
THE PRIMER NUMBER THEOREM FOR BEURLING’S
GENERALIZED INTEGERS. NEW CASES

JAN-CHRISTOPH SCHLAGE-PUCHTA AND JASSON VINDAS

Abstract. This paper provides new cases of the prime number theo-
rem for Beurling’s generalized integers. Let N be the distribution of a
generalized number system and let π be the distribution of its primes. It
is shown that N(x) = ax+O(x/ logγ x) (C), γ > 3/2, where (C) stands
for the Cesàro sense, is sufficent for the prime number theorem to hold,
π(x) ∼ x/ log x. The Cesàro asymptotic estimate explicitly means thatZ x

1

N(t)− at

t

„
1− t

x

«k

dt = O

„
x

logγ x

«
,

for some k ∈ N. Therefore, it includes Beurling’s classical condition.
We also show that under these conditions the the Möbius function, as-
sociated the the generalized number system, has mean value equal to 0.
The methods of this article are based on arguments from the theory of
asymptotic behavior of Schwartz distributions and a complex tauberian
theorem with local pseudo-function boundary behavior as the tauberian
hypothesis.

1. Introduction

Let 1 < p1 ≤ p2, . . . , be a non-decresing sequence of real numbers tending
to infinity. Following Beurling [2], we shall call such a sequence P = {pk}∞k=1
a set of generalized prime numbers. We arrange the set of all possible prod-
ucts of generalized primes in a non-decreasing sequence 1 < n1 ≤ n2, . . . ,
where every nk is repeated as many times as it can be represented by
pk1pk2 . . . pkm with kj ≤ kj+1. The sequence {nk}∞k=1 is called the set of
generalized integers.

The function π denotes the distribution of the generalized prime numbers,

(1.1) π(x) = πP (x) =
∑
pk<x

1 ,

while the function N denotes the distribution of the generalized integers,

(1.2) N(x) = NP (x) =
∑
nk<x

1 .
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Beurling’s problem is then to find conditions over the function N which
ensure the validity of the prime number theorem (PNT), i.e.,

(1.3) π(x) ∼ x

log x
, x→∞ .

In his seminal work [2], Beurling proved that the condition

(1.4) N(x) = ax+O

(
x

logγ x

)
, x→∞ ,

where a > 0 and γ > 3/2, sufficies for the PNT to hold. If γ = 3/2, then
the PNT need not to hold, as showed first by Beurling by a continuous
analog of a generalized prime number system, and then by Diamond [5] who
exhibited an explicit example of generalized primes not satisfying the PNT
in this case.

The present article studies new cases of the prime number theorem for
Beurling’s generalized primes. Our main goal is to show the following theo-
rem.

Theorem 1. Suppose there exist constants a > 0 and γ > 3/2 such that

(1.5) N(x) = ax+O

(
x

logγ x

)
(C) , x→∞ ,

Then the prime number theorem (1.3) holds.

In (1.5) the symbol (C) stands for the Cesàro sense [7]. It explcitly
means that there exist some m ∈ N such that the following average estimate
is satisfied:

(1.6)
∫ x

1

N(t)− at

t

(
1− t

x

)m

dt = O

(
x

logγ x

)
, x→∞ .

We might have written (C,m) in (1.5) if (1.6) holds for a specific m; how-
ever, the value of m will be totally unimportant for our arguments and we
therefore choose to omit it from the notation.

Naturally, if Beurling’s condition (1.4) is verified, then (1.6) is automat-
ically satified for all m ∈ N. Thus, Theorem 1 is a natural extension of
Beurling’s theorem. Observe that our theorem is sharp, namely, the PNT
does not necessary hold if γ = 3/2 in (1.5), as shown by Diamond coun-
terexample itself.

It should be also noticed that Theorem 1 has a very general character in
the following sense, it essentially allows terms with quite large oscillatory
growth in the asymptotic estimate for N(x) − ax; for example, functions
such as

Ax/ logγ x+Bxn sinx+ Cxkex
m

cos(ex
m

), . . . ,
may serve as an error term O(x/ logγ x) in the Cesàro sense.

In addition to the PNT, we also show that the Möbius function of a
generalized number system has mean value equal to zero, provided that the
condition (1.5) be satisfied.
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2. Preliminaries and Notation

Throughout this article, the sequence P = {pk}∞k=1 stands for a fixed set
of generalized prime numbers with generalized integers {nk}∞k=1. We shall
always assume that the distribution of the generalized integers satisfies (1.5)
for γ > 1. Let letter s always stands for a complex number s = σ + it.

2.1. Functions Related to Generalized Primes. We denote by Λ = ΛP

the von Mangoldt function of P , defined on the set of generalized integers
as

(2.1) Λ(nk) =

{
log pj , if nk = pm

j ,

0 , otherwise .

The Chebyshev function of P is defined as usual by

(2.2) ψ(x) = ψP (x) =
∑

pm
k <x

log pk =
∑
nk<x

Λ(nk) .

Observe that (1.5) implies ( [6, Lem. 3],[12],[20]) the ordinary asymptotic
behavior

(2.3) N(x) ∼ ax , x→∞ ,

hence, the Dirichtlet series
∑
n−s

k is easily seen to have abscissa of conver-
gence less than 1. The zeta function of P is then the analytic function

(2.4) ζ(s) = ζP (s) =
∞∑

k=1

1
ns

k

, <e s > 1 .

Becase of the well known result [1, Lem. 2E], the relation (1.1) is equivalent
to the statement

(2.5) ψ(x) ∼ x .

Our approach to the PNT (Theorem 1) will be to show (2.5).
The Möbius function of P is defined on the generalized integers by

(2.6) µ(nk) = µP (nk) =

{
(−1)m , if nk = pk1pk2 . . . pkm with kj < kj+1 ,

0 , otherwise .

Finally, note [1, Lem. 2D] that we have

(2.7)
∞∑

k=1

Λ(nk)
ns

k

= −ζ
′(s)
ζ(s)

, <e s > 1 .

Likewise, one readily verifies the identity

(2.8)
∞∑

k=1

µ(nk)
ns

k

=
1
ζ(s)

, <e s > 1 .
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2.2. Distributions and Generalized Asymptotics. We shall make use
of the theory of Schwartz distributions and some elements from asymptotic
analysis on distribution spaces, the so called generalized asymptotics.

We denote by D(R) and S(R) the Schwartz spaces of the test functions
consisting of smooth compactly supported functions and smooth rapidly
decreasing functions, respectively, with their usual topologies. Their dual
spaces, the spaces of distributions and tempered distributions, are denoted
by D′(R) and S ′(R), respectively. The space D(0,∞) is the space of smooth
functions supported on the interval (0,∞), its dual is the space D′(0,∞).
The space DL2(R) is the space of smooth functions with all derivatives be-
longing to L2(R), its dual space is D′L2(R). The space DL2(R) is the inter-
section of all Sobolev spaces while D′L2(R) is the union of them. The space
D′L1(R) is the dual space of Ḃ(R), the space of smooth functions with all
derivatives tending to 0 at ±∞. We refer to [17] for the very well known
properties of these spaces.

We use the following Fourier transform

(2.9) φ̂(t) =
∫ ∞

−∞
e−itxφ(x) dx , for φ ∈ S(R) ;

it is defined by duality on S ′(R), that is, if f ∈ S ′(R) its Fourier transform
is the tempered distribution given by

(2.10)
〈
f̂(t), φ(t)

〉
=

〈
f(x), φ̂(x)

〉
.

Let f ∈ S(R) be supported in [0,∞), its Laplace transform is the analytic
function

(2.11) L{f ; s} = L{f(x); s} =
〈
f(x), e−sx

〉
, <e s > 0 .

The relation between the Laplace and Fourier transforms [3, 17] is given
by f̂(t) = limσ→0+ L{f ;σ + it}, where the last limit is taken in the weak
topology of S ′(R).

We shall employ various standard tempered distributions. The Heaviside
function is denoted by H, it is simply the characteristic function of (0,∞).
The Dirac delta “function” δ is defined by 〈δ(x), φ(x)〉 = φ(0), note that
H ′(x) = δ(x) (the derivative is understood in the distributional sense, of
course). The Fourier transform of H is Ĥ(t) = −i/(t− i0), where the latter
is defined as the distributional boundary value, on <e s = 0, of the analytic
function 1/s, <e s > 0, i.e.,〈

−i
t− iσ

, φ(t)
〉

= lim
σ→0+

∫ ∞

−∞

φ(t)
σ + it

dt , φ ∈ S(R) .

We now turn our attention to asymptotic analysis of distributions [7, 16,
20], the so called generalized asymptotics.

Let f ∈ D′(R), a relation of the form

(2.12) lim
h→∞

f(x+ h) = β , in D′(R) ,



THE PRIME NUMBER THEOREM FOR BEURLING’S INTEGERS 5

means that the limit is taken in the weak topology of D′(R), that is, for each
test function from D(R) the following limit holds,

(2.13) lim
h→∞

〈f(x+ h), φ(x)〉 = β

∫ ∞

−∞
φ(x)dx .

The meaning of the expression limh→∞ f(x + h) = β in S ′(R) is clear.
Relation (2.12) is an example of the so-called S-asymptotics of generalized
functions (also called asymptotics by translation), we refer the reader to [16]
for further properties of this concept.

On the other hand, we may attempt to study the asymptotic behavior of a
distribution by looking at the behavior at large scale of the dilates f(λx) as
λ→∞. In this case, we encounter the concept of quasiasymptotic behavior
of distributions [7, 16, 19, 20]. We will study in connection to the PNT a
particular case of this type of behavior, namely, a limit of the form

(2.14) lim
λ→∞

f(λx) = β , in D′(R) ,

Needless to say that (2.14) should be always interpreted in the weak topology
of D′(R). We may also talk about (2.14) in other spaces of distributions with
a clear meaning.

2.3. Pseudo-functions. A tempered distribution f is called a pseudo-function
if f̂ ∈ C0(R), that is, f̂ is a continuous function which vanishes at ±∞.

The distribution f is said to be locally a pseudo-function if it coincides
with a psedo-function on each finite open interval. The property of being
locally a pseudo-function admits a characterization [13] in terms of a gener-
alized “Riemann-Lebesgue lemma”; indeed, f is locally a pseudo-function if
and only if eihtf(t) = o(1) as |h| → ∞ in the weak topology of D′(R), i.e.,
for each φ ∈ D(R)

(2.15) lim
|h|→∞

〈
f(t), eihtφ(t)

〉
= 0 .

We may call (2.15) the generalized Riemann-Lebesgue lemma for local pseudo-
functions. It is then clear that if f ∈ L1

loc, then it is locally a pseudo-function,
due to the classical Riemann-Lebesgue lemma.

Two important cases of local pseudo-functions will be of vital importance
below. Let f be the Fourier transform of an element from D′L1(R), then f
is locally a pseudo-function. It follows directly from the fact that Fourier
transfoms of elements from g ∈ D′L1(R) are continuous functions [17, p. 256].
Let now f be the Fourier transform of a distribution from D′L2(R) and let
g ∈ L2

loc(R); because of the remark in [17, p. 256], the product g · f is a well
defined distribution and it is locally a pseudo-function.

Let G(s) be analytic on <e s > α. We shall say that G has local psedo-
function boundary behavior on the line <e s = α if it has distributional
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boundary values [3] in such a line,

(2.16) lim
σ→α+

∫ ∞

−∞
G(σ + it)φ(t)dt = 〈f(t), φ(t)〉 , φ ∈ D(R) ,

and the boundary distribution f is locally a pseudo-function.

3. Properties of the Zeta Function

Our arguments for the proof of Theorem 1 rely on the properties of the
zeta function. We shall derive such properties from those of the following
special distribution. Define

(3.1) v(x) =
∞∑

k=1

1
nk

δ(x− log nk) .

Let us verify that v is a tempered distribution. We have that g(x) =
e−xN(ex) is a bounded function, hence g ∈ S ′(R); therefore, v = g′ + g ∈
S ′(R).

The distribution v is intimately related to the zeta function. In fact, its
Laplace transform is, <e s > 0,

(3.2) L{v, s} =
〈
v(x), e−sx

〉
=

∞∑
k=1

1
ns+1

k

= ζ(s+ 1) .

Taking the boundary values of (3.2) on <es = 0, in the distributional sense,
we obtain the Fourier transform of v,

(3.3) v̂(t) = ζ(1 + it) .

Observe that we are interpreting (3.3) in the distributional sense and not as
equality of functions, i.e., for each φ ∈ S(R).

(3.4) 〈v̂(t), φ(t)〉 = lim
σ→1+

∫ ∞

−∞
ζ(σ + it)φ(t)dt .

Next, we provide a lemma which establishes the main connection between
(1.5) and the S−asymptotic properties of v.

Lemma 1. The following assertions are equivalent:

(i) In the sense of (1.6)

(3.5) N(x) = ax+O

(
x

logγ x

)
(C) , x→∞ ,

(ii) There exist m ∈ N such that

(3.6)
∑
nk<x

(
1− nk

x

)m
=

ax

m+ 1
+O

(
x

logγ x

)
, x→∞ ,
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(iii) In the sense of the quasiasymptotic behavior

(3.7) N ′(λx) =
∞∑

k=1

δ(λx− nk) = aH(x) +O

(
1

logγ λ

)
,

as λ→∞ in the space D′(R).
(iii) In the sense of S−asymptotic behavior

(3.8) v(x+ h) =
∞∑

k=1

1
nk

δ(x+ h− log nk) = a+O

(
1
hγ

)
,

as h→∞ in the space S ′(R).

Proof. Later... �

Define the remainder distribution E1 = v−aH. Because of Lemma 1, E1

has the following S−asymptotic bound

(3.9) E1(x+ h) = O

(
1
|h|γ

)
as |h| → ∞ in S ′(R) .

For it, it is enough to argue E1(x + h) = v(x + h) − aH(x + h) = a(1 −
H(x+ h)) + v(x+ h)− a = O(1/hγ), h → ∞, in the space S ′(R). On ther
other hand, the estimate as h → −∞ follows easily from the fact that E1

has support in [0,∞).
We now obtain the first properties of the zeta function. From the prop-

erties of E1, we can show the continuity of ζ(s) on <e s = 1, s 6= 1.

Proposition 1. Let N satisfy (3.5) for γ > 1. Then ζ(s)−a/(s−1) extends
to a continuous function on <e s ≥ 1, that is,

(3.10) ζ(1 + it) +
ia

t− i0
∈ C(R) .

Consequently, tζ(1+it) is continuous over the whole real line and so ζ(1+it)
is continuous in R \ {0}.

Proof. Observe that Ê1(t) = ζ(1+ it)+ ia/(t− i0). Due to (3.9), E1 ∗φ(h) =
O(|h|−γ), h → ∞, and so E1 ∗ φ ∈ L1(R), for each φ ∈ S(R). This is
precisely Schwartz characterization [17, p. 201] of the space D′L1(R), and so
E1 ∈ D′L1(R). Therefore [17, p. 256], Ê1 is continuous. �

The ensuing lemma is the first step toward the non-vanishing property of
ζ on <e s = 1, in the case γ > 3/2.

Lemma 2. Let N satisfy (3.5) for 1 < γ < 2. For each t0 6= 0 there exist
C = Ct0 such that for small σ > 1

(3.11) |ζ(σ + it0)− ζ(1 + it0)| < C(σ − 1)γ−1 .
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Proof. Find ϕ ∈ S(R) such that 0 /∈ supp ϕ̂ and ϕ̂(t) = 1 for t in a small
neighborhood of t0. Set f = v ∗ ϕ, then f̂(t) = ϕ̂(t)v̂(t) = ϕ̂(t)ζ(1 + it).
We have that f is a smooth function and it satisfies the estimate f(x) =
O(|x|−γ), in particular f ∈ L1(R) and so f̂ is continuous.

Define the harmonic function

U(σ + it) =
〈
f(x)H(x), e−itxe−σx

〉
+

〈
f(x)H(−x), e−itxeσx

〉
;

then U is a harmonic representation of f̂ on <e s > 0, in the sense that
limσ→0+ U(σ + it) = f̂(t), uniformly over R. We claim that ζ(σ + it) =
U(σ − 1 + it) + O(σ − 1), σ → 1+. Consider V (s) = ζ(s + 1) − U(s),
harmonic on <e s > 0. Because ζ(1 + it) − f̂(t) = 0 on a neighborhood of
the point t0, it follows that V (s) converges uniformly to 0 in a neighborhood
of t0 as <e s → 0+. Then by applying the reflection principle [18, Section
3.4] to the real and imaginary parts of V , we have that V admits a harmonic
extension to a (complex) neighborhood of t0. Therefore, U(s)− ζ(s+ 1) =
V (s) = O(|s− t0|), for <e s > 0 being sufficiently close to t0. This shows
the claim.

We now show |U(σ − 1 + it0)− ζ(1 + t0)| = O((σ − 1)γ), σ → 1+; the
estimate (3.11) inmediately follows from this claim. The estimate f(x) =
O(|x|−γ) and [7, Lem. 3.9.4, p. 153] imply the following quasiasymptotics

e−iλt0xf(λx)H(x) = µ+
δ(x)
λ

+O

(
1
λγ

)
as λ→∞ in S ′(R) ,

and

e−iλt0xf(λx)H(−x) = µ−
δ(x)
λ

+O

(
1
λγ

)
as λ→∞ in S ′(R) ,

where µ± =
∫∞
0 f(±x)e∓it0xdx, and so µ− + µ+ =

∫∞
−∞ f(x)eit0xdx =

f̂(t0) = ζ(1 + t0). Then, the two quasiasymptotics imply

U

(
1
λ

+ it0

)
=

〈
e−it0xf(x)H(x), e−x/λ

〉
+

〈
e−it0xf(x)H(−x), ex/λ

〉
= λ

〈
e−λit0xf(λx)H(x), e−x

〉
+ λ

〈
e−λit0xf(λx)H(−x), ex

〉
= µ+

〈
δ(x), e−x

〉
+ µ− 〈δ(x), ex〉+O

(
1

λγ−1

)
= µ+ + µ− +O

(
1

λγ−1

)
= ζ(1 + t0) +O

(
1

λγ−1

)
, λ→∞ .

Writing σ − 1 = 1/λ, the claim has been shown. This completes the proof
of the lemma. �

We are now in the position to show the non-vanishing of ζ(s) on <es = 1,
s 6= 1, for the case γ > 3/2. Actually, the proof is identically the same as
the one of [1, Thrm. 8E], but we sketch it for the sake of completeness.
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Theorem 2. Let N satisfy (3.5) for γ > 3/2. Then, tζ(1 + it) 6= 0, for
all t ∈ R. Consequently, 1/((s − 1)ζ(s)) converges locally uniformly to a
continuous function as <e s→ 1+.

Proof. The proof is essentially the classical argument of Hadmard. Without
lost of generality we assume that 3/2 < γ < 2. One uses the representation
[1, Lem. 2C], which is also valid under our hypothesis,

ζ(s) = exp
∞∑

k=1

∞∑
j=1

p−s
k

j
,

to conclude [1, Lem. 8B] that for any m ∈ N and t0 ∈ R

|ζ(σ)|m+1 |ζ(σ + it0)|2m
m∏

j=1

|ζ(σ + i(j + 1)t0)|2m−2j ≥ 1 .

If we now fix t0 6= 0 and m, Proposition 1 and the above inequality imply
the existence of A = Am,t0 > 0 such that for 0 < σ < 1

1 ≤ A |ζ(σ + it0)|2m

(σ − 1)m+1
,

or which is the same

D(σ − 1)1/2+1/(2m) ≤ |ζ(σ + it0)| ,

with D = A1/2m.
Suppose we had ζ(1+it0) = 0. Choose m such that 1/2+1/(2m) < γ−1.

By the inequality (3.11) in Lemma 2, we would have

D(σ − 1)1/2+1/(2m) ≤ |ζ(σ + it0)| < C(σ − 1)γ−1 ,

which is certainly absurd. Therefore, we must necessarily have ζ(1+ it) 6= 0,
for all t ∈ R \ {0}. �

We know obtain the boundary behavior of −ζ ′(s)/ζ(s)− 1/(s− 1).

Lemma 3. Let N satisfy (3.5) for γ > 3/2. Then

−ζ
′(s)
ζ(s)

− 1
s− 1

has local pseudo-function boundary behavior on the line <e s = 1.

Proof. We work with s+ 1 instead of s and analyze the boundary behavior
on <e s = 0. Recall E1 was defined before (3.9). As observed in the proof of
Proposition 1, we have that ζ(s+ 1)− a/s = L{E1; s} converges uniformly
over compacts to the continuous function Ê1, as <es→ 1+, so, by Theorem
2,

G1(s) =
1

sζ(s+ 1)

(
ζ(s+ 1)− a

s

)
, <e s > 0 ,
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converges uniformly over finite intervals to a continuous function, and thus,
its boundary value is a pseudofunction. Define E2(x) = (xE1(x))′. A quick
computation shows that

L{E2; s} = sζ ′(s+ 1) +
a

s
, <e s > 0 .

Since −ζ ′(s+ 1)/ζ(s+ 1)− 1/s = −G2(s) +G1(s), where

G2(s) =
1

sζ(s+ 1)
· L {E2; s} ,

it is enough to see that G2(s) has local pseudo-function boundary behavior.
Now, the S−asymptotic bound (3.9) implies that E2(x + h) = O(|h|−γ+1),
and, because of the hypothesis γ > 3/2, we have that E2 ∗ φ ∈ L2(R),
for all φ ∈ S(R). But this is presicely Schwartz’s characterization [17, p.
201]of the distribution space D′L2(R); thus E2 ∈ D′L2(R). As remarked
in Section 2.3, the multiplication of the Fourier transform of elemets from
D′L2(R) with elements of L2

loc(R) always gives rise to a distribution which is
locally a pseudo-funtion. It remains to observe that G2(s) tends in D′(R) to
Ê2(t)/(tζ(1+it)), which in view of the previous argument and the continuity
of 1/(tζ(1 + it)) is locally a pseudo-function. �

For future applications, we need a Chebyshev type estimate, it is the
content of the next lemma.

Lemma 4. Let N satisfy (3.5) for γ > 3/2. Then ψ(x) = O(x), x→∞.

Proof. Set τ(x) = e−xψ(ex). The the crude estimate τ(x) ≤ log xe−xN(x) =
O(log x), shows that τ ∈ S ′(R). Integration by parts in (2.7) shows that
τ̂(t) = G(1+ it)+ ĝ(t), where G(1+ it) is the distributional boundary value
of the function

G(s) =
1
s

(
−ζ

′(s)
ζ(s)

− 1
s− 1

)
,

on the line <e s = 1, and g is the distribution given by

ĝ(t) =
1

1 + it
· −i
t− i0

.

By Lemma 3, G(1 + it) is a pseudo-function. Since Ĥ(t) = −i/(t− i0) and
the Fourier transform of e−xH(x) is precisely 1/(1 + it), we obtain that g is
the convolution of the latter two distributions, namely,

g(x) = H(x)
∫ x

0
e−(x−u)du = H(x)− e−xH(x) .
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Pick φ ∈ S ′(R) such that it is non-negative and φ̂ ∈ D′(R). Write, ϕ for the
inverse Fourier transform of φ. Then,∫ ∞

−h
τ(x+ h)φ(x)dx = 〈τ(x+ h), φ(x)〉

= 〈τ(x+ h)− g(x+ h), ϕ̂(x)〉+
∫ ∞

−h
g(x+ h)φ(x)dx

=
〈
G(1 + it), eihtϕ(t)

〉
+O(1) = O(1) .

Notice that for x and h positive exτ(h) ≤ τ(x+ h), which follows from the
non-decreasing property of ψ. Finally, setting C =

∫∞
0 e−xφ(x)dx > 0, we

have

τ(h) = C−1τ(h)
∫ ∞

0
e−xφ(x)dx ≤ C−1

∫ ∞

0
τ(x+ h)φ(x)dx

≤ C−1

∫ ∞

−h
τ(x+ h)φ(x)dx = O(1) .

�

4. Tauberian Theorems

In this section we show Tauberian theorems from which we shall derive
later the PNT and some properties of the Möbius function. Such theorems
involve local pseudo-function behavior as the Tauberian hypothesis.

Theorem 3. Let S be a non-decreasing function supported on [0,∞) and
satisfying the growth condition S(x) = O(ex). Hence, the function

(4.1) L{dS; s} =
∫ ∞

0
e−sxdS(x)

is analytic on <e s > 1. If there exists a constant β such that the function

(4.2) G(s) = L{dS; s} − β

s− 1
has local pseudo-function boundary behavior on the line <e s = 1, then

(4.3) S(x) ∼ βex , x→∞ .

Proof. By subtracting S(0)H(x), we may assume that S(0) = 0, so the de-
rivative of S is given by the Stieltjes integral 〈S′(x), φ(x)〉 =

∫∞
0 φ(x)dS(x).

Let M > 0 such that S(x) < Mex. Define V (x) = e−xS′(x).
We have that e−xS(x) is a bounded function, hence it is a tempered dis-

tribution and its set of translates is, in particular, weakly bounded; because
differentiation is a continuous operator, the set of translates of (e−xS(x))′ is
weakly bounded, as well. Since (e−xS(x))′ = −e−xS(x)+V (x), we conclude
that V ∈ S ′(R) and V (x+ h) = O(1) in S ′(R).
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The Laplace transform of V on <e s > 0 is given by

L{V ; s} =
〈
V (x), e−sx

〉
=

∫ ∞

0
e−(s+1)xdS(x) = L{dS; s+ 1} .

Observe then that,

V̂ (t) +
βi

(t− i0)
= lim

σ→0+
L{V (x)− βH(x);σ + it}

= lim
σ→0+

G(1 + σ + it) , in D′(R) .

Hence, by hypothesis, V̂ (t)+iβ/(t−i0) is locally a pseudo-function, therefore
eiht(V̂ (t) + iβ/(t − i0)) = o(1) as h → ∞ in D′(R). Taking Fourier inverse
transform, we conclude that V (x+h) = H(x+h)+o(1) = β+o(1) as h→∞
in F(D′(R)), the Fourier transform image of D′(R). Using the density of
F(D(R)) in S ′(R) and the boundedness of V (x+h), we conclude, by applying
the Banach-Steinhaus theorem, that V (x+ h) = β + o(1) actually in S ′(R).
Multiplying by ex+h, we obtain S′(x+ h) ∼ ex+h in D′(R).

Let g(u) = S(log u), then limλ→∞ g′(λu) = β in D′(0,∞); indeed, let
φ ∈ D(0,∞), then〈

g′(λu), φ(u)
〉

= − 1
λ2

∫ ∞

0
S(log u)φ′

(u
λ

)
du

= − 1
λ

∫ ∞

−∞
S(x+ log λ)exφ′(ex)dx

=
1
λ

〈
S′(x+ log λ), φ(ex)

〉
=

∫ ∞

−∞
exφ(ex)dx+ o(1)

=
∫ ∞

0
φ(u)du+ o(1) , λ→∞ .

At this stage of the proof, we could apply first [19, Thrm. 4.1] and then [6,
Lem. 3] (see also [20]) to g′ and automatically conclude that S(log u) ∼ βu,
which is equivalent to (4.3). Alternatively, we can proceed rather directly as
follows. Let ε > 0 be an arbitrary small number; find φ1 and φ2 ∈ D(0,∞)
with the following properties: 0 ≤ φi ≤ 1, suppφ1 ⊆ (0, 1], φ1(u) = 1 on
[ε, 1 − ε], suppφ2 ⊆ (0, 1 + ε], and finally, φ2(u) = 1 on [ε, 1]. Evaluating
the quasiasymptotic limit of g′ at φ2, we obtain that

lim sup
λ→∞

g(λ)
λ

= lim sup
λ→∞

1
λ

∫ λ

0
dg(u) ≤ lim sup

λ→∞

(
g(ελ)
λ

+
1
λ

∫ ∞

0
φ2

(u
λ

)
dg(u)

)
≤Mε+ lim

λ→∞

〈
g′(λu), φ2(u)

〉
= Mε+ β

∫ ∞

0
φ2(u)du ≤ β + ε(M + β) .

Likewise, using now φ1, we easily obtain that

β − 2εβ ≤ lim inf
λ→∞

g(λ)
λ

.
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Since ε was arbitrary, we conclude (4.3). �

Theorem 3 implies the following Tauberian result for Dirichlet series.

Theorem 4. Let {λk}∞k=1 be a non-decreasing sequence of positive real num-
bers such that it tends to infinity and

∑
λk<x 1 ∼ ax, for some non-negative

a. Furthermore, assume that
∑
λ−s

k − a/(s − 1) has local pseudo-function
boundary behavior on the line <e s = 1.

Let {ck}∞k=1 be a sequence bounded from below, i.e., there exists M > 0
such that ck > −M for all k. Suppose that

∑
λk<x ck = O(x). Then

(4.4)
∞∑

k=1

ck
λs

k

it is analytic on <e s > 1. If there exists a constant β such that the distri-
butional boundary value of

(4.5) G(s) =
∞∑

k=1

ck
λs

k

− β

s− 1

on the line <e s = 1 is locally a pseudo-function, then

(4.6)
∑
λk<x

ck ∼ βx , x→∞ .

Proof. Set S(x) =
∑

λk<ex(ck +M). Then S(x) = O(ex), and∫ ∞

0
e−stdS(t) = M

∞∑
k=1

1
λs

k

+
∞∑

k=1

ck
λs

k

;

Thus, S satisfies the hypotheses of Theorem 3, and so

S(x) ∼ (β + aM)ex,

from where (4.6) follows. �

We emphasize that for λk = nk in Theorem 4 , generalized integers with
N satisfying (3.5) for γ > 1, the hypothesis

∑
n−s

k − a/(s − 1) has local
pseudo-function boundary behavior on <e s = 1 always holds, because of
Proposition 1.

Theorem 4 generalizes Korevaar’s Tauberian theorem from [13]. We re-
mark that Korevaar’s result was obtained via purely complex variable meth-
ods; here we use purely distributional methods! We remark that this result
was used in [13] to conclude the classical Wiener-Ikehara theorem.

We need a variant of Theorem 4 with Tauberian hypothesis of slow oscil-
lation. Recall a function τ is called slowly oscillating [12] if

(4.7) lim
h→0+

lim sup
x→∞

|τ(x+ h)− τ(x)| = 0 .
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If (4.7) holds, then it is easy to see [12, p. 33] that τ(x) = O(x) and there
exist x0,M > 0 such that for x ≥ x0 and h ≥ 0

(4.8) |τ(x+ h)− τ(x)| ≤ Ch .

Theorem 5. Let T ∈ L1
loc(R) be such that suppT ⊆ [0,∞) and τ(x) =

e−xT (x) is slowly oscillating. Suppose there exists β ∈ R such that

(4.9) G(s) = L{T ; s} − β

s− 1
has local pseudo-function boundary behavior on the line <e s = 1, then

(4.10) T (x) ∼ βex , x→∞ .

Proof. Observe that since τ(x) = O(x), it is a tempered distribution and
the Laplace transform of T is automatically well defined for <e s > 1. Since
the Fourier transform of a compactly supported distributions is an entire
function, we can assume that (4.8) holds in fact for all x ≥ 0 and h ≥ 0.

We first need to show that e−xT (x) = τ(x) is bounded. For this, pick a
test function η ∈ D(R) such that η̂(0) = 1/(2π) and set ϕ = η̂. Next, for h
large enough

〈τ(x+ h), ϕ(x)〉 = O(1) + 〈τ(x)−H(x), η̂(x− h)〉

= O(1) +
〈
G(1 + it), η(t)eiht

〉
= O(1) + o(1) = O(1) ,

because G(1 + it) is a pseudo-function. Observe
∫∞
−∞ ϕ(x)dx = 2πη(0) = 1.

Now, in view of (4.8),

|τ(h)| ≤O(1) +
∣∣∣∣∫ ∞

−h
(τ(x+ h)− τ(h))ϕ(x)dx

∣∣∣∣ + |τ(h)|
∫ −h

−∞
|ϕ(x)|dx

≤ O(1) +O(1)
∫ ∞

−∞
|xϕ(x)|dx+O(h)

∫ −h

−∞
|ϕ(x)|dx = O(1) .

By adding a term of the form KexH(x), we may now assume T ≥ 0.
Define S(x) =

∫ x
0 T (t)dt. The function S is increasing and, by T (x) = O(ex),

has growth S(x) = O(ex). Furthermore,

L
{
S′; s

}
− β

s− 1
= L{T ; s} − β

s− 1
;

hence, by Theorem 2,

(4.11)
∫ x

0
T (t)dt ∼ βex .

In particular, the ordinary asymptotic behavior (4.11) implies the S−asymptotic
behavior

∫ x+h
0 T (t)dt ∼ βex+h as h→∞ in the space D′(R). Differentiating

the latter and then dividing by ex+h, we obtain

(4.12) τ(x+ h) = β + o(1) as h→∞ in D′(R) .
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The final step is to evaluate the S−asymptotic (4.12) at a suitable test
function. Let ε > 0 be an arbitrary number. Choose φ ∈ D(R) non-negative
and supported in [0, ε] such that

∫ ε
0 φ(x)dx = 1. Then,

lim sup
h→∞

|τ(h)− β| ≤ lim sup
h→∞

∣∣∣∣β − ∫ ∞

0
τ(t)φ(t− h)dt

∣∣∣∣
+ lim sup

h→∞

∣∣∣∣∫ ∞

0
(τ(t)− τ(h))φ(t− h)dt

∣∣∣∣
= lim sup

h→∞

∣∣∣∣∫ h+ε

h
(τ(t)− τ(h))φ(t− h)dt

∣∣∣∣
≤ lim sup

h→∞
sup

t∈[h,h+ε]
|τ(t)− τ(h)| .

Since ε was arbitrary, the slow oscillation (4.7) implies limh→∞ τ(h) = β,
which in turn is the same as (4.10). �

5. Prime Number Theorem and Related Results for γ > 3/2

The prime number theorem, Theorem 1, follows now directly from our
previous work. Indeed, it is enough to combine Lemma 3 and Lemma 4
with Theorem 4.

We end this article with a second application of the Tauberian theorems
from Section 4. We now turn our attention to the Möbius function. We show
its mean value is zero and

∑
µ(nk)/nk = 0, whenever γ > 3/2. Remarkably,

it is well known that for ordinary prime numbers either of these conditions
is equivalent to the PNT itself!

Theorem 6. Let N satisfy (3.5) with γ > 3/2. Then,

(5.1) lim
x→∞

1
x

∑
nk<x

µ(nk) = 0.

Proof. By using formula (2.8), Proposition 1, and Theorem 2, we have that
∞∑

k=1

µ(nk)
ns

k

= (s− 1) · 1
(s− 1)ζ(s)

,

extends continuously to <e s ≥ 1, and so this Dirichlet series has local
pseudo-function boundary behavior on <e s = 1. Applying Theorem 4, we
obtain (5.1) at once. �

Theorem 7. Let N satisfy (3.5) with γ > 3/2. Then,

(5.2)
∞∑

k=1

µ(nk)
nk

= 0 .

Proof. Set M(u) =
∑

nk<u µ(nk) and

T (x) = ex
∫ x

0
e−tM(et)dt .
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Since M(et) = o(et) (Theorem 6), we easily conclude that e−xT (x) is slowly
oscillating. Notice that T is the convolution of M(ex) and exH(x), then

L{T ; s} = L{M(ex); s}L {exH(x); s}

=
1
s
L

{ ∞∑
k=1

µnk
δ(x− log nk); s

}∫ ∞

0
e−(s−1)xdx

=
1

s(s− 1)

∞∑
k=1

µ(nk)
ns

k

=
1

s(s− 1)ζ(s)
,

from where it follows L{T ; s} has local pseudo-function boundary behavior
on <e s = 1. Theorem 5 yields limx→∞

∫ x
0 e

−tM(et)dt = 0; thus, a change
of variables shows

lim
x→∞

∫ x

0

M(u)
u2

du = 0 .

We now derive (5.2) from the last limit and Theorem 6,∑
nk<x

µ(nk)
nk

=
∫ x

0
u−1dM(u) =

M(x)
x

+
∫ x

0

M(u)
u2

du = o(1) .

�
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