
On triangular billiards

Abstract

We prove a conjecture of Kenyon and Smillie concerning the nonexis-
tence of acute rational-angled triangles with the lattice property.
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In a recent paper[4] on Billiards on rational-angled triangles, R. Kenyon and
J. Smillie proved the following theorem:

Theorem 1 Let T be an acute non-isosceles rational angled triangle with angles
α, β and γ, which can be written as p1π/q, p2π/q and p3π/q with q ≤ 10000.
Then T is a polygon with the lattice property if and only if (α, β, γ) is one of
the following:

(π/4, π/3, 5π/12), (π/5, π/3, 7π/15), (2π/9, π/3, 4π/9).

They further showed, that the restricition on q may be dropped, if the fol-
lowing conjecture was true(see [4], p. 94f):

Conjecture 2 Let n, s, t be integers with (n, s) = 1, 1 ≤ s, t < n. Assume that
for all p with (p, n) = 1 we have n

2 < ps mod n+ pt mod n < 3n
2 . Then one of

the following conditions hold true: n ≤ 78, s+ t = n, s+ 2t = n, 2s+ t = n, or
n is even, and |t− s| = n

2 .

In this note we will prove this conjecture:

Theorem 3 Conjecture 2 is true.

Note that the classification of non-obtuse rational angled triangles with the
lattice-property is complete, since the cases of isosceles and right angled triangles
are completely solved in [4], too.

By direct calculation, R. Kenyon and J. Smillie showed, that Theorem 3 is
true for n ≤ 10000. We will use this fact at several steps in the proof.

The proof will depend on several facts concerning the distribution of relative
prime residue classes, collected in the next Lemma. We write g(n) for the
Jacobsthal function, given by the maximal difference of consecutive integers
relatively prime to n, and ω(n) for the number of distinct prime factors of n.

Lemma 4 1. We have g(n) ≤ 2ω(n). If ω(n) ≤ 12, we have g(n) ≤ ω(n)2.

2. Assume that (a, d, n) = 1. Then in every interval [x, x + g(n)] there is
some integer ν, such that (n, dν + a) = 1.
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3. For all d > 2 there exists some a with (d, a) = 1 and d
12 < a < 5d

12 .

4. If m is the product of the first ω(n) prime numbers, then g(n) ≤ g(m).

5. We have g(30) = 6, g(210) = 10, g(2310) = 14, g(30030) = 22, g(510510) =
26, g(9699690) = 34.

Proof: The first statement was proven by Kanold[3]. To prove the second state-
ment note first that it is trivial if (d, n) = 1, for if dd′ ≡ 1 (mod n), then
the integers dd′ν + d′a are consecutive (mod n), and none is coprime to n,
contradicting the definition of g. Now we may without loss assume that n is
squarefree. If (d, n) = e > 1, the integers dν + a are coprime to n if and only
if they are coprime to n/e, thus using the case (n, d) = 1 we get that there is
some ν ∈ [x, x+ g(n/e)] such that (dν + a, n) = 1. The third statement follows
for d > 30 from the first one, for 3 ≤ d ≤ 30 by direct inspection. The fourth
statement was proven by Iwaniec[1]. The fifth statement can be checked by
direct computation.

Note that the fourth and fifth statement together greatly improve the first
one for ω(n) ≤ 8.

Note further that the asymptotic behaviour of g is much better understood,
using e.g. the result of Iwaniec[2], it is easy to show that there are at most
finitely many exceptions to conjecture 2. The difficult part of the proof of
Theorem 3 is to give an upper bound for n and find properties on the would-be-
counterexample which makes it feasible to rule out these finitely many values.

To prove our Theorem, we first note that we may choose s = 1, since other-
wise we replace p by p′ ≡ ps−1 (mod n). Then we have n

2 + 1 < t < n− 2. In
the first step we exclude odd values of n.

Assume that n is an odd counterexample to Theorem 3. Define the integer
k by the relation 1 − 1

2k
< t

n < 1 − 1
2k+1 , and a := t − (1 − 2−k)n. Since n is

odd, 2k is relatively prime to n, hence we get 2k + 2kt mod n > n
2 . But we have

2kt = (2k − 1)n+ 2ka, hence 2k(a+ 1) > n
2 , i.e. a > n

2k+1 − 1. By the definition

of k, we have a < n
2k+1 , thus t =

[
n
(
1− 1

2k+1

)]
. Write t = n

(
1− 1

2k+1

)
− α.

Next we give an upper bound for 2k. Write t = n − b. The cases b = 1
and b = 2 are excluded, since we would have s + t = n resp. 2s + t = n. If

p ∈
[

n
2(b−1) ,

n
b

]
, we have pt mod n+p < n

2 , thus if there is some p in this interval

relatively prime to n, we are done. Thus we have

n

b
− n

2(b− 1)
< g(n)

The left hand side is decreasing with b, thus if b <
√
n the left hand side is at

least n(
√
n−2)√

n(
√
n−1) , and for n > 10000 this is >

√
n
3 . Hence we obtain the bound

√
n < 3g(n). By Lemma 4 this implies ω(n) ≤ 4, thus g(n) ≤ 10 and n < 300.

Thus we may suppose b >
√
n.

Let q < 2k+1 be an odd prime, and define the integer l by the relation 2l <
q < 2l+1. Assume that q 6 |n. Then (q2k−l, n) = 1, thus we get q2k−lt mod n+
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q2k−l > n
2 . Using the relation t = n

(
1− 1

2k+1

)
−α with 0 < α < 1, this becomes

q2k−lt mod n+ q2k−l >
n

2

n− qn

2l+1
− q2k−lα+ q2k−l >

n

2
n

2
− qn

2l+1
+ q2k−l > 0

Since q ≥ 2l + 1, this implies

0 < − n

2l+1
+ q2k−l ≤ − n

2l+1
+ 2k+1 ≤ − n

2l+1
+
√
n

hence 2l+1 ≥
√
n. Thus n is divisible by all odd primes ≤

√
n. Using the

elementary bound θ(n) > n/2, where θ(x) =
∑

p≤x log p, this implies 2n >

e
√
n/2, which in turn implies n < 121. However, Theorem 3 is true for all

n < 10000, thus we conclude that it is true for all odd n.
Thus assume that (n, t) is a counterexample to Theorem 3 with n even.
We show that t cannot be too close to n/2 or to n. The proofs for these two

cases run parallel, and we will only give the first one. Set t = n
2 + b. Let p be

any integer relatively prime to n, in particular, p is odd. Then we have

pt =
pn

2
+ bp ≡ −n

2
+ bp (mod n)

thus if n is a counterexample to our Theorem, we conclude that bp 6∈ [n/2, 3n/2−
p], i.e. p 6∈

[
n
2b ,

3n
2b −

p
b

]
. The case b = 1 is excluded, thus the upper bound of this

interval is ≥ n
b , thus in particular we have p 6∈

[
n
2b ,

n
b

]
. But the only conditions

imposed on p were that p is odd and coprime to n. Since all even integers are
not coprime to n, we get that the interval

[
n
2b ,

n
b

]
contains no integer relatively

prime to n. Hence g(n) > n
2b , thus b > n

2g(n) , i.e. t > n/2 + n
2g(n) . In the same

way we have t < n− n
2g(n) .

Set w = (t, n). As p runs over all integers relatively prime to n, pt runs
over all integers with (pt, n) = w, and pt mod n has period n/w. Hence there
is some p < n/w, relatively prime to n with pt ≡ w (mod n). But then
pt mod n + p ≤ w + n/w, and this is ≤ n/2, unless w = 1, 2, n/2 or n. The
last two cases are trivially excluded. Thus we are left with the cases w = 1, 2.
Now t

n is a rational number with denominator >
√
n, thus applying Dirichlet’s

Theorem we find an integer d ≤
√
n and some e ≤ d, such that

∣∣dt
n − e

∣∣ < 1√
n

.

Assume that d = 1. Then
∣∣ t
n − e

∣∣ < 1√
n

, and because n/2 < t < n, we

conclude t > n −
√
n. Together with the bound proved above we obtain the

inequality
√
n > n

2g(n) , i.e. 2g(n) >
√
n. Using the first statement of Lemma 4,

this yields ω(n) ≤ 4, thus n < 1156, but for n < 10000 the Theorem is already
proven. In the same way we exclude the case d = 2. Now assume d > 2. Then by
Lemma 4, statement 3, we find some a relatively prime to d with d

12 < a < 5d
12 .

Let p be an integer relatively prime to n which also satisfies p ≡ ae−1 (mod d).
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Note that the right hand side exists, since (e, d) = 1. Write p = kd+ a′. Then
we have

pt =
pen

d
+ θ

p
√
n

d
= ken+

a′en

d
+ θ

p
√
n

d
≡ an

d
+ θ

p
√
n

d
(mod n)

where θ is some real number of absolute value < 1. But pt mod n is > n
2 − p,

thus either the right hand side is > n
2 − p, which yields

an

d
+
p
√
n

d
>
n

2
− p

or the right hand side is negative, which yields

an

d
− p
√
n

d
< 0

From now on, we will only consider the first inequality, because the second
one can be dealt with similarly, but gives a little stronger bounds. By the

choice of a we have a/d ≤ 5/12, thus we get p(
√
n
d + 1) > n/12. By Lemma 4,

statement 2, p can be chosen to be ≤ d(g(n)+1). Thus we obtain the inequality
(
√
n+d)(g(n)+1) > n/12. Since d ≤

√
n, we finally conclude g(n) >

√
n/24−1.

The bound g(n) < 2ω(n) shows that this is only possible for ω(n) ≤ 9. Now
the improved bound g(n) ≤ ω(n)2 lowers the bound to 7, and we can use the
fifth statement from Lemma 4 to conclude n < (24 · 27)2, thus ω(n) ≤ 6 and
n < (24 · 23)2 = 304704.

Assume that p is some prime number, such that the least positive residue of
ep (mod d) is in the interval [d/12, 5d/12]. Then by the argument above, we

get p(
√
n
d + 1) > n/12 or p|n. Hence all primes p which satisfy this congruence

condition, have to divide n. By the bounds given above, it suffices to find 7
such primes to exclude the pair (n, d).

To finish the proof of Theorem 3, note first that d ≤
√

304704 = 552. Choose
some d, and compute pmax = 10000

100/d+1 . Count the number of residue classes a

relatively prime to d, with d/12 < a < 5d/12, and call this number N .Count
the prime numbers up to pmax in all reduced residue classes (mod d), and
choose those N sequences with the least number of primes in it. If n is a
counterexample to Theorem 3, and d is corresponding in the sense described
above, then n is divisible by all these prime numbers, in particular there are at
most 6 such primes.

Doing this for all d ≤ 552, we found no d such that there could correspond
some n giving a counterexample to Theorem 3.

All computations were performed on a Silicon Graphics Indy workstation
using Mathematica 3.0.
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