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Abstract

Let Kq(n,R) denote the minimal cardinality of a q-ary code of
length n and covering radius R. Let σq(n, s; r) denote the minimal
cardinality of a q-ary code of length n, which is s-surjective with radius
r. In order to lower-bound Kq(n, n−2) and σq(n, s; s−2) we introduce
partition matrices and their transversals. Our approach leads to a
short new proof of a classical bound of Rodemich on Kq(n, n− 2) and
to the new bound Kq(n, n − 2) ≥ 3q − 2n + 2, improving the first iff
5 ≤ n < q ≤ 2n − 4. We determine Kq(q, q − 2) = q − 2 + σ2(q, 2; 0)
if q ≤ 10. Moreover, we obtain the new powerful recursive bound
Kq+1(n+ 1, R+ 1) ≥ min{2(q + 1),Kq(n,R) + 1}.
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1 Introduction

In the whole paper let q ≥ 2 and Zq = {0, 1, . . . , q − 1}. The following
generalized surjective codes have been introduced by Kéri and Österg̊ard.

Definition 1 (Kéri, Österg̊ard [6]). Let 0 ≤ r < s ≤ n. A q-ary code C ⊂ Zn
q

of length n is called s-surjective with radius r if for any s-tupel (k1, . . . , ks) ∈
Zs

n of pairwise distinct coordinates and any s-tuple (x1, . . . , xs) ∈ Zs
q there is a

codeword c = (c0, . . . , cn−1) ∈ C such that |{i ∈ {1, . . . , s} | cki = xi}| ≥ s−r.
Let σq(n, s; r) denote the minimal cardinality of a q-ary code of length n,
which is s-surjective with radius r.

Clearly, σq(n + 1, s; r) ≥ σq(n, s; r) and σq(n, r + 1; r) = q. For bounds
on σq(n, s; r) and tables of σq(n, s; 0) see Kéri, Österg̊ard [6, 7, 8]. We make
use of

Theorem 2 (Kéri, Österg̊ard [8]). σ3(5, 3; 1) = 7,

a result obtained in [8] by computational means.
A q-ary code of length n and covering radius (at most) R is a code C ⊂ Zn

q ,
which is n-surjective with radius R. As usual we set Kq(n,R) = σq(n, n;R).
For a monograph on covering codes see [4]. An updated table of bounds on
Kq(n,R) is published online by Kéri [5]. The generalized surjective codes
turned out to be a valuable tool in the theory of bounds for covering codes,
see [6, 8].

In the present paper we introduce partition matrices and their transver-
sals. The consideration of such matrices yields a natural, purely set combi-
natorial method to lower-bound σq(n, s; s− 2) and Kq(n, n− 2). Up to now
the most powerful lower bound on Kq(n, n− 2) is due to Rodemich [12]:

Kq(n, n− 2) ≥ q2

n− 1
. (1)

We use our approach to give on the one hand a short new proof of this
bound in a slightly improved version and on the other hand a substantial
improvement in certain cases, see Theorem 7 and Theorem 8.

Of special interest is the case n = q. Recall the following result.

Theorem 3 (Brace, Daykin [3], Kleitman, Spencer [9]). σ2(n, 2; 0) equals
the least integer M satisfying

n ≤
(
M − 1

bM
2
c − 1

)
.
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Hence, σ2(2, 2; 0) = σ2(3, 2; 0) = 4, σ2(4, 2; 0) = 5 and σ2(n, 2; 0) = 6 if
5 ≤ n ≤ 10. The bound

Kq(q, q − 2) ≤ q − 2 + σ2(q, 2; 0). (2)

is a special case of [11, Theorem 8], also confer [4, Theorem 3.7.7]. It is an
open problem, whether equality always holds. This is known to be the case
for q ≤ 4, see [4, 5]. We extend equality to q ≤ 10, see Corollary 10.

This paper is organized as follows. Section 2 is fundamental since it
presents the notion of a partition matrix and its connection to covering
codes as well as the new powerful recursive bound Kq+1(n + 1, R + 1) ≥
min{2(q+1), Kq(n,R)+1}. Section 3 contains the announced improvements
of Rodemich’s bound (1), while Section 4 leads to six new exact values on
Kq(q, q − 2). Section 5 collects all new lower bounds on Kq(n,R) from this
paper.

2 Partition Matrices and Covering Codes

The following definition is a modification of the one given in [1].

Definition 4. A q × n-matrix P = (Pik) (i ∈ Zq, k ∈ Zn) of subsets of ZM

is called an (n,M, q)-partition matrix if the sets of every column of P form a
partition of ZM . If additionally |

⋂
k∈Zn

Pikk| ≤ 1 for all words (i0, . . . , in−1) ∈
Zn

q then P is called strict.
A sequence of s pairwise disjoint subsets from pairwise distinct columns

of P is called an s-transversal (or a transversal of length s).

Theorem 5. If 2 ≤ s ≤ n then the following statements are equivalent:

(i) Every (n,M, q)-partition matrix has an s-transversal.

(ii) Every strict (n,M, q)-partition matrix has an s-transversal.

(iii) σq(n, s; s− 2) > M .

Proof. (i) ⇒ (ii): Trivial.
(ii) ⇒ (iii): Let C ⊂ Zn

q be a code of cardinality M . Let C = (cjk) (j ∈
ZM , k ∈ Zn) be the M × n-matrix obtained from C by using the codewords
row-wise in an arbitrary order. For i ∈ Zq, k ∈ Zn set Pik = {j ∈ ZM | cjk =
i}. Then P = (Pik) is a strict (n,M, q)-partition matrix. By assumption,
it has an s-transversal (Pxiki)i∈{1,...,s}. Then for every j ∈ ZM the equation
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cjki = xi holds for at most one i ∈ {1, . . . , s}. Hence, C is not s-surjective
with radius s− 2.

(iii) ⇒ (i): Let P = (Pik) be a (n,M, q)-partition matrix. For every
j ∈ ZM and every k ∈ Zn there exists exactly one cjk := i ∈ Zq with j ∈ Pik.
Then C := {(cj0, . . . , cj,n−1) ∈ Zn

q | j ∈ ZM} is a code of cardinality |C| ≤M
which by our assumption is not s-surjective with radius s− 2. Hence, there
is an s-tupel (k1, . . . , ks) ∈ Zs

n of pairwise distinct coordinates and an s-tupel
(x1, . . . , xs) ∈ Zs

q such that for every j ∈ ZM the equation cjki = xi holds
for at most one i ∈ {1, . . . , s}. Consequently, (Pxiki)i∈{1,...,s} is the desired
s-transversal.

The next theorem contains a powerful new recursive bound on Kq(n,R),
confer the table in Section 5.

Theorem 6. If r < s then σq+1(n+1, s+1; r+1) ≥ min{2(q+1), σq(n, s; r)+
1}. Especially Kq+1(n+ 1, R + 1) ≥ min{2(q + 1), Kq(n,R) + 1} if R < n.

Proof. In case of s − r = 1, the theorem follows from σq(n, r + 1; r) =
q. Assume s − r ≥ 2. Let C ⊂ Zn+1

q+1 be a code of cardinality min{2q +
1, σq(n, s; r)}. For i ∈ Zn+1, z ∈ Zq+1 we set Ciz = {(y0, . . . , yn) ∈ C | yi = z}
and

f : Zq+1 → Zq, z 7→
{
z if z < q
0 if z = q.

There is a z ∈ Zq+1 such that |Cnz| ≤ 1. W.l.o.g. let z = q and Cnq ⊂⋂n−1
i=0 Ciq 6= ∅. Put

C ′ :=

{
(f(y0), . . . , f(yn−1)) ∈ Zn

q | (y0, . . . , yn) ∈ C \
n−1⋂
i=0

Ciq

}
.

Since |C ′| < |C| ≤ σq(n, s; r), the code C ′ is not s-surjective with radius r.
Hence, there is an s-tupel k ∈ Zs

n of pairwise distinct coordinates and an
s-tupel x ∈ Zs

q such that for every c ∈ C ′ the equation cki = xi holds for less

than s− r coordinates. Put k̄ := (k, n) ∈ Zs+1
n+1 and x̄ := (x, q) ∈ Zs+1

q+1. Then
for every c̄ ∈ C the equation c̄k̄i = x̄i holds for less than s − r coordinates.
Thus, C is not (s+ 1)-surjective with radius r + 1.

3 On Rodemich’s Bound

As a first application of Theorem 5 we give a new proof of Rodemich’s bound
(1) in the following slightly improved version.
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Theorem 7. Let p ∈ Zn−1 such that q ≡ p (mod n− 1). Then

Kq(n, n− 2) ≥ q2 − p2

n− 1
+ p. (3)

Proof. Consider an (n,M, q)-partition matrix P without n-transversal. By
Theorem 5 (with s = n) it suffices to show, that M can be lower-bounded
by the right-hand side of (3).

We define the notion of a minimal s-transversal in P recursively as follows:
a 0-transversal is minimal and an s-transversal Ts = (Pxiki)i∈{1,...,s} with s ≥ 1
is minimal, if it contains a minimal (s − 1)-transversal, and if among all s-
transversals with this property,

l(Ts) :=

∣∣∣∣∣
s⋃

i=1

Pxiki

∣∣∣∣∣ =
s∑

i=1

|Pxiki |

is minimal. Let t be the largest integer, such that there exists a minimal
t-transversal Tt = (Pxiki)i∈{1,...,t} in P . We have 1 ≤ t ≤ n − 1 since P
is supposed to be without n-transversal. For every s ∈ {1, . . . , t} we set
As = Pxsks and may assume that Tt = (A1, . . . , At) is ordered in such a
way, that Ts := (A1, . . . , As) is a minimal s-transversal. Moreover, for every
s ∈ {1, . . . , t} set ls = |As| and Ls = l(Ts) = l1 + . . . + ls as well as L0 = 0.
By t ≤ n−1 there is a column k ∈ Zn of P , which is not used in Tt. Without
loss

|P0k| ≤ |P1k| ≤ . . . ≤ |Pq−1,k|. (4)

Now let u be the largest integer ≤ t with Lu < q. We have u ≤ t − 1
(≤ n−2) since otherwise u = t and at least one set of column k is disjoint to
A1∪ . . .∪At, which means, that Tt could be extended to a (t+1)-transversal,
contradicting the maximality of t. We now claim that at least q − Lu sets
of column k have cardinality ≥ q − Lu: if this was not true, there would
be ≥ Lu + 1 sets in column k with cardinality < q − Lu, that is, we could
extend the transversal Tu by some set of column k to a transversal T ′ with
l(T ′) < q ≤ Lu+1 = l(Tu+1), contradicting the minimality of Tu+1. Similarly,
for each s ∈ Zu there are at least q − Ls sets of column k with cardinality
≥ ls+1, for otherwise Ts+1 would not be minimal. By (4) we have |Pik| ≥ q−Lu

if i ≥ Lu and |Pik| ≥ ls+1 if i ≥ Ls, s ∈ Zu. Thus we obtain

M =

∣∣∣∣∣
q−1⋃
i=0

Pik

∣∣∣∣∣ =
u−1∑
s=0

∑
Ls≤i<Ls+1

|Pik|+
∑

Lu≤i<q

|Pik| ≥
u−1∑
s=0

l2s+1 + (q − Lu)2.
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The right-hand side of this inequality is a sum of the squares of u+1 integers
which theirselves sum up to q. It is well-known that such a sum is minimal if
u+ 1 is maximal (i.e. u+ 1 = n− 1) and the mutual distances of the integers
are minimal, that is,

M ≥ (n− 1− p)
⌊

q

n− 1

⌋2

+ p

⌈
q

n− 1

⌉2

=
q2

n− 1
+ p− p2

n− 1
.

The following new result improves Rodemich’s bound (1) iff 5 ≤ n < q ≤
2n− 4.

Theorem 8. Kq(n, n− 2) ≥ 3q − 2n+ 2.

Proof. Let P = (Pik) be an (n, 3q−2n+1, q)-partition matrix. By Theorem 5
it suffices to show, that P has an n-transversal. Choose a transversal T of
maximal length (say t) consisting of sets with cardinality ≤ 1. If t = n
then the claim follows, so let t < n. W.l.o.g. the subsets of T are from the
first t columns of P . Let p be the number of 1-sets in T . Consider column
k ∈ Zn \Zt and let a be the number of 1-sets in this column. The maximality
of T implies that there is no empty set in this column and a ≤ p. Hence, the
number of sets of cardinality ≥ 3 in this column is ≤ (3q−2n+1−a)−2(q−
a) ≤ q − 2n + p + 1. Recursively, we now define a sequence (Ts)s∈{t,...,n} of
s-transversals consisting of sets of cardinality ≤ 2 only. Set Tt := T . Assume
Ts0 is already defined for an s0 with t ≤ s0 < n.

Then the number of sets of a column not used in Ts0 , which are not
disjoint to all sets of Ts0 is ≤ p + 2(s0 − t). Hence, the number of 2-sets in
this column, which are disjoint to all sets of Ts0 is

≥ q − (q − 2n+ p+ 1)− (p+ 2(s0 − t)) ≥ 2(n− s0)− 1 ≥ 1.

Choose such a set and add it to Ts0 in order to obtain Ts0+1, still consisting
of sets of cardinality ≤ 2. Finally, Tn is the desired n-transversal.

Bound (1) implies for instance K3n(2n + 1, 2n − 1) ≥ 9n/2, while Theo-
rem 8 improves it to K3n(2n+ 1, 2n− 1) ≥ 5n.
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4 Exact Values

The application of partition matrices and their transversals is also suitable for
obtaining specific lower bounds. For instance the following result, together
with Theorem 6, leads to six new exact values on Kq(q, q − 2), extending
equality in (2) to q ≤ 10.

Theorem 9. K5(5, 3) = 9.

Proof. The upper bound follows from (2). For the lower bound we will prove
that every (5, 8, 5)-partition matrix P has a 5-transversal by considering sev-
eral cases. We may assume that P does not contain an empty set since
otherwise the bound K5(4, 2) ≥ 9 (see (1)) leads to a 5-transversal. Let t
be the maximal length of a transversal T consisting of sets of cardinality 1.
Clearly, t ≥ 2 since each column of P contains at least two sets of cardinality
1. If t ≥ 4 then the claim follows easily. So it remains to consider the cases
t = 2 and t = 3.

Let t = 2. Because of the maximality of T every column of P consists of
three 2-sets and the same two 1-sets, say {6} and {7}. W.l.o.g. {6} = P3k

and {7} = P4k for k ∈ Z5. Delete row 3 and 4 to obtain a (5, 6, 3)-partition
matrix. By Theorem 2 and 5, it has a 3-transversal. Thus, P has a 5-
transversal.

Let t = 3. For k ∈ Z5 and x ∈ Z8 set

sk(x) =

{
1 if {x} occurs in column k
0 otherwise

and s(x) =
∑4

k=0 sk(x). W.l.o.g. let k5, k6, k7 ∈ Z5 be pairwise distinct
columns such that sk5(5) = sk6(6) = sk7(7) = 1 and

s(7) ≥ s(6) ≥ s(5). (5)

Set {k′, k′′} = Z5 \ {k5, k6, k7} and sk = sk(5) + sk(6) + sk(7) for all k ∈ Z5.
Clearly, sk5 , sk6 , sk7 ≥ 1. The maximality of T implies sk′ , sk′′ ≥ 2.

Next, we proof the following auxiliary statement: s(7) ≥ 4, s(6) ≥ 3,
if there is a column l ∈ Z5 such that sl = 1 then s(6) ≥ 4. First assume
there is an l with sl = 1. Clearly, l ∈ {k5, k6, k7}. Let l = ka, i.e. sl(a) = 1,
and {a′, a′′} = {5, 6, 7} \ {a}. Since every column of P contains at least
two sets of cardinality 1, there is an x ∈ Z5 such that sl(x) = 1. Set
{l′, l′′} = {k5, k6, k7} \ {l}. The maximality of T implies sk′(a) = sk′′(a) = 0
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and, hence, sk′(a
′) = sk′′(a

′) = sk′(a
′′) = sk′′(a

′′) = 1. The maximality also
implies sl′(a

′) = sl′′(a
′) = sl′(a

′′) = sl′′(a
′′) = 1 as well as sl′(a) = sl′′(a) = 0.

Consequently, s(a) = 1, s(a′) = s(a′′) = 4. Finally, a = 5 and {a′, a′′} =
{6, 7} follow by (5), implying s(7), s(6) ≥ 4. Now assume there is no l with
sl = 1 then s(5)+s(6)+s(7) =

∑4
k=0 sk ≥ 5 ·2 = 10. Recall s(7) ≤ 5. By (5)

it turns out that s(7) ≥ 4 and s(6) ≥ 3, finishing the proof of the auxiliary
statement.

W.l.o.g. let 6, 7 ∈ P3k ∪ P4k for all k ∈ Z5. Delete row 3 and 4 of P and
add, if necessary, some elements of Z6 to obtain a (5, 6, 3)-partition matrix
P ′. By Theorem 2 and 5, it has a 3-transversal, say P ′02, P

′
03, P

′
04. W.l.o.g.

let 5 /∈ P ′03 ∪ P ′04 and s0(7) = 1 by the auxiliary statement. If s1(6) = 1
or s0(6) = s1(7) = 1 then {7}, {6}, P02, P03, P04 is the desired 5-transversal.
If s1(6) = s0(6) = 0 then the auxiliary statement implies s2(6) = 1, since
s(6) ≥ 3, and s1(5) = 1, since s1 ≥ 2, so that {7}, {5}, {6}, P03, P04 is the
desired 5-transversal. If s1(6) = s1(7) = 0 then s1 = s1(5) = 1 and s2(6) = 1
by the auxiliary statement, so that again {7}, {5}, {6}, P03, P04 is the desired
5-transversal.

Corollary 10. Kq(q, q − 2) = q − 2 + σ2(q, 2; 0) if q ≤ 10.

Proof. Apply (2), Theorem 6 and Theorem 9.

It appears to the authors, that the method can improve many of the
currently best known lower bounds on Kq(n, n− 2) in Kéri’s tables [5]. The
same holds for lower bounds on σq(n, s; s − 2). In particular, we announce
K5(4, 2) = 11 and a non-computational proof of Theorem 2.

5 A Table with New Lower Bounds

Table 1 collects all new lower bounds on Kq(n,R) from this paper. Entries
in bold are exact. We use the inequality

Kq(n1 + n2, R1 +R2 + 1) ≥ min{Kq(n1, R1), Kq(n2, R2)} (6)

due to Bhandari, Durairajan [2].
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Table 1. New lower bounds on Kq(n,R)

Kq(n,R) Reference Old Lower New Lower Upper
Bound [5] Bound Bound [5]

K5(5, 3) Theorem 9 8 9 9
K5(9, 6) Inequality (6) 8 9 15
K5(10, 7) Inequality (6) 8 9 10
K6(6, 4) Theorem 6 8 10 10
K7(5, 3) Theorem 6 13 14 17
K7(6, 4) Theorem 6 10 11 15
K7(7, 5) Theorem 6 9 11 11
K7(9, 6) Theorem 6 13 14 37
K7(10, 7) Inequality (6) 13 14 37
K8(6, 4) Theorem 6 13 15 20
K8(7, 5) Theorem 6 11 12 16
K8(8, 6) Theorem 6 10 12 12
K9(6, 4) Theorem 6 17 18 24
K9(7, 5) Theorem 6 14 16 21
K9(8, 6) Theorem 6 12 13 17
K9(9, 7) Theorem 6 11 13 13
K10(7, 5) Theorem 6 17 19 26
K10(8, 6) Theorem 6 15 17 22
K10(9, 7) Theorem 6 13 14 18
K10(10, 8) Theorem 6 12 14 14
K11(7, 5) Theorem 6 21 22 31
K11(8, 6) Theorem 6 18 20 27
K12(6, 4) Theorem 7 29 30 41
K12(8, 6) Theorem 6 21 23 32
K13(6, 4) Theorem 7 34 35 46
K14(7, 5) Theorem 7 33 34 48
K15(7, 5) Theorem 7 38 39 54
K16(7, 5) Theorem 7 43 44 60
K16(8, 6) Theorem 7 37 38 56
K17(6, 4) Theorem 7 58 59 73
K17(8, 6) Theorem 7 42 43 63
K18(6, 4) Theorem 7 65 66 80
K18(8, 6) Theorem 7 47 48 70
K19(8, 6) Theorem 7 52 53 77
K20(7, 5) Theorem 7 67 68 89
K21(7, 5) Theorem 7 74 75 989
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