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Abstract. Let σ + iγ be a zero of the Riemann zeta function to the right of

the line 1
2

+ it. We show that this zero causes large oscillations of the error

term of the prime number theorem. Our result is close to optimal both in
terms of the magnitude and in the localization of large values for the error

term.

1. Introduction and Results

Let ∆(x) = Ψ(x)− x be the error term in the prime number theorem. It is well
known that the magnitude of ∆ is related to the zeroes of the Riemann zetafunction,
however, at first this relation appeared to be somewhat mysterious. Littlewood[2]
asked for a lower bound for |∆(x)| depending only on a single zero of ζ. In 1950,
Turán[4] used his power sum method to prove the following.

Theorem 1. If ρ0 = σ0 + iγ0 is a zero of ζ with σ0 ≥ 1
2 , and

X ≥ max(C1, exp(|ρ0|60),

then

max
x≤X
|∆(x)| > Xσ0

|ρ0|10 logX/ log2X
exp

(
−C2

logX log3X

log2X

)
,

where C1, C2 are computable constants.

Pintz[3] improved both the localization and the lower bound for ∆. He proved
the following.

Theorem 2. If ρ0 = σ0 + iγ0 is a zero of ζ with σ0 ≥ 1
2 , and

X ≥ max(C1, γ
400
0 ),

then there exists x ∈ [X1/4, X] for which

|∆(x)| > c2
xσ0

γ500
,

where C1, c2 are computable constants.

Here we prove the following.

Theorem 3. If ε ∈ [0, 1] is a real number, ρ0 = σ0 + iγ0 is a zero of ζ with

σ0 ≥ 1
2 + ε and γ0 > 5.5

1
ε , then for every

X ≥ max(C1, γ
12000ε−3

0 ),

there exists x ∈ [X,X1+ε] such that

|∆(x)| > c2
xσ0

γ1+ε0

,
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where C1, c2 are computable constants.

The constants 12000 and 5.5 are not optimal, moreover, one can improve one of
these constants at the expense of the other. However, the qualtitative dependence
on ε cannot easily be improved.

Our proof follows Pintz’ argument, the improvement comes from the fact that
we replace the zero in question by another one, which gives at least the same lower
bound, but is somewhat isolated. In this way we reduce the number of relevant
zeroes, which reduces the loss when applying a power sum theorem. A similar
approach has repeatedly been used by Turán in connection with density estimates,
see e.g. [5].

The proofs of all three theorems mentioned here uses the power sum method,
for a background we refer the reader to Turán’s book [6].

2. Proof

The following was proven by Turán [5]. As he remarked himself, the same result
with 1.26 in place of 0.71 is a simple application of the three circle theorem. If one
does not care about the constant 5.5 in the theorem, any constant in place of 0.71
would work.

Lemma 1. Let δ > 0, σ > 1
2 + 2δ, T > T0(δ). Suppose that ζ has no roots in the

region < s ≥ σ, |= s − T | < log T . Then ζ has ≤ 0.71δ log T zeroes in the square
σ − δ ≤ < s ≤ σ, |= s− T | < δ

2 .

If a zero of ζ satisfies the conditions of the lemma, we call it an exposed zero.
The following is a special case of the second main theorem of Turán’s theory of

power sums as proven by Kolesnik and Straus[1].

Lemma 2. Let z1, . . . , zn be complex numbers. Then we have for every m > 0 the
bound

max
m<ν≤m+n

1

|z1|ν

∣∣∣∣∣∣
n∑
j=1

zνj

∣∣∣∣∣∣ ≥
(

n

4e(m+ n)

)n
Lemma 3. Suppose that σ0 + iγ0 is a zero of ζ with δ = σ0 − 1

2 > 0, and assume

that γ0 > max(C, log2/δ(1/δ)). Then there exists an exposed zero σ1 + iγ1 of ζ,
such that σ1 ≥ σ0, γ1 ≤ 2γ0.

Proof. Suppose there is no exposed zero in the rectangle < s ≥ σ0, =s ≤ 2γ0.
Then there exists a sequence of roots σj + iγj , 0 ≤ j ≤ n, such that σj+1 ≥ σj ,

|γj − γj+1| ≤ log 2γ0, and γn ≥ 2γ0. In particular we have N(σ0, 2γ0) ≥ 2γ0
log(2γ0)

.

On the other hand we have N(σ, T ) ≤ T ( 12
5 +ε)(1−σ), thus, if γ0 is sufficiently large

we obtain a contradiction. �

Clearly, by decreasing the constant c2 by a factor 2 at most we find that it suffices
to prove Theorem 3 for exposed zeros.

Now fix X and σ0 + iγ0 as in Theorem 3, and let µ be a real number satisfying

(1)
(

1 +
ε

3

)
logX ≤ µ ≤

(
1 +

2ε

3

)
logX,
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and put k = 1
40ε

2 logX. As in Pintz’ proof of Theorem 2, we putH(s) = ζ′

ζ (s)− 1
s−1 ,

and compute

U =
1

2πi

∫ 2+i∞

2−i∞
H(s+ iγ1)eks

2+µs ds

in two different ways. On one hand we can express H(s) via ∆, and obtain

U =
1

2
√
πk

∫ ∞
1

∆(x)

x
xiγ0 exp

(
− (µ− log x)2

4k

)(
−γ0 +

µ− log x

2k

)
dx

=
1

2
√
πk

(∫ X

1

+

∫ X1+ε

X

+

∫ ∞
X1+ε

)
,

see[3, (4.5)]. We now estimate the contribution of the first and the third integral.
We have ∣∣∣∣∣

∫ X

1

∣∣∣∣∣ ≤ (
γ0 +

µ

2k

)∫ X

1

exp

(
− (µ− log x)2

4k

)
dx

≤ 2γ0X exp

(
−ε

2 log2X

36k

)
≤ 1,

provided that X > γ100 . Similarly we get∣∣∣∣∫ ∞
X1+ε

∣∣∣∣ ≤ (
γ0 +

µ

2k

)∫ ∞
X1+ε

exp

(
− (µ− log x)2

4k

)
dx

≤ 2γ0

∫ ∞
(1+ε) logX

exp

(
t− 10

3ε
(t− µ)

)
dt

≤ 1.

Finally, if |∆(x)| < xσ0

γ1+ε
0

for all x ∈ [X,X1+ε], then∣∣∣∣∣
∫ X1+ε

X

∣∣∣∣∣ ≤ γ0 + 20
ε

2
√
πkγ1+ε1

∫ X1+ε

X

xσ0−1 exp

(
− (µ− log x)2

4k

)
dx

≤ 1√
πkγε1

∫ X1+ε

X

xσ0−1 exp

(
− (µ− log x)2

4k

)
dx

≤ 1√
πkγε1

∫ (1+ε) logX

logX

exp

(
σ0t−

(µ− t)2

4k

)
dt

≤ 1√
πkγε1

∫ ∞
−∞

exp

(
σ0(µ+ r)− r2

4k

)
dr

=
eσ0µ+σ

2
0k

γε0
.

Altogether we obtain that if the interval [X,X1+ε] does not contain a large value

of ∆, then |U | ≤ 2 e
σ0µ+σ

2
0k

γε0
.

On the other hand we can express U using complex integration and obtain

U =
∑
ρ

ek(ρ−iγ0)
2+µ(ρ−iγ0) +O(1),
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where the sum runs over non-trivial zeros of ζ, see [3, (5.1)]. We divide the zeros
of ζ occurring in this sum in four sets: Let Z1 be the set of zeros ρ1 = σ1 + γ1 with
|γ0− γ1| > log γ0, Z2 be the set of zeros satisfying ε

16 ≤ |γ− γ0| ≤ log γ0, Z3 be the
set of zeros in the rectangle

0 ≤ <ρ ≤ σ0 −
ε

16
, |γ − γ0| ≤

ε

16
,

and Z4 be the set of zeros satisfying |γ1 − γ0| ≤ ε
16 and σ1 ≥ σ0 − ε

16 . In view of
Lemma 1 we see that |Z4| ≤ 0.71 ε8 log γ0 ≤ ε

11 log γ0.
We will first show that only the contribution of Z4 is relevant.
We have∣∣∣∣∣∣
∑
ρ∈Z1

ek(ρ−iγ0)
2+µ(ρ−iγ0)

∣∣∣∣∣∣ ≤ eσ0µ
∑
ρ∈Z1

e−k|ρ−ρ0|
2/2

≤ 2eσ0µe−
k
2 log2 γ0γ0 log γ0 + 2eµ

∑
γ>γ0+log γ0

e−k(γ−γ0)
2/2

≤ eσ0µ + 2eσ0µ
∑

n≥log γ0

e−kn
2/2 log(n+ γ0)

≤ 2eσ0µ

≤ 2eσ0µ+σ0k
2

X−
ε4

3200 ,

since σ0 ≥ 1
2 .

If ρ ∈ Z2, then < ρ ≤ σ0, thus

< (ρ− iγ0)2 = σ2 − (γ − γ0)2 ≤ σ2
0 −

ε2

256
,

and therefore∣∣∣∣∣∣
∑
ρ∈Z2

ek(ρ−iγ0)
2+µ(ρ−iγ0)

∣∣∣∣∣∣ ≤ (
N(γ0 + log γ0)−N(γ0 − log γ0)

)
eσ0µ+σ

2
0k− ε2

256k

≤ 2 log2 γ0e
σ0µ+σ

2
0kX−

ε4

11000

If ρ ∈ Z3, then <ρ ≤ σ0 − ε
16 , and |Z3| ≤ log γ0, thus∑

ρ∈Z3

ek(ρ−iγ0)
2+µ(ρ−iγ0) ≤ log γ0e

σ0µ+σ
2
0k−

εµ
16 ≤ log γ0e

σ0µ+σ
2
0kX−ε/16

Altogether we obtain∑
ρ6∈Z4

ek(ρ−iγ0)
2+µ(ρ−iγ0) ≤ 2 log2 γ0e

σ0µ+σ
2
0k
(
X−

ε4

3200 +X−
ε4

11000 +X−
ε
8

)
≤ eσ0µ+σ

2
0k

γε0
,

provided that X > γ12000ε
−3

0 . We conclude that if |∆(x)| is small throughout the
interval[X,X1+ε], then∣∣∣∣∣∣

∑
ρ∈Z4

ek(ρ−iγ0)
2+µ(ρ−iγ0)

∣∣∣∣∣∣ ≤ 3
eσ0µ+σ

2
0k

γε0
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holds for all µ satisfying (1). We now apply Lemma 3 and find that for some k

in this range, the left hand side of this inequality is bounded below by eσ0µ+σ
2
0k

multiplied by(
1

4e
(
3
ε + 3

))|Z4|

≥ 45−
1
11 ε log γ0 ≥ 1.42−ε log γ0 ≥ γ−0.35ε0 ,

thus γε0 < 3γ0.35ε0 , which inpliess γ0 < 5.5
1
ε , contrary to our assumption.
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