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Define a(k) to be the number of k-digit Fibonacci numbers. For n > 5, we
have 1.6Fn−1 < Fn < 1.7Fn−1. Thus if Fn is the least k-digit Fibonacci number,
we have Fn+5 > 1.65Fn > 10.48 · 10k−1. On the other hand Fn+3 < 1.74Fn−1 <
1.74 · 10k−1 < 8.36 · 10k−1. Hence Fn+5 always has at least k + 1 digits, but Fk+3

always has k digits. Thus for k > 1 we always have a(k) = 4 or a(k) = 5. Define
A(x) to be the number of k ≤ x, such that a(k) = 5. Then Guthmann[1] proved
the following theorem.

Theorem 1. For x→∞ we have

A(x) = αx+O(1)

where
α = log 10/ log((1 +

√
5)/2)− 4 = 0.78497 . . .

His proof uses Baker’s bound on linear forms in logarithms. Here we will give a
very short proof of this statement and generalize it to residue classes. Since except
for k = 1 we have a(k) = 4 or 5, we get

#{n|Fn < 10x} =
∑
k≤x

a(k) = 4(x−A(x)) + 5A(x) +O(1)

On the other hand we have Fn ∼ 1√
5
ϕn, thus the left hand side is x log 10

logϕ + O(1).

Now solving for A(x) gives the theorem.
Now define A(x, q, l) to be the number of k ≤ x, k ≡ l (mod q), such that

a(k) = 5. With this notation we claim the following theorem.

Theorem 2. For any fixed q we have

A(x, q, l) ∼ α

q
x

where α is defined as above.

We first note that Fn+4/Fn → ϕ4. If Fn is the least Fibonacci number with k
digits, then a(k) = 5 if and only if Fn+4 < 10k. Now let ε > 0 be fixed. Then we
consider 3 cases:

(1) 10k−1 < Fn <
(

10
ϕ4 − ε

)
10k−1

If n is sufficiently large, this implies Fn+4 < 10k, thus a(k) = 5.

(2)
(

10
ϕ4 − ε

)
10k−1 < Fn <

(
10
ϕ4 + ε

)
10k−1

In this case we might have a(k) = 4 or a(k) = 5.

(3) Fn >
(

10
ϕ4 + ε

)
10k−1

In this case we have for n sufficiently large Fn+4 > 10k, thus only Fn, . . . Fn+3

have k digits which implies a(k) = 4. We also note that in this case we
have Fn < (ϕ+ ε)10k−1, since otherwise Fn−1 would also have k digits.
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If we only consider case 1, we get a lower bound for A(x, q, l), thus we have for
x > x0(ε) the estimate

A(x, q, l) ≥ #{k ≤ x, k ≡ l (mod q)|∃n : 10k−1 < Fn <

(
10

ϕ4
− ε
)

10k−1}

We set k = k′q + l, and taking logarithms we get

A(x, q, l) ≥ #
{
k′ ≤ x− l

q
|∃n :

(k′q + l − 1) log 10 + ε < n logϕ < (k′q + l) log 10− 4 logϕ− ε
}

which is equivalent to
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A(x, q, l) ≥ #{k′ ≤ x− l
q
|∃n :

n logϕ− l log 10 + 4 logϕ+ ε<k′q log 10<n logϕ− l log 10 + log 10− ε}

Since q log 10
logϕ is irrational, the fractional part of k′q log 10

logϕ is uniformly distributed

(mod 1) if k′ runs over all integers. k′ is counted if and only if the fractional part

of k′q log 10
logϕ is contained is some interval of length log 10−4 logϕ−2ε

logϕ ≥ α − 5ε, hence

for y > y0 the the number of k′ < y with a(k′q+ l) = 5 is ≥ (α− 6ε)y. If k′ < x−l
q ,

then k ≤ x, thus we obtain the lower bound A(x, q, l) ≥ (α−6ε)xq . In the same way

we get the upper bound A(x, q, l) ≤ (α + 6ε)xq , if ε → 0, we obtain the statement

of theorem 2.
I would like to thank the referee for correcting the proof of theorem 2.
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