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Abstract.

Given integers 0 < a) < az < ... and bounded complex numbers by, b, .. .,
we deal with the problem of the existence of a uniformly-almost-even func-
tion f satisfying

fla,)=b,, forall neN

In 9] this problem was solved using elementary arguments. Now we use
Gelfand’s theory of commutative Banach-algebras to give sufficient condi-
tions that there exists a function f with this interpolation property.

Classification. 11A25, 11 N64, 46J99

1 Introduction

A function f : N — C is called r-even, if the equation f(n) = f(ged (n, 7)) holds for all
integers n: f is called even, abbreviated f € B, if there is some r for which f is r—even.

Brought to you by | Universitatsbibliothek Rostock
Authenticated
Download Date | 12/2/19 6:17 PM



64 Schlage--Puchta. Schwarz. Spilker

The closure of B with respect to the “uniform” norm fil, = sup|f(n); is the complex
nel

algebra BY of uniformly-almost-even functions. Starting with the complex vector

space D of all periodic arithmetical functions. which is generated by the functions

{n — exp(2wi 'f -n). ged(k. r) = 1} one obtains similarly the algebra D* of uniformly-

almost-periodic functions (see. for example. [7]. IV".1).

As in [3]. {8]. and [9]. in this note the following interpolation problem is dealt with:
Let {a,}, be a strictly increasing sequence of positive integers. and {b,}, a bounded
sequence of complex numbers: does a uniformlv-almost-even function f (resp. a
uniformly-almost-periodic function) exist with values

flag)=by, forn=1.2.... 7

In {9]. this problem was solved. using a complicated elementary method. In this paper
it is shown. that GELFANDs theory of commmutative Banach-algebras. which was used
already in [3]. gives a simpler solution of the problem stated.!

Notations. N = {1.2....} is the set of positive integers. P = {2.3.5....} the set of
primes. For n € N. p € P. we denote by o,(n) the order of p in the factorization of rn.
so that p°»(™ | n, but p*™~1{ n.

2 Results

Theorem 1.

Let a strictly increasing sequence {a, }nc: of positive integers and a bounded se-
quence {bn}nen of complexr numbers be given with the following property:
If {nk}ren 1s any strictly increasing sequence of positive integers such that for
any r € N the sequence {gcd (an,.7 ") }ren s eventually constant, then the

limit
lim b,, exists.
k—oc
and, in the case that, with some integer m [not depending on r|,

klim ged (an,.r!) = ged(am, )

for every r, its value is by,.

Then there is a function f € B* with values f(a,) = b, for alln e N.

In [9] it was shown that Theorem 1 has the following Corollaries.
Corollary 1.1.

If {an}a s a strictly monotone sequence of positive integers > 1. with the property
that the minimal prime divisor pmin(a,) of an tends to infinity, and if {bn}, is a

'In particular, it is seen that the conditions of Theorems 1 and 2 are “natural” ones to ensure
continuity of the functions F and G (see sections 4, 5).
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convergent sequence in C. then there is a function f € B* assuming the values
flay) =b, forn=1,2..... 2

Corollary 1.2.
If {an}n is a strictly monotone sequence of positive integers. so that a, { a, for
any m less than n, and if {b,}n is a convergent sequence in C. then there is a
function f € B* assuming the values f(a,) = b, forn=1.,2.....

Corollary 1.3.
If {an}n 1s a strictly monotone sequence of positive integers, so that ap, | a, for

any m less than n, and if {b,}, is a convergent sequence in C, then there is a
function f € B* assuming the values f(an) = b, forn=1,2,....

The interpolation problem in D* is dealt with in the next theorem.

Theorem 2.

Let {an}n be a strictly increasing sequence of positive integers and {b,}, a bounded
sequence of complezr numbers.
Assume that the sequence {b,, }x is convergent for any strictly increasing sequence
{n«}, € N with the property that
for every g € N there is a k; € N so that a,, = an, mod q for all k. k' > ki,
and that klim bn, = bm, if for any ¢ € N there are integers kq, m so that
—0C
Gn, = am mod q for all k > k,.
Then there is a function f € D* with values f(a,) = b,.

Corollary 2.1.
If {an}, is strictly increasing and {b,}, is convergent, then there is a function
f € D* assuming the values f(a,) = b,, if in the case lim b, = b,, for some m,
n—oCc
the relation a, = a,, mod g holds for any q and all sufficiently large integers n.

3 Gelfand’s Theory, Tietze’s Extension Theorem

For the sake of completeness we state some facts from GELFANDs Theory (see [4], 18,
[5], p. 268ff). For a commutative Banach-algebra A (with unit element e and with
norm || - ||) denote by

Ay={h: A~ C, hisa Banach-algebra-homomorphism }

the set of algebra—homomorphisms defined on A. Any h € A4 is continuous, and any
maximal ideal in A 4 is the kernel of some h € A 4. The Gelfand-transform £ of x € A

1S

#:A4—C, 2(h) Y na),

%In [6] a simple elementary proof was attempted. However, unfortunately there is a gap in the
proof.
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66 Schlage-Puchta. Spilker. Schwarz

and so ~ is a map

A A={r: A4 - C re A}
Under the weakest topology. which makes every A continuous. Ay becomes a compact
topological Hausdorff space.
If Ais a semi-simple® B~-algebra.’ then the Gelfand: transform ~ is an isometric
isomorphism of A onto C(\ 4). the algebra of complex-valued continuous functions on
A4 with the sup-norm.
In sections 4 resp. 3, the GELFAND theory will be applied to the commutative Banach

algebras B* resp. D*: these algebras are semi-simple and have an involution (namely
complex conjugation).

3.1 The Maximal Ideal Space of B*

All the homomorphisms 4 from the “maximal ideal space™ \g of B* are given (see for
example (3] or (7], Chapter 4) as follows:

For any vector K = (ep)p - where e, is an integer from {0. [ or equal to . and any
function f € B*. define a “function value”

f(K) = lim § (H p"“"{'-fp}) :

p<r

For f € B¥. this limit does exist. If K has only finitely many entries ¢, # 0. and if
none of these is equal to ~c. then

100 = f (Hpev) .

Define
hx : Ag = C by he(f) = f(K).

Then the maximal ideal space B* of B is®® the set of all hy, where K = (e,,)pe?. If
n= Hp p°(™ is an integer, then the evaluation—homomorphismus A, : f = f(n) equals
hi,. where K, = {op(n). p € P}.

A subbasis of the topology on Ag is given by the vectors (*.....*. ey . *....). where
e, is fixed and finite, or e, > some constant, and * are arbitrary elements of [0. oc].

3The radical of A, which is the intersection of all maximal ideals. equals (0).
4there is an involution * : A = A satisfving |z - z*|| = ||z||>.

3see [3].

6Ap can also be described as the topological product

where {1.p!,p?....,p>} is the one—point-compactification of the discrete space {1.p',p%....}.
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3.2 The Maximal Ideal Space of D"

Define X to be the compact topological product of the discrete residue class rings

Z/,. Z)-
X = HZ/(T Z) -
reN
For m i n define the projection 7, , Z/,.7 d
. a mod n
Tma - Z/(nZ)—’Z/(mzz l'/Tm,-, l
17m
(a mod n) — (a mod m).

Z/m .7 amod m
For d | m and m | n the relation
Tdn = 7dm © Fm.n holds. The map Ty, (form|n)

The maximal ideal space Ap of D* is the Priifer ring Z, where
Z={{an}aen €EX. 0n €L/p.7 and Tmulan) = ap, if m|n}.

Then Ap is homeomorphic to Z. Denote by ¢ this homeomorphism ¢ : Ap — Z. The
evaluation homomorphisms h, : f — f(a) (for a € N) are dense in Ap.” In [7], p. 148,
it is described how to construct the image @(h) for a given homomorphism h € D*. It
follows that

2lhe) = (a mod r) for an evaluation homomorphism h,.

reN

If {a,}, is given, then an algebra homomorphism h € Ap mapped by ¢ to {a,}, is
constructed as follows:
Define h : D — C on the basis elements n — exp(2win - £) (where ged(k,r) = 1) by

h ((n — exp(2min - E)) = exp (27ri . é . a,.) .
r

and extend it linearly to D and then continuously to D*.
Write p(h) = {a,},. and (k') = {B,},; then the homomorphisms k and k' € Ap

are “near” if and only if {o,}, and {3}, are “near”, and this is true if and only if
=3, modrforl1<r<R.

3.3 Tietze’s Theorem

TIETZEs extension theorem states:®
If Y is a non-void compact subset of the locally compact Hausdorff space X, and
if f:Y = C is a continuous map, then there ts a continuous function F : X = C
with compact support, extending f (so that Fly = f).

Tsee. for example, [7]. p. 148ff.
8see. for example, [1].
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4 Proof of Theorem 1.

Define the subset £ = £(a,,) of Ag as the countable idiscrete] set of evaluation homo-
morphisms

Dcenote by H the set of accumulation points of £. The union
K=EUH C g

is closed.® and therefore compact.
Define a function F : K — C.

firstly for points h,, € € by
F (hg,}) = bp.

next for points n = hx € H as follows: choose a sequence {ha"k }k converging to
7. and define
F(hg) = lim by, .
k—x

This limit exists. because for any r the sequence {ged (a,,.1!) }rer: 1s eventually con-
stant:

Write
n = hx. where K = {e,. p € P}.

If e, is finite. then e, = limg_, 0p (@n, ). and so o, (a,, ) is eventually constant.
If ep = oc then op (a,,) = . and so {gcd (an,.7!)}ken is eventually constant.

The function F is well-defined.

Assume that {a,, }, — 7. and that {a;}, = 7. Then the “union-sequence”
Gny:@j; - Qny-Aj,. . .. also tends to 7. therefore the corresponding sequence of the
b-s is convergent (due to our assumption). and the partial sequences {bn, }, and
{bj,} tend to the same limit.

Finally, F is continuous on K.

Consider a point € H. There is a sequence {h’(‘nk }k converging ton. If n ¢ £.

then F(7) = limg_,« bn,. and F' is continuous at the point 7.

L
If n € £ say. n = h,,,. where am, = Hp?"'(a"'). then. for sufficiently large k.

(=1
ha,,k = hx, . where Ky is of the form

(02(am).03(am). ... . 0p, (@m).0.0.....0. %, x.... ).

%see. for example. [2].
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Therefore. for every r € N.
ged(am.7!) = lim ged(ap,.r!).
k-
and so - due to our assumptions -
lim b,, = bm.
k=
and F is continuous in hg,,.

Therefore. by the TIETZE extension theorem there is a continuous function F* : Ag —
C. extending F. By GELFANDs theorv. F™ is the image of some function f € B,
F* = f. and due to

f (@) = ha,(f) = f (ha,) = F" (ha,) = F (ha,) = b
the function f solves the interpolation problem f(a,) = b,.

In [9] the Corollaries were deduced from Theorem 1. Using GELFANDs theory, one uses the
set £ as above. In the case of Corollary 1.1, H = h; due to the condition pmin(an,) — oc, and
F. defined by F (h,,) = bp, F(hy) = lim,_, b, gives a continuous function.

In the case of Corollary 1.3, the condition ay, | a, for all m < n implies that o, (a,) is
monotonely increasing, so limp_,oc 0p (@) = €, exists (possibly e, = oc). Then limy_,oc he, =
hx, where K = {e,, p € P}, and the definition F (hx) = limp_, o bp makes F continuous on
K

For Corollary 1.2. the definition F(n) = lim,_,o b, for every point of accumulation n of £
makes F continuous on K.

5 Proof of Theorem 2.

Given sequences {a,}, and {b,}, with the properties stated in Theorem 2 in section 2, we
define the set

g = {han’ ne N}
and the set H of its points of accumulation. The set

K=fUH CAp
is closed and therefore compact. Define, as in section 4, a function G : K — C by

G (hg,) = by, on evaluation homomorphisms h,,,
and
G(n) = lim b,,, if lim h,, =7

k—o00 k—oc 'k

This limit exists.

We have to show that for every g there is a kg so that a,, = a,, mod g for any
k. > kg If k. ¢ are large, then ko, and h,,, are near. This implies that
the elements (a,, mod 1, a,, mod 2, a,, mod 3, ...} and {(a,, mod 1, a,, mod
2.a,, mod 3, ...) of Z are near, therefore

(an, modr) = (an, modr) for1 <r <R.
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The function G is well defined. and it is continuous on K.

If n € H. then G is continuous at the point 7 by its very definition. If n € £. the
same argument as in the proof of Theorem 1 does apply.
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