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Abstract. We show that universal elliptic Carmichael numbers do not exist,

answering a question of Silverman. Moreover, we show that the probability

that an integer n, which is not a prime power, is an elliptic Carmichael number
for a random curve E with good reduction modulo n, is bounded above by

O(log−1 n). If we choose both n and E at random, the probability that n is

E-carmichael is bounded above by O(n−1/8+ε).
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1. Introduction and results

Let E be an elliptic curve defined over Q. Let L(s, E) =
∑
n≥1

an(E)
ns be the

L-series associated with E. If p is prime, then |E(Z/pZ)| = p− ap(E) + 1. Hence,
if an(E) is computable, checking whether |E(Z/nZ)| = n−an(E)+1 is a necessary
criterion for n to be prime. Unfortunately the order of E(Z/nZ) is not directly
accessible, so in practice one chooses a point P on the curve, and checks whether
(n− an(E) + 1)P = 0. If this condition is satisfied for every P ∈ E(Z/nZ), but n
is not a prime power, we say that n is a Carmichael number for the curve E.

Silverman[9] defined a universal elliptic Carmichael number to be an integer n,
which has at least two different prime factors, but n is a Carmichael number for
every elliptic curve E, which has good reduction modulo n, and asked whether
universal elliptic Carmichael numbers exist. Here we show that such numbers do
not exist. In fact, we can explicitly give parameters ap(E), which imply that n is not
an elliptic Carmichael number for the curve E. While very explicit, this proof leaves
the possibility that an integer n is elliptic Carmichael for most curves. Therefore
we are also interested in the probability that an integer n is elliptic Carmichael for
a random curve E. We prove the following.

Theorem 1. Let n be an integer, which is not a prime power.

(1) There exists a curve E with good reduction modulo n, such that n is not an
elliptic Carmichael number for E.

(2) As n tends to infinity, the probability that n is elliptic Carmichael for a
random curve E is O(log−1 n).

(3) If n ∈ [x, 2x] is chosen at random, and E is a random curve, then probability
that n is E-Carmichael is O(x−1/8+ε).

The implied constants are absolute and not too large, and come mostly from
replacing terms of the form log log n by logε n.
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Note that Luca and Shparlinski[5] considered the dual question to part 2 of
Theorem 1, i.e. if E is a fixed elliptic curve and n is chosen at random, then the
number of E-Carmichael integers in [x, 2x] is O( x

log log x ). The argument involved

is quite different from our arguments, in particular, we do not have to consider to
twists L(s, E, χ) of the L-series associated to E.

Our notation follows the standard for analytic number theory. We denote by
logk the k-fold iterated logarithm, e.g. log2 n = log log n, by ω(n) the number of
prime factors of n, P+(n) the largest prime factor of n. For an integer n =

∏
peii we

call γ(n) =
∏
pi the squarefree kernel of n. For an integer n and a prime number

p, denote by νp(n) the exponent of p in the prime decomposition of n, that is, the
largest k such that pk|n. For a group G we put exp(G), the exponent of G to be
the least integer n > 0, such that gn = 1 for all g ∈ G. We use � as a synonym
of = O(. . . ), an index at a Landau symbol indicates that the implied constants
depend on the index.

2. Preliminaries

In this section we collect results on the L-series of an elliptic curve and on
multiplicative number theory.

Our first two statements are well known, and can e.g. be found in [8].

Lemma 1. The function n 7→ an is multiplicative, and satisfies |an| ≤ 2ω(n)
√
n.

For each p there exists a comples number αp of modulus
√
p, such that apk = αk+αk.

Lemma 2. The group E(Z/pZ) is a two-generated abelian group, and we have
exp(E(Z/pkZ)) = pk−1 exp(E(Z/pZ)).

Define the function e : N→ N to be the multiplicative function satisfying e(pk) =
pdk/2e.

Lemma 3. Let G be a two generated abelian group. Then e(|G|)| divides exp(G).

Proof. It follows from the classification of finitely generated abelian groups, that G
can be written as G ∼= Z/n1Z ⊕ Z/n2Z with n1|n2. Clearly exp(G) = n2, and we
have that if pk|n1n2, then pdk/2e|n2. Hence our claim follows. �

We will repeatedly use the following alternative definition of an elliptic Carmichael
number, which is [9, Proposition 12].

Lemma 4. An integer n is elliptic Carmichael for the curve E if and only if
E has good reduction modulo n, and for each prime divisor p of n we have that
exp(E(Z/pνp(n)Z)) divides a− an + 1.

Deuring[2] determined the number of curves modulo p having prescribed order.

Lemma 5. Let p be a prime. Then the number of curves E modulo p with
|E(Z/pZ)| = p − ap + 1 equals H(4p − a2p), where H(n) is the Kronecker class

number, which can be computed as follows. Write n = n′f2, where n′ is squarefree
and (n′, f) = 1. Then

H(n) =

√
n

2π
L
(

1,
( ·
n′

))
ψ(f),
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where ψ is the multiplicative function defined by

ψ(pk) =


p−p−k
p−1 , if

(
p
n′

)
= 0,

1, if
(
p
n′

)
= 1,

p+1−2p−k
p−1 , if

(
p
n′

)
= −1.

The function ψ satisfies 1 ≤ ψ(f)� log2
2 f .

Using this result Lenstra[3] proved the following.

Lemma 6. Let p be a prime, S ⊆ [p − 2
√
p, p + 2

√
p] a set of integers. Then the

probability that an elliptic curve E chosen at random satisfies |E(Z/pZ)| ∈ S is

bounded above by O
(
|S|√
p log p log2

2 p
)

.

If |S| is not too small, we can do better.

Lemma 7. For every fixed c we have that if p is a prime, and S ⊆ [p−2
√
p, p+2

√
p]

a set of integers satisfying |S| > pc, then the probability P that an elliptic curve E
chosen at random satisfies |E(Z/pZ)| ∈ S satisfies

P �c
|S|
√
p

log3
2 p.

If S ⊆ [p− (2− c)√p, p+ (2− c)√p], we also have

P �c
|S|

√
p log2

2 p

For the proof of Lemma 7 we need some zero density estimate. Since we are not
interested in the implied constants, any result would do. We choose the following,
because it is at the same time quite simple and very well known. We refer the
reader to the Montgomery’s book [6] for more detailed information.

Lemma 8. For an integer Q, a real number T > 1, and a real number σ ≥ 1/2
define N(σ,Q, T ) to be the number of pairs (ρ, χ), where <ρ ≥ σ, |=ρ| ≤ T , χ
is a primitive character to a module q ≤ Q, and L(ρ, χ) = 0. Then we have

N(σ,Q, T )� (Q2T )
12
5 (1−σ) logC(QT ) for some constant C.

Proof of Lemma 7. It suffices to show that for all q ≤ Q = p + 2
√
p with at most

pc exceptions we have that

(1) log−12 q �c L

(
1,

(
·
q

))
� log2 q.

In view of Lemma 8 it suffices to prove that (1) holds true under the assumption

that L
(
s,
(
·
q

))
has no roots in the domain < s > 1 − c/8, |= s| ≤ Q. But under

these assumptions (1) was essentially shown by Littlewood[4]. �

Lemma 9. There exists an absolute constant c > 0, such that for all prime numbers
p ∈ [x, x2] with at most one exception we have that the probability that ap(E) = 1
holds true for a random curve E is � 1√

p log p .

Proof. This follows immediately from Lemma 5 and the fact that there is at most
one modulus q ∈ [x, x2] for which a Siegel zero exist. �
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We shall also use the following consequence of Baker’s bound for linear forms in
logarithms.

Lemma 10. Let p be a prime, E an elliptic curve. Then we have apk 6= 1 for all

k > 3 · 1020 log p(46 + log2 p).

Proof. Define αp as in Lemma 1. If apk = 1, then αk = 1− αk, thus

0 < Λ = |k logα− k logα− log(−1)| ≤ |α|−k = p−k/2.

Here α, α are algebraic numbers of degree 2 and height ≤ p, hence from the work
of Baker and Wüstholz (confer e.g. [1, Theorem 2.5]) we obtain

Λ ≥ exp(−9610 log2 pmax(1, log k)).

Comparing these bounds we obtain

k log p

2
≤ 9610 log2 pmax(1, log k),

k

2 log k
≤ 9610 log p,

which implies in particular k ≤ 3·1020 log p(46+log2 p). Hence our claim follows. �

Lemma 11. Let p be a prime, k an integer. Then there are ≤ k integers α1, . . . , αk,
such that for all a and all elliptic curves E we have that apk(E) = a implies ap(E) ∈
{α1, . . . , αk}. Similarly there are k integers, such that for all a and all elliptic curves
E we have that apk(E) ≡ a (mod p) implies (ap(E) mod p) ∈ {α1, . . . , αk}.

Proof. Define α as in Lemma 1. There are two complex numbers with modulus
pk/2 and real part a/2. We may replace α by α, and may therefore assume that αk

is uniquely determined by a. Hence there are k possible choices for α realizing a,
and our first claim follows. The second claim follows similarly by considering Fp2
in place of C. �

Lemma 12. The number of integers n ∈ [x, x +
√
x], which satisfy e(n) < n

k is

O(
√
x
k + x1/3 log3 x).

Proof. Write n = ab2c3, where a contains all prime divisors p of n, such that p2 - n,
c contains all prime divisors of n, which divide n with an odd exponent ≥ 3, and
b =

√
n/ac3. We have e(n) = n/bc, hence the number of integers n ∈ [x, x +

√
x]

satisfying e(n) < n
k equals∑

bc>k

[
x+
√
x

b2c3

]
−
[ x

b2c3

]
=

∑
bc>k

b2c3<M

√
x

b2c3
+O(M1/2)

+O(#{n ∈ [x, x+
√
x] : ∃b, c : bc > k, b2c3 > M, b2c3|n},

where M is a parameter to be chosen later. The first sum is O(
√
x
k ). To estimate

the set in the second error term consider all integers n ∈ [x, x+
√
x], which can be

written as n = ab2c3, where b2c3 >
√
x, and a ∈ [A, 2A], b ∈ [B, 2B], c ∈ [C, 2C].

Clearly the whole range can be covered by O(log3 x) such intervals, hence, it suffices
to estimate the maximum of the number of such n over all A,B,C with 25B2C3 >√
x. If two of the three integers a, b, c are determined, and M >

√
x, then there is
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at most one choice of the third such that ab2c3 ∈ [x, x+
√
x], thus we obtain that

the last error term is

� log3 xmax{min(AB,AC,BC) : AB2C3 ≤ x,B2C3 ≥M}.
It is easy to see that the maximum is attained for AB2C3 = x, hence the second
factor becomes

max{min(xB/M, xC/M,BC) : B2C3 ≥M}.
The function is non-decreasing in both B and C, hence, we may assume that
B2C3 = M , and we obtain that the last quantity is

max{min(x/(BC3), x/(B2C2), BC) : B2C3 = M} � x1/3,

since we can neglect the first term in the min and the side condition. Hence our
claim follows. �

3. Integers with special multiplicative structure in short intervals

In this section we estimate the number of integers n in an interval of the form
[x, x+ c

√
x], which satisfy certain constraints concerning their prime factorization.

Lemma 13. Let P be a set of prime numbers, and let x be a sufficiently large real
number. Then the number N of integers n in the interval [x, x +

√
x] which can

be written as dt, where d < x2/3 and t contains only prime factors from the set P
satisfies

N � |P|+
√
x log |P|
log x

.

If |P| < log x
4 log2 x

, then N � |P|.

Proof. Let N ⊆ [x, x+
√
x] be the set of integers which contain only prime factors

from P. We have ∏
n∈N

n ≤ x2|N |/3
∏
p∈P

∏
n∈N

pνp(n).

For a prime number p ∈ P the highest power of p dividing an element of [x, x+
√
x]

is ≤ x+
√
x. Subtracting this element from all other elements of N we see that∑

n∈N
νp(n) ≤ log(x+

√
x)

log p
+
∑
k≥1

kmin

(
N,

[√
x

pk

])

≤ log(x+
√
x)

log p
+ 4 min

(
N,

√
x

p

)
On the other hand we have

∏
n∈N n ≥ xN . If we compare these bounds we obtain

N | log x1/3 ≤ |P| log(x+
√
x) +N

∑
p∈P

p<
√
x/N

log p+
√
x
∑
p∈P

p>
√
x/N

log p

p

≤ 2|P| log x+ (1 + o(1))N log

√
x

N
+ (1 + o(1))

√
x log |P|

If N >
√
x

log x , the first claim holds true anyway. Otherwise we obtain

N ≤ 6|P|+ 2N
log2 x

log x
+ 3

√
x log |P|
log x

,



6 JAN-CHRISTOPH SCHLAGE-PUCHTA

and the first claim holds true again. If |P| < log2 x
4 log x , we estimate

∑
p∈P log p using

the prime number theorem to be ≤ ( 1
4 + o(1)) log x. Hence

1

3
N log x ≤ 2|P| log x+

1

4
N log x,

which implies N ≤ 24|P|. �

Next we prove the following.

Lemma 14. There exists some c > 0, such that for x sufficiently large there are
at least c

√
x integers n ∈ [x, x+ 0.1

√
x] which satisfy P+(n) > x1/2+c.

Note that the question of finding integers with a large prime factor in a short
interval has been studied since the work of Ramachandra[7], who proved that there
is some c > 0 such that [x, x + x1/2−c] contains an integer divisible by a prime
factor > x1/2+1/13, however, for the present application we need that such integers
not only exist but in fact are quite frequent. Still, although we could not find this
result in the literature, the methods we use here are not new, and we will therefore
be quite brief. The proof relies on the following two results.

Lemma 15 (Vaughan’s identity). For integers U, V, n with U < n we have

Λ(n) = −
∑

mdr=n
m≤U
d≤V

Λ(m)µ(d) +
∑
hd=n
d≤V

µ(d) log h−
∑
mk=n
m>U
k>1

Λ(m)

(∑
d|k
d≤V

µ(d)

)

The following follows from Weyl’s estimates.

Lemma 16. There is some α < 1, such that for N < x2/3 we have
∑
N≤n<2N e

2πix/n �
Nα

Proof of Lemma 14. We estimate the number of integers in the interval [x, x +
0.1
√
x], which have a prime factor ≥ N by computing the sum

∑
n≥N

Λ(n)

([
x+ 0.1

√
x

n

]
−
[x
n

])
=

∑
n≤x+0.1

√
x

Λ(n)

[
x+ 0.1

√
x

n

]
−

∑
n≤x+0.1

√
x

Λ(n)
[x
n

]
−
∑
n≤N

Λ(n)

([
x+ 0.1

√
x

n

]
−
[x
n

])

= log[x+ 0.1
√
x]!− log[x]!−

∑
n≤N

Λ(n)

([
x+ 0.1

√
x

n

]
−
[x
n

])

= 0.1
√
x log x+O(log x)−

∑
n≤N

Λ(n)

([
x+ 0.1

√
x

n

]
−
[x
n

])
.
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Let B(t) = t− [t]− 1
2 be the saw tooth function. Then we have

∑
N≤n<2N

Λ(n)

([
x+ 0.1

√
x

n

]
−
[x
n

])
= 0.1

√
x

∑
N≤n<2N

Λ(n)

n
+O

 ∑
N≤n<2N

Λ(n)B
(x
n

)
+O

 ∑
N≤n<2N

Λ(n)B

(
x+ 0.1

√
x

n

)
=

( log 2

10
+ o(1)

)√
x+O

 ∑
N≤n<2N

Λ(n)B
(x
n

)
+O

 ∑
N≤n<2N

Λ(n)B

(
x+ 0.1

√
x

n

)
Approximating B by a trigonometric polynomial and applying Lemma 15 and
Lemma 16 we see that for N < x2/3 the error terms are � Nα for some α < 1.
Putting these estimates together we obtain∑

n≥N

Λ(n)

([
x+ 0.1

√
x

n

]
−
[x
n

])
= 0.1

√
x log x− 0.1

√
x logN +O(Nα).

Hence, if N < cx1/(2α), and c is sufficiently small, the left hand side of the last
equation is ≥ 0.05

√
x log x, and our claim follows. �

4. Proof of Theorem 1: The non-existence of universal Carmichael
numbers

In this section we prove the first part of Theorem 1. We begin with the case that
n is not squarefree.

Lemma 17. A universal elliptic Carmichael number is squarefree.

Proof. Let q be a prime number such that q2|n, and let E be a curve such that
aq = 0. Then the algebraic number α defined in Lemma 1 equals

√
−p. Hence we

obtain

aqνq(n) = 2< (−p)νq(n)/2) =

{
0, νq(n) ≡ 1 (mod 2),

±2pνq(n)/2, νq(n) ≡ 0 (mod 2).

By multiplicativity we conclude that q|an. Since q|n, we obtain that n− an + 1 is
not divisible by q. But since q2|n we have that q| exp(E(Z/qνq(n)Z)), hence, from
Lemma 4 we see that n is not an elliptic Carmichael number for E. �

Next we consider the case that n is squarefree.

Lemma 18. Let n be a squarefree integer which has two different prime factors
p, q, and let E be an elliptic curve which satisfies ap(E) = 1, aq(E) = 0. Then n is
not elliptic Carmichael for the curve E.

Proof. From aq(E) = 0 and multiplicativity we obtain an = 0. On the other hand
ap = 1 implies that exp(E(Z/pZ)) = p, hence if n is elliptic Carmichael for E, then
p divides both n and n− an + 1 = n+ 1, which is impossible. �
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Clearly the case ap = 0 is quite special. If n is not the power of a single prime,
we can give examples of elliptic curves for which n is not E-Carmichael which are
not supersingular for any prime divisor of n, however, for the prime power case we
did not find such examples. Unless n has a lot of very small prime divisors, the
probability for the event an = 0 is very small, which might leave the impression that
being E-Carmichael is not a rare event. This impression was the main motivation
for the remaining parts of Theorem 1.

5. Proof of Theorem 1: the probability for n fixed

The proof of the second part of Theorem 1 follows a bootstrap strategy. Our
aim is to show that a potential counterexample has to be divisible by many small
prime numbers to the first power. To do so we show that if n is a counterexample,
then n is not divisible by large primes, and by only few medium sized primes, and
that n

γ(n) is small. We shall begin with rather weak results in this direction, and

then use the results on large prime divisors to strengthen the results on γ(n), and
vice versa.

Lemma 19. Let n be an integer satisfying γ(n) ≤ 2−ω(n)
√
n. Then the probability

that n is an elliptic Carmichael number for a random curve E is O(e−c
log1/3 n
log2 n ) for

some c > 0.

Proof. If E is a curve, for which n is an elliptic Carmichael number, then we have
that exp(E(Z/nZ)) divides n − an + 1. From Lemma 2 we see that n

γ(n) divides

exp(E(Z/nZ)), hence n
γ(n) |n−an + 1. Clearly n

γ(n) |n, and we have |an| ≤ 2ω(n)
√
n,

thus our assumptions imply an = 1. By multiplicativity this implies apνp(n) = ±1
for all prime divisors p of n.

From Lemma 10 we find that νp(n) � log p log2 p for all prime divisors p of
n. From Lemma 6 and 11 we see that the probability that apνp(n) = ±1 is �
νp(n) log p log

2
2 p√

p � log2 p log3
2 p√

p . Suppose that n has a prime divisor p0 > e
3
√
logn.

Then the probability for a
p
νp0 (n)

0

= ±1 is � e−
3
√
logn/2 log n, which is sufficiently

small. If n has no prime divisor ≥ e 3
√
logn, then we have for each prime divisor p of

n that

pνp(n) ≤ eO(log2 p log2 p) ≤ eO(log2/3 n log2 n),

thus n has � log1/3 n
log2 n

different prime divisors. For each of them with a bounded

number of exceptions we have that the probability for the event apνp(n) = ±1 is

≤ 1/2, hence, the probability for the event that apνp(n) = ±1 for all prime divisors

of n is < e−c
log1/3 n
log2 n , and our claim follows. �

Lemma 20. There exists some c > 0, such that for every ε > 0 there exists some
n0 such that all integers n > n0 with γ(n) < n

log4 n
we have that the probability that

n is an elliptic Carmichael number for random curve E is O(log−1 n).

Proof. Assume first that n is divisible by a prime number p, such that p2 - n. If n
is an elliptic Carmichael number for E, then exp(E(Z/nZ)) is divisible by n/γ(n),
hence we have an ≡ 1 (mod n/γ(n)). By multiplicativity this implies ap ≡ ±1

(mod n/γ(n)), that is, ap takes on only O(1 +
√
p

n/γ(n) ) values. We conclude that
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the probability that n is elliptic Carmichael for a random curve is bounded above
by

O(
log p(log log p)2

n/γ(n)
+

log p(log log p)2
√
p

) = O(
log2 p
√
p

).

Clearly the conditions ap ≡ ±1 (mod n
γ(n) ) are independent for different primes p,

hence we conclude that if the product of all primes p|n, such that p2 - n supersedes
log2 n log4

2 n, then the probability for n to be E-Carmichael is � 1
logn .

Next suppose that p ≥ 5 is a prime, such that p2|n. We have n
γ(n) | exp(E(Z/nZ)),

hence, if n is elliptic Carmichael for the curve E, then

n

γ(n)

∣∣∣∣n− an/pνp(n)apνp(n) + 1.

Since n
γ(n) |n, and n

γ(n) ≥ p
νp(n)−1 ≥ pνp(n)/2, we conclude that apνp(n) is determined

in O(1) ways. This in turn implies that ap is determined in O(νp(n)) ways, and
we find that the probability that n is E-Carmichael for a random curve is bounded
above by

νp(n) log p log2 p√
p

� log n log p log2 p√
n

.

Hence if p > log4 n log4
2 n, our claim follows as well.

In particular we find that if n has a prime divisor p > C log4 n log4
2 n, then n is

E-Carmichael with probability O(log−1 n), no matter whether p2|n or not.
Next suppose that n is divisible by 3 prime numbers p1, p2, p3, such that pi >

1
10 log n, and 2 ≤ νpi(n) ≤ 4. Put Q =

∏3
i=1 p

νpi (n)

i . Then we have that aQ is

uniquely determined modulo Q
γ(Q) , and since 16

√
Q � Q

γ(Q) , we have that aQ is

determined in O(1) ways. If aQ is fixed, then a
p
νp1

(n)

1

, a
p
νp2

(n)

2

, a
p
νp3

(n)

3

are three

integers with product aQ, thus the number of choices for this triple is bounded
above by

max
m≤Q

τ3(m)� eO( logQ
log2 Q

) � eO(
log2 n
log3 n

).

We conclude that the number of choices for the triple (ap1 , ap2 , ap3) is � logε n.

Each fixed triple can be reached with probability � logε n√
P

. Hence the probability

that n is E-Carmichael is bounded above by

logε n

P
� 1

log3/2−ε n
,

and we are done.
We now bound γ(n). We have

γ(n) =
∏
p|n

p

=
∏
p|n
p2-n

p
∏
p|n

2≤νp(n)≤4

p
∏
p|n

νp(n)≥5

p

≤ log18 n
∏

p< 1
10 logn

p
∏
p5|n

p

� n3/10 log18 n,
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and we are in the range already covered by Lemma 19. �

Lemma 21. Suppose that n is divisible by a prime number p > n0.7. Then the
probability that n is elliptic Carmichael for a random elliptic curve is O(n−0.05).

Proof. Write n = dp. Then we have e(p − ap + 1)|n − an + 1, that is, e(p − ap +
1)|dp− adap + 1. Since e(p− ap + 1) divides p− ap + 1, we obtain

e(p−ap+1)|n−an+1−d(p−ap+1) = (d−ad)ap−d+1 ≤ 2(d+2
√
d)
√
p ≤ 3n
√
p
≤ 3n0.65.

If n − an + 1 − d(p − ap + 1) 6= 0, we obtain that e(p − ap + 1) < pn−0.05, which
happens with probability � n−0.05 in view of Lemma 12. If this quantity vanishes,
then the divisibility property becomes trivial. But then we have ap = d−1

d−ad , which
has at most one solution. Hence the probability for the event that this quantity

vanishes is O( log p log2 p√
p ), which is even smaller. �

The previous lemma will not be used directly, but together with Lemma 20 we
obtain the following, which shall be used repeatedly.

Lemma 22. Suppose that n has not two prime divisors p1, p2, which satisfy pi >
0.1 log n, and p2i - n. Then the probability that n is elliptic Carmichael for a random

curve E is O(log−1 n).

Proof. Let n be an integer. If P+(n) > n0.7 or n
γ(n) > log4 n, our claim follows

from Lemma 21 or Lemma 20, respectively. Hence assume that n satisfies none of
these statements. We claim that for n sufficiently large this already implies that n
has two prime divisors as described in the lemma. To see this assume the contrary.
Let p1, p2 be the two largest prime divisors of n such that p2i - n. We want to show
that these divisors exist and satisfy pi > 0.1 log n. Suppose the contrary. Then we
have

n ≤
∏

p<0.1 logn

p · P+(n) ·
(

n

γ(n)

)2

≤ e(0.1+o(1)) lognn0.7 log8 n < n0.9,

which gives a contradiction. �

Lemma 23. Let n be an integer, p1 < p2 be prime divisors of n such that p2i - n.
Write n = dp1p2. Let E an elliptic curve such that n is elliptic Carmichael for E.
then one of the following holds true:

(1) ap1 is uniquely determined by ad, ap2 ;

(2) e(p2 − ap2 + 1) < 4
√
p1(p2/p1)1/6;

(3) Putting t = (e(p2 − ap2 + 1), n+ 1) we have t|adap2 and t > p
1/3
2 .

Proof. If n is elliptic Carmichael for E, then

e(p2 − ap2 + 1)|n− an + 1 = n− adap1ap2 + 1.

Assume that ad and ap2 are given. Put t = (e(p2 − ap2 + 1), n+ 1). Then t|adap2 ,

and ap1 is uniquely determined modulo q =
e(p2−ap2+1)

t . On the other hand we
have |ap1 | ≤ 2

√
p, hence, if q > 4

√
p1, then we have that ap1 is uniquely determined

in terms of ad, ap2 . If q < 4
√
p1, we have that t > p

1/3
2 or e(p2 − ap2 + 1) <

4
√
p1(p2/p1)1/6. Hence in any case one of the statements (1)–(3) has to be true. �
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Lemma 24. Suppose that n has L different prime divisors ≤ M2. Then n is
E-Carmichael with probability O(log−1 n).

Proof. For 1 ≤ ν ≤ M let aν be the number of prime divisors of n in the interval
[ν2, (ν + 1)2). If p is a prime divisor of n in [ν2, (ν + 1)2), then by the lower bound
contained in Lemma 6 we have with probability ≥ aν−1

ν log ν log2 ν
that (p−ap+ 1, n) ≥

ν. �

Lemma 25. The probability that n is elliptic Carmichael for a random curve E
and at the same time an(E) = 0 is O(log−1 n).

Proof. Suppose that n has two prime divisors p1, p2 > elog
2/3 n. Then we obtain

e(pi−ap+1)|n+1, and by Lemma 13 the probability for this event is� logω(n+1)
log pi

≤
log2 n

log2/3 n
. Since these two events are independent, our claim follows in this case.

The same argument applies if n has ≥ log2 n prime divisors ≥ logC n, where C
is a sufficiently large constant.

Let c > 0 be a constant as in Lemma 14. Suppose that n has ≥ log2
2 n prime

divisors which are ≥ log2−c n. If q > 4
√
p is a prime divisor of p−ap+1, then q does

not divide any other number of the form p−a+1, |a| ≤ 2
√
p. By Lemma 14 we have

that the probability for the event P+(p−ap+ 1) > p1/2+c is bounded away from 0,
together with the fact that n has at most log n different prime divisors we conclude
that probability for the event that P+(p−ap+1) > p1/2+c and P+(p−ap+1) - n+1
is bounded away from 0. But in the latter case we either have an 6= 0 or that n is
not E-Carmichael. Since these events are independent for different p, we see that
in this case our claim holds true as well.

Now assume that all prime divisors of n are ≤ n0.7, at most one prime divisor

is ≥ elog
2/3 n, and at most log2 n prime divisors of n are ≥ logC n. We then give

a lower bound for the product m of all prime divisors p < logC n of n, such that
p2 - n. We have

m >
n

P+(n)elog
2/3 n log2 n(logC n)log

3
2 n

> n0.2,

hence, n has at least 0.1 logn
log2 n

prime divisors p < log3/2 n, such that p2 - n. It then

follows from Lemma 9 that the probability for the event that there exists a prime
divisor p of m such that ap = 1 is

≥ 1−

(
1− c

log3/4 n log2 n log3 n

)0.1 logn/ log2 n

≥ 1− e
−c′ log1/4 n

log22 n log3 n ≥ 1− 1

log−1 n
,

hence, we may assume that there exists some p with ap = 1. But then p− ap + 1 =
p|n+ 1, contradicting p|n, and the proof is complete. �

Therefore it suffices to consider the probability that n is elliptic Carmichael and
satisfies an(E) 6= 0.

Lemma 26. There exists a constant C such that if n is an integer, which is di-
visible by > log2 n prime numbers p > logC n, then the probability that n is elliptic
Carmichael for a random curve E is O(log−1 n).

Proof. Let p1, . . . , pk be the prime divisors of n which satisfy pi ≥ logC n. We
put the pair p1, pi into Lemma 23. We may assume that C ≥ 7. The probability
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that (1) holds true is � log2 p1 log2
3 p1√

p1
� log−2 n. Using Lemma 12 we see that the

probability that pi, i ≥ 2 satisfies (2) is � p
1/3
1 log p2 log2

2 p2

p
5/6
2

+
log4 p2 log2

2 p2

p
1/3
2

, which is

also � log−2 n. We see that the probability that (1) or (2) holds true for at least
one index i is bounded above by k

log2 n
< 1

logn .

Taking for P the set of prime divisors of n+ 1 in Lemma 13 and using Lemma 6
we see that the probability that pi, i ≥ 2 satisfies (3) is bounded above by

log n

log2 n

log pi log2 pi√
p

+
log2 n

log p
.

If p > logC n, the first summand is negligible as soon as C > 2, while the second
summand becomes ≤ e−1 provided that C is sufficiently large. Since the third
condition of Lemma 23 depends only on the second prime, we see that these events
are independent, and that the probability that each pi satisfies (3) is e−k ≤ 1

logn .

�

Lemma 27. Suppose that n has 5 prime divisors p1, . . . , p4, such that p1 > log4 n,

and p2, . . . , p4 > e
√
logn, or 3 prime divisors, such that p1 > log4 n, and p2, p3 >

p0.01. Then the probability that n is elliptic Carmichael for a random curve E is
� log−1 n.

Proof. We argue as in the proof of the previous theorem. The probability that p1
satsifies (1) or that pi, i ≥ 2 satisfies (2) is� log−1 n. In the first case the probabil-

ity that one specific pi, i ≥ 2 satisfies (3) is � log4
2 n√

logn
, while in the second case the

probaiblity that one specific pi satisfies (3) is � log4
2 n

logn . Since the probabilities for

different pi are independent we see that in each case the probability for the event
that n is elliptic Carmichael is � log−1 n. �

Lemma 28. There exists a c > 0, such that the following holds true. Suppose that

n has ≥ log3
2 n prime divisors p satisfying p > log2−c/2 n. Then the probability that

n is elliptic Carmichael for a random curve E is O(log−1 n).

Proof. Let c be as in Lemma 14. We may assume that at least half of the prime

divisors p of n, which satisfy p > log2−c/2 n also satisfies p < logC n, where
C is as in Lemma 26, for otherwise we can apply the latter. Cut the interval

[log2−c/2 n, logC n] into O(1) intervals of the form [x, x1+c]. Then one of these in-
tervals contains � log3

2 n prime divisors of n, let [x, x1+c] be the largest one of
them. In particular the number of prime divisors p of n with p > x1+c is O(log3

2 n).
For each prime divisor p of n with x < p < x1+c we have that p − ap + 1 has a

prime divisor q > p1/2+c ≥ x1/2+c with probability� 1
log p log2

2 p
� 1

log2 n log2
3 n

. The

probability that this prime is also a prime divisor of n + 1 is � log−c/3 n, hence

with probability ≥ 1− (1− C
log2 n log2

3 n
)c log

3
2 n ≥ 1−O(log−1 n) we have that there

exists a prime q > x1/2+c, which divides some p−ap+ 1 for some p|n, but q - n+ 1.
But then n is Carmichael with probability ≤ 1

q �
1

logn , and our claim follows.

�

We can now prove part 2 of Theorem 1. It follows from Lemma 21, Lemma 26 and
Lemma 27, that either our claim is true, or n has ≥ c logn

log logn prime divisors in the

interval [c log n, log2−c n]. In the latter case there exists some interval [y, y + y1/2],
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c log n < y < log2−c n, which contains ≥ log1/2+c/3 n prime divisors of n. For each
of these prime divisors the probability that p−ap + 1 happens to be another prime

divisor of n is > log−1/2+c/4 n, and for different prime divisors these probabilities
are independent. We can therefore apply Černov’s inequality to find that with

probability > 1− log−1 n we have that there are > logc/2 n prime divisors p1, . . . , pk
of n, such that for each pi there exists some qi, such that pi = qi − aqi + 1. In
particular for each of these prime divisors pi we have that pi|n − an + 1, since pi
also divides n, we obtain an ≡ 1 (mod

∏
pi). Pick three prime divisors c log n <

r1, r2, r3 < log2 n of n, which are not among the qi, and such that r2i - n. If such
prime numbers do not exist, we discard some of the qi in such a way, that the

remainder still contains logc/2 n primes.
If n is E-Carmichael, then ar1r2r3 is uniquely determined modulo

∏
pi > 8 log3 n,

hence this product is in fact uniquely determined. If ar1r2r3 = 0, then our claim
follows from Lemma 25. Otherwise if ar1r2r3 is given, then (ar1 , ar2 , ar3) can be
chosen in

τ3(ar1r2r3)� ec
log2 n
log3 n

ways, and for each possible choice is realized with probability �
∏3
i=1

log ri log2 ri√
ri

.

Hence the probability that n is E-Carmichael is bounded above by

3∏
i=1

log ri log2 ri√
ri

ec
log2 n
log3 n � log−3/2+ε n,

and the proof id complete.

6. Proof of Theorem 1: The probability for n and E variable

The proof of the third part of Theorem 1 is similar to the proof of the second
part, but a lot easier, since we can dispose of integers with strange multiplicative
behaviour immediately.

Lemma 29. Let n ∈ [x, 2x] and E be chosen at random. Then the probability that
P+(n) > y and that n is E-Charmichael is O(xεy−1/2).

Proof. The probability that n is divisible by P+(n)2 is O(y−1), hence, we may
neglect this case. Put p = P+(n). Then we obtain p−ap+1|n−an+1, substracting
an/p(p− ap + 1) from the right hand side we obtain

(2) p− ap + 1|n− pan/p − an/p + 1.

If the right hand side is 0, then n + 1 = (p + 1)an/p. In particular an/p ≡ 1

(mod p), thus either an/p = 1, or p ≤ 2
√
n/p. In the first case we have n = p, thus

n is prime, and therefore not Carmichael. In the second case we obtain n + 1 ≤
(p+ 1)an/p ≤ 5

√
n/p, hence P+(n) ≤ 25. Since the number of integers n ∈ [x, 2x]

with P+(n) can be bounded by some power of log x, we may neglect this case as
well, and assume from now on that the right hand side of (2) is non-zero.

If n − pan/p − an/p + 1 is a non-zero integer, then it has � ec
log

log log x divisors.
Hence for p and an/p fixed, we have that among all possible choices for ap there
are only xε satisfying (2). The probability for hitting one of these choices is �
p−1/2 log pxε � y−1/2xε, hence our claim follows. �
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Lemma 30. Fix a squarefree integer d ≤ x, which is not divisible by any prime
number < log3 x. Pick an integer n ∈ [x, 2x] and an elliptic curve E at random.
Then the probability that d|n, (d, n/d) = 1, and that n is E-Carmichael is at most

O(x−
1
8+ε + xεd−

4
3 ).

Proof. Fix the curve E modulo d, and put H = exp(E(Z/dZ)). Then we have
H|n− adan/d + 1, thus an/d is determined modulo H

(H,an/d)
. Since (H, an/d)|n+ 1,

we conclude that an/d is determined modulo H
(H,n+1) . The probability for the event

d|n and (n + 1, H) ≥
√
H is � 1√

Hd
+ 1

x , if (n + 1, H) <
√
H, there are ≤

√
n
dH

choices for an/d, which could lead to charmichael numbers.

We next show that the number of choices for apk , pk‖nd , which leads to a specific
an/d 6= 0 is � xε. There are � log x prime factors of an/d, distributing them over
the possible apk can be done in at most

(
Ω(an/d) + ω(n/d)

ω(n/d)

)
≤

(
C log x+ C log x

log log x

log x
log log x

)C log x
log log x

� exp(C
log x log log log x

log log x
).

different ways.
Fixing the values apk , the number of choices for ap is at most k by Lemma 11,

hence the number of possible choices for ap, p|n/d given apk for all pk‖n/d is
bounded above by maxn1n2 · · ·n`, where the maximum is taken over all positive
integers satisfying n1 + · · ·+nk = Ω(n/d) ≤ log 2x

log 2 , and ` = ω(d)� log x
log log x . Clearly

this maximum is bounded above by(
log x

` log 2

)`
� exp(C

log x log log log x

log log x
).

We conclude that for any n, d the probability that H|n− adan/d + 1 subject to the

condition an/d 6= 0 and (H,n+ 1) <
√
H is � xε( 1√

H
+
√

d
n ).

If an/d = 0, then H|n+ 1, which is impossible for (H, d) > 1, and happens with

probability ≤ 1
Hd+ 1

x otherwise. Summarizing we obtain that the probability for the

event d|n, H|n− adan/d + 1 is � xε( 1
d
√
H

+ 1
x ). If we choose n ∈ [x, 2x] at random,

the probability for the event that d|n, H|n − adan/d + 1, and (H,n + 1) <
√
H is

� xε( 1
d
√
H

+ 1√
dx

).

It remains to show that with high probability we have that H is large. Write d =
p1 · · · pk, and putHi = |E(Z/p1 · · · piZ)|. Call a prime pi bad, if (Hi−1, |E(Z/piZ)|) >
p
1/3
i . It follows from Lemma 13 that either Hi−1 > x1/4, or the probability that

pi is bad is bounded by O( log x
pi log log x ) = O(p

−2/3
i ). Hence either H > x1/4, or the

probability that the product of the bad primes is > y is bounded above by xεy−2/3.
Hence with probability ≥ 1−xεy−2/3 we obtain H > min(x1/4, (d/y)2/3). Splitting
the interval for y dyadically we obtain that the probability for the event that n is
carmichael is bounded above by

xε max
1≤y≤d

y−2/3

(
1

d
√

(d/y)2/3
+

1

dx1/8
+

1√
xd

)
� xε

(
1

dx1/8
+

1√
xd

+
1

d4/3

)
�
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Denote by Ψ(x, y) the number of integers n ≤ x, such that P+(n) ≤ y. The
following is a consequence of Rankin’s trick, see [10, Theorem III.5.2].

Lemma 31. We have Ψ(x, log3 x) = x2/3+o(1).

We can now prove the third part of Theorem 1. Consider first the set of integers
n which contain a divisor D1 ≤ d ≤ D2, such that d is squarefree, coprime to n, and
all prime divisors of d are larger then log3 n. Using Lemma 30 we obtain that the
probability that n satisfies this condition and is E-carmichael for a random curve
E is bounded above by

xε
∑

D1≤d≤D2

(d−1x−1/8 + d−1/2x−1/2 + d−4/3)� xε(x−1/8 +D
1/2
2 x−1/2 +D

−1/3
1 ).

If n does not possess such a divisor, then either P+(n) > D2, or we have
∏∗
p|n p

ν(p) >

n/D1, where the product is taken over all prime divisors p of n, which are ≤ log3 n
or satisfy νp(n) ≥ 2. In the first case we can apply Lemma 29 to find that the

probability that n is E-carmichael is � xεD
−1/2
2 . In the second case we can write

n = abc, where P+(a) ≤ log3 x, b is powerful, and c < D1. Using Lemma 31 we see
that for given c the number of possible choices for ab is � (x/c)2/3+ε. Summing

over c we find that the number of possible choices for n is x2/3+εD
1/3
1 . Hence the

probability that a random n satisfies this condition is � (x/D1)−1/3+ε. Summing
up we find that the probability that a random n is E-carmichael for a random curve
E is bounded above by

xε(x−1/8 +D
1/2
2 x−1/2 +D

−1/3
1 +D

1/3
1 x−1/3 +D

−1/2
2 ).

In a wide range of parameters, e.g. for D1 = x3/8, D2 = x3/4, we have that the
first term dominates the other terms, hence we conclude that the probability that
n is E-carmichael for n and E chosen at random is x−1/8+ε.

Note that the numerical value of the exponent can probably be improved, actu-
ally, we have no idea what the real value should be. It could well be something like
−1 + ε, however, this would probably be hard to prove.
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