

Uniformly-almost-even Functions with prescribed Values, IV. Application of Gelfand's Theory

JAN-CHRISTOPH SCHLAGE-PUCHTA, Freiburg im Breisgau, WOLFGANG SCHWARZ, Frankfurt am Main. and **JÜRGEN SPILKER, Freiburg im Breisgau.**

> Dedicated to LUTZ LUCHT on the occasion of his *60th* birthday

Received: December 15, 2003 **Abstract.**

> *Given integers* $0 < a_1 < a_2 < \ldots$ *and bounded complex numbers* b_1, b_2, \ldots *we deal with the problem of the existence of a uniformly-almost-even function f satisfying*

 $f(a_n) = b_n$, for all $n \in \mathbb{N}$.

In [9] *this problem was solved using elementary arguments. Now we use Gelfand's theory of commutative Βanach-algebras to give sufficient conditions that there exists a function f with this interpolation property.*

Classification. 11A25, 11 N64, 46J99

1 Introduction

A function / : Ν —* C is called *r-even,* if the equation *f(n) =* /(gcd (n, r)) holds for all integers *η: f* is called *even,* abbreviated / G *Β,* if there is some r for which / is r-even.

The closure of **B** with respect to the "*uniform*" norm $||f||_u = \sup |f(n)|$ is the complex ne:; algebra *Β*" of *uniformly-almost-even functions.* Starting with the complex vector

space *V* of all *periodic* arithmetical functions, which is generated by the functions ${n \mapsto \exp(2\pi i \frac{k}{r} \cdot n)}$. $gcd(k, r) = 1$ one obtains similarly the algebra \mathcal{D}^u of *uniformlyalmost-periodic functions* (see. for example. [7]. IV.1).

As in [3], [8]. and [9]. in this note the following *interpolation problem* is dealt with: Let $\{a_n\}_n$ be a strictly increasing sequence of positive integers, and $\{b_n\}_n$ a bounded sequence of complex numbers: does a uniformly-almost-even function f (resp. a uniformly-almost-periodic function) exist with values

$$
f(a_n)=b_n \text{ for } n=1,2,\ldots
$$
 ?

In [9]. this problem was solved, using a complicated elementary method. In this paper it is shown, that **GELFANDS** theory of commutative Banach-algebras, which was used already in [3], gives a simpler solution of the problem stated.¹

Notations $\mathbb{N} = \{1, 2, \dots\}$ is the set of positive integers, $\mathbb{P} = \{2, 3, 5, \dots\}$ the set of primes. For $n \in \mathbb{N}$. $p \in \mathbb{P}$. we denote by $o_p(n)$ the order of p in the factorization of n. so that $p^{\mathbf{0}p(n)} \mid n$, but $p^{\mathbf{0}p(n)+1} \nmid n$.

2 Results

Theorem 1.

Let a strictly increasing sequence $\{a_n\}_{n\in\mathbb{N}}$ of positive integers and a bounded se*quence* ${b_n}_{n\in\mathbb{N}}$ *of complex numbers be given with the following property:*

If $\{n_k\}_{k\in\mathbb{N}}$ is any strictly increasing sequence of positive integers such that for *any* $r \in \mathbb{N}$ the sequence $\{\gcd(a_{n_k}, r\!) \}_{k \in \mathbb{N}}$ is eventually constant, then the *limit*

$$
\lim_{k\to\infty}b_{n_k}\quad exists.
$$

and, in the case that, with some integer m. [not depending on r],

$$
\lim_{k\to\infty}\gcd(a_{n_k},r!) = \gcd(a_m,r!)
$$

for every r, its value is bm.

Then there is a function $f \in \mathcal{B}^u$ *with values* $f(a_n) = b_n$ *for all* $n \in \mathbb{N}$ *.*

In [9] it was shown that Theorem 1 has the following Corollaries.

Corollary 1.1.

If $\{a_n\}_n$ *is a strictly monotone sequence of positive integers* > 1. with the property *that the minimal prime divisor* $p_{min}(a_n)$ *of* a_n *tends to infinity, and if* ${b_n}_n$ *is a*

^{&#}x27;In particular, it is seen that the conditions of Theorems 1 and 2 are "natural" ones to ensure continuity of the functions F and G (see sections 4, 5).

convergent sequence in \mathbb{C} *. then there is a function* $f \in \mathcal{B}^u$ assuming the values $f(a_n) = b_n$ for $n = 1, 2, \ldots^2$

Corollary 1.2.

If ${a_n}_n$ *is a strictly monotone sequence of positive integers, so that* $a_m \nmid a_n$ for any *m* less than *n*, and if ${b_n}_n$ is a convergent sequence in \mathbb{C} , then there is a *function* $f \in B^*$ assuming the values $f(a_n) = b_n$ for $n = 1, 2$.

Corollary 1.3.

If $\{a_n\}_n$ is a strictly monotone sequence of positive integers, so that $a_m \mid a_n$ for *any m* less than *n*, and if ${b_n}_n$ is a convergent sequence in C, then there is a *function* $f \in \mathcal{B}^u$ assuming the values $f(a_n) = b_n$ for $n = 1, 2$.

The interpolation problem in \mathcal{D}^u is dealt with in the next theorem.

Theorem 2.

Let $\{a_n\}_n$ be a strictly increasing sequence of positive integers and $\{b_n\}_n$ a bounded *sequence of complex numbers.*

Assume that the sequence ${b_{n_k}}_k$ *is convergent for any strictly increasing sequence* ${n_k}_k \in \mathbb{N}$ with the property that

for every $q \in \mathbb{N}$ *there is a* $k_q \in \mathbb{N}$ *so that* $a_{n_k} \equiv a_{n_{k'}}$ mod *q for all k, k' > k_q*, *and that* $\lim_{k\to\infty} b_{n_k} = b_m$, if for any $q \in \mathbb{N}$ there are integers k_q , m so that $a_{n_k} \equiv a_m \mod q$ for all $k > k_q$.

Then there is a function f \in \in ∞ *um values f* $\left(\omega_n\right) = \omega_n$.

Corollary 2.1.

If ${a_n}_n$ *is strictly increasing and* ${b_n}_n$ *is convergent, then there is a function* $f \in \mathcal{D}^u$ assuming the values $f(a_n) = b_n$, if in the case $\lim_{n \to \infty} b_n = b_m$ for some m, *the relation* $a_n \equiv a_m \mod q$ *holds for any q and all sufficiently large integers n.*

3 Gelfand's Theory, Tietze's Extension Theorem

For the sake of completeness we state some facts from GELFANDS Theory (see [4], 18. [5], p. 268ff). For a commutative Banach-algebra A (with unit element e and with norm $\|\cdot\|$) denote by

 $\Delta_A = \{h : A \rightarrow \mathbb{C}, h \text{ is a Banach-algebra-homomorphism}\}$

the set of algebra-homomorphisms defined on A. Any $h \in \Delta_{\mathcal{A}}$ is continuous, and any maximal ideal in Δ_A is the kernel of some $h \in \Delta_A$. The Gelfand-transform \hat{x} of $x \in A$ is

$$
\hat{x}:\Delta_{\mathcal{A}}\to\mathbb{C},\ \hat{x}(h)\stackrel{def}{=}h(x),
$$

²In [6] a simple elementary proof was attempted. However, unfortunately there is a gap in the **proof.**

and so ' is a map

$$
: \mathcal{A} \to \hat{\mathcal{A}} = \{ \hat{x} : \Delta_{\mathcal{A}} \to \mathbb{C}, \ x \in \mathcal{A} \}.
$$

Under the weakest topology, which makes every h continuous. Δ_A becomes a compact topological Hausdorff space.

If ${\mathcal A}$ is a semi–simple 3 B –algebra. 4 then the Gelfand transform $^-$ is an isometric isomorphism of A onto $C(\Delta_A)$. the algebra of complex-valued continuous functions on Δ ^{*A*} with the sup-norm.

In sections **4** resp. **5,** the **GELFAND** theory will be applied to the commutative Banach algebras B^u resp. \mathcal{D}^u : these algebras are semi-simple and have an involution (namely complex conjugation).

3.1 The Maximal Ideal Space of B^u

All the homomorphisms *h* from the "maximal ideal space" Δ_B of \mathcal{B}^v are given (see for example [3] or [7], Chapter 4) as follows:

For any vector $K = (e_p)_{p \in \mathbb{R}^n}$, where e_p is an integer from $[0, \infty)$ or equal to ∞ . and any function $f \in \mathcal{B}^u$. define a "function value"

$$
f(\mathcal{K}) = \lim_{r \to \infty} f\left(\prod_{p \leq r} p^{\min\{r,e_p\}}\right).
$$

For $f \in \mathcal{B}^u$, this limit does exist. If K has only finitely many entries $\epsilon_p \neq 0$, and if none of these is equal to ∞ . then

$$
f(\mathcal{K})=f\left(\prod_{p}p^{e_{p}}\right).
$$

Define

$$
h_{\mathcal{K}}: \Delta_{\mathcal{B}} \to \mathbb{C} \text{ by } h_{\mathcal{K}}(f) = f(\mathcal{K}).
$$

Then the maximal ideal space \mathcal{B}^u of \mathcal{B} is^{5,6} the set of all $h_{\mathcal{K}}$, where $\mathcal{K} = (e_p)_{p \in \mathbb{R}^+}$ If $I = \prod_{n} p^{o_p(n)}$ is an integer, then the evaluation-homomorphismus $h_n : f \mapsto f(n)$ equals $h_{\mathcal{K}_n}$, where $\mathcal{K}_n = \{o_p(n), p \in \mathbb{P}\}.$

A subbasis of the topology on Δ_B is given by the vectors $(* \ldots, *, e_p, *, *, \ldots)$, where e_p is fixed and finite, or $e_p \ge$ some constant, and $*$ are arbitrary elements of $[0, \infty]$.

$$
\prod_p\{1,p^1,p^2,\ldots,p^\infty\},\,
$$

where $\{1, p^1, p^2, \ldots, p^{\infty}\}\$ is the one-point-compactification of the discrete space $\{1, p^1, p^2, \ldots\}$.

³The radical of *A,* **which is the intersection of all maximal ideals, equals (0).**

⁴ there is an involution \cdot : $A \rightarrow A$ satisfying $||x \cdot x^*|| = ||x||^2$.

⁵ see [3].

 ${}^6\Delta_B$ can also be described as the topological product

Ceìfand s Theory. Tietze's Theorem **6 7**

3.2 The Maximal Ideal Space of \mathcal{D}^u

Define \overline{X} to be the compact topological product of the discrete residue class rings $\mathbb{Z}/(r \cdot \mathbb{Z})$.

$$
X=\prod_{r\in\mathbb{N}}\mathbb{Z}/(r\cdot\mathbb{Z})\ .
$$

For $m \nmid n$ define the projection $\pi_{m,n}$

$$
\pi_{m,n} : \mathbb{Z}/(n \cdot \mathbb{Z}) \to \mathbb{Z}/(m \cdot \mathbb{Z} = 0
$$

(a mod n) \mapsto (a mod m).

For *d I m* and *m* | *η* the relation $\pi_{d,n} = \pi_{d,m} \circ \pi_{m,n}$ holds.

The maximal ideal space $\Delta_{\mathcal{D}}$ of \mathcal{D}^u is the Prüfer ring Z, where

$$
\tilde{\mathbb{Z}} = \{ \{\alpha_n\}_{n\in\mathbb{N}} \in X, \ \alpha_n \in \mathbb{Z}/n \cdot \mathbb{Z} \text{ and } \pi_{m,n}(\alpha_n) = \alpha_m, \text{ if } m \mid n \}.
$$

Then Δ_p is homeomorphic to $\hat{\mathbb{Z}}$. Denote by φ this homeomorphism $\varphi : \Delta_p \to \hat{\mathbb{Z}}$. The evaluation homomorphisms $h_a: f \mapsto f(a)$ (for $a \in \mathbb{N}$) are dense in $\Delta_{\mathcal{D}}$.⁷ In [7], p. 148, it is described how to construct the image $\varphi(h)$ for a given homomorphism $h \in \mathcal{D}^u$. It follows that

 $\varphi(h_a) = (a \mod r)_{r \in \mathbb{N}}$ for an evaluation homomorphism h_a .

If $\{\alpha_r\}_r$ is given, then an algebra homomorphism $h \in \Delta_p$ mapped by φ to $\{\alpha_r\}_r$ is constructed as follows:

Define $h : \mathcal{D} \to \mathbb{C}$ on the basis elements $n \mapsto \exp(2\pi i n \cdot \frac{k}{2})$ (where $\gcd(k, r) = 1$) by

$$
h\left((n \mapsto \exp(2\pi i n \cdot \frac{k}{r})\right) = \exp\left(2\pi i \cdot \frac{k}{r} \cdot \alpha_r\right).
$$

and extend it linearly to D and then continuously to D^u .

Write $\varphi(h) = {\alpha_r}_r$, and $\varphi(h') = {\beta_r}_r$; then the homomorphisms *h* and $h' \in \Delta_p$ are "near" if and only if $\{\alpha_r\}_r$ and $\{\beta_r\}_r$ are "near", and this is true if and only if $\alpha_r \equiv \beta_r \mod r$ for $1 \leq r \leq R$.

3.3 Tietze's Theorem

TIETZES extension theorem states:⁸

If Y is a non-void compact subset of the locally compact Hausdorff space X, and if $f: Y \to \mathbb{C}$ *is a continuous map, then there is a continuous function* $F: X \to \mathbb{C}$ with compact support, extending f (so that $F|_Y = f$).

^{&#}x27;see. for example, [7], p. 148ff.

⁸ see. for example, [1].

4 Proof of Theorem 1.

Define the subset $\mathcal{E} = \mathcal{E}(a_n)$ of Δ_B as the countable [discrete] set of evaluation homomorphisms

$$
\mathcal{E} = \{h_{a_n}, n = 1, 2, \dots\}.
$$

Denote by H the set of accumulation points of E . The union

$$
K=\mathcal{E}\cup\mathcal{H}\ \subset \Delta_{\mathcal{B}}
$$

is closed.⁹ and therefore compact. Define a function $F: K \to \mathbb{C}$.

firstly for points $h_{a_n} \in \mathcal{E}$ by

$$
F(h_{a_n})=b_n.
$$

next for points $\eta = h_{\mathcal{K}} \in \mathcal{H}$ as follows: choose a sequence $\left\{h_{a_{n_k}}\right\}_{k}$ converging to η . and define

$$
F(h_{\mathcal{K}})=\lim_{k\to\infty}b_{n_k}.
$$

This limit exists, because for any r the sequence $\{ \gcd(a_{n_k}, r!) \}_{k \in \mathbb{N}}$ is eventually constant:

Write

$$
\eta = h_{\mathcal{K}}
$$
, where $\mathcal{K} = \{e_p, p \in \mathbb{P}\}$.

If e_p is finite, then $e_p = \lim_{k \to \infty} o_p(a_{n_k})$, and so $o_p(a_{n_k})$ is eventually constant. If $e_p = \infty$ then $o_p(a_{n_k}) \to \infty$. and so $\{\gcd(a_{n_k}, r!) \}_{k \in \mathbb{N}}$ is eventually constant.

The function F is well-defined.

Assume that ${a_{n_k}}_k \to \eta$ and that ${a_{j_\ell}}_\ell \to \eta$. Then the "union-sequence" $a_{n_1}, a_{j_1}, a_{n_2}, a_{j_2}, \ldots$ also tends to η , therefore the corresponding sequence of the *b*-s is convergent (due to our assumption), and the partial sequences ${b_{n_k}}_k$ and ${b_{j}}$ *tend to the same limit.*

Finally. *F* is continuous on *K.*

Consider a point $\eta \in \mathcal{H}$. There is a sequence $\{h_{a_{n_k}}\}\$ converging to η . If $\eta \notin \mathcal{E}$. then $F(\eta) = \lim_{k \to \infty} b_{n_k}$ and *F* is continuous at the point η .

L If $\eta \in \mathcal{E}$. say. $\eta = h_{a_m}$, where $a_m = \prod p_{\ell}^{\nu_{p_{\ell}}(a_m)}$, then, for sufficiently large k. *1=1* $h_{a_{nk}} = h_{\mathcal{K}_k}$. where \mathcal{K}_k is of the form

$$
(o_2(a_m), o_3(a_m), \ldots, o_{p_L}(a_m), 0, 0, \ldots, 0, *, *, \ldots).
$$

⁹ see. for example. [2].

Therefore, for every $r \in \mathbb{N}$.

$$
\gcd(a_m,r!) = \lim_{k \to \infty} \gcd(a_{n_k},r!).
$$

and so $-$ due to our assumptions $-$

$$
\lim_{k\to\infty}b_{n_k}=b_m.
$$

and *F* is continuous in h_{a_m} .

Therefore, by the TIETZE extension theorem there is a continuous function F^* : $\Delta_B \rightarrow$ C. extending F. By GELFANDS theory. F^* is the image of some function $f \in \mathcal{B}^u$, $F^* = \hat{f}$, and due to

$$
f(a_n) = h_{a_n}(f) = \hat{f}(h_{a_n}) = F^*(h_{a_n}) = F(h_{a_n}) = b_n
$$

the function f solves the interpolation problem $f(a_n) = b_n$.

In [9] the Corollaries were deduced from Theorem 1. Using **GELFANDS** theory, one uses the set $\mathcal E$ as above. In the case of Corollary 1.1, $\mathcal H = h_1$ due to the condition $p_{\min}(a_n) \to \infty$, and *F*. defined by $F(h_{a_n}) = b_n$, $F(h_1) = \lim_{n \to \infty} b_n$ gives a continuous function.

In the case of Corollary 1.3, the condition $a_m \mid a_n$ for all $m < n$ implies that $o_p(a_n)$ is monotonely increasing, so $\lim_{n\to\infty} o_p(a_n) = e_p$ exists (possibly $e_p = \infty$). Then $\lim_{n\to\infty} h_{a_n} =$ h_K , where $K = \{e_p, p \in \mathbb{P}\}$, and the definition $F(h_K) = \lim_{n \to \infty} b_n$ makes F continuous on *K.*

For Corollary 1.2. the definition $F(\eta) = \lim_{n \to \infty} b_n$ for every point of accumulation η of $\mathcal E$ makes *F* continuous on *Κ*.

5 Proof of Theorem 2.

Given sequences ${a_n}_n$ and ${b_n}_n$ with the properties stated in Theorem 2 in section 2, we define the set

$$
\mathcal{E} = \{h_{a_n},\, n \in \mathbb{N}\}
$$

and the set H of its points of accumulation. The set

$$
K=\mathcal{E}\cup\mathcal{H}\subset\Delta_{\mathcal{D}}
$$

is closed and therefore compact. Define, as in section 4, a function $G: K \to \mathbb{C}$ by

 $G(h_{a_n}) = b_n$ on evaluation homomorphisms h_{a_n} ,

and

$$
G(\eta)=\lim_{k\to\infty}b_{n_k},\ \text{if}\ \lim_{k\to\infty}h_{a_{n_k}}=\eta.
$$

This limit exists.

We have to show that for every *q* there is a k_q so that $a_{n_k} \equiv a_{n_l} \mod q$ for any $k, \ell > k_q$. If k. ℓ are large, then $h_{a_{n_k}}$ and $h_{a_{n_\ell}}$ are near. This implies that the elements $(a_{n_k} \mod 1, a_{n_k} \mod 2, a_{n_k} \mod 3, \ldots)$ and $(a_{n_\ell} \mod 1, a_{n_\ell} \mod 2)$ 2. a_{n} mod 3, ...) of Z are near, therefore

$$
(a_{n_k} \bmod r) = (a_{n_\ell} \bmod r) \text{ for } 1 \leq r \leq R.
$$

The function *G* is well defined, and it is continuous on *Κ*.

If $\eta \in \mathcal{H}$, then *G* is continuous at the point η by its very definition. If $\eta \in \mathcal{E}$, the same argument as in the proof of Theorem 1 does apply.

References

- [1] HEWITT. E. & STROMBERG. Κ.. *Real and abstract analysis.* Springer Verlag 1965
- [2] KELLEY. J. L.. *General Topology.* D. van Nostrand Comp.. 1955
- [3] MAXSEIN. TH.. SCHWARZ. W. & SMITH. P.. An example for Gelfand's theory of com*mutative Banach algebras*, Math. Slov. 41. 299 310 (1991)
- [4] RUDIN. W.. *Real and Complex Analysis.* McGraw-Hill Book Company. 1966
- [5] RUDIN. W.. *Functional Analysis.* McGraw-Hill Book Company. 1973
- [6] SCHWARZ. W.. *Uniform-fast-gerade Funktionen mit vorgegebenen Werten.* Archiv Math. $77.1 - 4(2001)$
- [7] SCHWARZ. W. & SPILKER. J.. *Arithmetical* Functions. Cambridge University Press 1994
- [8] SCHWARZ. W. & SPILKER. J.. *Uniform fast-gerade Funktionen mit vorgegebenen Werten. IL* to appear in Archiv Math. (2003)
- [9] SCHLAGE-PUCHTA. J.-CH. . SCHWARZ. W . & SPILKER. J. . *Uniformly-almost-even Functions with prescribed Values. III.* to appear

