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Abstract. The fastest normal subgroup growth type of a finitely generated

group is nlogn. Very little is known about groups with this type of growth.

In particular, the following is a long standing problem: Let Γ be a group
and ∆ a subgroup of finite index. Suppose ∆ has normal subgroup growth

of type nlogn. Does Γ have normal subgroup growth of type nlogn? We give

a positive answer in some cases, generalizing a result of Müller and the second
author and a result of Gerdau. For instance, suppose G is a profinite group

and H an open subgroup of G. We show that if H is a generalized Golod–
Shafarevich group, then G has normal subgroup growth of type nlogn. We

also use our methods to show that one can find a group with characteristic

subgroup growth of type nlogn.

1. Introduction and results

For a group Γ, let s/n(Γ) be the number of normal subgroups of Γ of index
at most n. Very little is known about the possible asymptotic behaviour of this
sequence; see [7, Chapter 2 and Section 9.4] for background. Lubotzky [6] showed
that, for any finitely generated group, we have s/n(Γ)� ncΩ(n) for some constant c,
where Ω(n) denotes the number of prime divisors of n counted with multiplicity,
and Mann [9] showed that, for a non-abelian free group, we have s/n(Γ) > nc logn for
some c > 0 and infinitely many n. Comparing these results, we find that the normal
subgroup growth of a non-abelian free group is of type nlogn. We say that a function
f(n) is of type g(n) if there are constants c1, c2 such that log f(n) ≤ c1 log g(n) for
all n, and there are infinitely many n such that log f(n) > c2 log g(n).

Our first theorem, Theorem 2, is quite technical. So, to motivate the reader,
we start with Corollary 1 which might have more general interest. It concerns
characteristic subgroup growth. In general, the characteristic subgroup growth of
a group is even more mysterious than the normal subgroup growth; in particular,
determining the characteristic growth of a free non-abelian group appears to be
quite difficult. However, the following is a simple consequence of Theorem 2.

Corollary 1. Let Γ be a virtually non-abelian free group with trivial center, and
suppose Γ has a finite outer automorphism group. Then Γ has characteristic sub-
group growth of type nlogn. In particular, if Γ = A ∗B is the free product of two
non-trivial finite groups such that at least one has order greater than 2, then Γ has
characteristic subgroup growth of type nlogn.

We return now to consider normal subgroup growth. One of the basic problems
concerning the normal subgroup growth is the question whether we can compare
the normal subgroup growth of a group and a subgroup of finite index. If ∆ < Γ is
a subgroup of finite index, we can intersect normal subgroups of Γ with ∆, that is,
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if Γ has many normal subgroups, so has ∆. More precisely, a slight variation of the
proof of [7, Proposition 1.3.2 (ii)] gives us s/n(Γ) ≤ s/n(∆)n(Γ:∆). Therefore, unless
we are aiming at results of high precision, the difficult problem is to decide whether
a finite index subgroup of a group Γ can have substantially more normal subgroups
than Γ itself. Lubotzky and Segal [7, Problem 4 (a)] ask the following.

Problem 1. Let Γ be a group and ∆ a subgroup of finite index. Suppose Γ has
polynomial normal subgroup growth, that is, type n. Does ∆ have polynomial normal
subgroup growth?

The fundamental problem we consider is a slight variation on it.

Problem 2. Let Γ be a group and ∆ a subgroup of finite index. Suppose ∆ has
normal subgroup growth of type nlogn. Does Γ has normal subgroup growth of type
nlogn?

This basic question seems to be quite hard, and unfortunately we are only able to
answer it in special cases. In [10, Theorem 1], Müller and the second author claimed
the following theorem. If Γ is a finitely generated group and ∆ is a normal subgroup
of finite index such that ∆ maps onto a group G such that the pro-p completion
of G is a non-abelian free pro-p group for some prime p and p - (Γ : ∆), then Γ
has normal subgroup growth of type nlogn. The proof used Mann’s construction
of large elementary abelian sections and representation theory to study the action
of Γ/∆ on these sections. Gerdau [5] claimed that the condition p - |Γ/∆| is not
necessary. In his proof, Gerdau replaced ordinary representation theory by modular
representation theory. Notice that, actually, there is no need to require ∆ to be
normal. However, a careful examination of both proofs shows that weaker results
are proven, namely, if Γ is a finitely generated group and ∆ is a normal subgroup
of finite index such that the pro-p completion of ∆ is a non-abelian free pro-p
group, then Γ has normal subgroup growth of type nlogn. We do not know whether
the original statements are true. The problem in the proofs is that a group that
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contains a subgroup of finite index which projects onto a free group needs not
project onto a virtually free group. An example of such group is the semi-direct
product C2 n (F2 × F2), where C2 acts by interchanging the factors of the direct
product. This has a subgroup of order 2, that projects onto F2, but does not
project onto any virtually (non-abelian free) group. However, it is still true that
all virtually (non-abelian free) groups have normal subgroup growth of type nlogn.

In this note, we give a couple of far more general results. Theorem 2 below
appears rather technical; however, in concrete cases, the conditions of the theorem
are easy to establish. We write d(Γ) for the minimal number of generators of Γ,
and if ∆ is a normal subgroup of Γ, we write dΓ(∆) for the minimal number of
generators of ∆ as a normal subgroup of Γ; in the case of topological groups,
we take topological generators. We call a group a CMEA group if it is a central
extension of an elementary abelian p-group by an elementary abelian p-group. We
write rkcmG for the CMEA rank of a pro-p group G, that is, the logarithm to base p
of the maximal order of a CMEA image of G.

Theorem 2. Let Γ be a d-generated group, ∆ a normal subgroup of finite index
in Γ and p a prime number.
(1) Let H be the pro-p completion of ∆, and let Ψ be the pre-image of Φ(H) under

the canonical map ∆→ H. Then dΓ(Ψ) ≥ rkcmH
(Γ:∆) − d.

(2) Let c > 0 be a real number. Suppose ∆i is an infinite sequence of normal
subgroups of Γ contained in ∆ and of index p-power in ∆. If, for all i, we
have rkcm∆i > c(Γ : ∆i)

2, then Γ has normal subgroup growth of type nlogn.
In fact, the number of subgroups of ∆, which are normal in Γ, has growth
type nlogn.

Let us see that Theorem 2 implies Gerdau’s result (as proved rather than as
claimed). Let Γ and ∆ be as in Gerdau’s result and H the pro-p completion of ∆,
by our assumption H is a free non-abelian pro-p group, and let r ≥ 2 be its number
of generators. Write Γ̂ and ∆̂ for the profinite completion of Γ and ∆, respectively.
Then Γ̂ contains ∆̂ because ∆ is of finite index in Γ. Write K for the kernel of the
map from ∆̂ to H and, trivially, ∆̂/K ∼= H. Clearly, H is the pro-p completion of
∆̂, so K is a characteristic subgroup of ∆̂ and therefore normal in Γ̂. Then Γ maps
densely into G = Γ̂/K, and ∆̂/K ∼= H is contained in G.

Let N be a normal subgroup of finite index of G contained in H and Ω its pre-
image in ∆. Since N is a free pro-p group, it is mapped onto the free CMEA-group

〈xi, yi, zik | 1 ≤ k < i ≤ d, xpi = yi, [xi, xk] = zik,

ypi = zpi = [xi, yj ] = [xi, zjk] = 1〉

with d = (H : N)(r − 1) + 1 = (∆ : Ω)(r − 1) + 1, and hence Ω is mapped onto the
same free CMEA-group. In particular, we have rkcmΩ ≥ d+

(
d+1

2

)
. Take

c =
(r − 1)

(Γ : ∆)
> 0,

which is independent of N ; then

d = c(Γ : ∆)(∆ : Ω) + 1 = c(Γ : Ω) + 1.

Therefore,
(
d+1

2

)
> d2/2 > (c2/2)(Γ : Ω)2. It follows from Theorem 2 (2) that Γ has

normal subgroup growth of type nlogn.
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Next we would like to consider virtual Golod–Shafarevich groups. However, to
consider non-normal subgroups, we need to be able to change to a normal subgroup
of finite index, but subgroups of finite index of Golod–Shafarevich groups are not
necessarily Golod–Shafarevich. Thus, we consider the larger class of generalized
Golod–Shafarevich groups introduced by Ershov and Jaikin-Zapirain [4]. We post-
pone the formal definition of a generalized Golod–Shafarevich group to the next
section; more detailed treatments can be found in [4] and [3, Chapter 5].

Theorem 3. Let G be a profinite group and H an open subgroup which is a gener-
alized Golod–Shafarevich pro-p group. Then G has normal subgroup growth of type
nlogn.

The proof of Theorem 3 requires no representation theory; nevertheless, it also
implies the result of Gerdau. Indeed, let Γ and ∆ be as in Gerdau’s result. We
take Γ̂, ∆̂, H and K as above. By our assumption, H is a non-abelian free pro-p
group. As ∆ is normal in Γ (we can always assume that by passing to a subgroup
of finite index), ∆̂ is normal in Γ̂. Hence, K is normal in Γ̂. Let G = Γ̂/K, and the
result follows since non-abelian free pro-p groups are generalized Golod–Shafarevich
groups.

Both theorems imply that groups of virtual positive p-deficiency have normal
subgroup growth of type nlogn. For the notion of p-deficiency, we refer the reader
to [13]. This is easy to see for Theorem 3 since groups of positive p-deficiency are
virtually Golod–Shafarevich (see [1, Theorem 5.5]). For Theorem 2, this requires
some computation similar to the case of virtually free groups, which we skip here.

Next we give an example, where Theorem 2 is applicable, but Theorem 3 is not.

Proposition 4. Let G be the quotient of the free pro-p group F in d ≥ 2 generators
by γ2(F ′). Then G has normal growth type nlogn.

This result is sharp in view of a result by Segal [12], who showed that metabel-
ian groups have normal growth of type n(logn)1−δ for some δ > 0. In other words,
abelian by abelian groups cannot have large normal growth, while (nilpotent of
class 2) by abelian can.

We do not have an example of a Golod–Shafarevich group which does not satisfy
the conditions of Theorem 2, but we believe that such examples should exist. In
particular, if G is a Golod–Shafarevich group of subexponential subgroup growth,
then Theorem 3 is applicable, but Theorem 2 is not. While it is likely that such
groups exist, no examples are known to us.

Finally, we remark that both Theorem 2 and 3 apply to Fuchsian groups of posi-
tive hyperbolic volume. Such a group has a normal subgroup of finite index, which
is a surface group with at least 4 generators, and both the fact that surface groups
map onto large CMEA groups and that the pro-p completion of surface groups
is Golod–Shafarevich follow immediately from the definition. This is important
as the normal subgroup growth of Fuchsian groups was used in [14] to count iso-
morphism types of algebraic curves with many automorphisms, and the corrected
version of [10] does not suffice for this purpose.

2. Virtual Golod–Shafarevich groups

Lemma 5. A pro-p group G has normal growth of type nlogn if and only if there
exists some c > 0 such that, for infinitely many normal subgroups N of finite index,
we have dG(N) > c log(G : N).
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Proof. Suppose N is an open normal subgroup satisfying dG(N) > c log(G : N).
Then N/ΦG(N) is a vector space of dimension greater than c log(G : N), and
therefore, this space contains at least p(c log(G:N))2/4 subspaces of codimension
d =

⌊
c
2 log(G : N)

⌋
. Since every subspace corresponds to a normal subgroup of

index (G : N)pd, we conclude that G has normal growth of type nlogn.
Suppose on the other hand that there exists a function f(n), f(n) = o(n), such

that dG(N) ≤ f(n) for all N / G with (G : N) = pn. Then, for each normal sub-
group N with (G : N) = pn, there exists a sequence

G = N0 > N1 > N2 > · · · > Nn = N

with Ni / G and (Ni : Ni+1) = p. If Ni is fixed, Ni+1 can be chosen in pdG(Ni)−1

p−1
ways; hence the number of normal subgroups of index pn is at most

p
∑
ν≤n f(ν) = po(n

2),

and we conclude that the normal growth of G is not of type nlogn. �

Lemma 6. Let G be a profinite group, which contains an open normal subgroup H
that is a pro-p group. If there exists some c > 0 such that H contains infinitely
many characteristic open subgroups N satisfying dH(N) > c log(H : N), then G
has normal growth nlogn

Proof. Suppose N is a characteristic subgroup of H with dH(N)>c log(H : N).
Then N is normal in G; let x1, . . . , xd be elements generating N as a normal
subgroup of G. Let g1, . . . , gk be representatives of the cosets G/H. Then x

gj
i ,

1 ≤ i ≤ d, 1 ≤ j ≤ k, generates N as a normal subgroup of H; hence we have
(G : H)d ≥ dH(N). We conclude that

dG(N) ≥ dH(N)

(G : H)
≥ c

(G : H)
log(H : N)

=
c

(G : H)

(
log(G : N)− log(G : H)

)
≥ c

2(G : H)
log(G : N),

provided (G : H)(H : N) = (G : N) > (G : H)2, that is, (H : N) > (G : H). The
latter condition excludes only finitely many N , and our claim follows. �

Let F (X) be the free pro-p group over the set X. Let Fp〈〈X〉〉 be the ring
of power series in non-commuting variables over X. The map x 7→ 1 + x for all
x ∈ X extends to the Magnus map µ : F (X)→ Fp〈〈X〉〉. Magnus [8] proved that
it is injective. To each element x ∈ X, we associate a positive integer dx, which
we call the degree of x. We can extend this degree to a function D : Fp〈〈X〉〉 → N
by defining the degree of a monomial to be the sum of the degrees of its factors,
and the degree of a linear combination of monomials as the maximal degree of
one of these monomials. Now define a degree function d : F (X)→ N by putting
d(w) = D(µ(w)− 1). It is not hard to see that an element in the n-dimension
subgroup has degree at least n. For a set A ⊂ F (X), define the Hilbert series
Hd,A(t) =

∑
a∈A t

d(a).
Let 〈X|R〉 be a presentation with X finite. We say that this presentation is a gen-

eralized Golod–Shafarevich presentation if there exists a degree function d and a real
number t0 ∈ (0, 1) such that 1−Hd,X(t0) +Hd,R(t0) < 0. A pro-p group is called
a generalized Golod–Shafarevich group if it has a generalized Golod–Shafarevich
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presentation. Note that the usual notion of a Golod–Shafarevich group corre-
sponds to the degree function which assigns to all x ∈ X the degree 1. We use
the same terminology as in [3]. The following is contained in [3, Theorem 4.3 and
Theorem 4.4].

Proposition 7. The following statements hold.
[(1)]

(1) A generalized Golod–Shafarevich group is infinite.
(2) An open subgroup of a generalized Golod–Shafarevich group is again generalized

Golod–Shafarevich.

In [2, appendix], Jaikin-Zapirain showed that a finitely generated generalized
Golod–Shafarevich group has subgroup growth of type at least pn

β

for some β > 0.
Using the basic idea from his proof, we show the following lemma. For that, we
need to recall that, given a pro-p group G, the n-dimension subgroups of G is

Dn(G) =
∏
ipj≥n

γi(G)p
j

.

Lemma 8. Let H be a finitely generated generalized Golod–Shafarevich pro-p group.
Then there exists c > 0 such that H contains infinitely many open characteristic
subgroups N satisfying dH(N) > c log(H : N).

Proof. Pick a presentation 〈X|R〉 of H, a degree function d and a real num-
ber t0 ∈ (0, 1) such that 1−Hd,X(t0) +Hd,R(t0) = −δ < 0. Our aim is to show
that Dn = Dn(H) needs many generators as normal subgroups of H. We have
dH(Dn) ≥ log(Dn : Dn+1) since ΦH(Dn) ≤ Dn+1.

Let g1, . . . , gm be elements of H, which generate Dn as a normal subgroup.
Then there exist elements r1, . . . , rm ∈ F (X), where F (X) is the free pro-p group
on the set X, such that ri maps to gi under the map F (X)→ H induced by the

presentation. The degree of ri is at least n, as ri ∈ Dn. Put R̃ = R ∪ {r1, . . . , rm}.
Then 〈X|R̃〉 = H/Dn is a finite group; in particular, this group does not satisfy the
generalized Golod–Shafarevich inequality. The Hilbert series of R̃ is

Hd,R(t) +

m∑
i=1

td(ri),

and hence

0 ≤ 1−Hd,X(t0) +Hd,R̃(t0) ≤ 1−Hd,X(t0) +Hd,R(t0) +mtn0 = mtn0 − δ.

We conclude that m > δt−n0 , and therefore m > an for some a > 1, provided that
n is sufficiently large.

Combining our estimates, we obtain

dH(Dn) ≥ max
(
an, log(Dn : Dn+1)

)
.

Suppose first that α = lim sup log(Dn:Dn+1)
an is finite. Then, for all n, there exists

a constant A such that

log(H : Dn) =

n−1∑
ν=1

log(Dν : Dν+1)

≤ A+ (α+ 1)

n−1∑
ν=1

aν ≤ A+
α+ 1

a− 1
an.
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Since Dn is a characteristic subgroup of H and dH(Dn) ≥ an, we deduce our claim.
On the other hand, if lim sup log(Dn:Dn+1)

an is infinite, then we can pick a subse-
quence (ni) such that, for all i and for all m < ni, we have

log(Dni : Dni+1)

ani
>

log(Dm : Dm+1)

am
.

For such ni, we have

log(H : Dni) =

ni−1∑
ν=1

log(Dν : Dν+1)

≤ log(Dni : Dni+1)

ni−1∑
ν=1

aν−ni

≤ 1

a− 1
log(Dni : Dni+1) ≤ 1

a− 1
dH(Dni).

Again, our claim follows. �

We can now prove Theorem 3.

Proof of Theorem 3. Let G and H be as in the theorem. By Proposition 7 (2),
we may replace H by an open normal subgroup, which is still generalized Golod–
Shafarevich. Then Lemma 8 implies that H satisfies the assumptions of Lemma 6,
and we conclude that G has normal subgroup growth of type nlogn. �

3. Groups with large meta-(elementary abelian) sections

Let us prove part (1) of Theorem 2.

Proof of Theorem 2 (1). Recall that Γ is a d-generated group, ∆ a normal subgroup
of Γ of finite index, p a prime number, H the pro-p completion of ∆, and Ψ is the
pre-image of Φ(H) = Hp[H,H], the Frattini subgroup of H, under the canonical
map ∆→ H. We write L = ΦH(Φ(H)) = Φ(H)p[Φ(H), H] for the normal Frattini
subgroup of Φ(H) in H and Λ for its pre-image in ∆.

Clearly, Ψ and Λ are characteristic subgroups in ∆ and thus normal in Γ.
Suppose that x1, . . . , xd are generators of Ψ as a normal subgroup of Γ. Then
x1Λ, . . . , xdΛ are generators of Ψ/Λ as a normal subgroup of Γ/Λ. Hence, X =

⋃
(xiΛ)

Γ/Λ

generates Ψ/Λ as a subgroup. Since Ψ/Λ is central in ∆/Λ, we have ∆/Λ ≤ CΓ/Λ(xiΛ),
which implies∣∣∣(xiΛ)Γ/Λ

∣∣∣ =
(
Γ/Λ : CΓ/Λ(xiΛ)

)
≤ (Γ/Λ : ∆/Λ) = (Γ : ∆).

We deduce that

dΓ(Ψ) ≥ dΓ/Λ(Ψ/Λ) ≥ d(Ψ/Λ)

(Γ : ∆)
.

Notice that H/L is the maximal CMEA-quotient of H. Because Ψ/Λ is an
elementary abelian p-group, we have

dΓ(Ψ) ≥ d(Ψ/Λ)

(Γ : ∆)
=

log(Ψ : Λ)

(Γ : ∆)
=

log(Φ(H) : L)

(Γ : ∆)

=
log(H : L)− log(H : Φ(H))

(Γ : ∆)
=

rkcmH − d(H)

(Γ : ∆)

≥ rkcmH − d(∆)

(Γ : ∆)
≥ rkcmH − d(Γ)(Γ : ∆)

(Γ : ∆)
=

rkcmH

(Γ : ∆)
− d,
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and the first part of Theorem 2 follows. �

To prove part (2) of the theorem, we need the following lemma from Gerdau [5].
Since it has not been published, we include the proof here. Note that the statement
is quite easy if p - |G|, for, in that case, every module decomposes into a sum of
simple modules, and there are only finitely many isomorphism types of simple
modules of FpG.

Lemma 9. Let G be a finite group and p a prime number. Then there exists
a constant c > 0 depending only on G and p such that, for all FpG modules M
of Fp-dimension d, there exist submodules M1 ≤M2 ≤M such that M2/M1 is the
direct sum of at least cd isomorphic simple modules.

Proof. For a module M , define `(M) as the maximal length of an ascending series
of submodules in a cyclic submodule of M . Since a cyclic FpG-module has dimen-
sion at most |G|, we have `(M) ≤ |G|. We prove by induction on `, that there
exists a constant c` > 0, such that for all modules M with `(M) ≤ ` there exists
submodules M1 ≤M2 ≤M , such that M2/M1 is the direct sum of c`d isomorphic
simple modules. We then take c = c|G|.

Note that a simple module is cyclic, and therefore there are only finitely many
isomorphism classes of simple modules. Define N to be the submodule of M gener-
ated by all simple submodules of M . Clearly N is a direct sum of simple modules.
Write k1 =

∑
dimFp S and c1 = 1/k1. Then N contains a direct sum of at least

dimFp N/k1 = c1 dimFp N simple submodules of the same isomorphism class.
For ` = 1 any cyclic submodule of M is simple. Thus, N contains all the elements

of M and we have N = M . Let M1 = 1 and M2 ≤ N be the direct sum of at least
c1 dimFp N = c1d simple submodules of the same isomorphism class.

We continue by induction on `. If dimFp N > d/2, then N contains a direct
sum of c1 dimFp N ≥ c1d/2 isomorphic simple modules. If dimFp N ≤ d/2, then
`(M/N) ≤ `(M)− 1, as the first module in an ascending series of maximal length
must be a simple module. By the induction hypothesis M = M/N contains sub-
modules M1 < M2, such that M2/M1 is the direct sum of at least c`−1d isomorphic
simple modules. It is easy to deduce our claim with c` = min(c1/2, c`−1).

�

Just as in the case of vector spaces, direct sums of isomorphic modules have
many submodules. The following is [10, Lemma 1].

Lemma 10. Let G be a finite group, M an FpG-module. Then there is some c > 0
such that Mn contains at least ecn

2

submodules.

We are now ready to prove part (2) of Theorem 2.

Proof of Theorem 2 (2). Let ∆, H and ∆i be as in the theorem. Let Hi be the
closure of the image of ∆i in H. Let Ψi be the pre-image of Φ(Hi) in ∆, and Λi
the pre-image of ΦH(Φ(H)).

Let Ω be the kernel of the map ∆→ H. Then Ψi is generated by Ω, [∆,∆i]
and ∆p

i . Since all three groups are normal in Γ, Ψi is also normal in Γ, and
similarly Λi is normal in Γ. Hence, Γ acts on Ψi/Λi by conjugation. Because ∆
acts trivially on Ψi/Λi, we have that Ψi/Λi is an Fp(Γ/∆)-module. From Lemmas 9
and 10, it follows that there is some c′ > 0, depending only on Γ/∆ and p, such that
Ψi/Λi has at least ec

′(dimFp Ψi/Λi)
2

submodules. Since there is a bijection between
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submodules and normal subgroups of Γ, which are contained in the interval (Ψi,Λi),
we conclude that Γ has at least ec

′(dimFp Ψi/Λi)
2

normal subgroups of index at most
(Γ : Λi). Therefore, to prove the theorem, it suffices to show that there exists some
δ > 0, independent of i, such that dimFp Ψi/Λi ≥ δ log(Γ:Λi).

As in the proof of part (1), we have

log(Φ(Hi) : ΦHi(Φ(Hi))) = rkcmHi − d(Hi) ≥ rkcmHi − d(∆i)

≥ rkcmHi − d(Γ)(Γ : ∆i).

It follows from the assumption in the theorem that

log(Ψi : Λi) = log(Φ(Hi) : ΦH(Φ(Hi))) ≥ c(Γ : ∆i)
2 − d(Γ)(Γ : ∆i)

≥ c(Γ : ∆i)− d(Γ),

so

(Γ : ∆i) ≤
log(Ψi : Λi) + d(Γ)

c
.

We deduce that

log(Γ : Λi) = log(Γ : ∆i) + log(∆i : Ψi) + log(Ψi : Λi)

≤ log

(
log(Ψi : Λi) + d(Γ)

c

)
+ d(Hi) + log(Ψi : Λi)

≤ log(Ψi : Λi) + d(H)(H : Hi) + log(Ψi : Λi)

≤ d(H)(Γ : ∆i) + 2 log(Ψi : Λi)

≤ d(H)

c
log(Ψi : Λi) +

d(H)d(Γ)

c
+ 2 log(Ψi : Λi)

≤
(
d(H)

c
+ 3

)
log(Ψi : Λi),

provided that (Ψi : Λi) is sufficiently large. Putting δ =
(d(H)

c + 3
)−1

, we have
dimFp Ψi/Λi = log(Ψi : Λi) ≥ δ log(Γ : Λi) as required, and Theorem 2 (1) is proven.

�

Proof of Proposition 4. Let F̂d be the free pro-p group of rank d. Clearly, the nor-
mal growth of F̂d/γ2(F̂ ′d) is a lower bound for the normal growth of Fd/γ2(F ′d).
Let N be the normal subgroup of F̂d such that F̂d/N ∼= (Z/pkZ)d. Then we
have N ≥ F̂ ′d, and therefore Φ(N) ≥ F̂ ′′d = γ1(F̂ ′d) and ΦN (Φ(N)) ≥ γ2(F̂ ′d). Thus,
(F̂d : N), (N : Φ(N)) and Φ(N)/ΦN (Φ(N)) do not change when we factor by
γ2(F̂ ′d). Let d1 = (d− 1)(F̂d : N) + 1; then N ∼= F̂d1 . Since N is a free pro-p group,
it surjects onto the free CMEA group with d1 generators. The latter has order

pd1+(d1+1
2 ) > pd

2
1/2, sorkcmN >

d2
1

2
.

Hence,

rkcmN >
d2

1

2
=

1

2

(
(d− 1)(F̂d : N) + 1

)2
>

(d− 1)2

2
(F̂d : N)2,

and we can apply Theorem 2. On the other hand, F/γ2(F ′d) is not Golod–Shafare-
vich since, as Zelmanov showed in [15], Golod–Shafarevich groups always contain
non-abelian free pro-p subgroups, which F/γ2(F ′d) clearly does not. �
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Proof of Corollary 1. Let Γ be as in the corollary. Since the center of Γ is trivial,
we can view Γ as a subgroup of Aut(Γ). A subgroup of Γ is characteristic in Γ if and
only if it is normal in Aut(Γ). Since (Aut(Γ) : Γ) is finite, we can apply Theorem 2
to the pair Aut(Γ) > Γ in place of Γ > ∆ and find that Γ has characteristic subgroup
growth of type nlogn.

It remains to show that free products of finite groups have trivial center and
finite outer automorphism group. The statement about the center is easy. In fact,
as non-abelian free groups have trivial center, every element of the center of A ∗B is
contained in a conjugate of A or B. But elements in conjugates of A do not commute
with elements in conjugates of B; hence the center is trivial. The finiteness of the
outer automorphism group was shown by Pettet [11, Proposition 2.5]. �

4. Problems and remarks

Lemma 6 falls short of our expectations in two aspects. First, it is unfortunate
that the subgroups N are required to be characteristic subgroups of H rather than
normal. We therefore ask the following.

Problem 3. Does there exist a pro-p group G such that, for some c > 0, there
exist infinitely many open normal subgroups N with dG(N) ≥ c log(G : N), but
lim dG(C)

log(G:C) = 0, as C ranges over characteristic open subgroups?

The second problem is that Lemma 6 only gives information on normal growth
of type nlogn because our counting methods are very crude. To give an upper
bound for the number of normal subgroups, one considers all chains of the form
G > N1 > · · · > Nn, disregarding the facts that Nn might be contained in many
different chains and that not all normal subgroups need the maximal number of
generators. For the lower bound, one considers one normal subgroup N which
needs many generators and counts only normal subgroups between N and ΦG(N).
Both estimates appear heavily wasteful, but, for growth types nlogn and larger, the
difference is actually quite small. However, if

max
(G:N)=n

dG(N) ≈ f(log n)

with f(k) = o(k), one only gets a lower bound of type ef(logn)2 and an upper bound
ef(logn) logn. In particular, we do not know whether an analogue of Lemma 5 exists.
We therefore ask the following.

Problem 4. Do there exist pro-p groups G,H such that, for all sufficiently large k,
we have

max
(G:N)≤pk

dG(N) > max
(H:K)≤pk

dH(K),

but
log s/pk(G)

log s/
pk

(H)
−−−−→
k→∞

0?

In addition, we believe that some generalization of Theorem 2 should be true,
although we are not sure what form it should take. Informally, Theorem 2 assumes
that G contains infinitely many normal subgroups, which map onto CMEA groups
of “size comparable to the corresponding quantity in a free group”. If we replace
“CMEA” by “elementary abelian” in this statement, we obtain positive upper rank
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gradient which is equivalent to exponential subgroup growth. Here we define rg+

and rg− the upper and the lower rank gradient of a pro-p group G respectively as

rg+ = sup
G>U1>U2>···

lim
n→∞

d(Ui)

(G : Ui)
,

rg− = inf
G>U1>U2>···

lim
n→∞

d(Ui)

(G : Ui)
,

where infimum and supremum are taken over all descending chains of finite index
subgroups.

However, positive upper rank gradient does not imply large normal growth, for
example, G, the pro-p completion of the restricted wreath product Γ = Z o Fp, has
polynomial normal growth as shown in [7, example after Theorem 9.2]; however,
let us see that it has positive upper rank gradient.

Let Σ be the base group of Γ. We have a map ψk : Γ→ Pk = Cpk o Fp. Let B
be the base group of Pk, and let ∆ be the pre-image of B and N its closure in G.
Then ∆ is a normal subgroup of Γ of index pk, Σ ≤ ∆, and [∆,∆]∆p is in the kernel
of ψk because B is an elementary abelian p-group. Hence,

(N : Φ(N)) ≥ (∆ : [∆,∆]∆p) ≥ (∆ ∩ Σ : [∆,∆]∆p ∩ Σ)

≥ (Σ : kerψk ∩ Σ) = |B| = pp
k

,

and we obtain d(N) ≥ pk = [Γ : ∆] = [G : N ]. In particular, the upper rank gradi-
ent of G is as large as the rank gradient of a free group with 2 generators, and the
subgroup growth of G is exponential.

One reason that explains the discrepancy between the large subgroup growth
and the moderate normal growth is the fact that if a subgroup U requires many
generators, then it contains essentially the whole base group, while Φ(U) cuts deeply
into the base group and needs only few generators. In particular, there are no large
CMEA sections in G because most subgroups need only few generators. It would
be interesting to know what happens if we circumvent this obstacle by assuming
that all subgroups need many generators. We therefore ask the following problem.

Problem 5. If G has positive lower rank gradient, does G necessarily have large
normal growth?

It is not hard to see that the conditions in Theorem 2 imply exponential subgroup
growth. Thus, comparing it to Theorem 3 naturally leads to the following problem.

Problem 6. Can one give an example of a generalized Golod–Shafarevich group
with subexponential subgroup growth? If not, can one give some other example
of a generalized Golod–Shafarevich group to which Theorem 2 cannot be applied?
More generally, does the assumption that G has normal subgroup growth of type
nlogn imply any other largeness properties?

The last question is probably very difficult, as, for example, the pro-2 completion
of Grigorchuk’s group or the Nottingham group contain non-abelian free pro-p
subgroups, but have only a bounded number of normal subgroups of any given
index. Finally, we would like to know the answer to the original claim from [10].

Problem 7. Let Γ be a large group, that is, it contains a finite index subgroup ∆,
which projects onto a non-abelian free group F . Does Γ have normal subgroup
growth of type nlogn?



12 Y. BARNEA AND J.-C. SCHLAGE-PUCHTA

Note that a negative answer to Problem 2 would immediately resolve this ques-
tion in the positive.

For characteristic subgroup growth, the first question one might consider is the
following.

Problem 8. What is the characteristic subgroup growth of a non-abelian free group?

This question was posed by I. Rivin on MathOverflow (see [17]) and seems in-
triguingly difficult. W. Thurston gave an argument that the growth should be
similar to the characteristic subgroup growth of Zn. However, the direct approach
leads to well-known open problems on the product replacement algorithm. A first
step in this direction could be the following problem, which is due to Lubotzky.

Problem 9. Is there a characteristic subgroup C in F3 such that F3/C is a finite
simple group?
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