughout the iteration. Hence the
block steepest descent iteration has the following form:

Algorithm 1 A-gradient steepest descent subspace iteration:

Require: A,M ∈ R
n×n s.p.d.

1. Initialization: Generate a random initial s-dimensional subspace V(0) being
the column space of V (0) ∈ R

n×s. V(0) satisfies ∠M (V(0), E1:s) < π/2 where E1:s
is the invariant subspace associated with the s smallest eigenvalues of (A,M)
and the angle ∠M is induced by the inner product w.r.t. the matrix M .

2. Iteration: For i ≥ 0 (until the termination condition is satisfied) ap-
ply the Rayleigh-Ritz procedure to span{V (i), A−1MV (i)} and let V (i+1) =

[v
(i+1)
1 , . . . v

(i+1)
s ] be the Ritz vectors of (A,M) corresponding to the s small-

est Ritz values θ
(i+1)
1 , . . . , θ

(i+1)
s . Further let Θ(i+1) = diag(θ

(i+1)
1 , . . . , θ

(i+1)
s ).

3. Termination: If ‖R(i+1)‖ := ‖AV (i+1) − MV (i+1)Θ(i+1)‖ ≤ ǫ for an appro-
priate accuracy ǫ, then stop the iteration.

Algorithm 1 can easily be modified to a block steepest ascent iteration and can be
reformulated to block steepest descent/ascent iterations in span{V,M−1AV }. All these
subspace iterations are analyzed in Section 3.

3. Convergence analysis. In our convergence analysis we first discuss the case
M = I and refer to section 3.1 for the general case. Now Theorem 1.1 is generalized to
subspace iterations. Convergence estimates for the Ritz values are presented for block
steepest descent/ascent iterations in span{V,A−1V } and span{V,AV }. Symmetry is al-
ways assumed for A; positive definiteness is required if the iteration involves A−1.

Theorem 3.1. Consider a symmetric matrix A with eigenpairs (λi, xi), λ1 < λ2 <
. . . < λn. Let V be an s-dimensional subspace of the R

n and let V := [v1, . . . , vs] whose
columns are the Ritz vectors vi, i = 1, . . . , s of A in V. The associated Ritz values are
θi = ρA(vi). Indexes ki are given so that θi ∈ (λki , λki+1). Moreover, the subspace V is
assumed to contain no eigenvector of A (which otherwise could easily be split off within the
Rayleigh-Ritz procedure). Let ∆p,q(θ) := (θ − λp)/(λq − θ) and let Ej,k,l be the invariant
subspace spanned by the eigenvectors for the eigenvalues λj < λk < λl.

1. Block steepest descent iteration: The Ritz values of A in V are enumerated in in-
creasing order θ1 ≤ . . . ≤ θs.

1a) If θ′1 ≤ . . . ≤ θ′s are the s smallest Ritz values of A in span{V,AV }, then for each
i ∈ {1, . . . , s} it holds that θ′i ≤ θi and either θ′i < λki or

0 ≤
∆ki,ki+1(θ

′
i)

∆ki,ki+1(θi)
≤

(
κ

2− κ

)2

with κ =
λn − λki+1

λn − λki

.(3.1)

1b) Let A additionally be a positive definite matrix. If θ′1 ≤ . . . ≤ θ′s are the s
smallest Ritz values of A in span{V,A−1V }, then for each i ∈ {1, . . . , s} it holds
that θ′i ≤ θi and either θ′i < λki or

0 ≤
∆ki,ki+1(θ

′
i)

∆ki,ki+1(θi)
≤

(
κ

2− κ

)2

with κ =
λki (λn − λki+1)

λki+1(λn − λki)
.(3.2)
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The bounds in (3.1) and (3.2) cannot be improved in terms of the eigenvalues of A and
can be attained for θi → λki in Eki,ki+1,n.

2. Block steepest ascent iteration: The Ritz values of A in V are enumerated in de-
creasing order θ1 ≥ . . . ≥ θs. This enumeration allows to state the estimates in a form
which is most similar to the cases 1a and 1b.

2a) If θ′1 ≥ . . . ≥ θ′s are the s largest Ritz values of A in span{V,AV }, then for each
i ∈ {1, . . . , s} it holds that θ′i ≥ θi and either θ′i > λki+1 or

0 ≤
∆ki+1,ki(θ

′
i)

∆ki+1,ki(θi)
≤

(
κ

2− κ

)2

with κ =
λki − λ1

λki+1 − λ1
.(3.3)

2b) Let A additionally be a positive definite matrix. If θ′1 ≥ . . . ≥ θ′s are the s largest
Ritz values of A in span{V,A−1V }, then for each i ∈ {1, . . . , s} it holds that
θ′i ≥ θi and either θ′i > λki+1 or

0 ≤
∆ki+1,ki(θ

′
i)

∆ki+1,ki(θi)
≤

(
κ

2− κ

)2

with κ =
λki+1(λki − λ1)

λki (λki+1 − λ1)
.(3.4)

The bounds in (3.3) and (3.4) cannot be improved in terms of the eigenvalues of A and
can be attained for θi → λki+1 in E1,ki,ki+1.

Theorem 3.1 generalizes Theorem 2.5 in [17] (see also its original version [16] in Rus-
sian). In [17] all the Ritz values are restricted to the final intervals, which means that in
our notation ki = i is assumed. In [17] the case 2a is considered explicitly as a particular
case of a general theory. We start proving the assertion for the case 1a. The remaining
estimates can then be shown by applying proper transformations. A first step towards
the proof for the case 1a is to show that a vector v ∈ V \ {0} of poor convergence exists
so that the s-th Ritz value θ′s is bounded by the vector-wise attainable Ritz value if the
vector iteration is applied to v.

Theorem 3.2. On the assumption and notation of the case 1a of Theorem 3.1 a
vector (of relatively poor convergence) v ∈ V = span{V }, v 6= 0, exists so that

θ′s ≤ min
u∈span{v,Av}

ρA(u).

Proof. Let the columns of U ∈ R
n×s̃ (with s̃ ≤ 2s) be a Euclidean orthonormal basis

of span{V,AV }. Then the Ritz values θ′1 ≤ . . . ≤ θ′s̃ of A in span{V,AV } are identical
with the eigenvalues of the matrix B := UTAU ∈ R

s̃×s̃. Let S be the invariant subspace
of B spanned by the eigenvectors with the indexes s, . . . , s̃ and let Y := UTV be the
representing subspace of V w.r.t. the basis U . Summing up the dimensions of S and Y
shows that

dimS + dimY = (s̃− s+ 1) + s = s̃+ 1.

Since each S and Y are subspaces of the s̃-dimensional space span{UT } we conclude that
a nonzero vector y exists with y ∈ S ∩ Y. Next we discuss two representations of y.

First, y ∈ S together with the B-invariance of S proves that span{y,By} ⊆ S. Thus

min
z∈span{y,By}

zTBz

zT z
≥ min

z∈S

zTBz

zT z
= θ′s.

Second, y ∈ Y implies v := Uy ∈ UY = UUTV = V , since UUT is the Euclidean or-
thogonal projector on span{U} and V ⊆ span{U}. Analogously, since also AV ⊆ span{U},
we get from v ∈ V that

Av = (UUT )(Av) = UUTAUy = UBy
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and further

span{v,Av} = span{Uy, UBy} = Uspan{y,By} =
{
Uz ; z ∈ span{y,By}

}
.

Combining these results we get

min
u∈span{v,Av}

ρA(u) = min
z∈span{y,By}

ρA(Uz) = min
z∈span{y,By}

zTBz

zT z
≥ θ′s

and the existence of v.

Theorem 3.2 serves to prove the case 1a of Theorem 3.1 for the largest Ritz value with
i = s.

Corollary 3.1. The convergence estimate (3.1) of Theorem 3.1 holds for i = s.
Proof. If ks = n − 1, then the first alternative θ′s < λks applies since the s-th Ritz

value of A in an s̃-dimensional subspace with s̃ > s is always less than λn−1. Next let
ks < n− 1 and let λks ≤ θ′s (for which (3.1) is to be proved).

We first prove that θ′s ≤ θs by applying the variational principles

θ′s = min
U⊆span{V,AV }

dim(U)=s

max
y∈U\{0}

ρA(y) ≤ min
U⊆V

dim(U)=s

max
y∈U\{0}

ρA(y) = θs.

Theorem 3.2 shows the existence of a vector v ∈ V so that

θ′s ≤ min
u∈span{v,Av}

ρA(v) =: θ̂s.

Since ∆ks,ks+1(θ) = (θ − λks)/(λks+1 − θ) is for θ ∈ [λks , λks+1) a monotone increasing

function we get that ∆ks,ks+1(θ
′
s) ≤ ∆ks,ks+1(θ̂s); for completeness one has to check that

θ̂s ≤ λks+1 by using the variational principles. Further, the vectorial estimate for steepest
descent (case 1a in Theorem 1.1) is applied to this particular v. This results the rightmost
inequality in

∆ks,ks+1(θ
′
s) ≤ ∆ks,ks+1(θ̂s) ≤

(
κ

2− κ

)2

∆ks,ks+1(ρA(v)).

The proof is completed by recognizing that ρA(v) is bounded by the largest Ritz value θs
of A in V , i.e. ∆ks,ks+1(ρA(v)) ≤ ∆ks,ks+1(θs).

The convergence estimate for the remaining Ritz values θ′i, i = 1, . . . , s − 1, follows
from Corollary 3.1 by induction. Further, the convergence estimates for the remaining
cases follow by proper substitutions.

Proof. (of Theorem 3.1)
1a) The proof is given by induction on the subspace dimension s. For the case of a

1D subspace V = span{x} with x ∈ R
n \ {0} the smallest Ritz value of A in span{x,Ax}

is to be determined. Theorem 1.1 can be applied, which proves the Ritz value estimate
(3.1) with ρA(x

′) = θ′1.
Next we consider an s-dimensional subspace V being the column space of V =

[v1, . . . , vs]. Let V(s−1) be the column space of the submatrix V (s−1) := [v1, . . . , vs−1].
We denote the s− 1 smallest Ritz values of A in span{V (s−1), AV (s−1)} by θ′1(V

(s−1)) ≤
. . . ≤ θ′s−1(V

(s−1)). The induction hypothesis in the (s − 1)-dimensional space says that

either θ′i(V
(s−1)) < λki or

0 ≤
∆ki,ki+1(θ

′
i(V

(s−1)))

∆ki,ki+1(θi)
≤

(
κ

2− κ

)2

with κ =
λn − λki+1

λn − λki

.
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These first s − 1 Ritz values θ′i(V
(s−1)) decrease while expanding the V(s−1) to V due to

the variational characterization of the Ritz values, i.e.

θ′i(V
(s−1)) = min

U⊆span{V (s−1),AV (s−1)}
dim(U)=i

max
y∈U\{0}

ρA(y)

≥ min
U⊆span{V,AV }

dim(U)=i

max
y∈U\{0}

ρA(y) = θ′i.

Further ∆ki,ki+1(θ) is a monotone increasing function for θ ∈ [λks , λks+1) so that either
θ′i < λki or

0 ≤
∆ki,ki+1(θ

′
i)

∆ki,ki+1(θi)
≤

∆ki,ki+1(θ
′
i(V

(s−1)))

∆ki,ki+1(θi)
≤

(
κ

2− κ

)2

,

which proves the proposition for the s − 1 smallest Ritz values. For the Ritz value θs
Corollary 3.1 proves the proposition.

In order to show that the estimate (3.1) cannot be improved in terms of the eigenval-
ues, let vi be a normalized vector in the invariant subspace Eki,ki+1,n with ρA(vi) = θi.
The further columns of V are filled with pairwise different eigenvectors of A which are
Euclidean orthogonal to Eki,ki+1,n; the subspace spanned by these eigenvectors is denoted
by E . Then a step of the block steepest descent iteration lets all the eigenvectors invariant
and the convergence of the ith column vi behaves exactly like a vector iteration as the
Rayleigh-Ritz projection to span{V,AV } decays to isolated blocks. Within the 2×2 block
for span{vi, Avi} ⊂ Eki,ki+1,n the poorest convergence as described by Theorem 1.1 can
be attained.

2a) Estimate 1a can be applied to the matrix −A. The s smallest Ritz values of
−A in span{V } or span{V,−AV } are just the s largest Ritz values of A in span{V } or
span{V,AV } multiplied by −1 because of

ρ−A(x) = −ρA(x) and span{V,−AV } = span{V,AV }.

The associated substitution

(λki , θ
′
i, θi, λki+1, λn) → (−λki+1,−θ′i,−θi,−λki ,−λ1)

results in the estimate for the case 2a. Therein the meaning of θi and θ′i on the left- and
right-hand side is also transformed. To show that the estimate (3.3) cannot be improved
in terms of the eigenvalues, all these transformations are applied to the arguments in the
last paragraph of the proof for 1a.

1b) Now A is assumed to be a positive definite matrix. This allows to form A−1 and
the subspace A1/2V to which the estimate 2a can be applied. Because of

ρA−1(A1/2x) =
xTx

xTAx
=

1

ρA(x)
and span{A1/2V,A−1A1/2V } = A1/2span{V,A−1V }

the s largest Ritz values of A−1 in span{A1/2V } or span{A1/2V,A−1A1/2V } are just the
reciprocals of the s smallest Ritz values of A in span{V } or span{V,A−1V }. Further we
get with the substitution

(λ1, λki , θi, θ
′
i, λki+1) → (λ−1

n , λ−1
ki+1, θ

−1
i , θ′−1

i , λ−1
ki

)

that

∆ki+1,ki(θ
′
i)

∆ki+1,ki(θi)
→

(
θ′−1
i − λ−1

ki

λ−1
ki+1 − θ′−1

i

)(
θ−1
i − λ−1

ki

λ−1
ki+1 − θ−1

i

)−1

=
∆ki,ki+1(θ

′
i)

∆ki,ki+1(θi)
,
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λki − λ1

λki+1 − λ1
→

λ−1
ki+1 − λ−1

n

λ−1
ki

− λ−1
n

=
λki(λn − λki+1)

λki+1(λn − λki)
.

This proves the estimate for the case 1b.

2b) The estimate follows from the estimate in case 1a by applying the argument which
has been used for the proof of case 1b.

The Ritz value convergence estimates in Theorem 3.1 cannot be improved in terms of
the eigenvalues without further assumptions on the subspace V . Therefore cluster robust
convergence estimates, which should depend in some way on the ratio λi/λs+1, are not
provable in terms of the convergence measure used in Theorem 3.1. Nevertheless, the block
steepest descent iteration is a cluster robust iteration, see the numerical experiments in
Section 4.

3.1. Steepest descent A-gradient iteration for generalized eigenproblems.

In order to apply the important estimate 1b in Theorem 3.1 to the generalized eigenvalue
problem for (A,M) the substitution

A → M−1/2AM−1/2, V → M1/2V

can be used. The conversion of the associated Rayleigh quotients

ρM−1/2AM−1/2(M1/2v) =
vTAv

vTMv
= ρA,M (v),

shows that the Ritz values of M−1/2AM−1/2 in span{M1/2V, (M1/2A−1M1/2)(M1/2V )},
or equivalently in M1/2span{V,A−1MV }, are equal to the corresponding Ritz values of
(A,M) in span{V,A−1MV }. As the convergence estimates in Theorem 3.1 are formulated
only in terms of eigenvalues and Ritz values, one can apply Theorem 3.1 to M−1/2AM−1/2

and to M1/2V . The eigenvalues and Ritz values are the same, which proves the following
result.

Theorem 3.3. The assumptions and notations of Theorem 3.1 are assumed to hold
mutatis mutandis for the pair (A,M) of positive definite matrices. The Ritz values of
(A,M) in V are enumerated in increasing order θ1 ≤ . . . ≤ θs. The s smallest Ritz values
of (A,M) in span{V,A−1MV } are θ′i with θ′1 ≤ . . . ≤ θ′s. Then for each i ∈ {1, . . . , s} it
holds that θ′i ≤ θi and either θ′i < λki or

0 ≤
∆ki,ki+1(θ

′
i)

∆ki,ki+1(θi)
≤

(
κ

2− κ

)2

with κ =
λki (λn − λki+1)

λki+1(λn − λki)
.(3.5)

The bound cannot be improved in terms of the eigenvalues λi of (A,M) and is attained
for θi → λki in Eki,ki+1,n.

The other estimates of Theorem 3.1 can also be reformulated for the generalized
eigenvalue problem in this way.

The convergence estimate (3.5) for the A-gradient subspace iteration constitutes an
estimate for the case of exact preconditioning (with the inverse of the discretization ma-
trix) for the preconditioned inverse subspace iteration with fixed step-length, see [22]
and Theorem 13 in [18]. If the estimate (29) in [18] is evaluated for γ = 0, then
the resulting convergence factor λki/λki+1 is clearly improved by the current estimate
(3.5). The accelerating influence of the Rayleigh-Ritz procedure can be seen in the factor
(λn − λki+1)/(λn − λki) < 1 together with the ratio κ/(2− κ) < κ.
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n=1477, in [−1, 1]2

 
n=13850, in [−10−2, 10−2]2

 
n=51395, in [−10−4, 10−4]2

Fig. 4.1. Adaptively generated triangulations with n ∈ {1477, 13850, 51395} nodes; the corresponding
depths of the triangulations are 12, 26 and 40.

4. Numerical experiments. The test problem is the Laplacian eigenproblem

−∆u = λu(4.1)

on

Ω :=
{(

r cos(ϕ), r sin(ϕ)
)
; r ∈ [0, 1], ϕ ∈

[1
8
π,

15

8
π
]}
.

Homogeneous Dirichlet boundary conditions are assumed for boundary points with r = 1
and on {(r, ϕ); r ∈ [0, 1], ϕ = 1

8π}. Homogeneous Neumann boundary conditions are
used for ϕ = 15

8 π with r ∈ (0, 1). The numerical results can be compared with the exact
eigenvalues and eigenfunctions. The eigenfunctions are

sin
(
αk(ϕ− π/8)

)
Jαk

(ξk,lr)

with αk := 4
7k+

2
7 and the Bessel functions Jαk

of first kind and fractional order [1]. The
eigenvalues are ξ2k,l with the positive zeros ξk,l of Jαk

.
The problem is discretized by linear finite elements on an adaptively generated triangle

mesh. The error estimation is based on local estimates of the discretization error. A
triangle is marked for a further regular subdivision (red-refinement) if some error barrier
is exceeded between the linear interpolant of the eigenfunction approximation on the father
triangle and the eigenfunction approximation of the current grid. Here, we only use the
eigenfunction corresponding to the smallest eigenvalue in order to steer the refinement
process. The grid consistency is ensured if regular (red) refinements are followed by
irregular (green) refinements to avoid hanging nodes.

The origin at r = 0 is a critical point since the partial derivative (∂/∂r)Jαk
is un-

bounded for certain k. Thus the adaptive grid refinement procedure results in a highly
non-uniform triangulation. Figure 4.1 shows three different grids with sectional enlarge-
ments to regions close to the origin.

A triangulation with 56332 nodes is used for the numerical computations. The as-
sociated generalized matrix eigenvalue problem Ax = λMx for the inner nodes and the
nodes on the Neumann boundary has the dimension 55655. The 15 smallest eigenvalues
of (4.1) are listed in Table 1 together with the numerical approximations from the block
A-gradient steepest descent method with a 20-dimensional subspace.

Experiment I - Poorest convergence of the block steepest descent iteration: We con-
sider subspaces which contain a nonzero vector from the invariant subspace Ei,i+1,n since
Theorem 1.1 shows that the poorest convergence of the vector variant of the block steepest
descent iteration attains its poorest convergence in certain vectors from Ei,i+1,n. All the
other basis vectors of the subspace are eigenvectors of (A,M) with indexes different from
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k \ l 1 2 3

0 8.02725 35.52780 82.76227

1 13.23485 46.36149

2 19.36200 58.14138

3 26.37462 70.85000

4 34.24802 84.47130

5 42.96336

6 52.50562

7 62.86257

8 74.02394

k \ l 1 2 3

0 8.0294 35.5390 82.8033

1 13.2359 46.3720

2 19.3640 58.1577

3 26.3784 70.8744

4 34.2547 84.5067

5 42.9742

6 52.5221

7 62.8864

8 74.0574

Table 1

The 15 smallest eigenvalues ξ2
k,l

of (4.1) (left) and the numerical approximations (right) by the

block A-gradient steepest descent iteration with s = 20 for a FE-discretization with n = 55655 degrees of
freedom.

8.029 13.236 19.364 26.378 34.255
0

0.2

0.4

0.6

0.8

1
 

 

 

θi

C
o
n
v
.

fa
c
t
o
r
s

Fig. 4.2. Poorest convergence of block steepest descent iteration. Abscissa: Five smallest eigenvalues
according to Table 1. Bold lines in the intervals (λi, λi+1] are the upper bounds κ2/(2−κ)2 and the curves
are the largest ratios ∆i,i+1(θ

′

i)/∆i,i+1(θi) over 1000 equispaced test vectors in Ei,i+1,n whose Rayleigh
quotients equal θi.

i, i + 1 and n. Then the subspace iteration behaves like a vectorial A-gradient iteration
since the iteration is stationary in the eigenvectors. Theorem 1.1 provides a convergence
estimate for the single vector from Ei,i+1,n. Figure 4.2 shows the upper bounds κ2/(2−κ)2

(bold lines) and the largest ratios ∆i,i+1(θ
′
i)/∆i,i+1(θi) in the intervals (λi, λi+1) for 1000

equispaced normalized test vectors in Ei,i+1,n whose Rayleigh quotients equal θi. All this
is done for equidistant θi ∈ (λi, λi+1). In each interval (λi, λi+1) the estimate (3.5) is
sharp (see Theorem 3.3) and is attained for θi → λi.

Experiment II - Convergence of the Ritz vectors: The convergence of the sequence
of subspaces V(k) towards the eigenvectors xi is measured in terms of the tangent values
tan∠M (xi,V

(k)) where ∠M denotes an angle with respect to the M -geometry. The simple
subspace iteration [26] for A−1M differs from the block steepest descent iteration in which
the Rayleigh-Ritz procedure is applied to the s-dimensional subspace A−1MV and not to
the larger space span{V , A−1MV}. It holds that, see [26],

(4.2) tan∠M (xi,V
(k)) ≤

(
λi

λs+1

)k

tan∠M (span{x1, . . . , xs},V
(0)), i = 1, . . . , s.

The ratio λi/λs+1 expresses the cluster robustness of this subspace iteration. The initial
space V(0) should only contain (nonzero) vectors which are not orthogonal to the desired
invariant subspace span{x1, . . . , xs}.

The block steepest descent iteration is the faster convergent iteration compared to the
subspace iteration for A−1M since the Courant-Fischer variational principles show that
the kth Ritz value, k = 1, . . . , s, of (A,M) in span{V , A−1MV} is less or equal to the
kth Ritz value in span{A−1MV}. Hence the block steepest descent iteration can result in
improved eigenvalue approximations and therefore is a cluster robust iteration.
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Fig. 4.3. Convergence of the eigenvector approximations in terms of subspace angles
tan∠M (xi,V(k)) for i = 1, . . . , 4. Bold line: Estimate (4.2) on the simple subspace iteration. Dot-
ted line: Poorest convergence of the simple subspace iteration for 1000 random initial spaces. Thin solid
line: The faster convergent block steepest descent iteration.

Figure 4.3 displays the convergence of the subspaces V(k), dimV(k) = 6, towards the
eigenvectors xi for i = 1, . . . , 4. The bold lines represent the theoretical bound (4.2).
The dotted lines illustrate the convergence of the subspace iteration for A−1M and the
thin solid lines stand for the faster convergent block steepest descent. All curves are
plotted for the case of poorest convergence, which has been observed for 1000 random
initial subspaces V(0). For all computations a symmetric approximate minimum degree
permutation has been used in order to factorize the stiffness matrix A and to compute
A−1MV .

Experiment III - Sharp single-step estimates vs. multistep estimates: If the ith Ritz

value θi =: θ
(0)
i has reached its “destination interval”, i.e. θ

(0)
i ∈ (λi, λi+1), then (3.5)

can be applied recursively resulting in the k-step estimate

θ
(k)
i − λi

λi+1 − θ
(k)
i

≤

(
κ

2− κ

)2k
θ
(0)
i − λi

λi+1 − θ
(0)
i

, k = 1, 2, . . . .(4.3)

In contrast to this we consider 1-step estimates in the form

θ
(l+1)
i − λi

λi+1 − θ
(l+1)
i

≤

(
κ

2− κ

)2
θ
(l)
i − λi

λi+1 − θ
(l)
i

, l = 1, 2, . . . ,

where in each step the actual numerical value θ
(l)
i is inserted in the right hand side of the

estimate. Figure 4.4 shows the multistep bound (4.3) as a bold line, the 1-step bound as
a dotted line and the numerical worst-case result as a thin solid line. For this experiment
initial subspaces V(0) with dim(V(0)) = 6 are used for which the six Ritz values satisfy
θi(V

(0)) ∈ (λi, λi+1) for i = 1, . . . , 6. The last condition holds if the subspace V(0) properly
approximates the invariant subspace corresponding to the six smallest eigenvalues.

For these computations 1000 random initial subspaces are used and the cases of slowest
convergence are plotted. The 1-step estimate is a good upper estimate and the multistep
estimate (bold line) is a relatively poor estimate especially for small i ≪ s. For i = 1, 2
a convergence factor depending on the cluster robust ratio λi/λs+1 appears to be more
suitable. However, such a cluster robustness cannot be expressed in terms of the estimate
(3.5) whose feature is just its 1-step sharpness. In any case cluster robustness is already
guaranteed as illustrated in experiment II.

5. Conclusion. Block gradient iterations for the Rayleigh quotient are simple,
storage-efficient and potentially fast solvers for symmetric and positive definite eigenvalue
problems. They allow the simultaneous computation of some of the smallest eigenvalues
together with the associated eigenvectors.

In this paper sharp estimates have been proved on the convergence of block A-gradient
and Euclidean gradient iterations. A benefit of an A-gradient iteration is its fast conver-
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Fig. 4.4. Error of the eigenvalue approximations ∆i,i+1(θ
(k)
i ) = (θ

(k)
i − λi)/(λi+1 − θ

(k)
i ) for

i = 1, 2, 6 for subspaces with the dimension s = 6. The multistep estimate (4.3) (bold lines) is a relatively
poor estimate for i = 1, 2. The 1-step estimate (dotted line) is good estimate for the numerical worst-case
results (thin solid line); the data representing the case of poorest convergence for 1000 random initial
subspaces is plotted.

gence compared to a Euclidean gradient iteration. Especially, if (A,M) are the discretiza-
tion matrix and the mass matrix of an eigenvalue problem for an elliptic and self-adjoint
partial differential operator, then A and M are typically very large and sparse matrices.
For such a problem the convergence factor of an A-gradient iteration can be bounded
away from 1 independently on the mesh size of the discretization. This guarantees a
grid-independent convergence factor. In contrast to this, the convergence factor of a Eu-
clidean gradient iteration tends to 1 if the mesh size decreases towards 0, see Equation
(3.1). However, an A-gradient iteration requires the solution of linear systems in A, which
may appear as a computationally expensive step. Once again, in the context of operator
eigenvalue problems this solution of linear systems in A can be implemented in terms of
multigrid or multilevel iterations. These very efficient solvers allow to solve such linear
systems with costs that, in the best case, increase only linearly in the number of variables.
Further, even an approximate solution of these linear systems can result in a convergent
eigensolver. Then the A-gradient iteration turns into a B-gradient iteration where B ap-
proximates A. The inverse B−1 is called a preconditioner or approximate inverse for A
and the resulting eigensolver is a block B-gradient subspace iteration. The convergence
analysis of such B-gradient subspace iterations is the topic of a forthcoming paper - for
the limit case B → A the current paper makes available a closed convergence analysis.
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