LOWER BOUNDS FOR EXPRESSIONS OF LARGE SIEVE TYPE

JAN-CHRISTOPH SCHLAGE-PUCHTA

ABSTRACT. We show that the large sieve is optimal for almost all exponential sums.

Keywords: Large sieve, random series

MSC-Index: 11N35, 30B20

Let $a_n, 1 \leq n \leq N$ be complex numbers, and set $S(\alpha) = \sum_{n \leq N} a_n e(n\alpha)$, where $e(\alpha) = \exp(2\pi i \alpha)$. Large Sieve inequalities aim at bounding the number of places where this sum can be extraordinarily large, the basic one being the bound

$$
\sum_{q \le Q} \sum_{\substack{1 \le a \le q \\ (a,q)=1}} \left| S\left(\frac{a}{q}\right) \right|^2 \le (N+Q^2) \sum_{n \le N} |a_n|^2
$$

(see e.g. $[3]$ for variations and applications). P. Erdős and A. Rényi $[1]$ considered lower bounds of the same type, in particular they showed that the bound

(1)
$$
\sum_{q \le Q} \sum_{(a,q)=1} |S\left(\frac{a}{q}\right)|^2 \ll N \sum_{n \le N} |a_n|^2,
$$

valid for $Q \ll$ N, is wrong for almost all choices of coefficients $a_n \in \{1, -1\}$, value for $Q \ll \sqrt{N}$, is wrong for almost an choices of coefficients $a_n \in \{1, -1\}$,
provided that $Q > C\sqrt{N}$ log N, and that the standard probabilistic argument fails provided that $Q > C\sqrt{N}$ log N, and that the standard probabilistic argument fails to decide whether (1) is true in the range $\sqrt{N} < Q < \sqrt{N}$ log N. In this note, we show that (1) indeed fails throughout this range.

Theorem 1. Let $S(\alpha)$ be as above. Then

(2)
$$
\sum_{q \le Q} \sum_{(a,q)=1} |S\left(\frac{a}{q}\right)|^2 \ge \varepsilon Q^2 \sum_{n \le N} |a_n|^2
$$

holds true with probability tending to 1 provided ε tends to 0, and Q^2/N tends to infinity.

Our approach differs from [1] in so far as we first prove an unconditional lower bound, which involves an awkward expression, and show then that almost always this expression is small. We show the following.

Lemma 1. Let $S(\alpha)$ be as above, and define

$$
M(x) = \sup_{m} \frac{\int_{0}^{\infty} |S(u)|^2 du}{\int_{0}^{1} |S(u)|^2 du},
$$

where m ranges over all measurable subsets of $[0, 1]$ of measure x. Then for any real parameter $A > 1$ we have the estimate

(3)
$$
\sum_{q \le Q} \sum_{(a,q)=1} |S\left(\frac{a}{q}\right)|^2 \ge \left(\frac{Q^2}{A}\left(1-M\left(\frac{1}{A}\right)\right)-6\pi NA\right) \sum_{n \le N} |a_n|^2.
$$

Proof. Our proof adapts Gallagher's proof of an upper bound large sieve [2]. For every $f \in C^1([0,1])$, we have

$$
f(1/2) = \int_{0}^{1} f(u) \ du + \int_{0}^{1/2} u f'(u) \ du - \int_{1/2}^{1} (1-u) f'(u) \ du.
$$

Putting $f(u) = |S(u)|^2$, and using the linear substitution $u \mapsto (\alpha - \delta/2) + \delta u$, we obtain for every $\delta > 0$ and any $\alpha \in [0, 1]$

$$
|S(\alpha)|^2 = \frac{1}{\delta} \int_{\alpha-\delta/2}^{\alpha+\delta/2} |S(u)|^2 du + \frac{1}{\delta} \int_{\alpha-\delta/2}^{\alpha} (\delta/2 - |u - \alpha|) (S'(u)S(-u) - S(u)S'(-u)) du
$$

$$
- \frac{1}{\delta} \int_{\alpha}^{\alpha+\delta/2} (\delta/2 - |u - \alpha|) (S'(u)S(-u) - S(u)S'(-u)) du.
$$

We have $|S(u)| = |S(-u)|$ and $|S'(-u)| = |S'(u)|$, thus $|S'(u)S(-u) - S(u)S'(-u)| \le$ $2|S(u)S'(u)|$, and we obtain

$$
|S(\alpha)|^2 \geq \frac{1}{\delta} \int_{\alpha-\delta/2}^{\alpha+\delta/2} |S(u)|^2 du - \frac{1}{\delta} \int_{\alpha-\delta/2}^{\alpha+\delta/2} 2\left(\frac{1}{2} - \frac{|u-\alpha|}{\delta}\right) |S(u)S'(u)| du.
$$

$$
\geq \frac{1}{\delta} \int_{\alpha-\delta/2}^{\alpha+\delta/2} |S(u)|^2 du - \int_{\alpha-\delta/2}^{\alpha+\delta/2} |S(u)S'(u)| du.
$$

We now set $\delta = A/Q^2$. We can safely assume that $\delta < \frac{1}{2}$, since our claim would be trivial otherwise. Summing over all fractions $\alpha = \frac{a}{q}$ with $q \leq Q$, $(a, q) = 1$, we get

(4)
$$
\sum_{q \le Q} \sum_{(a,q)=1} |S\left(\frac{a}{q}\right)|^2 \ge \frac{Q^2}{A} \int_0^1 |S(u)|^2 du - \frac{Q^2}{A} \int_{m(Q,A)} |S(u)|^2 du - \int_0^1 R(u)|S(u)S'(u)| du,
$$

where

$$
R(u) = # \left\{ a, q : (a, q) = 1, q \le Q, \left| u - \frac{a}{q} \right| \le \frac{A}{Q^2} \right\},\
$$

and

$$
m(Q, A) = \{u \in [0, 1] : R(u) = 0\}.
$$

To bound $R(u)$, let $\frac{a_1}{q_1} < \frac{a_2}{q_2} < \cdots < \frac{a_k}{q_k}$ be the list of all fractions with $q_i \leq Q$, $\left|u - \frac{a_i}{q_i}\right| \leq \frac{A}{Q^2}$. We have for $i \neq j$ the bound

$$
\left|\frac{a_i}{q_i} - \frac{a_j}{q_j}\right| \ge \frac{1}{q_i q_j} \ge \frac{1}{Q^2},
$$

that is, the fractions $\frac{a_1}{q_1}, \ldots, \frac{a_k}{q_k}$ form a set of points with distance $> \frac{1}{Q^2}$ in an interval of length $\frac{2A}{Q^2}$. There can be at most $2A + 1$ such points, hence, $R(u) \leq 3A$.

Next, we bound $|m(Q, A)|$. By Dirichlet's theorem, we have that for each real number $\alpha \in [0,1]$ there exists some $q \leq Q$ and some a, such that $|\alpha - \frac{a}{q}| \leq \frac{1}{qQ}$. If $\alpha \in m(Q, A)$, we must have $\frac{1}{qQ} > \frac{A}{Q^2}$, that is, $q < Q/A$. Hence, we obtain

$$
\begin{array}{rcl} |m(Q,A)| & \leq & \left|\displaystyle\bigcup_{q < Q/A} \displaystyle\bigcup_{(a,q)=1} \left[\frac{a}{q} - \frac{1}{qQ}, \frac{a}{q} + \frac{1}{qQ}\right] \backslash \left[\frac{a}{q} - \frac{A}{Q^2}, \frac{a}{q} + \frac{A}{Q^2}\right] \right| \\ \\ & \leq & \displaystyle\sum_{q < Q/A} \frac{\varphi(q)(2Q - 2Aq)}{qQ^2} \leq \frac{1}{Q^2} \int_0^{Q/A} 2Q - 2At \, dt = \frac{1}{A}. \end{array}
$$

We can now estimate the right hand side of (4). The first summand is $\frac{Q^2}{A} \sum_{n \le N} |a_n|^2$, while the second is by definition at most $\frac{Q^2}{A}M(1/A)$. For the third we apply the Cauchy-Schwarz-inequality to obtain

$$
\left(\int_{0}^{1} |S(u)S'(u)| \ du\right)^{2} \leq \left(\int_{0}^{1} |S(u)|^{2} \ du\right) \left(\int_{0}^{1} |S'(u)|^{2} \ du\right)
$$

$$
= \left(\sum_{n \leq N} |a_{n}^{2}| \right) \left(\sum_{n \leq N} (2\pi n)^{2} |a_{n}^{2}| \right)
$$

$$
\leq (2\pi N)^{2} \left(\sum_{n \leq N} |a_{n}^{2}| \right)^{2}.
$$

Hence, the last term in (4) is bounded above by $3A(2\pi N) \sum_{n \le N} |a_n|^2$, and inserting our bounds into (4) yields the claim of our lemma.

Now we deduce Theorem 1. Let $S(\alpha)$ be a random sum in the sense that the coefficients $a_n \in \{1, -1\}$ are chosen at random. We compute the expectation of the fourth moment of $S(\alpha)$.

$$
\begin{array}{rcl}\n\mathbf{E} \int_{0}^{1} |S(u)|^{4} \ du & = & \mathbf{E} \sum_{\mu_{1} + \mu_{2} = \nu_{1} + \nu_{2} \atop \mu_{1}, \mu_{2}, \nu_{1}, \nu_{2} \leq N} a_{\nu_{1}} a_{\nu_{2}} a_{\mu_{1}} a_{\mu_{2}} \\
& = & \# \{ \mu_{1}, \mu_{2}, \nu_{1}, \nu_{2} \leq N : \{ \mu_{1}, \mu_{2} \} = \{ \nu_{1}, \nu_{2} \} \} \\
& = & 2N^{2} - N.\n\end{array}
$$

If $m \subseteq [0,1]$ is of measure x, then \int m $|S(u)|^2 du \leq \sqrt{x} \left(\int$ m $|S(u)|^4 du\bigg)^{1/2}$, thus $EM(x) \leq \sqrt{2x}$. In particular, we have $M(x) \leq 1/2$ with probability $\geq 1 - \sqrt{8x}$. √ √

Let $\delta > 0$ be given, and set $A = 8\delta^{-2}$. Then with probability $\geq 1 - \delta$ we have $M(1/A) \leq 1/2$, and (3) becomes

$$
\sum_{q \le Q} \sum_{(a,q)=1} |S\left(\frac{a}{q}\right)|^2 \ge \left(\frac{Q^2 \delta^2}{16} - 48\delta^{-2} \pi N\right) \sum_{n \le N} |a_n|^2
$$

$$
\ge \frac{Q^2 \delta^2}{32} \sum_{n \le N} |a_n|^2,
$$

provided that $Q^2 > 1536\delta^4 N$. Hence, for fixed ϵ , the relation (2) becomes true with probability 1 − $\sqrt{1024\epsilon}$, provided that Q^2/N is sufficiently large. Hence, our claim follows.

I would like to thank the referee for improving the quality of this paper.

REFERENCES

- [1] P. Erdős, A. Rényi, Some remarks on the large sieve of Yu. V. Linnik, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 11 (1968), 3-13.
- [2] P. X. Gallagher, The large sieve, Mathematika 14 (1967), 14–20.
- [3] H. L. Montgomery, Multiplicative Number Theory, Lecture Notes in Mathematics, Vol. 227 (1971).

Jan-Christoph Schlage-Puchta

Department of Pure Mathematics and Computer Algebra

Universiteit Gent

Krijgslaan 281

9000 Gent

Belgium

jcsp@cage.ugent.be