SIFTED CHARACTER SUMS AND FREE QUOTIENTS OF BIANCHI GROUPS

JAN-CHRISTOPH SCHLAGE-PUCHTA

ABSTRACT. We show that the Bianchi group $\text{PSL}_2(\mathcal{O}_d)$, where \mathcal{O}_d is the ring of integers in $\mathbb{Q}(\sqrt{d})$, d < 0, has a free quotient of rank $\geq |d|^{\frac{1}{4}-\epsilon}$, as $|d| \to \infty$. To do so, we give an estimate for a sifted character sum.

Let d < 0 be a fundamental discriminant, \mathcal{O}_d be the ring of integers in $\mathbb{Q}(\sqrt{d})$, and $\Gamma_d = \text{PSL}_2(\mathcal{O}_d)$ be the corresponding Bianchi group. Define the Zimmert set Z_d to be the set of all integers n satisfying the following conditions:

- (1) $4n^2 + 3 \le |d|$, and $n \ne 2$;
- (2) d is a quadratic non-residue modulo p for all odd prime factors p of n;
- (3) If $d \not\equiv 5 \pmod{8}$, then n is odd.

Denote by r(d) the rank of the largest free quotient of Γ_d . R. Zimmert[5] proved that $r(d) \geq |Z_d|$. This relation was used by Mason, Odoni and Stothers[3] to show that for $|d| > 10^{476}$, $r(d) \geq 2$, that is, Γ_d has a free non-abelian quotient, and that, as $|d| \to \infty$, we have $r(d) \gg \log d$. The difficulties in estimating $|Z_d|$ come from the fact that one has to bound sums of highly imprimitive characters, here, we avoid this problem by incorporating a sifting device into the character sum. This approach is similar to the one used in [4]. We will prove the following general estimate for imprimitive characters.

Theorem 1. Let $\chi \pmod{q}$ be a character, P an integer. Then we have for each x and parameter $2 \le R \le x$ the estimate

$$\sum_{\substack{n \le x \\ (n,P)=1}} \chi(n) \ll x^{1-\frac{1}{r}} R^{\frac{1}{r}} q^{\frac{r+1}{4r^2}+\epsilon} + x^{1+\epsilon} \sum_{\substack{R < t \le x \\ t \mid P}} \frac{1}{t},$$

where $r \in \mathbb{N}$ can be chosen arbitrarily, if q is cubefree up to a factor 8, and $r \in \{1, 2, 3\}$ in general.

Corollary 1. Let d < 0 be a fundamental discriminant, \mathcal{O}_d be the ring of integers in $\mathbb{Q}(\sqrt{d})$. Let $\Gamma_d = \mathrm{PSL}_2(\mathcal{O}_d)$ the Bianchi group corresponding to this ring. Then for each $\epsilon > 0$ there is a d_0 such that for $|d| > d_0$ the group Γ_d maps onto a free group of rank $\geq |d|^{\frac{1}{4}-\epsilon}$.

We will make use of the following version of Burgess' famous estimates for character sums.

Theorem 2. Let $\chi \pmod{q}$ be a non-principal character. Then we have for each $x \ge 2$ the estimate

$$\sum_{n \le x} \chi(n) \ll x^{1 - \frac{1}{r}} q^{\frac{r+1}{4r^2} + \epsilon}$$

where $r \in \mathbb{N}$ can be chosen arbitrarily, if q is cubefree, and $r \in \{1, 2, 3\}$ in general.

The restriction "q cubefree" can be somewhat lessened. If $q = q_1 q_2$ with q_2 cubefree, and $(q_1, q_2) = 1$, we can write each character $\chi \pmod{q}$ as $\chi_1 \chi_2$ where χ_i is a character modulo q_i . Then we have

$$\sum_{n \le x} \chi(n) = \sum_{(a,q)=1} \chi_1(a) \sum_{\substack{n \le x \\ n \equiv a \mod q_1}} \chi_2(n) \ll q_1(x/q_1)^{1 - \frac{1}{r}} q_2^{\frac{r+1}{4r^2} + \epsilon}.$$

In particular, if q is cubefree up to a factor 8, we obtain up to a constant the same estimates as for cubefree integers.

To prove Theorem 1, fix a parameter R, and decompose the sum to be estimated as

$$\begin{split} \sum_{\substack{n \le x \\ n, P) = 1}} \chi(n) &= \sum_{n \le x} \chi(n) \Big(\sum_{t \mid (n, P)} \mu(t) \Big) \\ &= \sum_{n \le x} \chi(n) \Big(\sum_{\substack{t \le R \\ t \mid (n, P)}} \mu(t) \Big) - \sum_{\substack{n \le x \\ (n, P) > 1}} \chi(n) \Big(\sum_{\substack{t \le R \\ t \mid (n, P)}} \mu(t) \Big) \\ &= \sum_{1} - \sum_{2}, \end{split}$$

say. To estimate \sum_{1} , we interchange the order of summation and obtain

$$\sum_{1} \leq \sum_{t \leq R} \left| \sum_{n \leq x/t} \chi(n) \right| \ll \sum_{t \leq R} (x/t)^{1 - \frac{1}{r}} q^{\frac{r+1}{4r^2} + \epsilon} \ll x^{1 - \frac{1}{r}} R^{\frac{1}{r}} q^{\frac{r+1}{4r^2} + \epsilon},$$

for all r admissible by Theorem 2. To bound \sum_2 , note that the inner sum vanishes for $2 \leq (n, P) \leq R$, hence, we may restrict the outer sum to terms with (n, P) > R. Trivially, the inner sum is bounded above by $\tau(n) \ll x^{\epsilon}$, and we obtain

$$\sum\nolimits_2 \ll x^{\epsilon} \# \{n \leq x: (n,P) > R\} \leq x^{\epsilon} \sum\limits_{t > R \atop t \mid P} \left[\frac{x}{t} \right].$$

The estimates for \sum_1 and \sum_2 now imply our theorem. To deduce Corollary 1, fix $c < c' < \frac{1}{4}$, $0 < \epsilon < c' - c$, and let d be a sufficiently large integer. Since $\mathbb{Q}(\sqrt{-m^2d}) = \mathbb{Q}(\sqrt{-d})$, we may suppose that d is squarefree. Denote by P be the product of all prime numbers p in the Zimmert set of d. Let χ be the character defined by $\chi(2) = 0$, $\chi(n) = \left(\frac{d}{n}\right)$ for n odd. Then χ is a character modulo q = 4d, and q is cubefree up to a possible factor 8. Setting $R = |d|^c$, $x = \frac{1}{2}\sqrt{|d|-3}$, and $r = \left|\frac{1}{1-4c'}\right|$ in Theorem 1, we obtain

$$\sum_{\substack{n \le x \\ (n,P)=1}} \chi(n) \ll |d|^{\frac{1}{2} - (\frac{1}{4} - c')^2} + x^{1+\epsilon} \sum_{\substack{R < t \le x \\ t \mid P}} \frac{1}{t}$$
$$\ll x^{1-\delta} + x^{1-2c'+\epsilon} \# \{R < t \le x : t \mid P\}$$
$$\le x^{1-\delta} + x^{1-c-c'} |Z_d|.$$

On the other hand, if $n \leq x$ and (n, Pd) = 1, then $\chi(n) = 1$. Restricting the sum to prime values n we deduce

$$\sum_{\substack{n \le x \\ (n,P)=1}} \chi(n) \ge \sum_{\substack{p \le x \\ p \nmid P \\ p \text{ prim}}} \chi(p) \ge \pi(x) - |Z_d| - \omega(|d|),$$

and comparing these estimates we obtain $|Z_d| \gg |d|^c$.

References

- D. A. Burgess, On character sums and L-series II, Proc. London Math. Soc. (3) 13 (1963), 524–536.
- [2] D. A. Burgess, The character sum estimate with r = 3, J. London Math. Soc. (2) **33** (1986), 219–226.
- [3] A. W. Mason, R. W. K. Odoni, W. W. Stothers, Almost all Bianchi groups have free, noncyclic quotients, Math. Proc. Cambridge Philos. Soc. 111 (1992), 1–6.
- [4] J.-C. Puchta, Primes in short arithmetic progressions, Acta Arith. 106 (2003), 143-149.
- [5] R. Zimmert, Zur SL₂ der ganzen Zahlen eines imaginär-quadratischen Zahlkörpers, Invent. Math. 19 (1973), 73–81.

Jan-Christoph Schlage-Puchta Mathematisches Institut Eckerstr. 1 79104 Freiburg Germany