Analysis 24, 63 – 70 (2004)

Uniformly-almost-even Functions with prescribed Values, IV. Application of Gelfand's Theory

JAN-CHRISTOPH SCHLAGE-PUCHTA, Freiburg im Breisgau, WOLFGANG SCHWARZ, Frankfurt am Main, and JÜRGEN SPILKER, Freiburg im Breisgau.

> Dedicated to LUTZ LUCHT on the occasion of his 60^{th} birthday

Received: December 15, 2003 Abstract.

> Given integers $0 < a_1 < a_2 < \ldots$ and bounded complex numbers b_1, b_2, \ldots , we deal with the problem of the existence of a uniformly-almost-even function f satisfying

 $f(a_n) = b_n$, for all $n \in \mathbb{N}$.

In [9] this problem was solved using elementary arguments. Now we use Gelfand's theory of commutative Banach-algebras to give sufficient conditions that there exists a function f with this interpolation property.

Classification. 11A25, 11 N64, 46J99

1 Introduction

A function $f : \mathbb{N} \to \mathbb{C}$ is called *r*-even, if the equation $f(n) = f(\operatorname{gcd}(n, r))$ holds for all integers *n*: *f* is called *even*, abbreviated $f \in \mathcal{B}$, if there is some *r* for which *f* is *r*-even.

The closure of \mathcal{B} with respect to the "uniform" norm $\|f\|_u = \sup_{n \in \mathbb{N}} |f(n)|$ is the complex algebra \mathcal{B}^u of uniformly-almost-even functions. Starting with the complex vector

space \mathcal{D} of all *periodic* arithmetical functions. which is generated by the functions $\{n \mapsto \exp(2\pi i \frac{k}{r} \cdot n), \gcd(k, r) = 1\}$ one obtains similarly the algebra \mathcal{D}^u of uniformlyalmost-periodic functions (see, for example, [7], IV.1).

As in [3], [8], and [9], in this note the following *interpolation problem* is dealt with: Let $\{a_n\}_n$ be a strictly increasing sequence of positive integers, and $\{b_n\}_n$ a bounded sequence of complex numbers: does a uniformly-almost-even function f (resp. a uniformly-almost-periodic function) exist with values

$$f(a_n) = b_n$$
 for $n = 1, 2, ...$?

In [9], this problem was solved, using a complicated elementary method. In this paper it is shown, that GELFANDS theory of commutative Banach-algebras, which was used already in [3], gives a simpler solution of the problem stated.¹

Notations. $\mathbb{N} = \{1, 2, ...\}$ is the set of positive integers, $\mathbb{P} = \{2, 3, 5, ...\}$ the set of primes. For $n \in \mathbb{N}$, $p \in \mathbb{P}$, we denote by $o_p(n)$ the order of p in the factorization of n, so that $p^{o_p(n)} \mid n$, but $p^{o_p(n)+1} \nmid n$.

2 Results

Theorem 1.

Let a strictly increasing sequence $\{a_n\}_{n\in\mathbb{N}}$ of positive integers and a bounded sequence $\{b_n\}_{n\in\mathbb{N}}$ of complex numbers be given with the following property:

If $\{n_k\}_{k\in\mathbb{N}}$ is any strictly increasing sequence of positive integers such that for any $r \in \mathbb{N}$ the sequence $\{\gcd(a_{n_k}, r!)\}_{k\in\mathbb{N}}$ is eventually constant, then the limit

$$\lim_{k\to\infty}b_{n_k}\quad exists.$$

and, in the case that, with some integer m [not depending on r],

$$\lim_{k \to \infty} \gcd\left(a_{n_k}, r \right! = \gcd(a_m, r \,!)$$

for every r, its value is b_m .

Then there is a function $f \in \mathcal{B}^u$ with values $f(a_n) = b_n$ for all $n \in \mathbb{N}$.

In [9] it was shown that Theorem 1 has the following Corollaries.

Corollary 1.1.

If $\{a_n\}_n$ is a strictly monotone sequence of positive integers > 1, with the property that the minimal prime divisor $p_{\min}(a_n)$ of a_n tends to infinity, and if $\{b_n\}_n$ is a

¹In particular, it is seen that the conditions of Theorems 1 and 2 are "natural" ones to ensure continuity of the functions F and G (see sections 4, 5).

convergent sequence in \mathbb{C} . then there is a function $f \in \mathcal{B}^u$ assuming the values $f(a_n) = b_n$ for $n = 1, 2, ..., 2^n$

Corollary 1.2.

If $\{a_n\}_n$ is a strictly monotone sequence of positive integers, so that $a_m \nmid a_n$ for any m less than n, and if $\{b_n\}_n$ is a convergent sequence in \mathbb{C} , then there is a function $f \in \mathcal{B}^u$ assuming the values $f(a_n) = b_n$ for $n = 1, 2, \ldots$

Corollary 1.3.

If $\{a_n\}_n$ is a strictly monotone sequence of positive integers, so that $a_m \mid a_n$ for any m less than n, and if $\{b_n\}_n$ is a convergent sequence in \mathbb{C} , then there is a function $f \in \mathcal{B}^u$ assuming the values $f(a_n) = b_n$ for $n = 1, 2, \ldots$

The interpolation problem in \mathcal{D}^u is dealt with in the next theorem.

Theorem 2.

Let $\{a_n\}_n$ be a strictly increasing sequence of positive integers and $\{b_n\}_n$ a bounded sequence of complex numbers.

Assume that the sequence $\{b_{n_k}\}_k$ is convergent for any strictly increasing sequence $\{n_k\}_k \in \mathbb{N}$ with the property that

for every $q \in \mathbb{N}$ there is a $k_q \in \mathbb{N}$ so that $a_{n_k} \equiv a_{n_{k'}} \mod q$ for all $k, k' > k_q$, and that $\lim_{k \to \infty} b_{n_k} = b_m$, if for any $q \in \mathbb{N}$ there are integers k_q , m so that $a_{n_k} \equiv a_m \mod q$ for all $k > k_q$.

Then there is a function $f \in \mathcal{D}^u$ with values $f(a_n) = b_n$.

Corollary 2.1.

If $\{a_n\}_n$ is strictly increasing and $\{b_n\}_n$ is convergent, then there is a function $f \in \mathcal{D}^u$ assuming the values $f(a_n) = b_n$, if in the case $\lim_{n \to \infty} b_n = b_m$ for some m, the relation $a_n \equiv a_m \mod q$ holds for any q and all sufficiently large integers n.

3 Gelfand's Theory, Tietze's Extension Theorem

For the sake of completeness we state some facts from GELFANDS Theory (see [4], 18, [5], p. 268ff). For a commutative Banach-algebra \mathcal{A} (with unit element e and with norm $\|\cdot\|$) denote by

 $\Delta_{\mathcal{A}} = \{h : \mathcal{A} \to \mathbb{C}, h \text{ is a Banach-algebra-homomorphism } \}$

the set of algebra-homomorphisms defined on \mathcal{A} . Any $h \in \Delta_{\mathcal{A}}$ is continuous, and any maximal ideal in $\Delta_{\mathcal{A}}$ is the kernel of some $h \in \Delta_{\mathcal{A}}$. The Gelfand-transform \hat{x} of $x \in \mathcal{A}$ is

$$\hat{x}: \Delta_{\mathcal{A}} \to \mathbb{C}, \ \hat{x}(h) \stackrel{\text{def}}{=} h(x),$$

 $^{^{2}}$ In [6] a simple elementary proof was attempted. However, unfortunately there is a gap in the proof.

and so is a map

$$: \mathcal{A} \to \hat{\mathcal{A}} = \{ \hat{x} : \Delta_{\mathcal{A}} \to \mathbb{C}, x \in \mathcal{A} \}.$$

Under the weakest topology, which makes every \hat{h} continuous. $\Delta_{\mathcal{A}}$ becomes a compact topological Hausdorff space.

If \mathcal{A} is a semi-simple³ B^* -algebra.⁴ then the Gelfand transform is an isometric isomorphism of \mathcal{A} onto $\mathcal{C}(\Delta_{\mathcal{A}})$. the algebra of complex-valued continuous functions on $\Delta_{\mathcal{A}}$ with the sup-norm.

In sections 4 resp. 5, the GELFAND theory will be applied to the commutative Banach algebras \mathcal{B}^u resp. \mathcal{D}^u : these algebras are semi-simple and have an involution (namely complex conjugation).

3.1 The Maximal Ideal Space of \mathcal{B}^u

All the homomorphisms h from the "maximal ideal space" $\Delta_{\mathcal{B}}$ of \mathcal{B}^u are given (see for example [3] or [7], Chapter 4) as follows:

For any vector $\mathcal{K} = (e_p)_{p \in \mathbb{P}}$, where e_p is an integer from $[0, \infty)$ or equal to ∞ , and any function $f \in \mathcal{B}^u$, define a "function value"

$$f(\mathcal{K}) = \lim_{r \to \infty} f\left(\prod_{p \le r} p^{\min\{r, e_p\}}\right).$$

For $f \in \mathcal{B}^u$, this limit does exist. If \mathcal{K} has only finitely many entries $\epsilon_p \neq 0$, and if none of these is equal to ∞ , then

$$f(\mathcal{K}) = f\left(\prod_{p} p^{e_p}\right).$$

Define

$$h_{\mathcal{K}}: \Delta_{\mathcal{B}} \to \mathbb{C}$$
 by $h_{\mathcal{K}}(f) = f(\mathcal{K}).$

Then the maximal ideal space \mathcal{B}^u of \mathcal{B} is^{5,6} the set of all $h_{\mathcal{K}}$, where $\mathcal{K} = (e_p)_{p \in \mathbb{P}}$. If $n = \prod_p p^{o_p(n)}$ is an integer, then the evaluation-homomorphismus $h_n : f \mapsto f(n)$ equals $h_{\mathcal{K}_n}$, where $\mathcal{K}_n = \{o_p(n), p \in \mathbb{P}\}$.

A subbasis of the topology on $\Delta_{\mathcal{B}}$ is given by the vectors $(*, \ldots, *, e_p, *, *, \ldots)$, where e_p is fixed and finite. or $e_p \geq$ some constant, and * are arbitrary elements of $[0, \infty]$.

$$\prod_{p} \{1, p^1, p^2, \ldots, p^\infty\},\$$

where $\{1, p^1, p^2, \dots, p^{\infty}\}$ is the one-point-compactification of the discrete space $\{1, p^1, p^2, \dots\}$.

³The radical of A, which is the intersection of all maximal ideals. equals (0).

⁴there is an involution * : $\mathcal{A} \to \mathcal{A}$ satisfying $||x \cdot x^*|| = ||x||^2$.

⁵see [3].

 $^{{}^{6}\}Delta_{\mathcal{B}}$ can also be described as the topological product

Gelfand's Theory. Tietze's Theorem

3.2 The Maximal Ideal Space of \mathcal{D}^u

Define X to be the compact topological product of the discrete residue class rings $\mathbb{Z}/(r \cdot \mathbb{Z})$.

$$X = \prod_{r \in \mathbb{N}} \mathbb{Z}/(r \cdot \mathbb{Z}) \cdot$$

For $m \mid n$ define the projection $\pi_{m,n}$

$$\pi_{m,n} : \mathbb{Z}/(n \cdot \mathbb{Z}) \to \mathbb{Z}/(m \cdot \mathbb{Z} = , (a \mod n) \mapsto (a \mod m).$$

For $d \mid m$ and $m \mid n$ the relation $\pi_{d,n} = \pi_{d,m} \circ \pi_{m,n}$ holds.

$\mathbb{Z}/n \cdot \mathbb{Z}$	a mod n	
$\pi_{m,n}$		
$\mathbb{Z}/_m$. \mathbb{Z}	$a \mod m$	
The map $\pi_{m,n}$ (for $m \mid n$)		

The maximal ideal space $\Delta_{\mathcal{D}}$ of \mathcal{D}^u is the Prüfer ring \mathbb{Z} , where

$$\hat{\mathbb{Z}} = \{\{\alpha_n\}_{n \in \mathbb{N}} \in X, \ \alpha_n \in \mathbb{Z}/n \cdot \mathbb{Z} \text{ and } \pi_{m,n}(\alpha_n) = \alpha_m, \text{ if } m \mid n\}$$

Then $\Delta_{\mathcal{D}}$ is homeomorphic to $\hat{\mathbb{Z}}$. Denote by φ this homeomorphism $\varphi : \Delta_{\mathcal{D}} \to \hat{\mathbb{Z}}$. The evaluation homomorphisms $h_a : f \mapsto f(a)$ (for $a \in \mathbb{N}$) are dense in $\Delta_{\mathcal{D}}$.⁷ In [7], p. 148, it is described how to construct the image $\varphi(h)$ for a given homomorphism $h \in \mathcal{D}^u$. It follows that

 $\varphi(h_a) = (a \mod r)_{r \in \mathbb{N}}$ for an evaluation homomorphism h_a .

If $\{\alpha_r\}_r$ is given, then an algebra homomorphism $h \in \Delta_{\mathcal{D}}$ mapped by φ to $\{\alpha_r\}_r$ is constructed as follows:

Define $h: \mathcal{D} \to \mathbb{C}$ on the basis elements $n \mapsto \exp(2\pi i n \cdot \frac{k}{r})$ (where gcd(k, r) = 1) by

$$h\left((n\mapsto\exp(2\pi i n\cdot\frac{k}{r})\right)=\exp\left(2\pi i\cdot\frac{k}{r}\cdot\alpha_r\right).$$

and extend it linearly to \mathcal{D} and then continuously to \mathcal{D}^{u} .

Write $\varphi(h) = \{\alpha_r\}_r$, and $\varphi(h') = \{\beta_r\}_r$; then the homomorphisms h and $h' \in \Delta_D$ are "near" if and only if $\{\alpha_r\}_r$ and $\{\beta_r\}_r$ are "near", and this is true if and only if $\alpha_r \equiv \beta_r \mod r$ for $1 \le r \le R$.

3.3 Tietze's Theorem

TIETZES extension theorem states:⁸

If Y is a non-void compact subset of the locally compact Hausdorff space X, and if $f: Y \to \mathbb{C}$ is a continuous map, then there is a continuous function $F: X \to \mathbb{C}$ with compact support, extending f (so that $F|_Y = f$).

⁷see. for example, [7], p. 148ff.

⁸see. for example, [1].

4 Proof of Theorem 1.

Define the subset $\mathcal{E} = \mathcal{E}(a_n)$ of $\Delta_{\mathcal{B}}$ as the countable [discrete] set of evaluation homomorphisms

$$\mathcal{E} = \{h_{a_n}, n = 1, 2, \dots\}$$

Denote by \mathcal{H} the set of accumulation points of \mathcal{E} . The union

$$K = \mathcal{E} \cup \mathcal{H} \subset \Delta_{\mathcal{B}}$$

is closed.⁹ and therefore compact. Define a function $F: K \to \mathbb{C}$.

firstly for points $h_{a_n} \in \mathcal{E}$ by

$$F\left(h_{a_n}\right) = b_n$$

next for points $\eta = h_{\mathcal{K}} \in \mathcal{H}$ as follows: choose a sequence $\left\{h_{a_{n_k}}\right\}_k$ converging to η , and define

$$F(h_{\mathcal{K}}) = \lim_{k \to \infty} b_{n_k}.$$

This limit exists, because for any r the sequence $\{\gcd(a_{n_k}, r!)\}_{k \in \mathbb{N}}$ is eventually constant:

Write

$$\eta = h_{\mathcal{K}}$$
, where $\mathcal{K} = \{e_p, p \in \mathbb{P}\}$.

If e_p is finite, then $e_p = \lim_{k\to\infty} o_p(a_{n_k})$, and so $o_p(a_{n_k})$ is eventually constant. If $e_p = \infty$ then $o_p(a_{n_k}) \to \infty$, and so $\{\gcd(a_{n_k}, r!)\}_{k\in\mathbb{N}}$ is eventually constant.

The function F is well-defined.

Assume that $\{a_{n_k}\}_k \to \eta$. and that $\{a_{j_\ell}\}_\ell \to \eta$. Then the "union-sequence" $a_{n_1}, a_{j_1}, a_{n_2}, a_{j_2}, \ldots$ also tends to η . therefore the corresponding sequence of the b-s is convergent (due to our assumption), and the partial sequences $\{b_{n_k}\}_k$ and $\{b_{j_\ell}\}_\ell$ tend to the same limit.

Finally, F is continuous on K.

Consider a point $\eta \in \mathcal{H}$. There is a sequence $\{h_{a_{n_k}}\}_k$ converging to η . If $\eta \notin \mathcal{E}$. then $F(\eta) = \lim_{k \to \infty} b_{n_k}$. and F is continuous at the point η .

If $\eta \in \mathcal{E}$, say, $\eta = h_{a_m}$, where $a_m = \prod_{\ell=1}^{L} p_{\ell}^{o_{p_{\ell}}(a_m)}$, then, for sufficiently large k, $h_{a_{n_k}} = h_{\mathcal{K}_k}$, where \mathcal{K}_k is of the form

$$(o_2(a_m), o_3(a_m), \ldots, o_{p_L}(a_m), 0, 0, \ldots, 0, *, *, \ldots)$$

⁹see. for example. [2].

Therefore, for every $r \in \mathbb{N}$.

$$\gcd(a_m, r!) = \lim_{k \to \infty} \gcd(a_{n_k}, r!).$$

and so - due to our assumptions -

$$\lim_{k\to\infty}b_{n_k}=b_m.$$

and F is continuous in h_{a_m} .

Therefore, by the TIETZE extension theorem there is a continuous function $F^*: \Delta_{\mathcal{B}} \to \mathbb{C}$. extending F. By GELFANDs theory, F^* is the image of some function $f \in \mathcal{B}^u$, $F^* = \hat{f}$, and due to

$$f(a_n) = h_{a_n}(f) = \hat{f}(h_{a_n}) = F^*(h_{a_n}) = F(h_{a_n}) = b_n$$

the function f solves the interpolation problem $f(a_n) = b_n$.

In [9] the Corollaries were deduced from Theorem 1. Using GELFANDs theory, one uses the set \mathcal{E} as above. In the case of Corollary 1.1, $\mathcal{H} = h_1$ due to the condition $p_{\min}(a_n) \to \infty$, and F, defined by $F(h_{a_n}) = b_n$, $F(h_1) = \lim_{n \to \infty} b_n$ gives a continuous function.

In the case of Corollary 1.3, the condition $a_m \mid a_n$ for all m < n implies that $o_p(a_n)$ is monotonely increasing, so $\lim_{n\to\infty} o_p(a_n) = e_p$ exists (possibly $e_p = \infty$). Then $\lim_{n\to\infty} h_{a_n} = h_{\mathcal{K}}$, where $\mathcal{K} = \{e_p, p \in \mathbb{P}\}$, and the definition $F(h_{\mathcal{K}}) = \lim_{n\to\infty} b_n$ makes F continuous on K.

For Corollary 1.2, the definition $F(\eta) = \lim_{n \to \infty} b_n$ for every point of accumulation η of \mathcal{E} makes F continuous on K.

5 Proof of Theorem 2.

Given sequences $\{a_n\}_n$ and $\{b_n\}_n$ with the properties stated in Theorem 2 in section 2, we define the set

$$\mathcal{E} = \{h_{a_n}, n \in \mathbb{N}\}$$

and the set \mathcal{H} of its points of accumulation. The set

$$K = \mathcal{E} \cup \mathcal{H} \subset \Delta_{\mathcal{D}}$$

is closed and therefore compact. Define, as in section 4, a function $G: K \to \mathbb{C}$ by

 $G(h_{a_n}) = b_n$ on evaluation homomorphisms h_{a_n} ,

and

$$G(\eta) = \lim_{k \to \infty} b_{n_k}$$
, if $\lim_{k \to \infty} h_{a_{n_k}} = \eta$.

This limit exists.

We have to show that for every q there is a k_q so that $a_{n_k} \equiv a_{n_\ell} \mod q$ for any $k, \ell > k_q$. If k, ℓ are large, then $h_{a_{n_k}}$ and $h_{a_{n_\ell}}$ are near. This implies that the elements $(a_{n_k} \mod 1, a_{n_k} \mod 2, a_{n_k} \mod 3, \dots)$ and $(a_{n_\ell} \mod 1, a_{n_\ell} \mod 2, a_{n_\ell} \mod 3, \dots)$ of \hat{Z} are near, therefore

$$(a_{n_k} \mod r) = (a_{n_\ell} \mod r) \text{ for } 1 \le r \le R$$

The function G is well defined, and it is continuous on K.

If $\eta \in \mathcal{H}$, then G is continuous at the point η by its very definition. If $\eta \in \mathcal{E}$, the same argument as in the proof of Theorem 1 does apply.

References

- 1) HEWITT. E. & STROMBERG. K., Real and abstract analysis. Springer-Verlag 1965
- [2] KELLEY. J. L. General Topology. D. van Nostrand Comp., 1955
- [3] MAXSEIN, TH., SCHWARZ, W. & SMITH, P., An example for Gelfand's theory of commutative Banach algebras, Math. Slov. 41, 299–310 (1991)
- [4] RUDIN, W., Real and Complex Analysis. McGraw-Hill Book Company, 1966
- [5] RUDIN. W.: Functional Analysis. McGraw-Hill Book Company. 1973
- [6] SCHWARZ. W.. Uniform-fast-gerade Funktionen mit vorgegebenen Werten. Archiv Math. 77, 1-4 (2001)
- [7] SCHWARZ. W. & SPILKER. J.. Arithmetical Functions. Cambridge University Press 1994
- [8] SCHWARZ. W. & SPILKER. J.. Uniform fast-gerade Funktionen mit vorgegebenen Werten. II. to appear in Archiv Math. (2003)
- [9] SCHLAGE-PUCHTA, J.-CH., SCHWARZ, W. & SPILKER, J., Uniformly-almost-even Functions with prescribed Values. III. to appear

Authors' addresses.		
Jan-Christoph	Wolfgang Schwarz	Jürgen Spilker
Schlage-Puchta		
Mathematisches Institut	Department of Math.	Mathematisches Institut
Eckerstraße 1	Robert-Mayer-Str. 10	Eckerstraße 1
79 104 Freiburg i.Br.	60 054 Frankfurt a.M.	79 104 Freiburg i.Br.
jcp@arcade.mathematik.	schwarz@math.	Juergen.Spilker@math.
uni-freiburg.de	uni-frankfurt.de	uni-freiburg.de