Homomorphisms from a finite groups into wreath products

Jan-Christoph Schlage-Puchta

Abstract. Let G be a finite group, A a finite abelian group. Each homomorphism $\varphi: G \to A \wr S_n$ induces a homomorphism $\overline{\varphi}: G \to A$ in a natural way. We show that as φ is chosen randomly, then the distribution of $\overline{\varphi}$ is close to uniform. As application we prove a conjecture of T. Müller on the number of homomorphisms from a finite group into Weyl groups of type D_n .

Mathematics Subject Classification (2010). 20P05, 20E22.

Keywords. Wreath products, Homomorphism numbers, Weyl groups.

Let G be a finite group, A a finite abelian group. In this article we consider the number of homomorphisms $G \to A \wr S_n$, where *n* tends to infinity. These numbers are of interest, since they encode information on the isomorphism types of subgroups of index n, confer [2], [3]. If $\varphi : G \to A \wr S_n$ is a homomorphism, we can construct a homomorphism $\overline{\varphi}: G \to A$ as follows. We represent the element $\varphi(g) \in A \wr S_n$ as $(\pi; a_1, \ldots, a_n)$, where $\pi \in A_n$ and $a_i \in \overline{A}$, and then define $\overline{\varphi}(g) = \prod_{i=1}^n a_i$. The fact that $\overline{\varphi}$ is a homomorphism follows from the fact that A is abelian and the definition of the product within a wreath product. In this article we prove the following.

Theorem 1. Let G be a finite group of order d , A a finite abelian group. Define the distribution function δ_n on $\text{Hom}(G, A)$ as the image of the uniform distribution on Hom $(G, A \wr S_n)$ under the map $\varphi \mapsto \overline{\varphi}$. Then there exist positive constants c, C, independent of n, such that $\|\delta_n - u\|_{\infty} < C e^{-cn^{1/d}}$, where u is the uniform distribution, and $\|\cdot\|_{\infty}$ denotes the supremum norm.

As an application we prove the following, which confirms a conjecture by T. Müller.

Corollary 2. For a finite group G there exists a constant $c > 0$, such that if W_n denotes the Weyl group of type D_n , then

$$
|\text{Hom}(G, W_n)| = \left(\frac{1}{1 + s_2(G)} + \mathcal{O}(e^{-cn^{1/d}})\right) |\text{Hom}(G, C_2 \wr S_n)|
$$

This assertion was proven by T. Müller under the assumption that G is cyclic (confer [1, Proposition 3]). Different from his approach we do not enumerate homomorphisms φ with given image $\overline{\varphi}$, but directly work with the distribution of $\overline{\varphi}$, that is, we obtain the relation between $|Hom(G, W_n)|$ and $|\text{Hom}(G, C_2 \wr S_n)|$ without actually computing these functions.

Denote by $\pi : A \wr S_n \to S_n$ the canonical projection onto the active group. The idea of the proof is to stratisfy the set $| \text{Hom}(G, A \wr S_n)|$ according to $\pi \circ \varphi \in \text{Hom}(G, S_n)$. It turns out that in strata such that $\pi \circ \varphi(G)$ viewed as a permutation group on $\{1, \ldots, n\}$ has a fixed point the distribution of $\overline{\varphi}$ is actually uniform, while the probability of having no fixed point is very small.

Lemma 3. Let $\varphi_1 : G \to S_n$ be a homomorphism. Let $\varphi : G \to A \wr S_n$ be a homomorphism chosen at random with respect to the constraint $\pi \circ \varphi = \varphi_1$. If the action of G on $\{1,\ldots,n\}$ induced by φ_1 has a fixed point, then $\overline{\varphi}$ is uniformly distributed on $\text{Hom}(G, A)$.

Proof. Without loss we may assume that the point 1 is fixed. A homomorphism $\varphi: G \to A \wr S_n$ with $\pi \circ \varphi = \varphi_1$ can be viewed as a pair of homomorphisms $\psi_1: G \to A \wr S_1$, $\psi_2: G \to A \wr S_{n-1}$, where the projection of ψ_2 to S_{n-1} is given by the restriction of φ_1 to $\{2,\ldots,n\}$. If we chose φ at random, then ψ_1 and ψ_2 are independent, and ψ_1 is clearly uniformly distributed. Now $\overline{\varphi}$ is the sum of two independent random elements in Hom (G, A) , one of which is uniformly distributed. Since $Hom(G, A)$ with pointwise addition is an abelian group, we conclude that $\overline{\varphi}$ is uniformly distributed.

To bound the number of homomorphisms φ for which $\pi \circ \varphi$ has no fixed point we need the following, which is contained in [2, Proposition 1], in particular the equality of equations (8) and (9) in that article.

Lemma 4. Let G be a group, A a finite abelian group, U a subgroup of index k, $\varphi_1: G \to S_k$ the permutation representation given by the action of G on G/U . Then the number of homomorphisms $\varphi: G \to A \wr S_k$ with $\pi \circ \varphi = \varphi_1$ equals $|A|^{k-1}$ Hom (U, A) .

We use this to prove the following.

Lemma 5. Let G be a group of order d, A a finite abelian group, $\varphi : G \to AS_n$ be a homomorphism chosen at random. Then there is a constant $c > 0$, depending only on G, such that the probability that $\pi \circ \varphi(G)$ has no fixed points is $\mathcal{O}(e^{-cn^{1/d}})$.

Proof. Let U_1, \ldots, U_ℓ be a complete list of subgroups of G, where $U_\ell = G$. To determine a homomorphism $\varphi : G \to A \wr S_n$ we first have to chose a homomorphism $\varphi_1: G \to S_n$, and then count the number of ways in which this homomorphism can be extended to a homomorphism to $A \wr S_n$. Suppose that the action of G on $\{1, \ldots, n\}$ induced by φ_1 has m_i orbits on which G acts similar to the action of G on G/U . Then by the previous lemma we find that there are

$$
\prod_{i=1}^{\ell} \left(|A|^{(G:U_i)-1} | \operatorname{Hom}(U_i, A)| \right)^{m_i}
$$

possibilities to extend φ_1 . The number of ways to choose φ_1 given m_1, \ldots, m_ℓ is $\frac{n!}{\prod_{i=1}^{\ell} m_i!(G:U_{\ell})^{m_i}}$, hence, we obtain

$$
|\operatorname{Hom}(G, A \wr S_n)| = n! \sum_{\substack{m_1, \dots, m_\ell \\ m_1 + \dots + m_\ell = n}} \prod_{i=1}^\ell \frac{1}{m_i!} \left(\frac{|A|^{(G:U_i)-1} |\operatorname{Hom}(U_i, A)|}{(G:U_i)} \right)^{m_i}.
$$

We claim that terms with $m_\ell = 0$ are small when compared to the whole sum. Since the number of summands is polynomial in n , it suffices to show that for every tuple $(m_1, \ldots, m_{\ell-1}, 0)$ there exists a tuple $(m'_1, \ldots, m'_{\ell-1}, m'_\ell)$ with $m'_\ell \neq 0$, such that the summand corresponding to the first tuple is smaller than the one corresponding to the second by a factor $e^{cn^{1/d}}$. We do so by explicitly constructing the second tuple. Without loss we may assume that m_1 is maximal in the first tuple. We then set $m'_1 = m_1 - \lfloor cn^{1/d} \rfloor$, $m'_{\ell} = (G: U_1) \lfloor cn^{1/d} \rfloor$, and $m'_{i} = m_{i}$ for $i \neq 1, \ell$, where c is a positive constant chosen later. Then the product on the right hand side of the last displayed equation changes by a factor

$$
\frac{m_1!}{(m_1 - \lfloor cn^{1/d} \rfloor)!} \left(\frac{|A|^{(G:U_1)-1}|\operatorname{Hom}(U_1, A)|}{(G:U_1)|\operatorname{Hom}(G, A)|^{(G:U_1)}} \right)^{-\lfloor cn^{1/d} \rfloor} \frac{1}{((G:U_1)\lfloor cn^{1/d} \rfloor)!}.
$$

We may assume that n is sufficiently large, so that $m_1 > 2 |cn^{1/d}|$. We can then estimate the factorials using the largest and smallest factors occurring. The other terms can be bounded rather careless to find that this quotient is at least

$$
\left(\frac{m_1}{\left(cdn^{1/d}|A|\right)^d |\operatorname{Hom}(U_1, A)|}\right)^{\lfloor cn^{1/d}\rfloor}
$$

.

Since m_1 was chosen maximal we have $m_1 \geq \frac{n}{|G|\ell}$, and we find that for $c^{-1} = ed|A|(\ell | \operatorname{Hom}(U_1, A))$ that the last expression is at least $e^{\lfloor cn^{1/d} \rfloor}$. Since c depends only on the subgroup U_1 , we can take the minimum value over all the finitely many subgroups and obtain that there exists an absolute constant $c > 0$, such that the number of homomorphisms φ such that $\pi \circ \varphi$ has no fixed point is by factor $\mathcal{O}(e^{-cn^{1/d}})$ smaller than the number of all homomorphisms.

The theorem now follows from Lemma 1 and 3.

To deduce the corollary note that W_n is the subgroup of $C_2 \wr S_n$ defined by the condition $(\pi; a_1, \ldots, a_n) \in W_n \Leftrightarrow a_1 + \cdots + a_n = 0$, that is, a homomorphism $\varphi : G \to C_2 \wr S_n$ has image in W_n if and only if $\overline{\varphi} : G \to C_2$ is trivial. By the theorem the probability for this event differs from the probability that a random homomorphism $G \to C_2$ is trivial by $\mathcal{O}(e^{-cn^{1/d}})$, hence,

we have

$$
|\text{Hom}(G, W_n)| = \left(\frac{1}{|\text{Hom}(G, C_2)|} + \mathcal{O}(e^{-cn^{1/d}})\right) |\text{Hom}(G, C_2 \wr S_n)|.
$$

But there is a bijection between non-trivial homomorphisms $G \to C_2$ and subgroups of index 2, hence, $|Hom(G, C_2)| = 1 + s_2(G)$, and the corollary follows.

References

- [1] T. Müller, Enumerating representations in finite wreath products, Adv. in Math. 153 (2000), 118–154.
- [2] T. Müller, J.-C. Schlage-Puchta, Classification and Statistics of Finite Index Subgroups in Free Products, Adv. Math. 188 (2004), 1–50.
- [3] T. Müller, J.-C. Schlage-Puchta, Statistics of Isomorphism types in free products, Advances in Math. 224 (2010), 707–720.

Jan-Christoph Schlage-Puchta Krijgslaan 281 Gebouw S22 9000 Gent Belgium e-mail: jcsp@cage.ugent.be