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Abstract

Let n be a positive integer and let g1, . . . , gn be real numbers. The following
problem integer partition problem (IPP) is studied: Find a partition of the
integer n =

∑n
i=1 i ·λi such that

∑n
i=1 gi ·λi is maximal. An extended variant

of the IPP is the problem EIPP, where, as a secondary condition, the number∑n
i=1 λi of items has to be minimal. The support of the partition is the index-

set of all nonzero items, i.e. {i : λi > 0}. It is proved that there is always
an optimal solution for the IPP (as well as for the EIPP) whose support
contains at most blog2(n + 1)c elements and that this bound is sharp. An
algorithm of time complexity O(n2) for the determination of such an optimal
solution is presented. Finally the following non-polynomial bounds for the
maximum number M(n) of all optimal solutions for the EIPP are proved:
2.2324n1/3 . lnM(n) . 1

3
3
√

6n1/3 lnn as n→∞ .
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1. Introduction

Let P be a finite set of n objects and let g1, . . . , gn be real numbers.
Assume that every nonempty subset S of P generates the gain g|S|, depending
only on the size |S| of S. Moreover, the gain of a partition π of P , i.e. of a
disjoint union P = P1∪̇ . . . ∪̇Pm of nonempty subsets of P is defined to be
the sum of the gains of its classes, i.e.

G(π) =
m∑
k=1

g|Pk|.

In this paper the following objective is studied: Determine a partition of P
with a maximal gain which has in addition a small number of class-sizes.
We may include the secondary condition, that the number of classes of the
partition is minimal.

For a partition π of P let λi be the number of classes of size i. Note that∑n
i=1 iλi = n and that the coefficients λi are nonnegative integers, i.e. the

partition of the set P generates a partition of the integer n into λi parts of
size i, i ∈ {1, . . . , n}. We have G(π) =

∑n
i=1 giλi. The number of classes of π

is given by
∑n

i=1 λi and the number of different class-sizes by |{i : λi > 0}|.
Let [n] = {1, . . . , n}, [n]∗ = {0, 1, . . . , n} and N = {0, 1, 2, . . . }. Formally,

for a gain vector (g1, . . . , gn), the integer partition problem (IPP) reads as
follows:

n∑
i=1

giλi → max, s.t.

n∑
i=1

iλi = n,

λi ∈ N, ∀i ∈ [n].

Special attention is directed to optimal solutions for which |{i : λi > 0}| is
“small”.

For the extended integer partition problem (EIPP) the secondary condi-
tion reads

n∑
i=1

λi → min,
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i.e. this objective function is mimimized over the set of all optimal solutions
of the IPP.

For two vectors a = (a1, . . . , an) and b = (b1, . . . , bn), let a ·b =
∑n

i=1 aibi
be their inner product and supp(a) = {i : ai 6= 0} be the support of a. Let
λ = (λ1, . . . , λn), g = (g1, . . . , gn),−→n = (1, . . . , n) and 1 = (1, . . . , 1). With
this notation the IPP reads:

max{g · λ : −→n · λ = n,λ ∈ Nn}. (IPP)

Moreover, the EIPP reads

min{1 · λ : λ is optimal for the IPP}. (EIPP)

The IPP is similar to the knapsack problem (cf. [1]), but the essential dif-
ference is that the condition in the IPP has the form of an equality and its
RHS is equal to the dimension n. We prove that there is always an optimal
solution λ of the IPP and of the EIPP with | supp(λ)| ≤ log2(n+1) and that
this bound cannot be improved. A dynamic programming approach leads to
an algorithm of time complexity O(n2). It is interesting that the average size
of the support (extended over all partitions of the integer n) is essentially
larger, namely

√
6n
π

(1 + o(1)) as n→∞. This was proved by Wilf in [3].

Moreover, we present an algorithm that enumerates all optimal solutions.
A survey on algorithms that generate all partitions of an integer, also with
restrictions, is contained in the paper of Zoghbi and Stojmenović [6]. Finally,
we prove non-polynomial bounds for the number of all optimal solutions
in the worst case. Related questions of superpolynomial rates of restricted
integer partition functions are discussed by Canfield and Wilf in [4].

A special case has been studied by Došlić in [2]: He maximized the prod-
uct of the parts of an integer partition into distinct parts. Turning to the
logarithm this leads to the IPP, where gi = ln i and with the additional
condition that λi ≤ 1 for all i.

A comprehensive presentation of the theory of integer partitions can be
found in the book of Andrews [5].

2. Preliminary results

Lemma 1. There is a gain vector g such that | supp(λ)| = blog2(n+ 1)c for
all optimal solutions λ of the IPP.
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Proof. The cases n = 1 and n = 2 are trivial, so let n ≥ 3. Let k =
blog2(n+ 1)c. Then k ≥ 2 and 2k − 1 ≤ n ≤ 2k+1 − 2. Let

gi =


10` if i = 2` for some ` ∈ {0, . . . , k − 2},
10k−1 if i = n− 2k−1 + 1,

0 otherwise

and

λ∗i =


1 if i = 2` for some ` ∈ {0, . . . , k − 2},
1 if i = n− 2k−1 + 1,

0 otherwise.

Note that the vector g is well-defined because of the inequality 2k−2 < n −
2k−1+1. Obviously, λ∗ is an admissible solution of the IPP with gain g ·λ∗ =∑k−1

`=0 10` = 10k−1
9

and | supp(λ)| = k. We show that every other admissible
solution λ of the IPP has smaller gain (and hence λ∗ is the only optimal
solution). Assume the contrary. There there is some optimal solution λ
different from λ∗ such that g · λ ≥ g · λ∗.

For j = n− 2k−1 + 1 we have λj ≤ 1 because otherwise

−→n · λ ≥ j · 2 = n+ n− 2k + 2 > n,

a contradiction the admissibility of λ. If λj = 0 then

g · λ =
n∑
i=1

giλi ≤
k−2∑
`=0

10`λ2` ≤
k−2∑
`=0

10`
n

2`

= n
k−2∑
`=0

5` < 2k+15k−1 − 1

4
< 10k−1 <

10k − 1

9
= g · λ∗,

a contradiction to the optimality of λ∗.

Consequently, λj = 1, and besides j > 2k−2. Then λ2k−2 ≤ 1 because
otherwise

−→n · λ ≥ 2k−2 · 2 + (n− 2k−1 + 1) > n,

a contradiction to the admissibility of λ. If λ2` ≤ λ∗
2`

= 1 for all ` ∈
{0, . . . , k − 2}, then one of these inequalities is strict in view of λ 6= λ∗ and
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hence g · λ < g · λ∗, a contradiction. Thus there is some ` ∈ {0, . . . , k − 3}
such that λ2` ≥ 2. We define λ′ by

λ′i =


λi − 2 if i = 2`,

λi + 1 if i = 2`+1,

λi otherwise.

Then λ′ is admissible and

g · λ′ = g · λ− 2 · 10` + 10`+1 > g · λ,

a contradiction to the optimality of λ.

In the following we use a lexicographic ordering. For two vectors a =
(a1, . . . , an) and b = (b1, . . . , bn) let a ≺ b if ai < bi for the largest index i
with ai 6= bi. As usual, a � b if a ≺ b or a = b. Note that in this definition
components with larger (and not with smaller) index have higher priority.

Lemma 2. Let λ be a lexicographically largest optimal solution of the IPP.
Then

| supp(λ)| ≤ blog2(n+ 1)c.

Proof. Let x 6= 0 be an integer vector such that 0 ≤ |xi| ≤ λi for all i.
First we show that −→n · x 6= 0. Assume the contrary. Then λ′ = λ − x
and λ′′ = λ + x are also admissible solutions of the IPP. The equalities
g · λ′ = g · λ − g · x, g · λ′′ = g · λ + g · x and the optimality of λ imply
that g · x = 0 and hence that λ′ and λ′′ are also optimal. But λ′ or λ′′

is lexicographically larger than λ, a contradiction. From this observation it
follows that all numbers −→n · x are pairwise different if x runs through the
set of all integer vectors with 0 ≤ x ≤ λ. Clearly, we have for this set of∏n

i=1(λi + 1) vectors 0 ≤ −→n · x ≤ −→n · λ = n. Consequently,
n∏
i=1

(λi + 1) ≤ n+ 1

and further ∏
i∈supp(λ)

(1 + 1) ≤ n+ 1

which finally leads to

2| supp(λ)| ≤ n+ 1 and | supp(λ)| ≤ blog2(n+ 1)c.
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Remark 1. Obviously, Lemmas 1 and 2 are in the same way true for the
EIPP.

3. Recursions

From Lemmas 1 and 2 it follows that there is always an optimal solution λ
of the IPP (and of the EIPP) with support size not greater than blog2(n+1)c
and that this bound cannot be improved. In the next section, we present an
algorithm that determines such an optimal solution. In the sense of dynamic
programming we replace the restriction−→n ·λ = n by the restriction −→n ·λ = k,
where k ∈ [n]∗. In this section, the necessary recursion formulas are derived.
Let

Λk = {λ ∈ Nn : −→n · λ = k},
wk = max{g · λ : λ ∈ Λk}, Sk = argmax{g · λ : λ ∈ Λk},
`k = min{1 · λ : λ ∈ Sk}, S∗k = argmin{1 · λ : λ ∈ Sk},

i.e. Sk is the set of all optimal solutions of the modified IPP and S∗k is the set
of all optimal solutions of the modified EIPP. Note that Λ0 = S0 = S∗0 = {0}
and w0 = `0 = 0. Let

m(λ) =

{
max{i : λi > 0} = max(supp(λ)) if λ 6= 0,

0 if λ = 0

be the largest position of a nonzero element of λ. Let [−1] and [0] be defined
as the empty set and let g0 = −1. Moreover, let for k ∈ [n]∗

ak = max{m(λ) : λ ∈ Sk}, Mk = {m(λ) : λ ∈ Sk},
a∗k = max{m(λ) : λ ∈ S∗k}, M∗

k = {m(λ) : λ ∈ S∗k},
Ek = {i ∈ [k − 1] : wi = gi} ∪ {k},
Ik = argmax{gi + wk−i : i ∈ Ek},
I∗k = argmin{1 + `k−i : i ∈ Ik}.

Note that a0 = a∗0 = 0 and M0 = M∗
0 = E0 = {0}. In the following we use

the notation ei for the unit vector of dimension n whose i-th entry equals 1.
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Lemma 3. Let λ ∈ Sk and λi > 0. Then λ = ei + λ′ with some λ′ ∈ Sk−i,
g · λ = wk = gi + wk−i and i ∈ Ik.

Proof. The equality g ·λ = wk is obvious. Let λ′ = λ− ei. Then λ′ ∈ Λk−i.
We show that even λ′ ∈ Sk−i. Assume the contrary. Then there is some
λ′′ ∈ Λk−i with g ·λ′ < g ·λ′′. But the vector ei +λ′′ belongs to Λk and has
gain

g · (ei + λ′′) = gi + gλ′′ > gi + gλ′ = g · λ,
a contradiction to λ ∈ Sk. Therefore in fact λ = ei+λ

′ with some λ′ ∈ Sk−i.
Hence, it follows that

g · λ = g · (ei + λ′) = gi + wk−i.

Assume that i /∈ Ik. Then i /∈ Ek or there is some j ∈ Ek with gj + wk−j >
gi + wk−i. If i /∈ Ek then gi < wi and hence there is some vector λ′′′ ∈ Λi

with gi < g · λ′′′. Let λ′ ∈ Sk−i. Then the vector λ′′′ + λ′ belongs to Λk and
has gain

g · (λ′′′ + λ′) > gi + wk−i = g · λ,
a contradiction to λ ∈ Sk. If gj +wk−j > gi +wk−i for some j ∈ Ek then for
any vector λ′′ ∈ Sk−j the gain of the vector ej + λ′′ equals

g · (ej + λ′′) = gj + wk−j > gi + wk−i = g · λ,

a contradiction to λ ∈ Sk.

Theorem 1. We have for k ∈ [n]

Ek =

{
Ek−1 ∪ {k} if gk−1 = wk−1,

Ek−1 ∪ {k} \ {k − 1} otherwise,
(1)

wk = max{gi + wk−i : i ∈ Ek}, (2)
ak = max{max{i, ak−i} : i ∈ Ik}, (3)

Mk =
⋃
i∈Ik

⋃
j∈Mk−i

{max{i, j}}. (4)

Proof. The recursion formula (1) is trivial.

Proof of (2): Let

vk = max{gi + wk−i : i ∈ Ek}.
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We have to prove that vk = wk and start with the proof of vk ≤ wk. Let
i ∈ Ik and λ′ ∈ Sk−i. Then λ = ei + λ′ ∈ Λk and

vk = gi + wk−i = g · ei + g · λ′ = g · λ ≤ wk.

Now we prove vk ≥ wk. Let λ ∈ Sk and let i = m(λ). By Lemma 3,
i ∈ Ik ⊆ Ek and wk = gi + wk−i ≤ vk.

Proof of (3): Let

bk = max{max{i, ak−i}, i ∈ Ik}.

We have to prove that ak = bk and start with the proof of ak ≤ bk. We
choose λ ∈ Sk such that ak = m(λ) and write briefly i = ak. By Lemma 3,
i ∈ Ik and thus

ak ≤ max{i, ak−i} ≤ bk.

Now we prove ak ≥ bk. Let bk = max{j, ak−j} for some j ∈ Ik. There is some
λ′ ∈ Sk−j such that m(λ′) = ak−j. Since j ∈ Ik we have wk = gj + wk−j
(because of (2)) and thereby the vector λ′′ = ej + λ′ belongs to Sk. Hence,

ak ≥ m(λ′′) = max{j, ak−j} = bk.

Proof of (4): First we show “⊆”. Let i ∈ Mk, i.e. there is some λ ∈ Sk
such that m(λ) = i. By Lemma 3, i ∈ Ik and λ = ei + λ′ with some
λ′ ∈ Sk−i. Let j = m(λ′), i.e. j ∈Mk−i. Then m(λ) = max{i, j} and thus i
is contained in the RHS of (4).

Now we show “⊇”. Let ` = max{i, j} for some i ∈ Ik and j ∈Mk−i. Then
there is some λ′ ∈ Sk−i with j = m(λ′), and the vector λ = ei + λ′ belongs
to Sk (because of (2) and the fact i ∈ Ik). Since m(λ) = max{i, j} = ` it
follows ` ∈Mk.

Theorem 2. We have for k ∈ [n]

`k = min{1 + `k−i : i ∈ Ik}, (5)
a∗k = max{max{i, a∗k−i}, i ∈ I∗k}, (6)

M∗
k =

⋃
i∈I∗k

⋃
j∈M∗k−i

{max{i, j}}. (7)
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The proof is analogous to the proof of Theorem 1.

For u ∈ [n]∗, let µu and µ∗u be the lexicographically maximal elements of
Su and S∗u, respectively.

Theorem 3. We have for k ∈ [n]

µk = eak + µk−ak , (8)
µ∗k = ea∗k + µ∗k−a∗k . (9)

Proof. We prove only the first equality. The second can be proved anal-
ogously. Let briefly i = ak. By definition, there is some λ ∈ Sk with
m(λ) = i. By Lemma 3, λ = ei + λ′ with some λ′ ∈ Sk−i. Since also
µk−i ∈ Sk−i, we have g · λ′ = g · µk−i and thereby g · λ = g · (ei + µk−i),
whence ei + µk−i ∈ Sk. Assume that there is some element λ̂ of Sk with
λ̂ � ei+µk−i. Since µk−i � λ′ it follows λ̂ � λ, in particular m(λ̂) ≥ m(λ).
The definition of ak implies m(λ̂) ≤ m(λ), and hence m(λ̂) = m(λ) = i. By
Lemma 3, the vector λ̂

′
= λ̂ − ei belongs to Sk−i. From λ̂ � ei + µk−i it

follows that λ̂
′
� µk−i, a contradiction to the fact that µk−i is the lexico-

graphically largest element of Sk−i.

4. Algorithmic solution

Theorems 1 - 3 form the basis and prove the correctness of the following
algorithms. For the solution of the IPP Theorem 1 and (8) of Theorem 3 are
used. The necessary extensions for the EIPP are presented on the RHS in
parentheses and built on Theorem 2 and (9) of Theorem 3.
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Algorithm 1 Determination of the optimal value of the objective function
Real numbers g1, . . . , gn. w0 := 0, a0 := 0, g0 := −1. (`0 := 0.)
E := {0}. # M0 := {0}. for all k = 1, . . . , n do
E := E ∪ {k}.
if gk−1 6= wk−1 then
E := E \ {k − 1}.

end if
wk := max{gi + wk−i : i ∈ E}.
I := {i ∈ E : wk = gi + wk−i}.

(`k := min{1 + `k−i : i ∈ I}.)
(I := {i ∈ I : `k = 1 + `k−i}.)

ak := max{max{i, ak−i} : i ∈ I}.
# Mk = ∪i∈I ∪j∈Mk−i

{max{i, j}}.
end forwn.

Algorithm 2 Determination of the optimal solution
Integers a1, . . . , an from Algorithm 1. λ := 0. k := n. while k > 0 do
j := ak, λj := λj + 1, k := k − j.

end whileλ1, . . . , λn.

Algorithm 2 provides the lexicographically maximal solution of the IPP
(resp. EIPP) which has, by Lemma 2, support size not greater than blog2(n+
1)c. Without the determination of the sets Mk, Algorithms 1 and 2 have ob-
viously time complexity O(n2). In order to compute all optimal solutions,
we have to include the determination of Mk and then the time complexity
becomes O(n3). All optimal solutions can be obtained in increasing lexico-
graphic order by a simple recursive method:

Algorithm 3 Determination of all optimal solutions
Sets M1, . . . ,Mn from Algorithm 1. λ := 0. explore(n, n).

The recursive procedure explore is given as follows:
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Algorithm 4 explore(n, s)
for all i ∈Mn (in increasing order) do

if i ≤ s then
λi := λi + 1.
j := n− i.
if j = 0 then
write(λ).

else
explore(j, i).

end if
λi := λi − 1.

end if
end for

Here “write(λ)” means that one optimal solution is found and can be
written into the list of all optimal solutions. The second parameter s can be
interpreted as the last used summand. The condition i ≤ s ensures that the
summands of the integer partition are given in decreasing order, and hence
repetitions of solutions cannot appear.

The correctness follows from the definition of the sets Mk. The time
complexity of Algorithm 3 equals the number of all optimal solutions. Hence
it is worth to know how many optimal solutions may exist. In the next
section we present non-polynomial lower bounds for the number of optimal
solutions of the IPP and of the EIPP.

5. Bounds for the number of optimal solutions

Let N(g) be the number of all optimal solutions of the IPP or of the
EIPP, respectively, and let

M(n) = max{N(g) : g ∈ Rn}.

Note that M(n) cannot be bounded by a polynomial in n iff the quotient
lnM(n)/ lnn tends to infinity for n→∞.

For the IPP, the determination of M(n) is trivial: Let gi = i for all i.
Then the gain of each partition equals n and hence each partition is optimal.
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Consequently, M(n) is equal to the number p(n) of partitions of an integer
n which is given by the Hardy-Ramanujan formula [7]

p(n) ∼ 1

4n
√

3
eπ
√

2n/3 as n→∞.

It follows that lnM(n) is asymptotically equal to cn1/2 with c = π
√

2/3 =
2.5651 . . . .

Now we study the EIPP. Let

I(x) =

∫ x

0

t

et − 1
dt,

ϕ(x) =
2I(x)2/3

x1/3
− x2/3

I(x)1/3
ln(1− e−x),

C = max{ϕ(x) : x ∈ R+} = 2.2324 . . . ,

D =
1

3
3
√

6 = 0.6057 . . . .

Theorem 4. We have for the EIPP

Cn1/3 . lnM(n) . Dn1/3 lnn as n→∞.

5.1. Proof of the lower bound in Theorem 4

Let p(n, k, h) (resp. P (n, k, h)) be the number of partitions of the integer
n into exactly (resp. at most) k parts, each less or equal to h, i.e. the number
of representations of n as a sum of k integers

n = a1 + · · ·+ ak,

where 1 ≤ a1 ≤ · · · ≤ ak ≤ h (resp. 0 ≤ a1 ≤ · · · ≤ h). If there is no
restriction on the size of the parts we write briefly p(n, k) (resp. P (n, k)).

Let

ν = argmax{ϕ(x) : x ∈ R+},

µ =
ν

I(ν)1/2
,

κ = µ2/3.
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Note that C = ϕ(ν). Let k = bκn1/3c and h = bn−1
k
c. Further let

gi =

{
i if i ≤ h,

0 otherwise.

Clearly, M(n) ≥ N(g). It is sufficient to show that lnN(g) ∼ Cn1/3. Here
and in the following all asymptotic estimates are given for n→∞.

If λ is an admissible solution of the EIPP then

n∑
i=1

giλi

{
= n if λi = 0 for all i > h,

< n otherwise.

Hence λ has maximal gain iff λi = 0 for all i > h. For these vectors λ we
have

n∑
i=1

λi =
h∑
i=1

λi ≥
1

h

h∑
i=1

iλi =
n

h
≥ n

n−1
k

> k.

Consequently, λ ∈ Nn is an optimal solution of the EIPP iff

n∑
i=1

iλi = n, λi = 0 for all i > h and
n∑
i=1

λi = k + 1,

which implies that
N(g) = p(n, k + 1, h). (10)

We have
p(n, k + 1, h) = P ((k + 1)h− n, k + 1, h− 1) (11)

since with each partition n = a1 +a2 + · · ·+ak+1 counted by p(n, k+1, h) we
may associate bijectively the partition (h− ak+1) + · · ·+ (h− a2) + (h− a1)
counted by P ((k + 1)h− n, k + 1, h− 1).

Let r be the remainder of the division n−1
k
, 0 ≤ r < k. Then (k+1)h−n =

h− (r + 1). Let n′ = h− (r + 1) and k′ = k + 1. Since n′ ≤ h− 1 we have

P (n′, k′, h− 1) = P (n′, k′) (12)

and (10) - (12) imply
N(g) = P (n′, k′). (13)
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From a result of Szekeres [8, 9] which was reproved in a more accessible way
by Canfield [10] it follows that

lnP (n′, k′) ∼
√
n′g(u), (14)

where u = k′√
n′
, g(u) = 2v

u
− u ln(1 − e−v) and v is determined implicitly by

u = v
I(v)1/2

.

We have k′ ∼ κn1/3, n′ ∼ h ∼ 1
κ
n2/3 and hence u ∼ µ, v ∼ ν and

√
n′g(u) ∼ 1

κ1/2

(
2ν

µ
− µ ln(1− e−ν)

)
n1/3 = ϕ(ν)n1/3. (15)

The relations (13) - (15) together with C = ϕ(ν) finally give

lnN(g) ∼ Cn1/3.

5.2. Proof of the upper bound in Theorem 4

Lemma 4. Let λ be an optimal solution of the EIPP. Then

| supp(λ)| ≤ 3
√

6n.

Proof. Assume that there is an optimal solution λ of the EIPP such that
| supp(λ)| > 3

√
6n. Let s = | supp(λ)| and supp(λ) = {a1, . . . , as} with 0 <

a1 < · · · < as < n. Let 0 < k ≤ s. We consider the subset

Sk0,0 := {a1, . . . , ak}

and the following k(s− k) subsets Ski,j of supp(λ):

Ski,j := {a1, . . . , ak−i, ak−i+j+1, as−i+2, . . . , as}, i = 1, . . . , k, j = 1, . . . , s−k.

Let xki,j be the characteristic vector of Ski,j, (i, j) ∈ {(0, 0)} ∪ ([k]× [s− k]).
Clearly, for all (i, j) ∈ {(0, 0)} ∪ ([k]× [s− k])

0 ≤ xki,j ≤ λ and 1 · xki,j = k.

Moreover,

1 ≤ −→n ·xk0,0 <
−→n ·xk1,1 < · · · <

−→n ·xk1,s−k <
−→n ·xk2,1 < · · · <

−→n ·xkk,s−k ≤ n.
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Hence we have for each k exactly k(s− k) + 1 different integers of the form
−→n · x between 1 and n. With k = 1, . . . , s this gives in total

s∑
k=1

(k(s− k) + 1) =
s

6
(s2 + 5) >

s3

6
> n

integers between 1 and n. Hence two of them are equal, say −→n · x with
x = xki,j and

−→n · x′ with x′ = xk
′

i′,j′ , where 0 < k < k′ ≤ s. Then

−→n · x = −→n · x′ and k = 1 · x < 1 · x′ = k′. (16)

Let
λ+ = λ− x+ x′ and λ− = λ− x′ + x. (17)

Then λ+ and λ− are different admissible solutions of the EIPP. According
to λ = 1

2
(λ+ + λ−), both admissible solutions are in fact optimal and hence

1 · λ+ = 1 · λ−, which leads with (17) to 1 · x = 1 · x′, a contradiction to
(16).

For a set S = {a1, . . . , as} of s positive integers, let pS(n) be the number
of partitions of the integer n with support S, i.e.

pS(n) = |{λ ∈ Nn : −→n · λ = n and supp(λ) = S}|.

We use the following rough upper bound for pS(n):

Lemma 5. Let S = {a1, . . . , as} be a set of s positive integers. Then

pS(n) ≤ ns

s!

s∏
i=1

1

ai
.

Proof. Let a = (a1, . . . , as) and Λa = {λ ∈ [n]s : a · λ = n}. Then

pS(n) = |Λa|.

With each λ ∈ Λa we associate the half-open cube [λ1 − 1, λ1)× · · · × [λs −
1, λs). Note that the cubes of different elements of Λa are disjoint. Moreover,
all such cubes are contained in the simplex {x ∈ Rs

+ : a · x ≤ n}. Since
each cube has volume 1 and the simplex has volume 1

s!

∏s
i=1

n
ai

the bound
follows.
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Lemma 6. The number of partitions of the integer n with support size s can
be bounded as follows:∑

1≤a1<···<as≤n

p{a1,...,as}(n) ≤
(
e2n(1 + lnn)

s2

)s
.

Proof. Let A(n) be the set of all ordered s-tuples (a1, . . . , as) of distinct
elements of [n]. We have by Lemma 5 and in view of s! ≥ (s/e)s

∑
1≤a1<···<as≤n

p{a1,...,as}(n) ≤ 1

s!

∑
(a1,...,as)∈A(n)

p{a1,...,as}(n) ≤

1

s!

∑
(a1,...,as)∈A(n)

ns

s!

s∏
i=1

1

ai
≤ ns

(s!)2

∑
1≤a1,...,as≤n

s∏
i=1

1

ai

=
ns

(s!)2

(
s∑
i=1

1

i

)s

≤ ns

(s!)2
(1 + lnn)s ≤

(
e2n(1 + lnn)

s2

)s
.

Now the proof of the upper bound in Theorem 4 can be completed as
follows: According to Lemma 4, the number M(n) can be bounded from
above by the number of partitions of the integer n with support size at most
(6n)(1/3) and using Lemma 6 one obtains for sufficiently large n

M(n) ≤
∑

s≤(6n)(1/3)

(
e2n(1 + lnn)

s2

)s
≤ 2

(
e2n(1 + lnn)

(6n)(2/3)

)(6n)(1/3)

and hence
lnM(n) . (6n)(1/3)

1

3
lnn.

6. Open problems

Problem 1. Does there exist an algorithm of time complexity O(n ln(n)) for
the solution of the IPP/EIPP?
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Problem 2. Does there exist a polynomial-time algorithm for the determi-
nation of an admissible/optimal solution of the IPP/EIPP with minimum
support size?

Problem 3. Improve the bounds in Theorem 4.

[1] R. Sedgewick, Algorithms in C++, Addison-Wesley, Reading, Mass.,
1997.

[2] T. Došlić, Maximum product over partitions into distinct parts, Jour-
nal of Integer Sequences, Vol. 8 (2005), Article 05.5.8.

[3] H.S. Wilf, Three problems in combinatorial asymptotics, J. Combin.
Theory Ser. A 35 (1983), 199-207.

[4] E.R. Canfield and H.S. Wilf, On the growth of restricted integer
partition functions, in Partitions, q-Series, and Modular Forms, K. Al-
ladi and F. Garvan, Eds., Springer, New York, 2012, pp. 39-46.

[5] G.E. Andrews, The theory of partitions, Cambridge University Press,
Cambridge, 1998.

[6] A. Zoghbi and I. Stojmenović, Fast algorithms for generating all
integer partitions, J. Computer Math. 70 (1998), 319-332.

[7] G.H. Hardy and S. Ramanujan, Asymptotic formulae in combina-
tory analysis, Proc. London Math. Soc. 17 (1918), 75-115.

[8] G. Szekeres, An asymptotic formula in the theory of partitions, Quart.
J. Math. Oxford, Ser (2) 2 (1951), 85-101.

[9] G. Szekeres, Some asymptotic formulae in the theory of partitions
(II), Quart. J. Math. Oxford, Ser (2) 4 (1953), 96-111.

[10] E.R. Canfield, From recursions to asymptotics: on Szekeres’ formula
for the number of partitions, Electron. J. Combin. 4 (2) (1997) R6.

17


	Introduction
	Preliminary results
	Recursions
	Algorithmic solution
	Bounds for the number of optimal solutions
	Proof of the lower bound in Theorem 4
	Proof of the upper bound in Theorem 4

	Open problems

