UNIFORMLY-ALMOST-EVEN FUNCTIONS WITH PRESCRIBED VALUES III.

J.-C. Schlage-Puchta (Freiburg im Breisgau, Germany)
W. Schwarz (Frankfurt am Main, Germany)
J. Spilker (Freiburg im Breisgau, Germany)

Dedicated to Karl-Heinz Indlekofer on the occasion of his 60th birthday

Abstract. Given integers $0 < a_1 < a_2 < \ldots$ and bounded complex numbers b_1, b_2, \ldots , we deal with the problem of the existence and uniqueness of a uniformly-almost-even function f satisfying

 $f(a_n) = b_n$, for all $n \in \mathbb{N}$.

We give necessary and sufficient conditions that there exists at most or at least one function f with this interpolation property.

1. Introduction

A function $f : \mathbb{N} \to \mathbb{C}$ is called *r*-even, if the equation $f(\operatorname{gcd}(n, r)) = f(n)$ holds for all integers n; f is called *even*, abbreviated $f \in \mathcal{B}$, if there is some r for which f is *r*-even. The closure of \mathcal{B} with respect to the "uniform" norm $||f||_u = \sup_{n \in \mathbb{N}} |f(n)|$ is the complex algebra \mathcal{B}^u of uniformly-almost-even functions. Starting with the complex vector-space \mathcal{D} of all periodic functions one obtains similarly the algebra \mathcal{D}^u of uniformly-almost-periodic functions (see, for example, [7], IV.1).

In this note the following interpolation problem is dealt with: Let $\{a_n\}_n$ be a strictly increasing sequence of positive integers, and $\{b_n\}_n$ a bounded

sequence of complex numbers; when does a uniformly-almost-even function f (resp. a uniformly-almost-periodic function) exist with values

(P)
$$f(a_n) = b_n \text{ for } n = 1, 2, \dots$$
?

When is there at most one such function?¹

Under more restrictive conditions the problem of the existence of such functions was already treated in [5] and [7], IV.5, Theorems 5.1 and 5.2. The authors used the fact that the Banach algebra \mathcal{B}^u is isomorphic with the algebra of functions continuous on the compact space $\Delta_{\mathcal{B}}$ of maximal ideals, and this space was explicitly given,

$$\Delta_{\mathcal{B}} = \prod_{p} \{1, p^1, p^2, \dots, p^\infty\},\$$

where the factors are one-point compactifications of the discrete spaces $\{1, p^1, p^2, \ldots\}, p \in \mathbb{P}$. Later the second-named author tried to prove this result without using Gelfand's theory (see [6]). However, unfortunately there is a gap in this paper: in the proof that $\{g_{K_c}\}_{c\in\mathbb{N}}$ is a Cauchy-sequence, one case is missing. Schwarz & Spilker [8] used the method of [6] to prove other existence results under different assumptions.

In this paper we prove elementarily, without using Gelfand's theory, uniqueness results (Theorems 1 and 2, Section 2) and existence theorems (Theorems 3 and 4, Section 3).

Notations. $\mathbb{N} = \{1, 2, ...\}$ is the set of positive integers, $\mathbb{P} = \{2, 3, 5, ...\}$ the set of primes. For $n \in \mathbb{N}$, $p \in \mathbb{P}$, we denote by $o_p(n)$ the order of p in the factorization of n, so that $p^{o_p(n)} \mid n$, but $p^{o_p(n)+1} \not\mid n$.

2. Sets of uniqueness

In this section we deal with the (much simpler) problem of uniqueness in our interpolation problem (see equation (P)).

¹ Karl-Heinz Indlekofer investigated uniqueness sets for additive functions; as far as the second-named author remembers correctly, Indlekofer gave a talk on this subject already in Oberwolfach in the year 1978. He returned to this subject in joint papers (see [1], [2]) with Fehér, Stachó, and Timofeev.

Definition. A subset $A = \{a_n : n \in \mathbb{N}\}$ of \mathbb{N} is called a *set of uniqueness* for \mathcal{B}^u , if the condition

$$\{f, g \in \mathcal{B}^u, \quad f(a_n) = g(a_n) \text{ for all } n \in \mathbb{N}\}$$

implies f = g.

Sets of uniqueness for \mathcal{B}^u are characterized by the following theorem.

Theorem 1. The following properties of the set $A = \{a_n : n \in \mathbb{N}\} \subseteq \mathbb{N}$ are equivalent:

- (1) A is a set of uniqueness for \mathcal{B}^u .
- (2) For any integers $d, k \in \mathbb{N}$ satisfying $d \mid k!$ there exists an integer $n \in \mathbb{N}$ such that the greatest common divisor $gcd(a_n, k!)$ equals d.

Proof.

 $(1) \Rightarrow (2)$: Let $\{a_n : n \in \mathbb{N}\}$ be a set of uniqueness, and let $d, k \in \mathbb{N}$ satisfy $d \mid k!$. Define a k!-even function $f_1(n)$ for $n \mid k!$ by

$$f_1(n) = \begin{cases} 0, & \text{if } n \mid k!, \ n \neq d, \\ 1, & \text{if } n = d, \end{cases}$$

and, for $n \in \mathbb{N}$, by $f_1(n) = f_1(\operatorname{gcd}(n, k!))$. If there were no $n \in \mathbb{N}$ satisfying $\operatorname{gcd}(a_n, k!) = d$, then there would be two different solutions f_1 and $f_2 = 0$ for the interpolation problem $f(a_n) = 0$, a contradiction to (1).

 $(2) \Rightarrow (1)$: Assume that there is a function $f \in \mathcal{B}^u$, $f \neq 0$, satisfying $f(a_n) = 0$ for any $n \in \mathbb{N}$. Fix an integer d such that $f(d) \neq 0$, and choose a large $k, k \geq d$, and a k!-even function h satisfying $||f-h||_u < \frac{1}{2} \cdot |f(d)|$. Because of (2) there is an integer n so that $gcd(a_n, k!) = d$, and so $h(a_n) = h(d)$. This gives the contradiction

$$|f(d)| \le |f(d) - h(d)| + |h(a_n) - f(a_n)| \le 2 \cdot ||f - h||_u < |f(d)|.$$

Examples. The set $(\mathbb{P} + 1) \cup (\mathbb{P} + 2)$, the union of two sets of shifted primes, is a set of uniqueness for \mathcal{B}^u .

We verify condition (2). Let positive integers $d, r \in \mathbb{N}$, $d \mid r$ be given.²

a) If d is *even*, denote by π a prime $\pi \mid r$. Then the integer

$$n_{\pi} = \pi^{o_{\pi}(d)} - 1$$
, if $\pi \mid d$, $n_{\pi} = \pi + 1$, if $\pi \not \mid d$,

² It would be sufficient to restrict ourselves to numbers r of the form r = k!.

satisfies

$$o_{\pi}(n_{\pi}) = 0, \quad o_{\pi}(n_{\pi}+1) = o_{\pi}(d).$$

Any solution $n \in \mathbb{N}$ of the system of congruences

$$n \equiv n_{\pi} \mod \pi^{o_{\pi}(r)+1}$$
 for every $\pi \mid r$

satisfies

$$gcd(n,r) = 1$$
, $gcd(n+1,r) = d$.

By the prime number theorem for arithmetic progressions there exists a prime $p \equiv n \mod r$, and for this prime we get gcd(p+1,r) = d.

b) If d is odd, we find a prime p satisfying gcd(p+2,r) = d, in a similar manner.

The set $(\mathbb{P}+1) \cup (2\mathbb{P}+1)$ is also a set of uniqueness for \mathcal{B}^u .

The sets $\mathbb{P} + a$, where $a \in \mathbb{N}_0$, the set of squares, the set of squarefree numbers, the set of k-free numbers, the set of factorials and the set of powers of an integer $a \in \mathbb{N}$ are not sets of uniqueness for \mathcal{B}^u .

Without proof we give the corresponding result for \mathcal{D}^u .

Theorem 2. A set $\mathcal{A} = \{a_n : n \in \mathbb{N}\} \subseteq \mathbb{N}$ is a set of uniqueness for \mathcal{D}^u , if and only if for any $d, r \in \mathbb{N}, d \leq r$ there exists an integer n so that $a_n \equiv d \mod r$.

Examples. Any strictly monotone sequence \mathcal{A} of integers a_n , which is uniformly distributed modulo r for any $r \in \mathbb{N}$, is a set of uniqueness for \mathcal{D}^u . In particular³

- every set $\mathcal{A} \subseteq \mathbb{N}$ with density 1,
- the set $\{a_n, a_n = [P(n)]\}$, where P(x) is a polynomial in $\mathbb{R}[x]$, and P(x) -P(0) has at least one irrational coefficient,⁴
- the set $a_n = [n^c]$, where c > 0, $c \notin \mathbb{Z}^{5}$.

The set $(\mathbb{P}+1)\cup(\mathbb{P}+2)$ is not a set of uniqueness for \mathcal{D}^u , being disjoint to the residue class 11 mod 30. Also, the sets $\bigcup_{1\leq n\leq N} (\alpha_n \mathbb{P}+\beta_n), \ \alpha_n \in \mathbb{N}, \ \beta_n \in \mathbb{N}\cup\{0\},$

the set of *B*-numbers $(a_n \text{ is a } B\text{-number}, \text{ if it is representable as a sum of two squares of integers})^6$ are not sets of uniqueness for \mathcal{D}^u .

 $^{^{3}}$ For the definition and simple properties of uniform distribution modulo r, see, for example, Kuipers & Niederreiter [4], Chapter 5, p. 305ff.

⁴ See [4], Theorem 1.4, p. 307.

⁵ See [4], Exercise 1.10, p. 318.

⁶ *B*-numbers are easily characterized by conditions concerning prime factors $p \equiv 3 \mod 4$.

3. Existence theorems

Given finitely many integers a_1, a_2, \ldots, a_N and complex numbers b_1, b_2, \ldots, b_N , then there is an even function $f \in \mathcal{B}$ assuming the values $f(a_n) = b_n$ for $1 \leq n \leq N$: write $\alpha = a_1 a_2 \cdots a_N$, and define for all divisors $a \mid \alpha$ and for $n \in \mathbb{N}$,

$$f_a(n) = \begin{cases} 1, & \text{if } (n, \alpha) = a, \\ 0, & \text{if } (n, \alpha) \neq a. \end{cases}$$

Then $f = \sum_{1 \le n \le N} b_n \cdot f_{a_n}$ is such a function. By the way (see [6]),

$$f_a(n) = rac{\varphi(rac{lpha}{a})}{lpha} \sum_{r\midlpha} rac{c_r(a)}{\varphi(r)} c_r(n),$$

where $c_r(n) = \sum_{d \mid (r,n)} d\mu\left(\frac{r}{d}\right)$ is the Ramanujan-sum. So, we are only concerned with *infinite* subsets of \mathbb{N} .

Theorem 3. For a strictly increasing sequence $\{a_n\}_{n\in\mathbb{N}}$ of positive integers and a bounded sequence $\{b_n\}_{n\in\mathbb{N}}$ of complex numbers the following two conditions (3) and (4) are equivalent.

- (3) There exists a function $f \in \mathcal{B}^u$ with the values $f(a_n) = b_n$ $(n \in \mathbb{N})$.
- (4) If $\{n_k\}_{k\in\mathbb{N}}$ is any strictly increasing sequence of positive integers such that for any $r \in \mathbb{N}$ the sequence $\{\gcd(a_{n_k}, r\,!)\}_{k\in\mathbb{N}}$ is eventually constant, then the limit

$$\lim_{k \to \infty} b_{n_k} \quad exists,$$

and, in the case that, with some integer m [not depending on r],

$$\lim_{k \to \infty} \gcd(a_{n_k}, r!) = \gcd(a_m, r!)$$

for every r, its value is b_m .

Before proving Theorem 3 we reformulate the conditions concerning $o_p(a_{n_k})$.

Lemma. For any sequence $\{m_k\}_{k\in\mathbb{N}}$ of positive integers the following results are true.

(5) Properties (5a) and (5b) are equivalent.

(5a) For every $r \in \mathbb{N}$ the sequence $\{\gcd(m_k, r!)\}_{k \in \mathbb{N}}$ is eventually constant.

- (5b) For every prime p the sequence $\{o_p(m_k)\}_{k\in\mathbb{N}}$ is eventually constant or tends to infinity.
- (6) Properties (6a) and (6b) are equivalent.
 - (6a) For every $r \in \mathbb{N}$ the sequence $\{\gcd(m_k, r!)\}_{k \in \mathbb{N}}$ is eventually constant, and there exists an integer $m \in \mathbb{N}$ so that for every r the relation $\gcd(m, r!) = \lim_{k \to \infty} \gcd(m_k, r!)$ holds.
 - (6b) For every prime p the sequence $\{o_p(m_k)\}_{k\in\mathbb{N}}$ is eventually constant and $\lim_{k\to\infty} o_p(m_k) \neq 0$ for at most finitely many primes p.

Proof.

 $(5\mathbf{a}) \Rightarrow (5\mathbf{b})$: Let (5a) hold for the sequence $\{m_k\}_k$, and let p be a prime. For any $j \in \mathbb{N}$ there is some $k_j \in \mathbb{N}$ so that $\min \{o_p(m_k), o_p((p^j)!)\}$ does not depend on k, if $k > k_j$; say, this minimum is e_j .

If $e_j < o_p(p^j !)$ for some $j \in \mathbb{N}$, then the sequence $\{o_p(m_k)\}_k$ is eventually constant.

If $e_j = o_p(p^j !)$ for every $j \in \mathbb{N}$, then the sequence $\{o_p(m_k)\}_k$ tends to ∞ .

 $(\mathbf{5b}) \Rightarrow (\mathbf{5a})$: Fix $r \in \mathbb{N}$. By (5b) there is some integer k_0 with the property, that the sequence $\{o_p m_k\}_{k>k_0}$ is constant for all primes $p \leq r$, or there is some prime $p \leq r$ such that $o_p(m_k) > o_p(r!)$ for every $k > k_0$. Thus $\min\{o_p m_k, o_p(r!)\}$ is independent of $k > k_0$ [there is no prime p > r dividing r!], and therefore the sequence $\{\gcd(m_k, r!)\}_{k>k_0}$ is constant.

(6a) \Rightarrow (6b): Assume that condition (6a) is true for the sequence $\{m_k\}_k$. By (6a) there is an integer m so that for any prime p

$$\min\{\mathbf{o}_p(m), \mathbf{o}_p(r!)\} = \lim_{k \to \infty} \min\{\mathbf{o}_p(m_k), \mathbf{o}_p(r!)\}.$$

According to (5), the sequence $\{o_p(m_k)\}_k$ is eventually constant or its limit [for $k \to \infty$] is ∞ . Put $r = p^j$, where $j > o_p(m)$; then $o_p(m) \ge o_p(m_k)$, if k is large; therefore the case $\lim_{k\to\infty} o_p(m_k) = \infty$ is impossible. If p > m, then $o_p(m) = 0$, and so $\lim_{k\to\infty} o_p(m_k) = 0$.

(**6b**) \Rightarrow (**6a**). Assume that for the sequence $\{m_k\}_k$ condition (6b) is true. Given $r \in \mathbb{N}$, the sequence $\{\gcd(m_k, r!)\}_k$ is eventually constant, by (5b) $\Rightarrow \Rightarrow$ (5a). Write $e_p = \lim_{k \to \infty} \gcd(m_k, r!)$. The number $m = \prod_p p^{e_p}$ is well-defined by (6b), and, for every $r \in \mathbb{N}$,

$$\gcd(m, r!) = \prod_{p} p^{\min\{e_{p}, o_{p}(r!)\}} = \lim_{k \to \infty} \prod_{p} p^{\min\{o_{p}(m_{k}), o_{p}(r!)\}} = \lim_{k \to \infty} \gcd(m_{k}, r!).$$

Thus the Lemma is proved.

Proof of Theorem 3.

 $(3) \Rightarrow (4)$. Let a strictly increasing sequence $\{a_n\}$ of positive integers, a bounded sequence $\{b_n\}$ of complex numbers, and a function $f \in \mathcal{B}^u$ be given satisfying the interpolation-property $f(a_n) = b_n$; take a strictly monotone sequence $\{n_k\}_k$ in \mathbb{N} , so that

for every $r \in \mathbb{N}$ the sequence $\{\gcd(a_{n_k}, r!)\}_{k \in \mathbb{N}}$ is eventually constant.

 $f \in \mathcal{B}^u$ implies that for any given $\varepsilon > 0$ there is some $s \in \mathbb{N}$ and an (s)-even function h approximating f, so that $\|f - h\|_u < \frac{1}{4}\varepsilon$.

a) There is some $k_0 \in \mathbb{N}$, $k_0 = k_0(\varepsilon)$ so that for all $k, \ell > k_0$ the relation $gcd(a_{n_k}, s!) = gcd(a_{n_\ell}, s!)$ holds, and so $h(a_{n_k}) = h(a_{n_\ell})$. Therefore we obtain for every $k, \ell > k_0$:

$$|b_{nk} - b_{n_{\ell}}| \stackrel{by(3)}{=} |f(a_{nk}) - f(a_{n_{\ell}})| \le \\ \le |f(ank) - h(a_{nk})| + |f(a_{n_{\ell}}) - h(a_{n_{\ell}})| \le 2 \cdot ||f - h||_{u} < \frac{1}{2}\varepsilon,$$

and so $\{b_{nk}\}_k$ is a Cauchy-sequence, and thus convergent.

b) Now, we take for granted that in addition (with some integer m)

$$gcd(a_m, r!) = \lim_{k \to \infty} gcd(a_{nk}, r!), \text{ for every } r \in \mathbb{N}.$$

Note that $f(a_m) = b_m$, and that the sequence $\{\gcd(a_{nk}, r!)\}_{k \in \mathbb{N}}$ is eventually constant; thus there is some $\ell_0 > k_0$ [$\ell_0 = \ell_0(s)$, and so ℓ_0 depends on ε] with the property that for any $\ell > \ell_0$

$$gcd(a_m, s!) = gcd(a_{n_\ell}, s!),$$
 and so, in particular, $h(a_m) = h(a_{n_\ell})$

Therefore we obtain, with some $\ell > \ell_0$,

$$|b_m - \lim_{k \to \infty} b_{nk}| \le |b_m - b_{n\ell}| + \left|\lim_{k \to \infty} b_{nk} - b_{n\ell}\right|,$$

and by the inequalities in a) this is

$$\leq |f(a_m) - f(a_{n_\ell})| + \frac{1}{2}\varepsilon \leq |f(a_m) - h(a_m)| + |f(a_{n_\ell}) - h(a_{n_\ell})| + \frac{1}{2}\varepsilon \leq \\ \leq 2 \cdot ||f - h||_u + \frac{1}{2}\varepsilon < \varepsilon,$$

and so $\lim_{k \to \infty} b_{nk} = b_m$.

Now we come to the more difficult part, the proof of the implication.

 $(\mathbf{4}) \Rightarrow (\mathbf{3})$. Given sequences $\{a_n\}$ and $\{b_n\}$ as in the theorem; without loss of generality we may assume that the b_n are non-negative real numbers. We have to find a function $f \in \mathcal{B}^u$, so that $f(a_n) = b_n$ for every n.

Define for any positive integers n and k satisfying $n \mid k!$ the set

$$M(n,k) := \{m \in \mathbb{N} : \gcd(a_m,k!) = n\} =$$
$$= \left\{ m \in \mathbb{N} : a_m \equiv 0 \mod n, \text{ and } \gcd\left(\frac{a_m}{n}, \frac{k!}{n}\right) = 1 \right\}$$

The set M(n,k) is empty if and only if $gcd(a_m,k!) = n$ is impossible for any m; in particular, if n does not divide any a_m , then $M(n,k) = \emptyset$. We define two k!-even functions f_k^+ and f_k^- , first for integers $n \mid k!$, by

$$f_k^+(n) = \begin{cases} \sup \{b_m : m \in M(n,k)\}, & \text{if } M(n,k) \neq \emptyset, \\ 0, & \text{if } M(n,k) = \emptyset, \end{cases}$$

and similarly $f_k^-(n)$, replacing "sup" with "inf", and then obtain k!-even functions by the definition

$$f_k^{\pm}(n) = f_k^{\pm} (\operatorname{gcd}(n, k!)) \quad \text{for any } n \in \mathbb{N}.$$

So,

$$f_k^+(n) = \sup \{ b_m : m \in M((n,k!),k) \}, \text{ if } M((n,k)) \neq \emptyset, \text{ otherwise} = 0.$$

It is sufficient to show the equation

(7)
$$\lim_{k \to \infty} \|f_k^+ - f_k^-\|_u = 0.$$

The reasons are:

(α) For any $k, n \in \mathbb{N}$ the inequalities

$$f_k^-(n) \le f_{k+1}^-(n) \le f_{k+1}^+(n) \le f_k^+(n)$$

hold. [This implies that $||f_k^+ - f_k^-||_u$ is decreasing.]

Without loss of generality $n \mid (k+1)!$. On behalf of $[\gcd(a_m, (k+1)!) = n \text{ implies } \gcd(a_m, k!) = \gcd(n, k!)]$ we obtain

$$M(n, k+1) \subseteq M(\gcd(n, k!), k),$$

and this gives the first and last inequality.

(β) The sequence $(f_k^+)_{k\in\mathbb{N}}$ is a Cauchy-sequence in \mathcal{B}^u , because of (see (α))

$$||f_k^+ - f_{k+\ell}^+||_u \le ||f_k^+ - f_k^-||_u$$
 for any $k, \ell \in \mathbb{N}$.

The space $(\mathcal{B}^u, \|\cdot\|_u)$ is complete, therefore

$$f = \lim_{k \to \infty} f_k^+$$
 exists and is in \mathcal{B}^u .

(γ) The function f defined in (β) does interpolate the prescribed values b_n :

If $k \ge a_n$, then $n \in M(a_n, k)$, therefore $f_k^-(a_n) \le b_n \le f_k^+(a_n)$ [by the definition of f_k^- , f_k^+], and so

$$f(a_n) \stackrel{(\beta)}{=} \lim_{k \to \infty} f_k^+(a_n) = b_n,$$

[by (7) and the inequalities $f_k^-(a_n) \le b_n \le f_k^+(a_n)$].

So it remains to proof equation (7), $||f_k^+ - f_k^-|| \to 0$, as $k \to \infty$.

Assume that (7) is wrong. Since the sequence $\{\|f_k^+ - f_k^-\|_u\}_{k \in \mathbb{N}}$ is decreasing [see (α)], there is some c > 0 so that $\|f_k^+ - f_k^-\|_u > c$ for all $k \in \mathbb{N}$. Therefore, for every $k \in \mathbb{N}$ there is some integer $\nu = \nu(k)$ for which $f_k^+(\nu) - f_k^-(\nu) > c$.

By the definition of f_k^{\pm} , for every k there exist integers n_k^+ and n_k^- in $M(\gcd(\nu, k!), k)$ with the properties

$$(\mathrm{a}) \quad \gcd(a_{n_k^+},k!) = \gcd(a_{n_k^-},k!) \quad \left[= \gcd(\nu,k!) \right],$$

and

(b)
$$b_{n_k^+} - b_{n_k^-} > c.$$

The sequence $\{b_n\}_n$ is bounded; therefore there is⁷ a constant b such that for some increasing subsequence $\{k(j)\}_j$ the inequalities

$$b_{n^-_{k(j)}} < b - \frac{1}{3}c < b + \frac{1}{3}c < b_{n^+_{k(j)}}$$

⁷ For *b*, one may take, for example, a point of accumulation of the sequence $\left\{\frac{1}{2}\left(bn_{k}^{+}+bn_{k}^{-}\right)\right\}_{k}$.

hold for every $j \in \mathbb{N}$. It follows that

$$b_{n_{k(j)}^+} - b_{n_{k(i)}^-} > \frac{2}{3}c \quad \text{for any} \ \ i,j \in \mathbb{N}.$$

So we got a sequence $k(1) < k(2) < \dots$ of integers and integers $n_{k(j)}^+$, $n_{k(j)}^-$ satisfying

(a)
$$\gcd(a_{n_{k(j)}^+}, (k(j))!) = \gcd(an_{k(j)}^-, (k(j))!),$$

and

$$(b') \quad b_{n^+_{k(j)}} - b_{n^-_{k(i)}} > \frac{2}{3}c \quad \forall i, j \in \mathbb{N}.$$

Now we consider the set

$$\mathcal{M} = \left\{ (d, k(j)) \in \mathbb{N} \times \mathbb{N}, \ d \mid k(j)! \right\}$$

of pairs of integers, together with a relation " \prec " defined for (d, k(j)), $(d^*, k(j^*)) \in \mathcal{M}$ by

$$(d, k(j)) \prec (d^*, k(j^*)) \iff j \le j^* \text{ and } \gcd(d^*, k(j)!) = d.$$

This relation induces a partial ordering \prec on \mathcal{M} .

We say that a pair $(d, k(j)) \in \mathcal{M}$ is "evil", if there are indices $n_{k(j)}^+$, $n_{k(j)}^-$, so that (a) and (b') are true.

For any $j \in \mathbb{N}$ the pair (d, k(j)) is "evil", if $d = \left(a_{n_{k(j)}^+}, k(j)!\right)$. So we have shown that for every j there exists an "evil" pair (d, k(j)). And, if $(d, k(j)) \prec (d^*, k(j+1))$, and $(d^*, k(j+1))$ is "evil", then (d, k(j)) is "evil", too.⁸

In the tree of "evil" pairs there is an infinite [totally ordered] branch $(d_{k(j)}, k(j))_{j \in \mathbb{N}}$. The reason is: for every pair $(d_{k(j)}, k(j))$ having infinitely many "evil" successors, there is an "evil" pair $(d_{k(j+1)}, k(j+1)) \succ (d_{k(j)}, k(j))$, which has infinitely many "evil" successors, too (see also the Lemma of D. König, [3], p. 381).

As described some lines before, to every pair $(d_{k(j)}, k(j))$ from this infinite branch of "evil" pairs, there are indices $n_{k(j)}^+, n_{k(j)}^-$, so that for all r satisfying $r \leq k(j)$ we have

$$gcd(a_{n_{k(j)}^+}, r!) = gcd(a_{n_k^-(j)}, r!).$$

⁸ For every $a \in \mathbb{N}$ the relation $\gcd(a, (k(j+1)!) = d^*$ implies $\gcd(a, k(j)!) = \gcd(d^*, k(j)!)$. Since $(d, k(j)) \prec (d^*, k(j+1))$, the last gcd-equation gives $\gcd(a, k(j)!) = d$. Then take $n_{k(j)}^+ = n_{k(j+1)}^+$, and $n_{k(j)}^- = n_{k(j+1)}^-$.

In the special case k(1) = 1, k(2) = 2, ... the tree (\mathcal{M}, \prec) looks like this:

Figure 1. The tree (\mathcal{M}, \prec) [in a special case]

We now distinguish three possible cases and obtain a contradiction in every of these cases.

1. Both of the sequences $\{n_{k(j)}^+\}_j$ and $\{n_{k(j)}^-\}_j$ contain infinitely many different elements.

Choose from every sequence a strictly increasing subsequence, form the union of these subsequences, and order this union to a strictly increasing sequence $\{n_k\}_{k\in\mathbb{N}}$. According to the definition of "evil", there are arbitrarily large indices n_k, n_ℓ with the property $b_{nk} - b_{n_\ell} > \frac{1}{3}c$; in particular, $\{b_{nk}\}_{k\in\mathbb{N}}$ is not a Cauchy-sequence.

On the other hand, the sequence $\{\gcd(a_{nk}, r!)\}_{k\in\mathbb{N}}$ is eventually constant for any integer r. According to (4a) the sequence $\{b_{nk}\}$ is convergent a contradiction.

2. One of the two sequences, say $\{n_{k(j)}^+\}_j$ has infinitely many elements, the other only finitely many. Choose from $\{n_{k(j)}^+\}_j$ a strictly increasing subsequence $\{n_k\}_k$, and choose from $\{n_{k(j)}^-\}_j$ one value *m*, which occurs infinitely often. Thus, for any $r \in \mathbb{N}$ and for infinitely many *k*, say for k_1, k_2, \ldots , the relation $\gcd(a_{n_{k_i}}, r!) = \gcd(a_m, r!)$ holds for $i = 1, 2, \ldots$; according to (4), *"in the case that \ldots"* we obtain

$$\lim_{i \to \infty} b_{n_{k_i}} = b_m$$

This is a contradiction to the inequality $b_{nk} - b_m > \frac{1}{3}c$, which is valid for sufficiently large k.

3. If both of the sequences $\{n_{k(j)}^+\}_j$ and $\{n_{k(j)}^-\}_j$ contain only finitely many elements, then choose from every sequence one value which occurs infinitely often, say n^+ and n^- . Then

$$gcd(a_{n^+}, k(j)!) = gcd(a_{n^-}, k(j)!)$$
 for every $j \in \mathbb{N}$,

therefore $a_{n^+} = a_{n^-}$ and $n^+ = n^-$, contradicting $b_{n^+} - b_{n^-} > \frac{1}{3}c$.

Thus we arrived at a contradiction in any of these three cases, and Theorem 3 is proved.

Corollary. Let $\{b_n\}_n$ be a convergent sequence of complex numbers and $\{a_n\}_n$ a strictly monotone sequence of positive integers, satisfying at least one of the following three properties:

- α) $a_1 > 1$, and the least prime factor $p_{\min}(a_n)$ of a_n tends to ∞ (see [7], p. 155);
- β) for all m < n the relation a_m / a_n is true (see [8], Satz 1.2);
- γ) for every m < n the relation $a_m \mid a_n$ holds.

Then there is a function $f \in \mathcal{B}^u$ with values $f(a_n) = b_n$ for all $n \in \mathbb{N}$.

Proof. For any of these three examples we have to check condition (4). Let $\{n_k\}_k$ be a strictly increasing sequence of indices, for which the sequence $\{\gcd(a_{n_k}, r!)\}_k$ becomes eventually constant for every $r \in \mathbb{N}$. The sequence $\{b_{n_k}\}_k$, being a subsequence of a convergent sequence, is convergent.

We are going to show that the assumption in (4), "in the case that ..." does not occur for any of these three examples.

Assume that m is an index so that $gcd(a_m, r!) = \lim_{k \to \infty} gcd(a_{nk}, r!)$ for every $r \in \mathbb{N}$.

- α) Since, for any fixed r, $\lim_{k\to\infty} \gcd(a_{nk}, r!) = 1$ on behalf of the condition $p_{\min}(a_n) \to \infty$, we conclude that $\gcd(a_m, r!) = 1$ for any r, and so $a_m = 1$; but this is impossible.
- β) In the second case, for any $p \mid a_m$, we choose an integer $j \ge \max_{p \mid a_m} o_p(a_m)$ and a large k with the property

$$gcd(a_m, (p^j)!) = gcd(a_{nk}, (p^j)!)$$
 for these primes p dividing a_m

Then, for every $p \mid a_m$, we obtain

$$o_p(a_m) = \min\{o_p(a_m), o_p(p^j!)\} = \min\{o_p(a_{nk}), o_p(p^j!)\} \le o_p(a_{nk}).$$

Therefore a_m divides a_{nk} , and so $n_k \leq m$ [by (β)]. For large k this is a contradiction.

 γ) In the third case the relation $a_{nk} \mid a_{n_{k+1}}$ holds for any k, and so the sequence $\{o_p(a_{nk})\}_k$ is increasing for any prime p. Since $a_{nk} \to \infty$ as $k \to \infty$, the sequence $\{o_p(a_{nk})\}_k$ is not bounded for at least one prime p. For this prime p we obtain a contradiction to the inequality

$$\lim_{k \to \infty} \min \left\{ o_p(a_{nk}), o_p(p^j!) \right\} \le o_p(a_m), \text{ for any } j \in \mathbb{N}.$$

Finally, without proof, we state an existence theorem for \mathcal{D}^u .

Theorem 4. Let $\{a_n\}_{n\in\mathbb{N}}$ be a strictly increasing sequence of positive integers and $\{b_n\}_{n\in\mathbb{N}}$ a bounded sequence of complex numbers. Then the following two properties are equivalent:

- (8) There is a function $f \in \mathcal{D}^u$ with values $f(a_n) = b_n$ for all $n \in \mathbb{N}$.
- (9) If $\{n_k\}_k$ is a strictly increasing sequence of positive integers, with the property, that for any $q \in \mathbb{N}$ there exists an integer $k_q \in \mathbb{N}$, so that $a_{n_k} \equiv a_{n_{k'}} \mod q$ for all $k, k' > k_q$, then
- a) the corresponding sequence $\{b_{n_k}\}_k$ is convergent;
- b) the limit $\lim_{k\to\infty} b_{n_k}$ equals b_m , if for all $q \in \mathbb{N}$ there is are integers k_q , $m \in \mathbb{N}$ satisfying $a_{n_k} \equiv a_m \mod q$ for all $k > k_q$.

The proof of this Theorem is similar to the proof of Theorem 3.

Example. If f is in \mathcal{D}^u , then the interpolation-problem $a_n = n$, $b_n = f(a_n)$ has the solution f in \mathcal{D}^u . Choosing a function f not in \mathcal{B}^u , then this problem does have a solution in \mathcal{D}^u , but no solution in \mathcal{B}^u .

References

- Fehér J., Indlekofer K.-H. and Timofeev N.M., A set of uniqueness for completely additive arithmetic functions, *Annales Univ. Sci. Budapest., Sect. Comp.*, 21 (2002), 57-67.
- [2] Indlekofer K.-H., Fehér J. and Stachó L., On sets of uniqueness for completely additive arithmetic functions, *Analysis*, 16 (1996), 405-415.

- [3] Knuth D., The art of computer programming, Vol. 1., Addison-Wesley, 1969.
- [4] Kuipers L. and Niederreiter H., Uniform distribution of sequences, John Wiley & Sons, 1974.
- [5] Maxsein Th., Schwarz W. and Smith P., An example for Gelfand's theory of commutative Banach algebras, *Math. Slov.*, 41 (1991), 299-310.
- [6] Schwarz W., Uniform-fast-gerade Funktionen mit vorgegebenen Werten, Archiv Math., 77 (2001), 1-4.
- [7] Schwarz W. and Spilker J., Arithmetical functions, Cambridge University Press, Cambridge, 1994.
- [8] Schwarz W. and Spilker J., Uniform-fast-gerade Funktionen mit vorgegebenen Werten II., Archiv Math. (to appear)

J.-C. Schlage-Puchta

Mathematisches Institut Universität Freiburg Eckerstraße 1 D-79104 Freiburg im Breisgau Germany jcp@arcade.mathematik.uni-freiburg.de

J. Spilker

Mathematisches Institut Universität Freiburg Eckerstraße 1 D-79104 Freiburg im Breisgau, Germany Juergen.Spilker@math.uni-freiburg.de

W. Schwarz

Fachbereich Mathematik J.W. Goethe Universität Robert Mayer Str. 10 D-60054 Frankfurt am Main Germany schwarz@math.uni-frankfurt.de