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1. introduction

For positive integers e and m denote by C∗em the free product of e copies of the cyclic
group of order m, and let Fr be the free group of rank r. Given integers r, t ≥ 0, distinct
primes p1, . . . , pt, and positive integers e1, . . . , et, let

Γ = C∗e1p1
∗ · · · ∗ C∗etpt ∗ Fr. (1)

By the Kurosh subgroup theorem, a finite index subgroup ∆ ≤ Γ is again of the same
form, that is, ∆ ∼= C∗λ1

p1
∗ · · · ∗ C∗λtpt ∗ Fµ with non-negative integers λ1, . . . , λt, µ. An

Euler characteristic computation shows that the latter parameters are related to the
index (Γ : ∆) via the relation∑

j

λj

(
1− 1

pj

)
+ µ− 1 = (Γ : ∆)

[∑
j

(
1− 1

pj

)
+ r − 1

]
. (2)

The tuple τ(∆) := (λ1, . . . , λt;µ) is called the (isomorphism) type of ∆. The principal
theme of the present paper is the enumeration of finite index subgroups ∆ in Γ under
restrictions on τ(∆). In particular, we shall discuss, for Γ as above, the following three
basic problems.

(I) (Realization) Which abstract groups admitted by the Kurosh subgroup theorem
are realized as finite index subgroups of Γ?

(II) (Asymptotics) Find natural deformation conditions on τ ∈ Rt+1 implying an
interesting asymptotic behaviour of the function sτ (Γ) counting the number of
finite index subgroups in Γ of type τ .

(III) (Distribution) What can we say about the distribution of isomorphism types for
subgroups of index n in Γ (with respect to various weight distributions) as n
tends to infinity?

The motivation for these questions comes from three main sources: number theory,
geometric function theory, and the theory of subgroup growth. As is well known,
many important number–theoretic functions are invariant under the modular group
PSL2(Z) or certain other free products Γ of the form (1); a phenomenon leading for
instance to functional equations for L-series and Dedekind zeta functions. It is in
this way that the modular group and, more generally, subgroups of finite index in
Hecke groups H(q) ∼= C2 ∗ Cq for q ≥ 3 made their first significant appearance; cf.
for example [1], [7], and [35, Chap. VII]. As Fuchsian groups, these groups also have
intimate connections with the theory of Riemann surfaces; cf. for instance [43], in
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particular Chapter 3.9. Around 1880, both Klein and Poincaré independently realized
the importance of group-theoretic information of the above mentioned kind for the
construction and investigation of automorphic functions. This point of view is already
present in [8] and [9]; in particular, the enumeration and classification of subgroups in
the modular group is singled out in [8] as a group-theoretic problem of fundamental
importance, situated at the crossroads of various branches of mathematics. Since the
early 1960’s the general point of view has shifted even more in that direction, so that (I)
– (III) have become to be regarded as purely algebraic problems in their own right; cf.
for instance [16], [17], [39], [40], [41], [44], as well as Newman’s monograph [36]. From
a recent perspective, a natural context for the research reported in this paper is the
theory of subgroup growth, an exciting and fast developing part of what has in recent
years become known as ‘asymptotic group theory’, which has evolved over the last two
decades in the work of Grunewald, Lubotzky, Mann, Segal, and others including the
first named author. The principal objects of study in the theory of subgroup growth
are arithmetic properties of subgroup counting functions and their connection with the
algebraic structure of the underlying group. An account of some of the major results
in this area obtained prior to 1992 can be found in Lubotzky’s Galway notes [10] and
[11]. More recent contributions include (in rough chronological order) [4], [12], [13],
[22], [23], [25], [5], [28], [30], [31], [32], and [33]; cf. also the forthcoming monograph
[14].

As is well known, counting finite index subgroups in a group Γ is intimately related
to the enumeration of Γ-actions on finite sets, that is, permutation representations
of Γ; cf. for instance [3, Prop. 1]. Our present results depend on a powerful and
surprisingly explicit refinement of this relationship. Let Γ = G1 ∗ · · · ∗ Gs ∗ Fr be a
free product of finite groups Gσ and a free group of rank r. Restricting the action of
Γ by right multiplication on the coset space ∆\Γ to the free factors of Γ gives rise to
representations ϕσ : Gσ → Sym(∆\Γ). Each representation ϕσ in turn decomposes as
direct sum ϕσ =

⊕
κmσκρσκ of the transitive Gσ-representations ρσ1, ρσ2, . . . , ρσkσ with

certain non-negative multiplicities mσκ. The collection of these data mσκ is referred to
as the representation type of ∆, denoted m(∆). The key observation underlying all our
results is an explicit identity relating m(∆) and τ(∆); see Proposition 1 below. The
proof of this identity, which occupies the next section, relies on ideas and techniques
from a recently developed enumerative theory of representations in wreath products;
cf. [25], [34], and [29]. An introduction to and survey of the latter theory from two
somewhat different points of view can be found in [26] and [27]. We now turn to the
contents of this paper, explaining our main results under the headings of the problems
listed above.

(I) Let Γ be as in (1), and for i = 1, . . . , t and j = 1, . . . , ei let xij be a generator of
the corresponding cyclic free factor of Γ. Given a transitive permutation representation
ϕ : Γ → Sn, we have ϕ |〈xij〉= ρ

mij
i ⊕ 1n−pimij , where ρi denotes the regular and 1

the trivial representation of Cpi , and where mij is the number of pi-cycles occurring
in ϕ(xij). Hence, if ∆ is a subgroup of index n in Γ, and if ϕ is the permutation
representation describing the natural action of Γ on ∆\Γ, then the numbers mij together
with the numbers n − pimij correspond precisely to the multiplicities constituting the
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representation type of ∆. Set

Mi(∆) :=

ei∑
j=1

mij, 1 ≤ i ≤ t.

As we shall see, the representation type does not in general determine the original
representation up to equivalence; cf. Remark 1. Nevertheless, as a consequence of the
above mentioned identity relating representation and isomorphism type of a finite index
subgroup, the following is proved in Section 3.

Theorem A. Let Γ be as in (1), and let ∆ be a subgroup of index n in Γ. Then the
type τ(∆) = (λ1, . . . , λt;µ) of ∆ is determined in terms of n and the Mi(∆) by means
of the equations

λk = ekn − pkMk(∆), 1 ≤ k ≤ t

µ =
t∑
i=1

(pi − 1)Mi(∆) + n(r − 1) + 1.

Using Proposition 1 we also obtain a partial reconstruction of τ(∆) from m(∆) for
groups Γ of the more general form Γ = G1 ∗ . . . ∗Gs ∗Fr. This aspect leads for instance
to a far reaching generalization of a well-known theorem of Lyndon concerning the
kernels of cartesian maps; cf. Corollary 1. Theorem A in turn allows us to completely
resolve the realization problem for groups Γ of the form (1).

Theorem B. A tuple τ = (λ1, . . . , λt;µ) of non-negative integers is the isomorphism
type of a finite index subgroup in Γ if and only if

(i) the quantity

n =

∑
i λi(1−

1
pi

) + µ − 1∑
i ei(1−

1
pi

) + r − 1

is a positive integer,

(ii) we have λk ≤ ekn for 1 ≤ k ≤ t, and with n as in (i).

Specializing Theorem B to the modular group, we find that PSL2(Z) contains a finite

index subgroup isomorphic to ∆ = C∗α2 ∗ C
∗β
3 ∗ Fγ if and only if χ(∆) < 0, that is,

if and only if ∆ 6∼= C2, C3, F1, C2 ∗ C2. In Section 4, with the help of Theorem B,
sufficient conditions for the realizability of types by non-maximal subgroups are found,
and we derive properties of types realized by, as well as existence theorems for normal
subgroups. In this context it should be noted that ‘almost all’ subgroups of finite
index in a group Γ of the form (1) are maximal. This is shown among other things in
Section 5.

(II) It is more difficult to give an un-technical account of our results concerning the
asymptotic enumeration of subgroups with given type. Roughly speaking, for Γ large
(χ(Γ) < 0) and of the form (1), our main result in this direction (Section 5, Theorem 3)
associates with Γ certain infinite domains ΩΓ ⊆ Re1+···+et such that

sn(m11, . . . ,mtet) ∼ hn(m11, . . . ,mtet)/(n− 1)! (n→∞),
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subject to the condition that (m11, . . . ,mtet) ∈ ΩΓ. Here, sn(m11, . . . ,mtet) denotes the
number of index n subgroups ∆ in Γ such that, for all i and j, the group 〈xij〉 acts on
∆\Γ as a product of precisely mij pi-cycles, and hn(m11, . . . ,mtet), which is explicitly
computed in Proposition 7 (iv), counts the number of permutation representations of Γ
of degree n enjoying the analogous property. The condition that (m11, . . . ,mtet) ∈ ΩΓ

can be translated into deformation conditions for τ by means of Theorem A. As an
illustration of the power of Theorem 3, here is a consequence for the modular group.

Theorem C. Let τi = (αi, βi, ; γi) be a sequence of types in N3
0 such that ni := 3αi +

4βi + 6(γi − 1) tends to infinity with i. Assume that for all i we have αi < n
2
3
−ε

i ,

βi < n
1
2
−ε

i , and αiβi < n1−ε
i with some fixed ε > 0. Then the number sτi(PSL2(Z)) of

finite index subgroups in the modular group of type τi satisfies

sτi(PSL2(Z)) ∼ ni · ni!

αi!βi! (ni − αi2 )! (
ni − βi

3 )! 2
ni−αi

2 3
ni−βi

3

(i→∞).

In connection with the construction of automorphic functions, Poincaré raised the ques-
tion whether ’almost all’ finite index subgroups of the modular group are free. If sub-
groups are enumerated by index, a negative answer was given in [22, Prop. 3] for a larger
class of free products including the modular group. As an application of Theorems 1
and 3, we show in Section 5 that, if subgroups are enumerated by rank, then a positive
proportion of all finite index subgroups in a group of the form (1) is in fact free.

In the special case of the modular group we are able to establish an asymptotic expan-
sion for sτ (PSL2(Z)) considerably refining Theorem C under similar hypotheses on τ ;
cf. Section 8, Proposition 10.

(III) Every statement on probability distributions depends on the choice of a weight
function. In the present context, apart from uniform weights, the weight distributions
on finite index subgroups ∆ of groups of the form (1) given by w(∆) := |Hom(∆, H)|
with some fixed finite group H, appear to be the most natural ones. For 1 ≤ i ≤ t
and a positive integer n define random variables ξin by choosing a subgroup ∆ of in-
dex n in Γ at random (with respect to uniform weights), and putting ξin = λi, where

τ(∆) = (λ1, . . . , λt;µ). Furthermore, for a prime q define random variables ξ
(q)
in by

choosing a transitive representation ψ : Γ→ Cq o Sn (with respect to uniform weights),

putting ∆ = stabεψ(1), and setting ξ
(q)
in = λi, with λi as above. Here, εψ is the permuta-

tion part of ψ. It is shown in Section 7 that the variables ξ1n, . . . , ξtn are asymptotically

independent, as are the variables ξ
(q)
1n , . . . , ξ

(q)
tn for fixed q, and that each of these vari-

ables converges to a normal distribution. More specifically, we obtain the following.

Theorem D. Suppose that χ(Γ) < 0. Then, as n → ∞, the variables ξ1n, . . . , ξtn are
asymptotically independent. Moreover, for each i ∈ [t] and real x,

P
(
ξin ≤ ein

1/pi + x
√
ein

1/(2pi)
)

=
1√
2π

∫ x

−∞
e−s

2/2 ds + O
(
n−δ(Γ)

)
,

where δ(Γ) := 1
5

min
(

1
p1
, . . . , 1

pt

)
; in particular, the distribution of ξin converges weakly

to a normal distribution with mean ein
1/pi and standard deviation

√
ein

1/(2pi).
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Theorem E. Let Γ be as in Theorem D, and let q be a prime. Then, as n → ∞, the

variables ξ
(q)
1n , . . . , ξ

(q)
tn are asymptotically independent. Moreover,

(i) if q 6= pi, then the distribution of ξ
(q)
in converges weakly to a normal distribution

with mean ei
q1−1/pi

n1/pi and standard deviation
√
ei

q1/2−1/(2pi)
n1/(2pi),

(ii) the distribution of ξ
(pi)
in converges weakly to a normal distribution with mean

ei(pin)1/pi and standard deviation
√
ei(pin)1/(2pi).

In both cases, the error term is as in Theorem D.

The final section studies the impact of the theory developed here towards the solution
of the Poincaré-Klein problem for the modular group. Here, the rather simple structure
of PSL2(Z) also allows us to obtain improved versions, and we demonstrate that some of
the seemingly technical hypotheses introduced in Sections 4 and 5 are indeed necessary.

2. isomorphism versus representation type

Given finite groups G1, . . . , Gs and an integer r ≥ 0, consider the group

Γ = G1 ∗ · · · ∗Gs ∗ Fr. (3)

Let U1, U2, . . . , U` be a complete list of the isomorphism types of subgroups occurring
in the groups G1, . . . , Gs (excluding the trivial group), and let ∆ ≤ Γ be a subgroup of
finite index. By Kurosh’s subgroup theorem, ∆ is of the form

∆ ∼= U∗λ1
1 ∗ U∗λ2

2 ∗ · · · ∗ U∗λ`` ∗ Fµ
with non–negative integers λ1, λ2, . . . , λ`, and µ. The tuple τ(∆) := (λ1, . . . , λ`;µ) is
called the (isomorphism) type of ∆. Computation of the rational Euler characteristic
shows that τ(∆) is related to the index (Γ : ∆) = n via∑̀

j=1

λj

(
1− 1

|Uj|

)
+ µ− 1 = n

[ s∑
σ=1

(
1− 1

|Gσ|

)
+ r − 1

]
. (4)

As is well known, the problem of counting finite index subgroups in a group Γ is inti-
mately connected with the enumeration of Γ–actions on finite sets (that is permutation
representations of Γ). Restricting the action of Γ by right multiplication on the coset
space ∆\Γ to the factors Gσ respectively Fr gives rise to representations ϕσ : Gσ →
Sym(∆\Γ). Each representation ϕσ in turn decomposes as direct sum ϕσ =

⊕
κ mσκρσκ

of the transitive Gσ–representations ρσ1, . . . , ρσkσ with certain non–negative multiplici-
ties mσκ. Let dσκ be the degree of ρσκ. Our first result relates the set of data (the repre-
sentation type
of ∆)

m(∆) = (mσκ) σ=1,...,s
κ=1,...kσ

to τ(∆). For a group H and a permutation group Π denote by ε the canonical projection
H o Π→ Π. We will choose algebraic multiplication in permutation groups, that is,

(π1 · π2)(ω) = π2(π1(ω)) (π1, π2 ∈ Π(Ω), ω ∈ Ω).
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Consequently, group actions will always be right actions, and multiplication in the
wreath product H o Π(Ω) is given by the formulae

(f1, π1) · (f2, π2) = (f, π1 · π2)

f(ω) = f1(ω)f2(π1(ω)).

Proposition 1. Let Γ be as in (3), let U1, . . . , U` be as above, and let H be a fixed finite
group. Then isomorphism and representation type of a subgroup ∆ of index n in Γ are
related via the equation

|H|nr
s∏

σ=1

kσ∏
κ=1

∣∣∣{ψ ∈ Hom(Gσ, H o Sdσκ) : εψ = ρσκ

}∣∣∣mσκ = |H|n+µ−1

×
∏̀
j=1

|Hom(Uj, H)|λj . (5)

Proof. Fix some representation ϕ obtained from the action of Γ on ∆\Γ by numbering
the cosets in such a way that ∆ · 1 7→ 1, and let ϕσ be the restriction of ϕ to Gσ.
Consider the following four quantities:

|H|nr
s∏

σ=1

kσ∏
κ=1

∣∣∣{ψ ∈ Hom(Gσ, H o Sdσκ) : εψ = ρσκ

}∣∣∣mσκ , (6)

∣∣∣{ψ ∈ Hom(Γ, H o Sn) : εψ = ϕ
}∣∣∣, (7)

|H|n−1 |Hom(∆, H)|, (8)

and

|H|n+µ−1
∏̀
n=1

|Hom(Uj, H)|λj . (9)

We will show that (i) (8)=(9), (ii) (6)=(7), and (iii) (7)=(8).

(i) By definition of the type and the mapping property of free products,

|Hom(∆, H)| =
∣∣Hom(U∗λ1

1 ∗ · · · ∗ U∗λ`` ∗ Fµ, H)
∣∣ = |Hom(Fµ, H)|

∏̀
j=1

|Hom(Uj, H)|λj .

Multiplication by |H|n−1 now gives (8) = (9).

(ii) For Γ′ := G1 ∗ · · · ∗Gs, we have∣∣{ψ ∈ Hom(Γ, H o Sn : εψ = ϕ
}∣∣ =

∣∣{ψ ∈ Hom(Γ′, H o Sn : εψ = ϕ |Γ′
}∣∣

×
∣∣{ψ ∈ Hom(Fr, H o Sn) : εψ = ϕ |Fr

}∣∣.
A homomorphism ψ : Fr → H o Sn is determined by r arbitrary elements of Hn and
r permutations. Thus, with εψ = ϕ |Fr prescribed, there are exactly |H|nr choices for
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ψ lifting ϕ |Fr . Hence, it suffices to consider the case where r = 0. By the mapping
property of Γ, it is enough to check that∣∣{ψ ∈ Hom(Gσ, H o Sn) : εψ = ϕσ

}∣∣ =
kσ∏
κ=1

∣∣{ψ ∈ Hom(Gσ, H o Sdσκ) : εψ = ρσκ
}∣∣mσκ .

(10)
Consider an element ψ of the left–hand set. By the condition that εψ = ϕσ and the
definition of the multiplicities mσκ, the image ψ(Gσ) is contained in a subgroup of H oSn
which is independent of ψ and isomorphic to

∏kσ
κ=1(H o Sdσκ)mσκ , and, on a component

of the κ–th factor, ε(ψ(Gσ)) acts like ρσκ. Since for arbitrary groups G,H1, H2

|Hom(G,H1 ×H2)| = |Hom(G,H1)| · |Hom(G,H2)|, (11)

we obtain (10).

(iii) Let

L(∆) :=
{
ψ ∈ Hom(Γ, H o Sn) : stabεψ(1) = ∆

}
.

Then

|L(∆)| = (n− 1)! ·
∣∣{ψ ∈ Hom(Γ, H o Sn) : εψ = ϕ

}∣∣. (12)

For γ ∈ Γ and ψ ∈ Hom(Γ, H o Sn) write ψ(γ) = (fγ, πγ), and for ψ ∈ L(∆) define a
map χψ : ∆→ H by

χψ(δ) = fδ(1), δ ∈ ∆.

With this notation, we claim: firstly, that χψ is a homomorphism, secondly, that the
map L(∆) → Hom(∆, H) given by ψ 7→ χψ is surjective, and thirdly, that each fibre
of this map has cardinality (n − 1)! |H|n−1. In view of (12), these claims imply that
(7) = (8).

Let δ1, δ2 ∈ ∆, and let (f1, π1) respectively (f2, π2) be the images under ψ. Then
χψ(δ1) = f1(1), χψ(δ2) = f2(1), and χψ(δ1δ2) = f(1), where

(f1, π1)(f2, π2) = (f, π1π2).

Hence,

χψ(δ1δ2) = f1(1)f2(π1(1)) = χψ(δ1)χψ(δ2),

since π1(1) = 1. This proves our first claim.

In order to prove surjectivity of the map ψ 7→ χψ, we will exhibit, for every homomor-
phism χ : ∆ → H, a representation ψ : Γ → H o Sn with εψ = ϕ and χψ = χ. The
latter task is equivalent to finding a map f : Γ× [n]→ H such that 1

f(γ1γ2, i) = f(γ1, i)f(γ2, ϕ(γ1)(i)) (γ1, γ2 ∈ Γ, i ∈ [n]) (13)

and

f(γ, 1) = χ(γ), γ ∈ ∆. (14)

By the transitivity of ϕ, we can find elements γ(i) ∈ Γ for i ∈ [n] such that

ϕ(γ(i))(1) = i, i ∈ [n]

γ(1) = 1.
(15)

1[n] denotes the standard n–set, that is, the set consisting of the integers 1, 2, . . . , n.
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Moreover, choose elements hi ∈ H for i ∈ [n], h1 = 1, and define a function f : Γ×[n]→
H via

f(γ, i) := h−1
i χ(δ)hj,

where γ(i)γ = δγ(j) with δ ∈ ∆ and j ∈ [n]. If γ ∈ ∆ and i = 1, then δ = γ and j = 1,
and hence

f(γ, 1) = h−1
1 χ(γ)h1 = χ(γ),

which proves (14). In proving (13), we first consider the case where i = 1. Let γ1, γ2 ∈ Γ,
and suppose that γ1 = δ1γ

(j), that is, ϕ(γ1)(1) = j, and that γ(j)γ2 = δ2γ
(k), where

δ1, δ2 ∈ ∆ and j, k ∈ [n]. Then we have

γ1γ2 = δ1γ
(j) (γ(j))−1 δ2γ

(k) = δ1 δ2γ
(k),

and, since χ is a homomorphism,

f(γ1γ2, 1) = h−1
1 χ(δ1δ2)hk

= h−1
1 χ(δ1)hj h

−1
j χ(δ2)hk

= f(γ1, 1)f(γ2, ϕ(γ1)(1)).

Now let γ1, γ2 ∈ Γ and i ∈ [n]. Let γ(i)γ1 = δ1γ
(j) and γ(j)γ2 = δ2γ

(k) with δ1, δ2 ∈ ∆.
Then

γ(i)γ1γ2 = δ1γ
(j) (γ(j))−1 δ2γ

(k) = δ1 δ2γ
(k),

and we find that

f(γ1γ2, i) = h−1
i χ(δ1δ2)hk

= h−1
i χ(δ1)hj · h−1

j (χ(δ1))−1h1 · h−1
1 χ(δ1δ2)hk

= f(γ1, i)(f(γ(i)γ1, 1))−1f(γ(i)γ1γ2, 1)

= f(γ1, i)f(γ2, ϕ(γ(i)γ1)(1))

= f(γ1, i)f(γ2, ϕ(γ1)(i)),

where we have made use of the case i = 1 of (13) to rewrite f(γ(i)γ1γ2, 1). This proves
our second claim.

In order to establish our last claim, consider the action by conjugation of the group

U :=
{

(f, π) ∈ H o Sn : f(1) = 1 and π(1) = 1
}

on the set L(∆). Since U ∼= H oSn−1, we have |U | = |H|n−1 (n−1)!. We show next that
this action of U on L(∆) is in fact free. Assume that ψu = ψ for some ψ ∈ L(∆) and
u ∈ U , that is, [ψ(γ), u] = 1 for all γ ∈ Γ. Setting u = (g, τ), this property is equivalent
to the two assertions that

πγ τ = τ πγ (γ ∈ Γ)

and

fγ(i) g(πγ(i)) = g(i)fγ(τ(i)) (γ ∈ Γ, i ∈ [n]).

Since εψ is transitive and τ(1) = 1, the first of these equations immediately implies
τ = id, and the second equation simplifies to

fγ(i) g(πγ(i)) = g(i)fγ(i) (γ ∈ Γ, i ∈ [n]).
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Setting i = 1 and using the facts that g(1) = 1 and that εψ is transitive, we now find
that g(j) = 1 for all j ∈ [n], that is, u = 1. Hence, L(∆) decomposes into

|L(∆)|/|U | = |L(∆)|/(|H|n−1(n− 1)!)

orbits under U , and any two elements in the same orbit correspond to the same ho-
momorphism in Hom(∆, H). Thus, it only remains to show that two elements not
equivalent under U have different images in Hom(∆, H).

Let ψ1, ψ2 ∈ L(∆) be elements such that χψ1 = χψ2 . After conjugation with appropri-
ate elements of U we can assume that εψ1 = εψ2 = ϕ. Define a map ∂ : Γ → H via

∂(γ) := (f
(2)
γ (1))−1 f

(1)
γ (1), where ψi(γ) = (f

(i)
γ , πγ). By assumption ∂(γ) = 1 for γ ∈ ∆.

An immediate calculation yields the multiplication rule

∂(γγ′) = (f
(2)
γ′ (πγ(1)))−1 ∂(γ)f

(1)
γ′ (πγ(1)) (γ, γ′ ∈ Γ). (16)

If γ ∈ ∆, we see from (16) that ∂(γγ′) = ∂(γ′), that is, ∂ is a class function for Γ
modulo ∆. Define a map f : [n] → H via f(i) := ∂(γ(i)), where γ(i) is as in (15); in
particular f(1) = 1. We can now finish the proof by showing that

f(i)f (1)
γ (i) = f (2)

γ (i)f(πγ(i)) (γ ∈ Γ, i ∈ [n]), (17)

since this implies that
ψ2(γ)(f,id) = ψ1(γ), γ ∈ Γ.

We compute f(πγ(i)):

f(πγ(i)) = f(πγ(πγ(i)(1)))

= f(πγ(i)γ(1))

= ∂(γ
(π
γ(i)γ

(1))
)

= ∂(γ(i)γ)

= (f (2)
γ (πγ(i)(1)))−1 ∂(γ(i))f (1)

γ (πγ(i)(1))

= (f (2)
γ (i))−1 f(i)f (1)

γ (i),

where we have used the multiplication rule (16) and the facts that γ
(π
γ(i)γ

(1)) ∼∆ γ(i)γ
and that ∂ is a class function. The desired result (17) follows now upon multiplication

from the left with f
(2)
γ (i). �

3. The realization problem for isomorphism types

From now on, with the exception of Subsection 3.2, we shall restrict our attention to
groups Γ of the form (1).

3.1. Explicit determination of isomorphism types. For i = 1, . . . , t and j =
1, . . . , ei let xij be a generator of the corresponding cyclic factor of Γ. Given a transitive
permutation representation ϕ : Γ→ Sn, the restriction of ϕ to 〈xij〉 is determined up to
equivalence by the number mij of pi–cycles occurring in ϕ(xij). More precisely, ϕ |〈xij〉 is

equivalent to ρ
mij
i ⊕1n−pimij , where ρi denotes the regular and 1 the trivial representation
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of Cpi , that is, up to renumbering, the numbers mij together with the numbers n−pimij

correspond exactly to the multiplicities introduced in the previous section. Given a
subgroup ∆ of index n in Γ, let Mi(∆) =

∑
j mij, where the multiplicities mij pertain

to the natural action of Γ on ∆\Γ.

Theorem 1. Let Γ = C∗e1p1
∗ · · · ∗ C∗etpt ∗ Fr with distinct primes p1, . . . pt, and let ∆

be a subgroup of index n in Γ, with invariants Mi(∆) as defined above. Then the type
τ(∆) = (λ1, . . . , λt;µ) of ∆ is determined in terms of n and the Mi(∆) by means of the
equations

λk = ekn − pkMk(∆), 1 ≤ k ≤ t

µ =
t∑
i=1

(pi − 1)Mi(∆) + n(r − 1) + 1.

Proof. In Proposition 1 put H = Cp, where p is prime. We have to compute the
quantities

|Hom(Cpi , Cp)| and
∣∣{ψ ∈ Hom(Cpi , Cp o Spi) : εψ = ρi

}∣∣.
The first expression equals pi if p = pi, and 1 otherwise. In order to compute the second
expression we have to count elements (f, π) in Cp oSpi of order pi, which are mapped via
ε onto a given pi–cycle, say π = (1 . . . pi). The condition that (f, π)pi = 1 is equivalent
to the equation

f(1)f(2) . . . f(pi) = 1

in Cp, which is satisfied by exactly ppi−1 such functions f . We first choose p to be
different from all the pi. Then, on the left–hand side of (5), the first factor is pnr, while
the contribution of the trivial representations is 1, and the regular representations
contribute a total of

t∏
i=1

ei∏
j=1

p(pi−1)mij =
t∏
i=1

p(pi−1)Mi(∆).

The right–hand side in this case becomes pn+µ−1. Comparing exponents, we obtain the
last equation of Theorem 1. Next, we take p = pk for some 1 ≤ k ≤ t. The same
computation as above now shows that in this case the first factor on the right–hand

side is pnrk , while the regular representations contribute
∏t

i=1 p
(pi−1)Mi(∆)
k , so that, by

the equation just verified, the product of these two terms equals pn+µ−1
k . The trivial

representations contribute 1 to the left–hand side, except for σ such that Gσ
∼= Cpk , in

which case the contribution is p
n−pkmkj
k . Hence, for p = pk, the left–hand side equals

pn+µ−1
k

ek∏
j=1

p
n−pkmkj
k = p

n+µ−1+ekn−pkMk(∆)
k .

The right–hand side in this case equals pn+µ−1+λk
k . Comparing exponents gives rise to

the first equation of Theorem 1. �

Remark 1. Let Γ = 〈x, y | x2 = y3 = 1〉 be the modular group, and define representa-
tions ϕ1, ϕ2 of degree 6 via

ϕ1(x) = (12)(34)(56), ϕ2(x) = (15)(26)(34)
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and

ϕ1(y) = ϕ2(y) = (123)(456).

Then, by Theorem 1, the associated subgroups ∆i = stabϕi(1) are isomorphic. However,
since

|ϕ1(Γ)| = |S2 o S3| = 48 and |ϕ2(Γ)| = |C6| = 6,

the core of ∆1 has index 8 in ∆1, whereas ∆2 is normal in Γ (in fact ∆1 has class
number 3). This shows in particular that ∆1 and ∆2 are not conjugate, not even under
an outer automorphism, although they have the same representation type.

3.2. Some remarks on Theorem 1. In this subsection we shall consider the question
how far Theorem 1 can be generalized towards free products Γ of the form (3). The
proof of our next result demonstrates that, while it may be true that the isomorphism
type of a finite index subgroup in such a group Γ is determined by its representation
type, the proof strategy of Theorem 1 becomes problematic, since the correct choice of
the auxiliary groups H turns out to be difficult.

Proposition 2. Let Γ = C4 ∗ C6, and let ∆1 and ∆2 be subgroups of index n. Then
∆1
∼= ∆2 if ∆1 and ∆2 have the same representation type.

Proof. As in the proof of Theorem 1, we have to solve the system of equations (5) for
λ1, . . . , λ`, and µ. The non-trivial subgroups of C4 and C6 are C2, C3, C4, and C6. As
H runs over all cyclic groups of finite order, we obtain equations for

(2, |H|)λ1(3, |H|)λ2(4, |H|)λ3(6, |H|)λ4|H|µ.

Choosing for instance |H| = 5, one can easily determine µ. The remaining parts of
this expression depend on (12, |H|) only, thus choosing for |H| all divisors 6= 1 of 12,
we obtain 5 exponential equations in λ1, . . . , λ4, which can be transformed into seven
linear equations by considering powers of 2 and 3 separately. The resulting system has
the following form:

λ1 + λ3 + λ4 = c1

λ2 + λ4 = c2

λ1 + 2λ3 + λ4 = c3

λ1 + λ3 + λ4 = c4

λ2 + λ4 = c5

λ1 + 2λ3 + λ4 = c6

λ2 + λ4 = c7.

Obviously, among these equations there are only three independent ones, hence it is
impossible to determine the four variables. Moreover, in view of (11), choosing H as
an arbitrary abelian group yields no further information. However, if we take H = S3,
and consider the 2-part of the exponential equation, we obtain the linear equation

2λ1 + 2λ3 + λ4 = c8.

Since this new equation is independent of the three former ones, the enlarged system is
uniquely solvable. This shows that the representation type of a finite index subgroup
in Γ determines its isomorphism type. �
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It is interesting to observe however that, even in the general setting of (3), we can still
compute the free part of finite index subgroups. In order to exploit Proposition 1 for
such groups, we first have to study the factors on the left–hand side of equation (5).

Lemma 1. Let G be a finite group, p a prime such that p - |G|, and let ρ be a transitive
permutation representation of G of degree d. Then∣∣{ψ ∈ Hom(G,Cp o Sd) : εψ = ρ

}∣∣ = pd−1. (18)

Proof. In Proposition 1 put Γ = G and ∆ = stabρ(1). Then s = 1 and

m1κ =

{
1, ρ1κ = ρ

0, otherwise,

hence, in this situation equation (5) coincides with (18). �

Proposition 3. Let Γ be as in (3), and let ∆ be a subgroup of index n in Γ of type
τ(∆) = (λ1, . . . , λ` ;µ) and representation type m(∆) = (mσκ).

(i) We have

µ = (r + s− 1)n −
s∑

σ=1

kσ∑
κ=1

mσκ + 1.

(ii) ∆ is free if and only if

mσκ =


n

|Gσ|
, ρσκ regular

0, otherwise.
(19)

Proof. (i) Let p be a prime such that p - |Gσ| for all σ, and put H = Cp. Combining
Proposition 1 with the previous lemma yields

pnr
s∏

σ=1

kσ∏
κ=1

pmσκ(dσκ−1) = pn+µ−1.

Taking logarithms, solving the resulting equation for µ, and using the fact that
∑

κ dσκmσκ =
n now gives (i).

(ii) According to (4), ∆ is free if and only if

µ = (r − 1)n + n
s∑

σ=1

(
1− 1

|Gσ|

)
+ 1,

that is, in view of (i), if and only if

s∑
σ=1

kσ∑
κ=1

mσκ =
s∑

σ=1

n

|Gσ|
.

It follows that condition (19) on the representation type is sufficient to ensure that ∆
is free. Conversely, since

∑
κ dσκmσκ = n, and since all but the regular representations

of the Gσ have degrees strictly less than |Gσ|, ∆ free implies (19). �
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Proposition 3 allows us to decide with reasonable effort whether or not a given sub-
group is free. Note in this context that, since a common way of representing finite
index subgroups within a computer algebra system like GAP is via the associated coset
representation, the representation type m(∆) of a subgroup ∆ can be computed at
negligible cost. Hence, any method allowing to deduce from m(∆) further information
on ∆, is of potential interest from an algorithmic point of view. As an example of a
more theoretical application, we derive a result generalizing the well–known theorem of
Lyndon concerning the kernels of cartesian maps.2

Corollary 1. Let Γ be as in (3), G a finite group, ψσ : Gσ → G monomorphisms
for 1 ≤ σ ≤ s, and let ψ : Γ → G be an epimorphism simultaneously extending
every ψσ. Then the kernel of ψ is free. In particular, the kernel of the cartesian map
G1 ∗ · · · ∗Gs → G1 × · · · ×Gs is free of rank

rk(K) = |G1| · · · |Gs|
[∑

σ

(
1− 1

|Gσ|

)
− 1

]
+ 1.

Proof. Let K be the kernel of ψ. Then the canonical action of Gσ on K\Γ is equivalent
to the action of ψσ(Gσ) on G by right multiplication. The latter action is the direct
sum of |G|/|Gσ| regular actions of Gσ. Hence, condition (19) is satisfied, and K is free
by the second part of Proposition 3. The particular statement follows from this and
formula (4). �

3.3. Solution of the realization problem. We now come to the main result of
Section 3, characterizing those (t + 1)–tuples τ = (λ1, . . . , λt;µ) ∈ Nt+1

0 , which are
realized, that is, occur as the isomorphism type of a finite index subgroup in Γ =
t∗
i=1
C∗eipi
∗ Fr.

Theorem 2. Let Γ be as in (1). Then a tuple τ = (λ1, . . . , λt;µ) of non–negative
integers is the isomorphism type of a finite index subgroup in Γ if and only if

(i) the quantity

n =

∑t
i=1 λi(1−

1
pi

) + µ− 1∑t
i=1 ei(1−

1
pi

) + r − 1

is a positive integer,

(ii) we have λk ≤ ekn for 1 ≤ k ≤ t, and with n as in (i).

If (i) and (ii) hold, then n is the index of any subgroup in Γ realizing τ .

Proof. By Theorem 1, a tuple τ ∈ Nt+1
0 is the type of a finite index subgroup in Γ if

and only if there exists a transitive permutation representation of Γ of degree n such

2Cf. [15]. The basic idea of Lyndon’s theorem goes back to Nielsen [38].
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that

Mk =
ekn− λk

pk
(20)

and with n as given in the theorem. Solving (20) for λk, and substituting the resulting
expression into the definition of n in (i), we find that

t∑
i=1

(pi − 1)Mi + n(r − 1) + 1 = µ, (21)

that is, the second equation in Theorem 1 holds as a consequence of (20) and the
definition of n.

We first show that our hypothesis (i) is equivalent to the assertions that the numbers
M1, . . .Mt, n, as given by the equations above, are in fact integral, and that n > 0. For
n there is nothing to show. We have

n

[ t∑
i=1

ei(pi − 1)
∏
j 6=i

pj + (r − 1)
∏
j

pj

]
=

t∑
i=1

λi(pi − 1)
∏
j 6=i

pj + (µ− 1)
∏
j

pj.

Reducing modulo pk for some k ∈ [t], this equation becomes

nek(pk − 1)
∏
j 6=k

pj ≡ λk(pk − 1)
∏
j 6=k

pj mod pk,

implying nek ≡ λk (pk), since the factor (pk − 1)
∏

j 6=k pj is invertible modulo pk. This
shows that all Mk as defined above are indeed integral.

Clearly, condition (ii) is equivalent to the assertion that the quantities Mk as defined
above are non–negative. Moreover, for 1 ≤ k ≤ t, the trivial inequalities λk ≥ 0
correspond to the inequalities pkMk ≤ ekn, while µ ≥ 0 corresponds to the inequality∑t

i=1 (pi − 1)Mi ≥ n(1− r)− 1. For each i = 1, . . . , t choose integers mi1, . . . ,miei ≥ 0
such that pimij ≤ n and

∑
jmij = Mi. We shall construct a transitive permutation

representation ϕ of Γ of degree n such that ϕ(xij) has precisely mij cycles of length pi
and n− pimij fixed points.

If r > 0, then we can choose ϕ(xij) in Sn subject only to the above condition on the
cycle structure, and map the r generators of the free part of Γ to the n–cycle (1, . . . , n),
in this way ensuring transitivity of the image. Hence, we can assume from now on that
r = 0, which means that the inequality corresponding to µ ≥ 0 becomes non–trivial.
Without loss of generality we may further assume that p1m11 ≥ pimij for all i and j.
In order to define ϕ(x11) we choose m11 disjoint cycles of length p1 in [n]. The image
of the (lexicographically) next generator xij (that is, x12 or x21 at this stage) is then
constructed as follows: we choose the first point from each of the first pi cycles of ϕ(x11)
to form the first pi–cycle of ϕ(xij); then we choose a second point in the pi–th cycle
of ϕ(x11) and one point from each of the next pi − 1 cycles of ϕ(x11). We continue in
this way until we have constructed mij cycles of length pi (which then define ϕ(xij)),
or until not enough free p1–cycles are left to continue (that is, less than pi for the first
step, respectively less than pi− 1 if the first step occurs). In the latter case we proceed
as follows: going through the p1–cycles of ϕ(x11) from left to right, we choose the first
free point (that is the first or the second point in the first p1–cycle at this stage), the
first point in each of the remaining free p1–cycles, and enough fixed points (from left to
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right) of ϕ(x11) to fill up another pi–cycle. We iterate this second procedure until we
have constructed mij cycles of length pi, or until there are less than pi − 1 fixed points
of ϕ(x11) left. In the first case we have completed the construction of ϕ(xij), in the
second case we combine the remaining fixed points of ϕ(x11) with the correct number
of free points in the p1–cycles to form a further pi–cycle. If this last step occurs we
construct the missing number of pi–cycles arbitrarily from remaining free points.

We have to check that at each stage we have a sufficient supply of free points. Assume
that this is not the case. When starting the second procedure, the first p1–cycle of
ϕ(x11) contains at least one free point, thus we can at least link all the p1–cycles. Since
all points not free are moved by ϕ(xij), and at least one fixed point of ϕ(x11) is moved by
ϕ(xij), the permutation ϕ(xij) has less fixed points than ϕ(x11), that is, pimij > p1m11,
contradicting the maximality of p1m11.

The image of the next generator is chosen by repeating the procedure leading to ϕ(xij),
now linking orbits of 〈ϕ(x11), ϕ(xij)〉 instead of cycles. Since the number of free points
at our disposal increases with each step, we can define the action in this way for all the
remaining generators.

Finally, it remains to show that the action obtained is transitive. Clearly, this is the
case if we are running out of fixed points while performing the second procedure. Hence
assume that this situation never occurs. Then, in every step of the construction, a newly
formed pk–cycle links pk − 1 orbits previously disconnected, thus the number of orbits
after the construction of m11 cycles of length p1,. . . , mtet cycles of length pt equals

n −
t∑
i=1

et∑
j=1

mij (pi − 1) = n −
t∑
i=1

Mi (pi − 1) = 1− µ ≤ 1

by equation (21) and the fact that r = 0. Hence, there is exactly one orbit, that is,
we have obtained a transitive action. The last assertion of the theorem follows from
Equation (4). �

Remark 2. Consider the group Γ = C2 ∗ C3 ∗ C5. Then the quantity n defined in
condition (i) of Theorem 2 satisfies

29n = 15λ1 + 20λ2 + 24λ3 + 30(µ− 1).

We can find a solution (λ1, λ2, λ3, µ, n) of this equation such that λ1 > n; for instance

λ1 = 29m, λ2 = λ3 = 0, µ = 1, n = 15m.

This shows that conditions (i) and (ii) in Theorem 2 are independent.

Remark 3. Note that, for every tuple τ = (λ1, . . . , λt;µ) ∈ Nt+1
0 satisfying conditions

(i) and (ii), the proof of Theorem 2 effectively supplies a finite index subgroup realizing τ .

4. The realization problem for isomorphism types, II: Normal and
non–maximal subgroups

Let Γ be as in (1). In this section, we shall be concerned with the isomorphism types of
normal and non–maximal subgroups in Γ. More specifically, we shall obtain sufficient
conditions for a type realizable in Γ to be realized by a non–maximal subgroup, and we
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shall derive properties of types realized by, as well as some existence results for normal
subgroups.

4.1. Non–maximal subgroups. As we shall see (among other things) in Section 5,
almost all subgroups of finite index in Γ are in fact maximal; hence, we have to expect
further non-trivial restrictions, when trying to realize types via non-maximal subgroups.
Here, we shall prove the following.

Proposition 4. Let Γ be as in (1), let τ = (λ1, . . . , λt;µ) be a realizable type for Γ, and
let n be as given in Theorem 2. Suppose that n > 1 is not prime, and that

µ >

(∑
i

pi − t − 1

)
min
p|n

p.

Then there exists a non–maximal subgroup of finite index in Γ of isomorphism type τ .

Proof. Let d be a proper divisor of n, 1 < d < n. Suppose there exists a subgroup ∆′

of index d in Γ such that τ(∆′) = (λ′1, . . . , λ
′
t;µ
′) satisfies

nλ′j ≥ dλj, 1 ≤ j ≤ t. (22)

Then we can apply Theorem 2 to see that ∆′ has a subgroup of index n/d realizing
τ , that is, τ can be realized by a non–maximal subgroup of finite index in Γ. Indeed,
condition (i) is satisfied since τ is realizable and the Euler characteristic is multiplicative
on subgroup chains, while condition (ii) of Theorem 2 corresponds precisely to (22).
Define λ′j to be the least integer satisfying both (22) and the congruence λ′j ≡ dej (pj).
We claim that there exists µ′ ≥ 0 such that (λ′1, . . . , λ

′
t;µ
′) is realizable in Γ, which

implies Proposition 4 by the argument above. Clearly, an integer µ′ ≥ 0 satisfying∑
i

λ′i
(
1− 1

pi

)
+ µ′ − 1 = −dχ(Γ)

exists if and only if the quantity∑
i

(
dei − λ′i

)(
1− 1

pi

)
+ (r − 1)d + 1 (23)

is integral and non–negative. Integrality of (23) is clear by the definition of the numbers
λ′1, . . . , λ

′
t. Since dλi/n ≤ λ′i < dλi/n + pi, the expression (23) is bounded below by∑
i

(
dei − dλi/n − pi

)(
1 − 1

pi

)
+ d(r − 1) + 1

= d

(∑
i

ei
(
1 − 1

pi

)
+ r − 1

)
− d

n

∑
i

λi
(
1 − 1

pi

)
−
∑
i

(pi − 1) + 1

= −dχ(Γ) − d

n

(
− χ(τ) − µ + 1

)
−
∑
i

(pi − 1) + 1

= d (µ − 1)/n −
∑
i

(pi − 1) + 1.
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Now we choose d to be the largest proper divisor of n, that is, n/d = minp|n p. Then
we find that (23) is certainly non–negative, provided that

µ >

(∑
i

pi − t − 1

)
min
p|n

p.

In order to see that the tuple (λ′1, . . . , λ
′
t;µ
′) defined under the latter condition is real-

izable in Γ, it remains to check that λ′i ≤ dei. Since τ = (λ1, . . . , λt;µ) can by realized
by assumption, we have λi ≤ nei, and hence by definition of λ′i that λ′i < dei + pi.
However, the construction of λ′i also implies that λ′i ≡ dei (pi), and we conclude that
indeed λ′i ≤ dei, as required. �

Remark 4. As we shall see in Section 7, most finite index subgroups have a free part of
rather large rank µ, in particular, the condition on µ in Proposition 4 becomes weaker
as n increases. On the other hand, while condition (ii) of Theorem 2 becomes vacuous
for Γ = PSL2(Z), we shall see in Section 8 that the assertion of Proposition 4 does in
fact not hold in the modular group without some assumption on the size of µ.

4.2. Normal subgroups. Let Γ be as above, and let ∆ ≤ Γ be a subgroup of finite
index in Γ. Then ∆ is normal in Γ if and only if the induced action of Γ on Γ/∆ is
regular. Concerning the type of a normal subgroup in Γ we have the following.

Proposition 5. Let ∆ be a normal subgroup of index n in Γ of type τ(∆) = (λ1, . . . , λt;µ).
Then we have n | λi and λi ≤ nei for 1 ≤ i ≤ t. Moreover, either n = 1 or n = pi for
some i ∈ [t], or

∑
i

(
ei − λi

n

)
≥ 2.

Proof. In the notation of Section 3, we see that for i ∈ [t] and j ∈ [ei] the multiplicity
mij is either 0 or n/pi. The divisibility property follows from this observation and
Theorem 1. The upper bound for λi is already contained in Theorem 2. Now assume
that

∑
i

(
ei − λi

n

)
≤ 1. By Theorem 1, this means that all the xij with at most one

exception act trivially. However, a cyclic group of order pi cannot act transitively on a
set of cardinality other than 1 or pi. �

As a first application of Proposition 5 we obtain the following statement.3

Corollary 2. Let p and q be primes. Then every normal subgroup of finite index in
Γ = Cp ∗ Cq is free, unless it is of index 1, p, or q.

Proof. If ∆ � Γ is not free, then
∑

i(ei −
λi
n

) < 2, hence (Γ : ∆) is 1, p, or q by the
previous proposition. �

Furthermore, we have

Corollary 3. Let Γ be as in (1), and let ∆ be a finite index subgroup of Γ of type
τ(∆) = (λ1, . . . , λt;µ). Then (NΓ(∆) : ∆) | gcd(λ1, . . . , λt); in particular, ∆ is self-
normalizing, provided that gcd(λ1, . . . , λt) = 1.

3For the special case of Corollary 2 where Γ is the modular group cf. for instance [6, Theorem 3.4.1].
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Proof. Replace Γ with NΓ(∆), and apply Proposition 5. �

In the remainder of this section we take a look at the existence problem for normal
subgroups. Denote by f /n(Γ) the number of free normal subgroups of index n in Γ, and
let s/n(Γ) be the number of all normal subgroups of index n. Moreover, the difference
s/n(Γ) − f /n(Γ), that is, the number of non–free normal subgroups of index n in Γ, will

be denoted by f
/

n(Γ). By Theorem 1, the number f
/

n(Γ) of non–free normal index n
subgroups, after multiplication with (n−1)!, equals the number of regular Γ–actions on
[n], with at least one of the generators xij of Γ acting as the identity. Furthermore, the
number of regular Γ–actions on [n] mapping the generator xij onto the identity equals
the number of all regular representations of degree n of the group

C∗e1p1
∗ · · · ∗ C∗ei−1

pi−1
∗ C∗ei−1

pi
∗ C∗ei+1

pi+1
∗ · · · ∗ C∗etpt ∗ Fr.

Classifying regular Γ–actions of degree n by specifying the set of those generators xij
acting as fixed–point–free permutations, we find that

s/n(Γ) =
∑∏

i

(
ei
e′i

)
f /n(C∗e

′
1

p1
∗ · · · ∗ C∗e′tpt ∗ Fr), (24)

where the summation extends over all t–tuples (e′1, . . . , e
′
t) of non–negative integers such

that e′i ≤ ei for all i. In order to invert equation (24), consider the poset

P =

{
δ ∈ {0, 1}Π×N :

∑
p,n

δ(p, n) <∞
}
,

where Π denotes the set of all primes, with componentwise definition of the partial
order. We interpret s/n and f /n as functions on P by setting

s/n(δ) := s/n
(
∗
p,n
C∗δ(p,n)
p ∗ Fr

)
,

with a similar convention for f /n. Note that f /n(Γ) = f /n(δ), where

δ(p,m) :=

{
1, p = pi for some 1 ≤ i ≤ t and m ≤ ei

0, otherwise.

With these conventions, equation (24) becomes

s/n(δ) =
∑
γ≤δ

f /n(γ), δ ∈ P .

Möbius inversion now gives

f /n(δ) =
∑
γ≤δ

(−1)||δ||−||γ|| s/n(γ), δ ∈ P ,

where ||δ|| :=
∑

(p,m) δ(p,m). Returning to our original setting, the last equation yields

f /n(Γ) =
∑

(e′1,...,e
′
t)≤(e1,...,et)

(−1)
∑
i(ei−e′i)

∏
i

(
ei
e′i

)
s/n
(
C∗e

′
1

p1
∗ · · · ∗ C∗e′tpt ∗ Fr

)
.

Summarizing our discussion, we have obtained the following.
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Proposition 6. We have

f
/

n(Γ) =
∑

(e′1,...,e
′
t)<(e1,...,et)

(−1)1+
∑
i(ei−e′i)

∏
i

(
ei
e′i

)
s/n
(
C∗e

′
1

p1
∗ · · · ∗ C∗e′tpt ∗ Fr

)
. (25)

There are two cases where the right-hand side of Equation (25) becomes particularly
simple.

Corollary 4. (i) Let Γ = C∗32 . Then Γ has exactly 3 non–free normal subgroups of
any even index, and none of odd index greater than 1.

(ii) Let Γ = Cp ∗C∞, where p is a prime. Then Γ has precisely one non–free normal
subgroup of index n for each n.

Proof. By Proposition 6, we have

f
/

n(C∗32 ) = s/n(1) − 3s/n(C2) + 3s/n(C∗22 ).

The infinite dihedral group C2 ∗ C2 contains 2 subgroups of index 2, as well as one
normal subgroup of every other even index, and none of odd index greater than 1,
whence (i). Similarly, Equation (25) gives

f
/

n(Cp ∗ C∞) = s/n(C∞) = 1.

�

5. asymptotic enumeration of subgroups with given type

For a (t + 1)–tuple τ = (λ1, . . . , λt;µ) ∈ Nt+1
0 define sτ (Γ) to be the number of finite

index subgroups in Γ with isomorphism type τ , and let sn(m11, . . . ,mtet) be the number
of index n subgroups ∆ in Γ such that, for 1 ≤ i ≤ t and 1 ≤ j ≤ ei, the group 〈xij〉
acts as a product of precisely mij cycles of length pi on ∆\Γ. Similarly, denote by
hn(m11, . . . ,mtet) the number of homomorphisms ϕ : Γ→ Sn such that ϕ(xij) consists
of mij cycles of length pi and n − pimij fixed points, and let tn(m11, . . . ,mtet) be the
corresponding number of transitive representations. Among these quantities we have
the following relations.

Proposition 7. Let Γ be as in (1).

(i) sn(m11, . . . ,mtet) = tn(m11, . . . ,mtet)/(n− 1)!;

(ii) for τ = (λ1, . . . , λt;µ) ∈ Nt+1
0 ,

sτ (Γ) =
∑

m11,...,mtet≥0

mi1+···+miei=
ein−λi
pi

(1≤i≤t)

sn(m11, . . . ,mtet),

where

n =

∑
i λi (1−

1
pi

) + µ − 1∑
i ei (1−

1
pi

) + r − 1
,

provided this fraction is integral, and sτ (Γ) = 0 otherwise;
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(iii)

hn(m11, . . . ,mtet) =
n∑
ν=1

(
n− 1

ν − 1

) ∑
µ11,...,µtet≥0

tν(µ11, . . . , µtet)

hn−ν(m11 − µ11, . . . ,mtet − µtet);

(iv) hn(m11, . . . ,mtet) = (n!)r
t∏
i=1

ei∏
j=1

n!

mij! (n− pimij)!p
mij
i

.

Proof. (i) This reflects the fact that a finite index subgroup ∆ of Γ gives rise to a
permutation representation of Γ on the cosets of ∆, and that every numbering of these
cosets as 1, . . . n such that ∆ · 1 7→ 1 yields a representation Γ→ Sn with stab(1) = ∆.

(ii) This is a reformulation of Theorem 1.

(iii) A permutation representation Γ → Sn taking xij to a product of precisely mij

pi–cycles is completely determined by specifying its domain of transitivity containing
1, the transitive action of Γ with certain parameters µij on this domain, and the action
of Γ on the complement of this domain with parameters mij − µij.
(iv) This follows from the mapping property of Γ and enumeration of the corresponding
set of permutations. �

In principle, Proposition 7 contains complete information concerning the function sτ (Γ).
However, since the relation between h and t involves multiple summation over indepen-
dent variables, Proposition 7 does not immediately lead to an asymptotic evaluation of
sτ (Γ); in particular, a generating function approach as in [24] seems difficult. In order
to investigate the asymptotics of sτ (Γ), we will need the following purely analytical
result.

Lemma 2. Let p ≥ 2 be an integer, ` ∈ (1/p, 1), and let ε > 0. Then there exists a
constant C depending on p, ` and ε, such that for all n, ν and m, subject to the restriction
0 ≤ n− pm < n`, the inequality

m∑
µ=0

(
m

µ

)(
n− pm
ν − pµ

)
< C

(
n

ν

)`+ε
(26)

holds true.
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Proof. Without further mention we shall assume that n is sufficiently large. Also, by
symmetry, we can suppose that ν ≤ n/2. Assume first that ν < log n. Then we have

m∑
µ=0

(
m

µ

)(
n− pm
ν − pµ

)
≤

m∑
µ=0

mµ(n− pm)ν−pµ

≤
m∑
µ=0

mµn`(ν−pµ)

= n`ν
m∑
µ=0

( m
n`p

)µ
≤ 2nν`.

On the other hand, we have

(
n

ν

)
≥
( n

2ν

)ν
> nν(1−2 log logn/ logn).

Comparing these two bounds, we find that

m∑
µ=0

(
m

µ

)(
n− pm
ν − pµ

)
≤ 2

(
n

ν

) `
1−2 log logn/ logn

<

(
n

ν

)`+ε
.

Hence, we may assume from now on that ν is large. First, we consider the contribution
to the left-hand side of (26) of large values of µ, that is, ν − pµ < 4ν`. We have

∑
ν/p−4ν`/p≤µ≤ν/p

(
m

µ

)(
n− pm
ν − pµ

)
≤ ν

(
n/p

ν/p

)(
n− pm
b4ν`c

)

≤ ν

(
n

ν

)1/p

n4ν`

≤
(
n

ν

)`+ε
.

For n and m fixed, let C(ν) be the constant defined by the equation

m∑
µ=0

(
m

µ

)(
n− pm
ν − pµ

)
= C(ν)

(
n

ν

)`+ε
.
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We already know that C(ν) ≤ 1 for ν < log n. We have to show that C(ν) is bounded
independently of ν. For this we use induction on ν. We have

m∑
µ=0

(
m

µ

)(
n− pm

ν + 1− pµ

)
≤

ν−4(ν+1)`+1
p∑

µ=0

(
m

µ

)(
n− pm

ν + 1− pµ

)
+

(
n

ν + 1

)`+ε

≤

ν−4(ν+1)`+1
p∑

µ=0

(
m

µ

)(
n− pm
ν − pµ

)
n− pm

ν + 1− pµ
+

(
n

ν + 1

)`+ε

≤ n− pm
4(ν + 1)`

ν−4(ν+1)`+1
p∑

µ=0

(
m

µ

)(
n− pm
ν − pµ

)
+

(
n

ν + 1

)`+ε

≤ n`

4(ν + 1)`
C(ν)

(
n

ν

)`+ε
+

(
n

ν + 1

)`+ε
.

On the other hand(
n

ν + 1

)`+ε
=
(n− ν
ν + 1

)`+ε(n
ν

)`+ε
>
( n

2(ν + 1)

)`(n
ν

)`+ε
.

Comparing these bounds, we see that

C(ν + 1) ≤ C(ν)

2
+ 1,

implying C(ν) ≤ 2 for all ν. �

With Lemma 2 in hand, we can now establish the following.

Theorem 3. Let Γ be as in (1), and let tn and hn be as in Proposition 7. For 1 ≤ i ≤ t
and 1 ≤ j ≤ ei, let `ij be real parameters subject to the relation

∑
i,j(`ij − 1) < r − 1,

and the boundary conditions 1/pi < `ij < 1. Then, for every ε > 0, n sufficiently large,
and with quantities mij satisfying n− pimij < n`ij , we have∣∣∣∣ tn(m11, . . . ,mtet)

hn(m11, . . . ,mtet)
− 1

∣∣∣∣ < n1+
∑
i,j(`ij−1)−r+ε.

Proof. Consider the terms on the right–hand side of Proposition 7 (iii) with ν = n.
These terms involve a factor h0(m11−µ11, . . . ,mtet−µtet), which is zero unless mij = µij
for all i and j, in which case it is 1. Hence, the only term with ν = n is tn(m11, . . . ,mtet).
Thus, we have

hn(m11, . . . ,mtet)− tn(m11, . . . ,mtet) =

n−1∑
ν=1

(
n− 1

ν − 1

) ∑
µ11,...,µtet≥0

tν(µ11, . . . , µtet)hn−ν(m11 − µ11, . . . ,mtet − µtet).
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Replacing t by h on the right–hand side of the latter equation, and substituting the
explicit expression for hn given by Proposition 7 (iv) gives

|hn(m11, . . . ,mtet) − tn(m11, . . . ,mtet)| ≤
n−1∑
ν=1

(
n− 1

ν − 1

) ∑
µ11,...,µtet≥0

(ν!)r
∏
i

∏
j

ν!

µij! (ν − piµij)!p
µij
i

×
(
(n− ν)!

)r ∏
i

∏
j

(n− ν)!

(mij − µij)! (n− ν − pi(mij − µij)!p
mij−µij
i

.

Dividing this inequality by

hn(m11, . . . ,mtet) = (n!)r
∏
i

∏
j

n!

mij! (n− pimij)!p
mij
i

and collecting terms we find that∣∣∣∣ tn(m11, . . . ,mtet)

hn(m11, . . . ,mtet)
− 1

∣∣∣∣ ≤
n−1∑
ν=1

(
n− 1

ν − 1

)(
n

ν

)−r t∏
i=1

ei∏
j=1

(
n

ν

)−1 mij∑
µij=0

(
mij

µij

)(
n− pimij

ν − piµij

)
.

(27)

Applying Lemma 2 to each of the factors on the right-hand side of (27), we get∣∣∣∣ tn(m11, . . . ,mtet)

hn(m11, . . . ,mtet)
− 1

∣∣∣∣ ≤ n−1∑
ν=1

(
n− 1

ν − 1

)(
n

ν

)−r

×
∏
i

∏
j

C(pi, `ij, ε)

(
n

ν

)−1+`ij+ε

≤ C̃
n−1∑
ν=1

(
n

ν

)∑
i,j(`ij+ε−1)−r+1

.

By assumption,
∑

i,j(`ij−1)−r+1 = −δ for some δ > 0, hence the exponent is negative,

provided that, say, ε ≤ δ
2
∑
ei

, in which case the whole sum can be estimated by its largest

term n
∑
ij(`ij+ε−1)−r+1, and the assertion of Theorem 3 follows upon renaming ε. Since

the right–hand side of (26) increases with ε, the result follows in general. �

For future reference we note that in the proof of Theorem 3 we did not expand the
summation over ν; in fact, for each ν, the proportion of homomorphisms counted by
hn(m11, . . . ,mtet) such that the domain of transitivity of 1 consists of precisely ν points,

is O
((
n
ν

)∑
i,j(`ij+ε−1)−r+1)

.
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Corollary 5. Let Γ be as in (1), and let µ = n(
∑t

i=1 ei(1−
1
pi

) + r− 1). Then we have

for s(0,...,0;µ)(Γ), the number of free subgroups of index n, the estimate4

s(0,...,0;µ)(Γ) =
(

1 +O
(
n1+

∑
i(1/pi−1)−r+ε

)
+O(

(
n−1
))

× (n!)χ(Γ)n1−
∑t
i=1 ei/2

t∏
i=1

p
ei/2
i nei/2pi ,

provided that pi|n for all i, and s(0,...,0;µ)(Γ) = 0 otherwise.

Proof. From Theorem 1 it follows that the condition pi|n is necessary. Hence, assume
that this condition is satisfied. By Proposition 7, we can compute hn(n/p1, . . . , n/pt),
and by Theorem 3 we can approximate tn by hn, where we choose `ij = 1/pi + cε with
some sufficiently small c. From this we obtain

s(0,...,0;µ)(Γ) =
(
1 +O

(
n1+

∑
i(1/pi−1)−r+ε)) (n!)r

(n− 1)!

t∏
i=1

ei∏
j=1

n!

(n/pi)!p
n/pi
i

.

Approximating the factorials by means of Stirling’s formula, we obtain

s(0,...,0;µ)(Γ) =
(
1 +O

(
n1+

∑
i(1/pi−1)−r+ε)) · n · (n!)r−1

×
t∏
i=1

ei∏
j=1

n!1−1/pi
√
pin

−1/2+1/2pi

(
1 +O

(
1

n

))

=

(
1 +O

(
n1+

∑
i(1/pi−1)−r+ε)+O

(
1

n

))

× n!χ(Γ)n1−
∑t
i=1 ei/2

t∏
i=1

p
ei/2
i nei/2pi .

�

Remark 5. Theorem 3 becomes vacuous in the case when χ(Γ) ≥ 0, since in this case
the assumptions on the parameters `ij cannot be simultaneously satisfied. On the other
hand, if χ(Γ) < 0, then such `ij always exist.

6. Further asymptotic results

6.1. Enumerating subgroups by rank. Among the subgroups of a free product,
free groups naturally play a prominent role. In connection with the construction of
automorphic functions, Poincaré asked whether ‘almost all’ finite index subgroups of
the modular group are free. If subgroups are enumerated by index, a negative answer
was given in [22, Proposition 3] for all groups Γ of the form (3) with χ(Γ) < 0; however,
in the case of the modular group for instance, the probability of index n subgroups
to be free decays like e−cn

1/2
, which is rather slow compared to the size of the sample

4A more precise result for the free subgroup growth of an arbitrary virtually free group can be found
in [21].
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space, which tends to infinity like n!1/6. Moreover, as we shall see in Section 7, almost
all subgroups ∆ have a free factor accounting for all but O(n1/2) of the generator of ∆;
thus, in two different senses, Poincaré’s question ‘almost’ has a positive answer.

If PSL2(Z) acts in the usual way on the upper half plane, the rank of a finite index
subgroup ∆ determines the genus of a fundamental domain for ∆; hence, from an
analytical point of view, it appears more natural to enumerate finite index subgroups
by rank rather than by index. Our next result shows that, in this sense, a positive
proportion of all finite index subgroups is free. For Γ as in (1) and an integer n, let
rn(Γ) be the number of finite index subgroups ∆ of Γ of rank n. Note that for such
a group ∆, we have 1 − n ≤ χ(∆) ≤ 1 − n/2, thus, by (2), (Γ : ∆) is bounded, and
rn(Γ) is finite for all n. Let rfn(Γ) be the number of free subgroups of Γ of finite index
and rank n. Trivially, rn(Γ) = 0, unless n− 1 is divisible by the numerator of χ(Γ), in
which case we call n admissible. With these definitions, we have the following.

Proposition 8. Let Γ be as in (1). Then, as n tends to infinity through admissible
numbers, we have

rfn(Γ)

rn(Γ)
→ C(Γ),

where

C(Γ) =

 ∑
κ11,...,κtet∑

κij≡0 (rk(Γ)−1)

t∏
i=1

et∏
j=1

1

(piκij − |~κ|
rk(Γ)−1

)!


−1

satisfies 0 < C(Γ) < 1. In particular, for Hecke-groups Hq = C2 ∗ Cq with q ≥ 3 a
prime, we have

C(Hq) =

(
1

q − 2

q−2∑
ν=1

e2+2πiν/(q−2)

)−1

.

Here and in the sequel, we adopt the conventions that factorials of negative integers are
evaluated as ∞, and that 1

∞ = 0.

Proof. Let ∆ be a finite index subgroup of representation type (mij, ν). By Theorem 1,
the rank of ∆ can be computed to be

rk(∆) =
t∑

k=1

λk + µ = n(rk(Γ)− 1)−
t∑

k=1

Mk(∆).
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Summing over all possible indices of rank n subgroups, we obtain

rn(Γ) =
∑
ν

∣∣{∆ : (Γ : ∆) = ν, rk(∆) = n
}∣∣

=
∑
ν

1

(ν − 1)!

∣∣{ϕ : Γ→ Sν , ϕ(γ) transitive, (rk(Γ)− 1)ν −
∑
k

Mk(ϕ) = n
}∣∣

=
∑

µ11,...,µtet∑
µij≡n−1 (rk(Γ)−1)

1

(ν(~µ)− 1)!
·

t∏
i=1

et∏
j=1

ν(~µ)!

p
µij
i µij!(ν(~µ)− piµij)!

(28)

×
|{ϕ : Γ→ Sν(~µ), ϕ(Γ) transitive and of representation type (µij, ν(~µ))

}∣∣∣∣{ϕ : Γ→ Sν(~µ) of representation type (µij, ν(~µ))
}∣∣︸ ︷︷ ︸

=:δ(~µ)

,

where ν(~µ) =
n−1+

∑
µij

rk(Γ)−1
. As ∆ ranges over all finite index subgroups of rank n, the

parameters µij, ν become maximal for ∆ free. Denoting by µ
(0)
ij , ν

(0) these maximal
values, we have

ν(0) = −n− 1

χ(Γ)
, µ

(0)
ij = − n− 1

piχ(Γ)
.

Since δ(~µ) ≤ 1, the sum above is dominated by

∑
µ11,...,µtet∑

µij≡n−1 (rk(Γ)−1)

1

(ν(~µ)− 1)!

t∏
i=1

et∏
j=1

ν(~µ)!

p
µij
i µij!(ν(~µ)− piµij)!

= ν(0)(ν(0)!)rk(Γ)−1

t∏
i=1

et∏
j=1

1

p
µ

(0)
ij

1 µ
(0)
ij !

∑
κ11,...,κtet∑

κij≡0 (rk(Γ)−1)

(ν(0) − 1)!

(ν(0) − |~κ|
rk(Γ)−1

− 1)!
(29)

×
t∏
i=1

et∏
j=1

p
κij
i µ

(0)
ij !

(µ
(0)
ij − κij)!(piκij −

|~κ|
rk(Γ)−1

)!

(
(ν(0) − |~κ|

rk(Γ)−1
)!

ν(0)!

)rk(Γ)

,

where we put |~κ| =
∑
κij. For a tuple ~κ, define S(~κ) by

S(~κ) :=
(ν(0) − 1)!

Γ(ν(0) − |~κ|
rk(Γ)−1

)

×
t∏
i=1

et∏
j=1

p
κij
i µ

(0)
ij !

(µ
(0)
ij − κij)!Γ(piκij − |~κ|

rk(Γ)−1
+ 1)

(
Γ(ν(0) − |~κ|

rk(Γ)−1
+ 1)

ν(0)!

)rk(Γ)

;
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in particular, S(~0) = 1. Fix a pair of indices i0 ≤ t, j0 ≤ ei0 . For a tuple ~κ, let ~κ′ be
the vector obtained by increasing κi0j0 by 1. Then we have

S(~κ′) = S(~κ) ·
Γ(ν(0) − |~κ|

rk(Γ)−1
)

Γ(ν(0) − |~κ|+1
rk(Γ)−1

)

(
Γ(ν(0) − |~κ|

rk(Γ)−1
+ 1)

Γ(ν(0) − |~κ|+1
rk(Γ)−1

+ 1)

)rk(Γ)

(µ
(0)
i0j0
− κi0j0)

×pi0j0 ·
Γ(pi0κi0j0 −

|~κ|
rk(Γ)−1

+ 1)

Γ(pi0κi0j0 −
|~κ|+1

rk(Γ)−1
+ 1 + pi0)

t∏
i=1

et∏
j=1

(i,j)6=(i0,j0)

Γ(piκij − |~κ|
rk(Γ)−1

+ 1)

Γ(piκij − |~κ|+1
rk(Γ)−1

+ 1)

= S(~κ) · A · pi0j0 ·B,
say. Using the log-convexity of the Γ-function together with its functional equation, we
obtain

A ≤
(
ν(0) − |~κ|

rk(Γ)− 1

)−1

· (µ(0)
i0j0
− κi0j0) =

1

pi0j0
· ν

(0) − pi0j0κi0j0
ν(0) − |~κ|

rk(Γ)−1

and

B ≤
(
pi0κi0j0 −

|~κ|
rk(Γ)− 1

)−pi0+ 1
rkΓ

t∏
i=1

et∏
j=1

(i,j)6=(i0,j0)

(
piκij −

|~κ|
rk(Γ)− 1

+ 1

)1/(rk(Γ)−1

.

If we assume that (i0, j0) is chosen in such a way that pi0κi0j0 ≥ pi(κij − 1) for all i, j,
these estimates can be simplified to

A ≤ 1

pi0j0
· ν(0)

ν(0) − 2
,

B ≤
(
pi0κi0j0 −

|~κ|
rk(Γ)− 1

)−pi0 (
pi0κi0j0 −

|~κ|
rk(Γ)− 1

+ 1 + max
i
pi

)
;

in particular, for n sufficiently large, S(~κ) is bounded independent of n, and if κi0j0
is sufficiently large, and pi0κi0j0 ≥ pi(κij − 1) for all i, j, then S(~κ′) ≤ 1

2
S(~κ). Hence,

the sum on the right-hand side of (29) is dominated by an absolute converging sum,
which is independent of n. By Theorem 3, for ~κ fixed and n→∞, we have δ(~µ)→ 1,
where ~µ denotes the transformed parameters corresponding to κij and n. Hence, the
right-hand side of (28) and the left-hand side of (29) are asymptotically equal, and we
may interchange the limit n→∞ with the summation on the right hand side of (29).
To prove our claim, it suffices now to compute the limit as n→∞ of a single summand.
We have, as ν(0) →∞,

(ν(0) − 1)!

(ν(0) − |~κ|
rk(Γ)−1

− 1)!

t∏
i=1

et∏
j=1

p
κij
i µ

(0)
ij !

(µ
(0)
ij − κij)!(piκij −

|~κ|
rk(Γ)−1

)!

(
(ν(0) − |~κ|

rk(Γ)−1
)!

ν(0)!

)rk(Γ)

∼ (ν(0))|~κ|
t∏
i=1

et∏
j=1

p
κij
i (ν(0)/pi)

κij

(piκij − |~κ|
rk(Γ)−1

)!

∼
t∏
i=1

et∏
j=1

1

(piκij − |~κ|
rk(Γ)−1

)!
.
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It follows that

rn(Γ) ∼ rfn(Γ) ·
∑

κ11,...,κtet∑
κij≡0 (rk(Γ)−1)

t∏
i=1

et∏
j=1

1

(piκij − |~κ|
rk(Γ)−1

)!
.

From this our first claim as well as the estimate 0 < C(Γ) < 1 follow. Moreover, for Γ
a Hecke-group Hq = C2 ∗ Cq, q ≥ 3 prime, we obtain

rn(Hq) ∼ rfn(Hq)
∑
i,j≥0

1

(i− j)!((q − 1)j − i)!

= rfn(Hq)
∞∑
j=0

j∑
k=0

(
(q − 2)j

k

)
1

((q − 2)j)!

= rfn(Hq)
∞∑
j=0

2(q−2)j

((q − 2)j)!

= rfn(Hq) ·

(
1

q − 2

q−2∑
ν=1

e2+2πiν/(q−2)

)
.

�

6.2. Maximal subgroups of free products. Our next result establishes the fact,
already mentioned in Section 4.1, that, with probability tending to 1, a subgroup of
finite index in Γ is maximal.

Proposition 9. Let Γ be as in (1), and suppose that χ(Γ) < 0. Denote by s¬maxn (Γ)
the number of non–maximal subgroups of index n in Γ. Then we have

s¬maxn (Γ)

sn(Γ)
= o(1) (n→∞);

that is, almost all finite index subgroups of Γ are maximal.

Proof. Define t¬maxn (Γ) to be the number of homomorphisms ϕ : Γ → Sn such that
ϕ(Γ) acts transitively and imprimitively on [n]. As s¬maxn (Γ) = t¬maxn (Γ)/(n − 1)!, it
suffices to show that t¬maxn (Γ)/tn(Γ) tends to 0. Since tn ∼ hn (cf. [22, Prop. 2]), the
latter assertion is equivalent to the statement that t¬maxn (Γ)/hn(Γ) → 0. Let ϕ be a
homomorphism counted by t¬maxn (Γ), Ω ⊆ [n] a domain of imprimitivity for ϕ, and put
|Ω| = d. Then there exists a partition of [n] into n/d sets which is invariant under ϕ(Γ),
in particular d divides n. The image ϕ(Γ) is contained in a subgroup of Sn isomorphic
to Sd o Sn/d, which is determined by Ω and its translates. From this observation, we
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obtain the inequality

t¬maxn (Γ) ≤
∑
d|n

1<d<n

(
(n/d)!

)−1
(

n

d, . . . , d

)∣∣Hom(Γ, Sd o Sn/d)
∣∣

=
∑
d|n

1<d<n

(
(n/d)!

)−1
(

n

d, . . . , d

)
|Sd o Sn/d|r

t∏
i=1

∣∣Hom(Cpi , Sd o Sn/d)
∣∣ei . (30)

For i = 1, . . . , t define functions

fpi(n) :=

(
|Hom(Cpi , Sn)|

(n!)1−1/pi

)1/n

.

Then we find from the asymptotic formula5

|Hom(Cpi , Sn)| ∼ Kpi (n!)1−1/pi en
1/pi n−1/2 (n→∞) (31)

that fpi(n)→ 1 as n→∞; in particular, fpi(n) is bounded for every i. Putting f(n) :=
max1≤i≤t fpi(n), it follows that f is bounded, too. We can compute |Hom(Cpi , Sd oSn/d)|
by first fixing the cycle structure of the canonical image in Sn/d, and then defining
homomorphisms ϕ : Cpi → Sd oCpi respectively Cpi → Sd in the same way as we did in
the proof of Theorem 1. This gives

|Hom(Cpi , Sd o Sn/d)| =
∑
j≤ n

dpi

(
n/d

pi, . . . , pi︸ ︷︷ ︸
j

, 1, . . . , 1︸ ︷︷ ︸
n/d−jpi

)
(d!)j(pi−1)

j!(n/d− jpi)!
|Hom(Cpi , Sd)|n/d−jpi

≤
∑
j≤ n

dpi

(
n/d

pi, . . . , pi, 1, . . . , 1

)
(d!)

n
d

(1− 1
pi

)

j!(n/d− jpi)!
(
f(d)

)n−jdpi
≤ (d!)

n
d

(1− 1
pi

) (
f(d)

)n ∑
j≤ n

dpi

(
n/d

pi, . . . , pi, 1, . . . , 1

)(
j!(n/d− jpi)!

)−1

= (d!)
n
d

(1− 1
pi

) (
f(d)

)n |Hom(Cpi , Sn/d)|

≤ (d!)
n
d

(1− 1
pi

) (
f(d)

)n (
(n/d)!

)1−1/pi (f(n/d)
)n/d

.

5Cf. [18] and [19]. More precise results concerning the asymptotic enumeration of finite G–actions
for an arbitrary finite group G can be found in [24].
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Using the last bound in (30), we find that

t¬maxn (Γ) ≤
∑
d|n

1<d<n

(
(n/d)!

)−1
(

n

d, . . . , d

) t∏
i=1

[
(d!)

n
d

(1− 1
pi

)(
(n/d)!

)1−1/pi
]ei

×
(
(d!)n/d(n/d)!

)r (
f(d)

)n∑
i ei
(
f(n/d)

)n
d

∑
i ei

=
∑
d|n

1<d<n

(
(n/d)!

)−1
(

n

d, . . . , d

)(
(d!)n/d(n/d)!

)1−χ(Γ) (
f(d)

)n∑
i ei
(
f(n/d)

)n
d

∑
i ei .

Applying (31) again, we see that hn(Γ) ≥ (n!)1−χ(Γ) for n sufficiently large. Dividing
by this inequality, we obtain for large n that

t¬maxn (Γ)

hn(Γ)
≤
∑
d|n

1<d<n

( n!

(d!)n/d(n/d)!

)χ(Γ) (
f(d)

)n∑
i ei
(
f(n/d)

)n
d

∑
i ei . (32)

First, consider terms on the right-hand side of (32) with d ≥ n1/3. For such pairs (n, d),
the terms involving f are uniformly of magnitude eo(n), since f(d)→ 1 and n/d = o(n).

Since the same estimate also holds for
(
(n/d)!

)−χ(Γ)
, we have

∑
d|n

n1/3≤d<n

( n!

(d!)n/d(n/d)!

)χ(Γ) (
f(d)

)n∑
i ei
(
f(n/d)

)n
d

∑
i ei = eo(n)

∑
d|n

n1/3≤d<n

( n!

(d!)n/d

)χ(Γ)

.

As (d!)1/d is increasing with d, the largest term of the last sum will occur for the
maximal value of d, which in turn is at most n/2. Consequently, since n!

((n/2)!)2 > 2n/n,

the whole sum is bounded above by 2χ(Γ)n+o(n), and hence, in view of our assumption
that χ(Γ) < 0, tends to 0 as n tends to infinity.
Now consider terms with d ≤ n1/3. Here, the terms involving f may grow exponentially
fast. We have

∑
d|n

1<d≤n1/3

( n!

(d!)n/d(n/d)!

)χ(Γ) (
f(d)

)n∑
i ei
(
f(n/d)

)n
d

∑
i ei =

eO(n)
∑
d|n

1<d≤n1/3

( n!

(d!)n/d(n/d)!

)χ(Γ)

.
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Using Stirling’s formula in the form n! ≥ (n/e)n together with the trivial bounds d! ≤ dd

and (n/d)! ≤ (n/d)n/d, the right–hand side becomes

eO(n)
∑
d|n

1<d≤n1/3

( n!

(d!)n/d(n/d)!

)χ(Γ)

≤ eO(n)
∑
d|n

1<d≤n1/3

( nn

dn(n/d)n/d

)χ(Γ)

≤ eO(n)
∑
d|n

1<d≤n1/3

( nn

nn/3nn/2

)χ(Γ)

≤ eO(n) nχ(Γ)n/6,

which also tends to 0 as n→∞. �

7. distribution of isomorphism types

In this section, we establish limit laws for the distribution of isomorphism types of finite
index subgroups in a free product Γ = C∗e1p1

∗ · · · ∗C∗etpt ∗Fr. For i ∈ [t] and n ∈ N define
random variables ξin by choosing a subgroup ∆ of index n in Γ at random with respect
to uniform weights, and putting ξin = λi, where τ(∆) = (λ1, . . . , λt;µ). Then we have
the following.

Theorem 4. Let Γ and ξin be as above, and suppose that χ(Γ) < 0. Then, as n→∞,
the variables ξ1n, . . . , ξtn are asymptotically independent. Moreover, for each i ∈ [t],
the distribution of ξin converges weakly to a normal distribution with mean ein

1/pi and
standard deviation

√
ein

1/(2pi). More precisely, we have, for real x,

P
(
ξin ≤ ein

1/pi + x
√
ein

1/(2pi)
)

=
1√
2π

∫ x

−∞
e−s

2/2 ds + O(n−δ(Γ)), (33)

where δ(Γ) := 1
5 min

( 1
p1
, . . . , 1

pt

)
.

Each statement on distributions depends on a weight function. While uniform weights
are certainly the most straightforward choice, they are by no means the only interesting
one; for instance, one could define the weight of a subgroup to be the reciprocal value of
its class number. In the context of wreath product representations, it appears natural
to assign to a subgroup ∆ the weight |Hom(∆, H)| with some fixed finite group H.

For a prime q, define random variables ξ
(q)
in by choosing a transitive representation

ψ : Γ→ Cq o Sn (with respect to uniform weights), putting ∆ = stabεψ(1), and setting

ξ
(q)
in = λi, where τ(∆) = (λ1, . . . , λt;µ). Then the analogue of Theorem 4 reads as

follows.

Theorem 5. Let Γ be as in (1), and let q be a prime. Then, as n→∞, the variables

ξ
(q)
1n , . . . , ξ

(q)
tn are asymptotically independent. Moreover,

(i) if q 6= pi, then the distribution of ξ
(q)
in converges weakly to a normal distribution

with mean ei
q1−1/pi

n1/pi and standard deviation
√
ei

q1/2−1/(2pi)
n1/(2pi),
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(ii) the distribution of ξ
(pi)
in converges weakly to a normal distribution with mean

ei(pin)1/pi and standard deviation
√
ei(pin)1/(2pi).

In both cases, the error term is as in Theorem 4.

For the proof of Theorem 4 we need the following lemma.

Lemma 3. For 1 ≤ i ≤ t and 1 ≤ j ≤ ei, define a random variable ξ̂ij by choosing
ϕ ∈ Hom(Γ, Sn) at random, and setting

ξ̂ij := number of pi–cycles of ϕ(xij).

Then these variables ξ̂ij are independent, and satisfy

P
(
ξ̂ij ≤ m0 + x

n1/(2pi)

pi

)
=

1√
2π

∫ x

−∞
e−s

2/2 ds + O
(
n−1/(5pi)

)
, (34)

where m0 :=
⌊
n− n1/pi

pi

⌋
.

Proof. Independence of the ξ̂ij follows from the universal property of Γ. For fixed i
and j, consider the number

X(m) =
n!

m!(n− pim)!pmi
= |Hom(Cpi , Sn)| · P

(
ξ̂ij = m

)
of permutations in Sn consisting of m cycles of length pi and n− pim fixed points. Put
h := m−m0 with m0 as defined in the lemma. Then, for h > 0,

X(m)

X(m0)
=

m0!(n− pim0)!pm0
i

(m0 + h)!(n− pim0 − pih)!pm0+h
i

=
h∏
ν=1

(n− pim0 − piν + pi)(n− pim0 − piν + pi − 1) · · · (n− pim0 − piν + 1)

pi(m0 + ν)

=
h∏
ν=1

(
n1/pi − piν +O(1)

)pi
n− n1/pi + piν +O(1)

=
h∏
ν=1

n− p2
i νn

1−1/pi +O(n1−1/pi + ν2n1−2/pi + νpi)

n+O(n1/pi + ν)

=
h∏
ν=1

[
1− p2

i ν

n1/pi
+O

( 1

n1/pi
+

ν2

n2/pi
+
νpi

n

)]

= exp

(
−

h∑
ν=1

(
p2
ih

2

n1/pi
+O

( 1

n1/pi
+

ν2

n2/pi
+
νpi

n

)))

= exp

(
− p2

ih
2

2n1/pi
+O

( h

n1/pi
+

h3

n2/pi
+
hpi+1

n

))
,
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which is non–trivial for h = o(n2/(3pi)). A similar computation for h < 0 gives

X(m)

X(m0)
= exp

(
− p2

ih
2

2n1/pi
+O

( |h|
n1/pi

+
|h|3

n2/pi
+
|h|pi+1

n

))
,

i.e., we obtain the same main term and the same restriction on h. Since X(m+1)/X(m)
is decreasing, X(m) is unimodal; hence, the contributions coming from the tails of the
distribution are negligible. Let x ∈ [−n1/(10pi), n1/(10pi)]. By what we have shown so far,

P
(
ξ̂ij ≤ m0 + xn

1/(2pi)

pi

)
P
(
ξ̂ij = m0

) =
∑

−n3/(5pi)≤h≤xn
1/(2pi)

pi

exp
(
− p2

ih
2

2n1/pi
+O

(
n−1/(5pi)

))

+ O
(
n exp

(
− p2

in
1/(5pi)

2

))

=
(

1 +O
(
n−1/(5pi)

)) ∫ xn
1/(2pi)

pi

−n3/(5pi)

exp
(
− p2

ih
2

2n1/pi

)
dh

+ O
(
n−1/pi

)
=
(

1 +O
(
n−1/(5pi)

))n1/(2pi)

pi

∫ x

−∞
e−s

2/2 ds

+ O
(
n−1/pi

)
.

Evaluating this equation at x = n1/(10pi), and using the fact that

P
(
ξ̂ij ≤ m0 +

n3/(5pi)

pi

)
= 1 + O

(
n exp

(
− n1/(5pi)

2

))
,

gives

P
(
ξ̂ij = m0

)
=

√
2πpi

n1/(2pi)

(
1 +O

(
n−1/(5pi)

))
.

Using this equation in the previous computation now yields (34). �

Proof of Theorem 4. By Lemma 3,

P
(
∀i∀j : ξ̂ij ≤ m0 + xij

n1/(2pi)

pi

)
=

(2π)−
∑
i ei/2

∫ x11

−∞
e−s

2/2 ds · · ·
∫ xtet

−∞
e−s

2/2 ds + O
(
n−δ(Γ)

)
. (35)

For i ∈ [t] and j ∈ [ei], define a random variable ζij by choosing a transitive permutation
representation ϕ of Γ of degree n, and setting

ζij = number of pi–cycles of ϕ(xij).

Since χ(Γ) < 0, [22, Prop. 2] ensures that

tn(Γ) = hn(Γ)
(
1 +O(nχ(Γ))

)
(n→∞),
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hence, using the fact that δ(Γ) < −χ(Γ), we see that (35) remains valid, if we replace

each of the ξ̂ij with the corresponding random variable ζij. The latter observation
implies: (i) that the variables ζij are asymptotically independent, and (ii) that the
estimate

P
(
ζij ≤ m0 + x

n1/(2pi)

pi

)
=

1√
2π

∫ x

−∞
e−s

2/2 ds + O
(
n−δ(Γ)

)
(36)

holds for each choice of i and j. Transforming the variables ζij into the random variables
ξin by means of the equations

ξin = ein − pi

ei∑
j=1

ζij, (37)

which follow from Theorem 1, we find that the ξin are indeed asymptotically indepen-
dent. We now use the well–known fact that the convolution product of finitely many
normal distributions is again a normal distribution with mean and variance behaving ad-
ditively. Theorem 4 follows from the latter assertion, together with Equations (36) and
(37). 2

Proof of Theorem 5. For i ∈ [t], j ∈ [ei], and a prime q, define a random variable ξ̂
(q)
ij

by choosing ϕ ∈ Hom(Γ, Cq o Sn) at random, and setting

ξ̂
(q)
ij = number of pi–cycles of (εϕ)(xij).

By an argument already encountered in the proof of Theorem 1, we have

|Hom(Cpi , Cq o Sn)| · P
(
ξ̂

(q)
ij = m

)
=


n!qm(pi−1)

m!(n− pim)!pmi
, q 6= pi

n!pni
m!(n− pim)!p2m

i

, q = pi.

The proof of Theorem 5 proceeds now in a fashion analogous to that of Theorem 4,
replacing Lemma 3 by the following.

Lemma 4. For fixed q, the variables ξ̂
(q)
ij are independent, and satisfy

(i) P
(
ξ̂

(q)
ij ≤

n

pi
− n1/pi

pi q1−1/pi
+ x

n1/(2pi)

pi q1/2−1/pi

)
=

1√
2π

∫ x

−∞
e−s

2/2 ds + O
(
n−1/(5pi)

)
if q 6= pi,

(ii) P
(
ξ̂

(pi)
ij ≤

n

pi
− n1/pi

p
1−1/pi
i

+ x
n1/(2pi)

p
1−1/(2pi)
i

)
=

1√
2π

∫ x

−∞
e−s

2/2 ds + O
(
n−1/(5pi)

)
.

2

8. The modular group

The purpose of this final section is to summarize the impact of the theory developed so
far towards the solution of the Poincaré–Klein problem (problems I–III) for the modular
group Γ = PSL2(Z). While some of the results in this section follow immediately from
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corresponding results of previous sections, the simple structure of PSL2(Z) in some
cases also allows us to obtain improved versions. Furthermore, we demonstrate that
some of the seemingly technical hypotheses in Sections 4 and 5 are indeed necessary, and
we establish an asymptotic expansion for sτ (PSL2(Z)) considerably refining Theorem 3
for the modular group under similar hypotheses. For the remainder of this section, Γ
will denote the modular group. The isomorphism type of a subgroup ∆ ≤ Γ, ∆ ∼=
C∗α2 ∗ C

∗β
3 ∗ Fγ, will be denoted by τ(∆) = (α, β; γ). Moreover, we shall suppress

the second index in the representation type of ∆; that is, m1 denotes the number of
2–cycles, m2 the number of 3–cycles.

8.1. The realization problem. Our first result is a restatement of Theorem 1.

Corollary 6. Let ∆ be a subgroup of finite index in Γ. Then the representation type
and the isomorphism type of ∆ determine each other via the equations

α = n− 2m1 m1 = α + 2β + 3(γ − 1)

β = n− 3m2 m2 = α + β + 2(γ − 1)

γ = m1 + 2m2 − n+ 1 n = 3α + 4β + 6(γ − 1).

2

Corollary 7. A tuple (α, β; γ) ∈ N3
0 is realized in Γ if and only if 3α + 4β + 6γ ≥ 7;

that is, Γ has a finite index subgroup isomorphic to ∆ = C∗α2 ∗ C
∗β
3 ∗ Fγ if and only if

χ(∆) < 0.

Proof. Necessity is clear. We have to check conditions (i) and (ii) of Theorem 2. The
equation defining n can be rewritten as n = 3α+4β+6(γ−1), which is always integral,
and positive by assumption. Assume that (ii) fails, say α > n. Then n ≥ 3(n+ 1)− 6,
that is, n ≤ 1, and (α, β; γ) would be a non-negative solution of 3α+ 4β + 6γ = 7 with
α ≥ 2, which does not exist. A similar argument shows that β > n is impossible. �

Corollary 8. (i) Let τ = (α, β; γ) be an isomorphism type such that n = 3α + 4β +
6(γ − 1) is neither 1 nor prime, and with γ > 2 minp|n p. Then there exists a non–
maximal subgroup of finite index in Γ realizing τ .

(ii) Let q ≡ 1 (12) be a prime number, 1 ≤ a ≤ q − 1 an integer, and define τ :=(
q + 2a,

q2 − 9q + 12
4 , q − a − 1

)
. Then there exists a subgroup of index q2 realizing τ,

and every such subgroup is maximal.

Proof. (i) restates Proposition 4.

(ii) We have

3(q + 2a) + 4 · q
2 − 9q + 12

4
+ 6(q − a− 2) = q2.

Hence, any finite index subgroup realizing τ has index q2, and such subgroups exist by
Corollary 7. Let ∆ be a subgroup realizing τ , and suppose that there exists ∆′ such that
∆ < ∆′ < Γ. Then ∆′ is of index q and of type (α′, β′; γ′), say. From Theorem 2, when
applied to the groups ∆ and ∆′ (that is, e1 = α′, e2 = β′, n = q, and (λ1, λ2;µ) = τ),
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we deduce that α′ > 1, and that β′ >
q − 9

4 . Theorem 1, when applied to Γ and ∆′,

shows that α′ ≡ q ≡ 1 (2) and β′ ≡ q ≡ 1 (3). This gives α′ ≥ 3, β′ ≥ q + 3
4 , and we

obtain the contradiction

q = 3α′ + 4β′ + 6(γ′ − 1) ≥ 9 + (q + 3) − 6 = q + 6.

�

Comparing the two parts of Corollary 8, we see that the lower bound on γ is sharp up
to a constant factor; in particular, Proposition 4 is close to being best possible.

8.2. Asymptotics of sτ (Γ). An immediate consequence of Theorem 3 is the following.

Corollary 9. Let τi = (αi, βi; γi) be a sequence of types in N3
0 such that ni := 3αi+4βi+

6(γi − 1) tends to infinity with i. Assume that for all i we have αi < n
2
3
−ε

i , βi < n
1
2
−ε

i ,
and αiβi < n1−ε

i with some fixed ε > 0. Then

sτi(Γ) ∼ ni · ni!

αi!βi! (ni − αi2 )! (
ni − βi

3 )! 2
ni−αi

2 3
ni−βi

3

(i→∞).

Exploiting the simple structure of the modular group, we shall obtain a more precise
estimate. In order to state this result, we need a few preliminaries. Given two functions
F,G : N2

0×N→ R, we say that F dominates G (F � G), if there exists a formal power
series Q(x, y, z) =

∑
i,j,k≥0 qijk x

iyjz−k/6 ∈ R[[x, y, z−1/6]] such that

(a) qijk = 0, unless 4i ≤ k and 3(i+ j) ≤ k,

(b) for each ε > 0 and every integer N ≥ 1, we have

G(x, y, z) = F (x, y, z)

×

{ ∑
0≤i,j,k<N

qijk x
iyjz−k/6 + O

(( x

z2/3

)N
+
( y

z1/2

)N
+
(xy
z

)N
+ z−N/6

)}
,

where the estimate for the error term holds uniformly in the domain

Ωε =
{

(x, y, z) ∈ N2
0 × N : 0 ≤ x < z2/3−ε, 0 ≤ y < z1/2−ε, and xy < z1−ε

}
.

Moreover, F and G are called equivalent (F ≈ G), if F � G and G � F .

Lemma 5. Let F, F1, F2, G,G1, G2 ∈ RN2
0×N.

(i) If F � G with q000 6= 0, and if F and G have the same zero set, then F ≈ G.
Conversely, for F and G not of compact support, F ≈ G implies q000 6= 0.

(ii) If F1 � G1 and F2 � G2, then F1F2 � G1G2.

(iii) If F � G1 and F � G2, then F � G1 +G2.

(iv) The relation � is transitive, and ≈ is an equivalence relation on RN2
0×N.
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The proof of Lemma 5 will be given in the next subsection. For (α, β;n) ∈ N2
0 × N

define s(α, β;n) to be the number of subgroups of index n and type (α, β; n−3α−4β+6
6

).
Similarly, define

h(α, β;n) :=


n · n!

α!β!
(n− α

2

)
!
(n− β

3

)
! 2

n−α
2 3

n−β
3

; n ≡ α (2), n ≡ β (3)

0; otherwise.

With this notation, we can now state the following refinement of Corollary 9.

Proposition 10. We have s(α, β;n) ≈ h(α, β;n) with Q(x, y, z) ∈ Q[[x, y, z−1/6]] and
q000 = 1.

Proof. We may assume that n ≡ α (2), and that n ≡ β (3), since otherwise s(α, β;n) =
h(α, β;n) = 0. Let Ω = Ω(m1,m2, n) be the measure space consisting of all pairs
(σ, π) ∈ Sn × Sn such that the corresponding permutation representation has type
(m1,m2;n), equipped with the uniform measure. For ` ∈ N0 and k1, . . . , k` ∈ N, define

Pk1,...,k`(ν) := P

(
|1〈σ,π〉| = ν, ∃A1, . . . , A` ⊆ [n] : Ai ∩ Aj = ∅ (i 6= j),

∀i
(
|Ai| = ki, A

σ
i = Aπi = Ai, 1 6∈ Ai

)
)
.

Then, by the proof of Proposition 7, we have

sτ (Γ) =
hn(m1,m2)

(n− 1)!

{
1 −

n−1∑
ν=1

P (ν)

}
,

where τ = (α, β; γ) is the isomorphism type of the modular group Γ corresponding
to (m1,m2;n). Our task is thus to estimate P (ν). Fix an integer N ≥ 1 and a real
number ε > 0, and suppose that (α, β, n) ∈ Ωε. We show first that P (ν) is negligible
if ν ∈ [N + 1, n−N − 1]. By the observation following the proof of Theorem 3, there
exists a constant C̃ = C̃(δ) for each δ > 0 such that

P (ν) ≤ C̃

(
n

ν

)`1+`2+δ−1

, 1 ≤ ν ≤ n,

where `1 := max
(

1
2
, logα

logn

)
and `2 := max

(
1
3
, log β

logn

)
. It follows that

n−N−1∑
ν=N+1

P (ν) = O
(
n(`1+`2+δ−1)(N+1)

)
= O

((
(n1/2 + α)(n1/3 + β)nδ−1

)N+1
)

= O
(( α

n2/3

)N
+
( β

n1/2

)N
+
(αβ
n

)N
+ n−N/6

)
,

provided that

`1 + `2 + δ < 1 and nδ(N+1)
( α

n2/3
+

β

n1/2
+
αβ

n
+ n−1/6

)
< 1.

Both these conditions are satisfied for δ = ε
N+1

. Next, we show that, for each ν ∈
[1, N ]∪ [n−N, n−1], the probability P (ν) is dominated by the function 1 with q000 = 0
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and qijk ∈ Q. Having completed this step, our claim will follow from Lemma 5 (iii). By
the inclusion-exclusion-principle, we have, for ν ≥ n−N ,

P (ν) =
∑

0≤ρ≤n

(−1)ρ
∑

κ1,...,κρ≥1

∑
n−N≤η≤n

Pn−ν,κ1,...,κρ(η). (38)

If (n − ν) + κ1 + · · · + κρ > N and η ∈ [n − N, n), then Pn−ν,κ1,...,κρ(η) = 0. Hence,
the number of non–vanishing summands occurring in (38) is bounded in terms of N
alone; more precisely, we have ρ < N and κi ≤ N for all i. In order to get rid of the
transitivity condition, rewrite (38) as

P (ν) =
∑

0≤ρ≤N

(−1)ρ
∑

1≤κ1,...,κρ≤N

[ n∑
η=1

Pn−ν,κ1,...,κρ(η) −
N∑
η=1

Pn−ν,κ1,...,κρ(η)

+ O
(( α

n2/3

)N
+
( β

n1/2

)N
+
(αβ
n

)N
+ n−N/6

)]
.

By Lemma 5, it suffices to prove that

1 �
n∑
η=1

Pd1,...,dr(η), (39)

and that

1 � Pd1,...,dr(η) (40)

in the range r ≥ 1, η ≤ N , di ≥ 1(1 ≤ i ≤ r),
∑r

i=1 di ≤ N , and with q000 = 0 and
qijk ∈ Q in each case. In order to prove (39), we first choose the sets A1, . . . , Ar ⊆ [n],
then prescribe the action of σ and π on each of these sets, and finally weight the resulting
expression by the probability that a random element (σ, π) ∈ Ω acts as prescribed.
Proceeding in this way, we find that

n∑
η=1

Pd1,...,dr(η) =

(
n− 1

d1, . . . , dr, n−
∑

i di − 1

) ∑
a1,...,ar≥0

b1,...,br≥0

ai≤di/2
bi≤di/3

(∏
i

(di!)
2

ai!bi!(di − 2ai)!(di − 3bi)!2ai3bi

)

× P
(
σ fixes

∑
i(di − 2ai) prescribed points and contains

∑
i ai prescribed 2–cycles,

π fixes
∑

i(di − 3bi) prescribed points and contains
∑

i bi prescribed 3–cycles

)
.

(41)
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Since the events for σ and π are now independent, we can consider them separately.
Putting d :=

∑
i di, a :=

∑
i ai, and b :=

∑
i bi, we have

P

(
σ fixes 1, . . . , d− 2a and contains the

2–cycles (d− 2a+ 1, d− 2a+ 2), . . . , (d− 1, d)

)

=

(n− d)!

(m1 − a)! (n− 2m1 − (d− 2a))!2m1−a

n!

m1! (n− 2m1)!2m1

=
(m1)a (n− 2m1)d−2a 2a

(n)d

=
(α)d−2a (n−α

2
)a 2a

(n)d
≺ αd−2a

nd−a
.

Similarly,

P

(
π fixes 1, . . . , d− 3b and contains the 3–cycles

(d− 3b+ 1, d− 3b+ 2, d− 3b+ 3), . . . , (d− 2, d− 1, d)

)
=

(β)d−3b

(n− β
3

)
b
3b

(n)d

≺ βd−3b

nd−b
.

Combining these estimates with (41), and using Lemma 5 we find that
n∑
η=1

Pd1,...,dr(η) ≺
∑

0≤a≤d/2

∑
0≤b≤d/3

αd−2aβd−3bn−(d−a−b).

In order to see that the latter sum is dominated by 1, it suffices to check the inequalities
4(d− 2a) ≤ 6(d− a− b) and 3(2d− 2a− 3b) ≤ 6(d− a− b) coming from condition (a);
these however are immediate consequences of the summation conditions. Also, we have
6(d−a− b) ≥ d, thus every monomial occurring in the power series associated with the
latter dominance contains a positive power of n−1/6, whence q000 = 0. Moreover, at each
step where dominance was used to simplify expressions, the power series introduced had
rational coefficients, and this property is inherited under forming products and rational
linear combinations. In order to deal with Pd1,...,dr(η) for η ≤ N , we choose a domain
of transitivity of 1 in

(
n−1
η−1

)
possible ways, and then choose a transitive action on this

set, which can be done in a number of ways bounded in terms of N alone. In this way,
Pd1,...,dr(η) is transformed into a sum analogous to (41), which can be dealt with in a
fashion similar to the argument above, proving (40). �

A similar but considerably simpler argument allows us to prove the following.

Proposition 11. Let ε > 0 be given.

(i) In Sn choose an involution σ with α fixed points, and an element π of order 3
having β fixed points at random. If αβ > n1+ε, then, with probability tending
to 1 as n → ∞, 〈σ, π〉 fixes a point of [n]. Moreover, if α > n

2
3

+ε and β < n
2 ,

then almost certainly 〈σ, π〉 has a domain of transitivity consisting of exactly

3 points. Finally, if β > n
1
2

+ε and α < n
2 , then 〈σ, π〉 almost certainly has a

domain of transitivity consisting of precisely 2 points.



40 CLASSIFICATION AND STATISTICS OF FINITE INDEX SUBGROUPS

(ii) Let τi = (αi, βi; γi) be a sequence of isomorphism types in the modular group Γ
such that ni := 3αi + 4βi + 6(γi − 1) tends to infinity with i. Then, if for every

i at least one of the inequalities αi > n
2
3

+ε

i , βi > n
1
2

+ε

i , or αiβi > n1+ε
i holds, we

have

sτi(Γ) = o

(
ni · ni!

αi!βi! (ni − αi2 )! (
ni − βi

3 )! 2
ni−αi

2 3
ni−βi

3

)
(i→∞).

Proposition 11 shows in particular that the hypotheses of Theorem 3 are sharp, and
that the definition of the domain Ωε is natural.

8.3. Proof of Lemma 5. For a power series Q(x, y, z) ∈ R[[x, y, z−1/6]] and an integer
N ≥ 1 write

Q(N)(x, y, z) :=
∑

0≤i,j,k<N

qijk x
iyjz−k/6,

and put

RN :=
( x

z2/3

)N
+
( y

z1/2

)N
+
(xy
z

)N
+ z−N/6.

(i) Let Q̂(x, y, z) =
∑

i,j,k≥0 q̂ijk x
iyjz−k/6 be the formal inverse of the series Q occurring

in the definition of the relation F � G. Rewriting Q̂ as a von Neumann series, we find
that for ε > 0, N ≥ 1, and (x, y, z) ∈ Ωε

Q̂(N)(x, y, z) = q−1
000

∑
0≤ν≤3N−3

(−1)ν
(
Q(N)(x, y, z) − 1

)ν
+ O(RN). (42)

Indeed, if 4i ≤ k, 3(i + j) ≤ k, and max(i, j, k) ≥ N , then (x, y, z) ∈ Ωε satis-
fies xiyjz−k/6 = O(RN), and the two sides of (42) differ by a linear combination of
finitely many such monomials. If q̂ijk 6= 0, then, by (42), there exist ν and vec-
tors (i1, j1, k1), . . . , (iν , jν , kν) ∈ N3

0 summing to (i, j, k), such that qiµjµkµ 6= 0 for

µ = 1, . . . , ν. Hence, the series Q̂ inherits property (a) in the definition of dominance
from Q. Moreover, multiplying the equation

F (x, y, z)−G(x, y, z) Q̂(N)(x, y, z) = F (x, y, z)−G(x, y, z)

×
[
q−1

000

∑
0≤ν≤3N−3

(−1)ν
(
Q(N)(x, y, z) − 1

)ν
+ O(RN)

]
by

Q(N)(x, y, z) = q000 + O(R1),

which is at least q000/2 for z sufficiently large, we obtain(
F (x, y, z)−G(x, y, z) Q̂(N)(x, y, z)

)(
q000 +O(R1)

)
= −G(x, y, z)

×
[
1 +

∑
0≤i,j,k≤3N2

q̃ijk x
iyjz−k/6

]
+ O(RN)

(
F (x, y, z) +G(x, y, z)

)
,
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where q̃ijk = 0 unless max(i, j, k) ≥ N , 4i ≤ k, and 3(i+ j) ≤ k. As above, we see that∑
0≤i,j,k≤3N2

q̃ijk x
iyjz−k/6 = O(RN).

Since q000 6= 0, there exists a compact set C ⊆ R3 such that F (x, y, z) = O
(
G(x, y, z)

)
for (x, y, z) ∈ Ωε − C, that is, property (b) in the definition of G � F holds for all
but finitely many points. By increasing the implied constant, we can take care of those
exceptional points (x, y, z) such that G(x, y, z) 6= 0. Finally, if G(x, y, z) = 0, then the
claimed estimate holds trivially, since in this case by assumption also F (x, y, z) = 0.

(ii) For ` = 1, 2, let Q`(x, y, z) =
∑

i,j,k≥0 q
(`)
ijk x

iyjz−k/6 be the formal power series as-
sociated with the dominance relation F` � G`. Given ε > 0 and a positive integer

N , we have for (x, y, z) ∈ Ωε that Q
(N)
` = O(1), RN = O(1), and that Q

(N)
1 Q

(N)
2 =

(Q1Q2)(N) +O(RN), where Q1Q2 is the Cauchy product. Hence, under these assump-
tions,

G1G2 = F1F2

[
Q

(N)
1 +O(RN)

][
Q

(N)
2 +O(RN)

]
= F1F2

[
(Q1Q2)(N) +O(RN)

]
,

that is, condition (b) holds. Since, by an argument already given in the proof of (i),
condition (a) is inherited, our claim follows.

(iii) This is shown by a similar argument, using the fact that Q
(N)
1 +Q

(N)
2 = (Q1+Q2)(N).

(iv) Reflexivity and symmetry of ≈ are clear, transitivity of � follows by an argument
analogous to the one given in (ii), while transitivity of ≈ is implied by that of �.

8.4. Further asymptotic results. The results of Sections 6, when specialized to the
modular group, immediately give the following.

Corollary 10. As n tends to infinity, we have rfn(Γ) ∼ e−2rn(Γ).

Corollary 11. Almost all subgroups of Γ are maximal.

8.5. The distribution of isomorphism types. Define random variables ξ1n, ξ2n,

ξ
(q)
1n , ξ

(q)
2n as in section 7.

Corollary 12. As n → ∞, the variables ξ1n and ξ2n are asymptotically independent.

Similarly, for each fixed prime q, the variables ξ
(q)
1n and ξ

(q)
2n are asymptotically inde-

pendent. Furthermore, the distributions of these variables converge weakly to normal
distributions with parameters as given by the following table:

ξ1n ξ2n ξ
(q)
1n , q 6= 2 ξ

(2)
1n ξ

(q)
2n , q 6= 3 ξ

(3)
2n

Mean n1/2 n1/3 q−1/2n1/2 21/2n1/2 q−2/3n1/3 31/3n1/3

Variance n1/2 n1/3 q−1/2n1/2 21/2n1/2 q−2/3n1/3 31/3n1/3

In each case, the error introduced by approximating the distribution function of one of
these variables by the corresponding normal distribution is bounded above by O(n−1/15).
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