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Abstract. Let Γ be a free product of finitely many finite and infinite-cyclic groups.
For a subgroup ∆ of finite index given by its coset representation we compute its
isomorphism type, i.e. its decomposition as a free product of finite and infinite cyclic
groups. We determine the set of isomorphism types realized by finite index subgroups,
the asymptotics of the subgroup numbers with prescribed isomorphism types, and the
distribution of the isomorphism types among subgroups of fixed index. Apart from
group-theoretic arguments, the proofs of the present paper make use of asymptotic,
and probabilistic ideas and techniques.

1. Introduction

Let

Γ = G1 ∗G2 ∗ · · · ∗Gs ∗ Fr (1)

be a free product of finite groups Gσ and a free group Fr of rank r, and let U1, . . . , Ut
be a complete list of isomorphism types of the non-trivial subgroups of G1, . . . , Gs. By
the Kuroš Subgroup Theorem, every finite-index subgroup ∆ of Γ is of the form

∆ ∼= U∗λ1
1 ∗ U∗λ2

2 ∗ · · · ∗ U∗λtt ∗ Fµ
with non-negative integers λ1, . . . , λt, µ, and its (rational) Euler characteristics χ(∆) is
related to that of Γ via χ(∆) = (Γ : ∆) · χ(Γ). The tuple t(∆) := (λ1, . . . , λt;µ) is
called the (isomorphism) type of ∆.

The first aim of the present article is an algorithmic determination of t(∆). In principle,
this problem is solved by the Reidemeister-Schreier Theorem; however, this algorithm
fails in practice already for quite moderate indices. In algorithmic group theory, a
finite-index subgroup ∆ is usually represented via the induced action ϕ∆ of Γ on the
coset space Γ/∆, and our first main result shows that the isomorphism type of ∆ can
be immediately read off from this representation.

This algorithmic problem has received considerable attention, and has been solved in
various special cases. Millington [8] resolves the case of the modular group PSL2(Z) ∼=
C2 ∗ C3, while Kulkarni [5] determines the isomorphism types realized by finite-index
subgroups in a free product Cn ∗ Cm of two finite cyclic groups. Singerman [18] deals
with the analogous problem for Fuchsian groups, thereby in particular resolving the
determination problem in the case that all Gσ are cyclic. The methods used in all
these approaches are intrinsically geometric, and cannot deal with the general situation
addressed here. In [12] a purely group theoretic method was devised to obtain, among
other things, an algorithm in the case that all Gσ are cyclic of prime order.
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In order to be able to state our result in the general case, let ρσ1, . . . , ρσkσ be a complete
list of the transitive permutation representations of Gσ up to similarity, and define the
representation type m(∆) of ∆ to be the tuple

m(∆) = (mσκ)1≤σ≤s
1≤κ≤kσ

,

where the restriction of ϕ∆ to Gσ is similar to
⊕kσ

κ=1mσκρσκ. Our first main result now
reads as follows.

Theorem 1. Let Γ be as in (1), and let ∆ ≤ Γ be a finite-index subgroup of represen-
tation type m(∆) and isomorphism type t(∆). Then we have

λτ =
∑
σ,κ

Stabρσκ (1)∼=Uτ

mσκ (1 ≤ τ ≤ t) (2)

and

µ = (r + s− 1)(Γ : ∆) −
s∑

σ=1

kσ∑
κ=1

mσκ + 1. (3)

¿From an algorithmic point of view, we regard Theorem 1 as a complete solution of
the problem of determining the isomorphism type of a subgroup. To make this point
more precise, one has to specify the algorithmic problem; that is, one has to define
in which way Γ and ∆ are given. When doing computations with infinite groups,
for example, using GAP [1], a finite-index subgroup of a finitely presented group Γ is
given by its coset action, that is, a list x1, . . . , xk of generators of Γ and permutations
π1, . . . , πk ∈ Sn, such that the map xi 7→ πi can be extended to a group homomorphism,
and 〈π1, . . . , πk〉 acts transitively. In view of the normal form of elements in free products
it might appear natural to choose generators of the free factors as the generators of Γ;
in this case the representation type of Γ can be read off the data structure defining ∆.
However, often there are other, equally natural generating sets for Γ. For example, if
Γ is a non-cocompact Fuchsian group, one might well prefer parabolic generators over
elliptic ones. In this case, to apply the theorem one has to first transform the generating
set to obtain a generating set X such that each element in X either has finite order,
or generates an infinite cycic free factor of Γ. Of course, this step may be arbitrarily
difficult, depending on the actual presentation of Γ, but for reasonable generating sets
the effort for the transformation is negligible.

If ∆ is defined in some other way, for example, by a generating set, a normal generating
set, or as the normalizer of some other subgroup, the computation of the coset repre-
sentation may become arbitrarily complicated. For this case, computer algebra systems
such as GAP [1] have efficient algorithms to compute the coset representation (cf. [2,
Section 45.5]).

The proof of Theorem 1 exploits the idea, developed in [11], of relating homomorphisms
∆→ H for a finite group H to representations of Γ in finite wreath products of the form
H oSn. Each choice of H yields some information on the isomorphism type of ∆, and the
main problem consists in finding an appropriate set of finite groups H determining ∆ up
to isomorphism. In piecing together these various bits of information, the asymptotics of
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the function |Hom(Γ, H oSn)|, as determined in [11, Theorem 4], plays a crucial rôle. As
far as we are aware, Theorem 1 is the first purely group-theoretic application of results
in subgroup growth theory. We remark in passing that the methodology of applying
wreath product representations to problems of this kind is by no means confined to free
products; for instance, Singerman’s result mentioned above can be reproved along such
lines.

Our principal theme however is different: it centers around the realization problem for
isomorphism types as well as their asymptotics and statistics. More explicitly, we shall
discuss, for Γ as in (1), the following three basic problems.

(I) (Realization) Which abstract groups admitted by the Kuroš subgroup theorem
are realized as finite-index subgroups of Γ?

(II) (Asymptotics) Find a natural domain Ω in Rt+1 for t, implying a uniform
asymptotics for the function st(Γ) counting the number of finite-index sub-
groups in Γ of type t.

(III) (Distribution) What can we say about the distribution of isomorphism types
for subgroups of index n in Γ as n tends to infinity?

Originally, the realization problem came up for the modular group and other Hecke
groups around 1880 in the work of Klein and Poincaré on automorphic functions; cf.,
for instance, [3], [4]. Since the early 1960’s the general point of view has shifted towards
group theory, so that (I)–(III) have become to be regarded as purely algebraic problems
in their own right; cf. for instance [7], [8], [15], [16], [17], [19], as well as Newman’s
monograph [14]. From a recent perspective, a natural context for the research reported
in this paper is the theory of subgroup growth; for an overview of this fast developing
subject see [6].

Using Theorem 1, we can translate the realization problem for isomorphism types into
a question concerning existence of permutation representations of prescribed represen-
tation type. As a result, we obtain both archimedean and congruence conditions, in
fact, there exists a lattice Λ ≤ Zt+1 and a cone C over some polytope such that a type
t is realized by some finite-index subgroup ∆ if and only if t ∈ Λ ∩ C; cf. Theorem 4.

Permutation representations of given representation type m are easily counted, and for
each transitive permutation representation of type m we find a subgroup with isomor-
phism type determined via Theorem 1; hence the only remaining task in solving the
asymptotic problem is to compute the proportion of transitive permutation representa-
tions among all permutation representations of a given type. This will be accomplished
by means of a probabilistic approach, which avoids the heavy computations involved in
higher dimensional exponential principles. Our result is as follows.

Theorem 2. Let Γ be as in (1), let pσ be the least prime divisor of |Gσ|, and let ε > 0
be given. Set

M =
{

(`1, . . . , `s) ∈ [0, 1]s :
∑
σ

min
(pσ − 1

pσ
, 1− `σ

)
> 1 + ε

}
,
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and define

α =
∑
σ

min
(pσ − 1

pσ
, 1− `σ

)
− 1.

Let µτ be the number of subgroups isomorphic to Uτ among all subgroups of G1, . . . , Gs.
Let (λ1, . . . , λt;µ) be an isomorphism type. For each σ ≤ s define νσ = λτ , where τ
is the unique index satisfying Gσ = Uτ , and let n be the index of a subgroup of type t.
Then the asymptotic formula

st(Γ) =
(

1 +O
(
n−α+ε

))n · n!s+r−1
∏t

τ=1 µ
λτ
τ∏t

τ=1 λτ !|Uτ |λτ
, (4)

holds true uniformly in the set of types t such that ( log ν1

logn
, . . . , log νs

logn
) ∈M.

Similarly, the problem of determining the asymptotic distribution of isomorphism types
is translated via Theorem 1 into the corresponding problem for representation types,
and then, by the universal mapping property of free products, into a statistical problem
for finite groups. This last problem is solved by applying the method of moments, and
we obtain the following.

Theorem 3. Let Γ be as in (1), χ(Γ) < 0, let U1, . . . , Ut be as above, and let n be a pos-

itive integer. Define random variables ξ
(n)
1 , . . . , ξ

(n)
t by choosing a subgroup ∆ of Γ of in-

dex n at random (with respect to the uniform distribution), and putting (ξ
(n)
1 , . . . , ξ

(n)
t ;µ)

to be the isomorphism type of ∆. Then the variables ξ
(n)
1 , . . . , ξ

(n)
t are asymptotically in-

dependent. For each τ set dτ = minσ(Gσ : Uτ ), the minimum being taken over all σ such
that Gσ contains a subgroup isomorphic to Uτ , and let mτ be the number of subgroups

of index dτ occurring in G1, . . . , Gs which are isomorphic to Uτ . Then ξ
(n)
τ −mτn1/dτ
√
mτ n1/2dτ

converges to a standard normal distribution. More precisely, denoting by M` the `-th

moment of ξ
(n)
τ and by M̃` the `-th moment of the corresponding normal distribution,

we have

M` =
(
1 +O(`2n−1/mτ ) +O(n−α)

)
M̃`

uniformly for r <
√
n, where α is as in Theorem 2.

2. Computing the isomorphism type

Our starting point will be the following result.

Proposition 1 (Proposition 1 in [12]). Let Γ be as in (1), let U1, . . . , Ut be as above,
and let H be a finite group. Then isomorphism and representation type of a subgroup
∆ of index n in Γ are related via the equation

|H|nr
s∏

σ=1

kσ∏
κ=1

∣∣∣{ψ ∈ Hom(Gσ, H o Sdσκ) : πψ = ρσκ

}∣∣∣mσκ = |H|n+µ−1

×
t∏

τ=1

|Hom(Uτ , H)|λτ . (5)
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Here, π is the canonical projection onto the permutation group. Taking the p-adic
valuation, we obtain, for every H and each prime p, a linear relation between m(∆)
and t(∆). Our first aim is to show that these equations contain enough information to
determine the isomorphism type for fixed representation type. The proof of this result,
though constructive in principle, is in itself of little computational value. However, the
mere fact that these equations have a unique solution, when coupled with explicit com-
putations in certain special cases, then leads to a set of equations explicitly computing
the isomorphism type of ∆ in terms of its representation type.

Proposition 2. Let Γ be as in (1), and let ∆1,∆2 be finite-index subgroups of Γ. If ∆1

and ∆2 have the same representation type, then they are isomorphic. More precisely
there exists a linear map A, such that Am(∆) = t(∆).

The proof of Proposition 2 requires the following auxiliary result.

Lemma 1. Let G,G1, G2, and H be finite groups.

(i) We have

|Hom(G,H o Sn)| = (n!)1−1/|G| eO(
√
n).

(ii) Suppose that, as n→∞,

|Hom(G1, H o Sn)| ∼ |Hom(G2, H o Sn)|.

Then these sequences are in fact equal for all n.

Proof. For finite groups G and H we have the following identity of generating series (cf.
[11, Example 4]), ∑

n≥1

|Hom(G,H o Sn)|z
n

n!
= exp

(
PH
G (z)

)
,

where

PH
G (z) =

∑
d|m

|H|d−1
∑

(G:U)=d

|Hom(U,H)|z
d

d
.

The first claim is now a crude consequence of [10, Theorem 1], whereas the second
statement is implied by the fact, established in [13], that for polynomials P1(z), P2(z)
the property that the coefficients of the power series of eP1(z) and eP2(z) are ultimately
positive and asymptotically equal already implies P1(z) = P2(z). �

Proof of Proposition 2. The left-hand side of (5) is determined by the representation
type of ∆. We claim that as H runs over all finite groups we obtain a system of
equations, which is uniquely solvable in the variables µ, λτ . From this the proposition
follows. In fact, for all H the left-hand side of (5) as well as |H| and |Hom(Uτ , H)| are
integers, that is, for one group H the single equation (5) is equivalent to the system of
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linear equations which for each prime number p contains the equation

νp(|H|)rn+
s∑

σ=1

kσ∑
κ=1

νp

(∣∣∣{ψ ∈ Hom(Gσ, H o Sdσκ) : πψ = ρσκ

}∣∣∣)mσκ

= νp(|H|)(n+ µ− 1) +
t∑

τ=1

νp
(
|Hom(Uτ , H)|

)
λτ ,

where νp(x) is the exponent of p in x, that is, the unique integer e satisfying pe|x,
pe+1 - x. Hence, if the system consisting of equation (5) for each finite group H is
uniquely solvable, then the variables λτ are the unique solution of a linear system of
equations, where the inhomogenity is a linear function of the parameters mσκ. But then
the unique solution can be obtained by applying some linear map to the parameters.

By [12, Prop. 3], the parameter µ is given as

µ = (r + s− 1)n−
s∑

σ=1

kσ∑
κ=1

mσκ + 1,

which is obviously linear, hence, it remains to show that the variables λτ are uniquely
determined by the equations (5) for all finite groups H.

Let H be a finite group, p a prime number. Replacing H by Cp oH in (5), and computing
the second factor of the right hand side of this equation, we see that the representation
type determines

t∏
τ=1

( ∑
ϕ:Uτ→H

p|H|−|Orbits(ϕ(Uτ ))|

)λτ

=
t∏

τ=1

(∑
U≤H

|Epi(Uτ , U)p|H|−(H:U)

)λτ

,

where Orbits(ϕ(Uτ )) denotes the set of domains of transitivity of the action of Uτ
induced by ϕ. The right-hand side is a polynomial in p of degree ≤ (|H| − 1)

∑
i λτ ,

hence choosing for p sufficiently many prime numbers, we see that the representation
type determines the polynomial itself. Replacing p by the variable X, dividing by
X |H|

∑
i λτ , and replacing X by 1/X, we see that for every H, the representation type

determines the polynomial

t∏
τ=1

(∑
U≤H

|Epi(Uτ , U)|X(H:U)

)λτ

.

Setting H o Sn for H in the last expression, and replacing X by XmΓ/|HoSn|, where mΓ

is the least common multiple of all |Gσ|, we find that for every finite group H, the
representation type determines the polynomial

t∏
τ=1

(∑
U

|Epi(Uτ , U)| |Mono(U,H o Sn)|XmΓ/|U |

)λτ

,

where the sum is formally taken over the isomorphism types of all finite groups. Let

Pτ,n(X) =
∑
U

|Epi(Uτ , U)| |Mono(U,H o Sn)|XmΓ/|U |.
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We want to approximate these polynomials by simpler expressions; to do this, let oτ be
the order of the largest proper quotient of Uτ . Define the polynomial Qτ,n via

Qτ,n(X) = |Aut(Uτ )| · |Mono(Uτ , H o Sn)|XmΓ/|Uτ |

+
∑
|U |=oτ

|Epi(Uτ , U)| · |Mono(U,H o Sn)|XmΓ/|U |

= |Aut(Uτ )| · |Mono(Uτ , H o Sn)|XmΓ/|Uτ |

×

(
1 +

∑
|U |=oτ |Epi(Uτ , U)| · |Mono(U,H o Sn)|
|Aut(Uτ )| · |Mono(Uτ , H o Sn)|

XmΓ/oτ−mΓ/|Uτ |

)
.

For each complex (mΓ

oτ
− mΓ

|Uτ |) -th root ζ of −1, Qτ,n has a simple zero at

z0,τ = ζ ·

(∑
|U |=oτ |Epi(Uτ , U)| · |Mono(U,H o Sn)|
|Aut(Uτ )| · |Mono(Uτ , H o Sn)|

) 1

(
mΓ
oτ
− mΓ
|Uτ |

)

Since the order of Uτ is strictly larger then oτ , applying the first part of Lemma 1,
we find that, as n → ∞, the sequence |Mono(Uτ , H o Sn)| is of larger growth than
|Mono(U,H o Sn)| for every finite group U of order oτ ; hence, z0,τ → 0. For |z− z0,τ | =
|z0,τ |
n

and n→∞, we have

|Qτ,n(z)| � n−1|Aut(Uτ )| · |Mono(Uτ , H o Sn)| · |z0,τ |mΓ/|Uτ |

� (n!)1−1/|Uτ |−ε |z0,τ |mΓ/|Uτ |,

whereas for |z| ≤ 2|z0,τ |, we have

|Pτ,n(z)−Qτ,n(z)| ≤
∑
|U |<oτ

|Epi(Uτ , U)| · |Mono(U,H o Sn)| · |z0,τ |mΓ/(oτ−1)

� |H|n |z0,τ |mΓ/(oτ−1)
∑
|U |<oτ

|Epi(Uτ , U)| · |Hom(U, Sn)|

� |H|n |z0,τ |mΓ/(oτ−1) (n!)1−1/(oτ−1)+ε,

and, for n sufficiently large, we deduce from Rouché’s theorem that Pτ,n has some root

z1,τ with |z0,τ − z1,τ | ≤ |z0,τ |
n

. Note that for n sufficiently large we have |z1,τ | < 1.

Now assume that there are two different tuples (λ1, . . . , λt), (λ′1, . . . , λ
′
t), such that the

polynomials
∏t

τ=1 Pτ,n(X)λτ and
∏t

τ=1 Pτ,n(X)λ
′
τ coincide. Without loss we may assume

that λ1 6= λ′1, and that the order of U1 is maximal among all τ with λτ 6= λ′τ . Then, for
each root z0 of P1,n, there is some τ 6= 1, such that λτ 6= λ′τ , and z0 is a root of Pτ,n.
In particular, for some τ > 1, we have z1,1 = z1,τ . Suppose that there exist infinitely
many integers n, such that∑

U

|Epi(U1, U)| · |Mono(U,H o Sn)| 6=
∑
U

|Epi(Uτ , U)| · |Mono(U,H o Sn)|. (6)

Let k be the largest integer such that∑
|U |=k

|Epi(U1, U)| · |Mono(U,H o Sn)| 6=
∑
|U |=k

|Epi(Uτ , U)| · |Mono(U,H o Sn)|
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for infinitely many n, and let n tend to infinity through a set of integers such that the
last relation holds true. Then we have

0 = P1,n(z1,1)− Pτ,n(z1,1)

=
∑
κ≤k

∑
|U |=κ

(
|Epi(U1, U)| − |Epi(Uτ , U)|

)
|Mono(U,H o Sn)|

 z
mΓ/k
1,1

=

∑
|U |=k

(
|Epi(U1, U)| − |Epi(Uτ , U)|

)
|Mono(U,H o Sn)|

 z
mΓ/k
1,1

+O
(
|H|nn!1−1/(k−1)+ε|z1,1|mΓ/(k−1)

)
.

Since |Mono(U,H o Sn)| � |Hom(U, Sn)| � n!1−1/|U |−ε, and |z1,1| < 1, we deduce that∑
|U |=k

|Epi(U1, U)| · |Mono(U,H o Sn)| ∼
∑
|U |=k

|Epi(Uτ , U)| · |Mono(U,H o Sn)|.

If there are only finitely many integers n satisfying (6), this asymptotics holds trivially.
Lemma 1 now implies that these functions coincide for all n. Hence, we obtain that,
for every finite group H, there is some τ such that∑

|U |=k

|Epi(U1, U)| · |Mono(U,H o Sn)| =
∑
|U |=k

|Epi(Uτ , U)| · |Mono(U,H o Sn)|

for all n and k. Setting n = 1 and summing over all k, we deduce that |Hom(U1, H)| =
|Hom(Uτ , H)| for all finite groups H. Sifting over subgroups of H, we deduce that
|Epi(U1, H)| = |Epi(Uτ , H)| as well, in particular, |Epi(Uτ , U1)| ≥ 1. Since by assump-
tion |U1| ≥ |Uτ |, we obtain U1

∼= Uτ , contrary to our assumption τ > 1. �

To prove Theorem 1, we first need to establish the following special case.

Lemma 2. Let p be a prime and let k ≥ 2 be an integer. Then the assertion of
Theorem 1 holds for groups Γ of the form C∗e1p ∗ C

∗e2
pk
∗ Fr.

Proof. We apply Proposition 1 with H = Cpi , 1 ≤ i ≤ k. Denote by ρ11 the trivial
representation, by ρ12 the regular representation of Cp, and by ρ2j the representation
of Cpk on pj−1 points. Then we have∣∣∣{ψ ∈ Hom(Cp, Cpi o S1) : πψ = ρ11

}∣∣∣ = p∣∣∣{ψ ∈ Hom(Cp, Cpi o Sp) : πψ = ρ12

}∣∣∣ = pi(p−1)∣∣∣{ψ ∈ Hom(Cpk , Cpi o Spj−1) : πψ = ρ2j

}∣∣∣ = pi(p
j−1−1)+min(k−j−1,i), 1 ≤ j ≤ k + 1,

as well as

|Hom(Cp, Cpi)| = p and |Hom(Cpk , Cpi)| = pmin(i,k).
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Taking logarithm to base p we find that the i-th equation becomes

inr +m11 + i(p− 1)m12 +
k+1∑
j=1

(
i(pj−1 − 1) + min(k − j + 1, i)

)
m2j

= i(n+ µ− 1) +
k∑
j=1

min(j, i)λτ . (6i)

First, we compute 2 · (61) − (62) and obtain m11 + m2k = λ1. Next we consider
2 · (6i) − (6i−1) − (6i+1) for 2 ≤ i ≤ k − 1, obtaining m2k−i+1 = λi. Finally, we
insert this information into (6k) and find that

knr − km11 + e1kn− km12 + e2kn− k
k+1∑
j=1

m2j +m2k = k(n+ µ− 1) + kλk,

where we have used the facts that m11+pm12 = e1n and
∑k+1

j=1 p
j−1m2j = e2n. Applying

(3), which is part (i) of [12, Prop. 3], we deduce m2k = λk. Hence, our claim is
proven. �

Proposition 3. Let Γ be a split extension of a free group F by a finite group G.

(i) If Γ has a finite free factor H, then H is isomorphic to a subgroup of G as well
as to a quotient of G. If H 6= 1, G, then G has a p-Sylow subgroup of exponent
≥ p2 for some prime p.

(ii) If Γ decomposes as a free product of finite groups and infinite cyclic groups, and
the rank of F is finite, then all finite factors of Γ are isomorphic to G.

Proof. Write Γ = H ∗Γ′, and let ϕ : Γ→ H be the canonical projection. Then ϕ factors
through F , hence, ϕ induces a surjective map Γ/F → H, thus H is a quotient of G.
On the other hand, HF/F ∼= H, thus H is a subgroup of G. Let G be minimal among
all finite groups such that there exists an extension Γ and a finite group H 6= 1, G as
above. Let M < G be a maximal subgroup. If ϕ(MF ) was not trivial, MN would have
a free factor, which is a non-trivial subgroup of H, which contradicts the minimality of
G. Hence, kerϕ/F contains all maximal subgroups of G, but not G itself, hence G has
only one maximal subgroup, and therefore is cyclic of prime power order. Moreover, G
has a subgroup H 6∼= 1, G, thus |G| ≥ p2. Hence, every group G contains a cyclic group
of order p2 for some prime p, which implies our first claim.

Moreover, in a minimal example to the first claim we may suppose that |H| = p,
for otherwise H would have a proper subgroup U , and ϕ−1(U)/F would be a smaller
example. Hence, for the second claim it suffices to consider G = Cpk , H = Cp and
Γ = C∗e1p ∗ C∗e2

pk
∗ Fr, where G is one of the free factors; we have to show that e1 = 0.

Suppose otherwise, and consider the projection ϕ of Γ onto a free factor Cp. Then
∆ = kerϕ contains both G and F , in particular, G acts trivially on Γ/∆, thus, by
Lemma 2, ∆ has a free factor isomorphic to G. However, ∆/F is a proper subgroup of
Γ/F ∼= G, and ϕ would induce an surjection of a proper subgroup of G onto G, which
is absurd. �
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Note that in the proof of the second part we have already used Theorem 1, but only in
the cases established in Lemma 2. This is important, since we need Proposition 3 to
prove Theorem 1 in full generality.

Proof of Theorem 1. Let ∆ be a finite-index subgroup of Γ. Relabel the representations
ρσκ (1 ≤ σ ≤ s, 1 ≤ κ ≤ kσ) as ρ1, . . . , ρu. We know from Proposition 2 that t(∆)
is determined by m(∆) using only linear equations. Solving these equations for the
isomorphism type leads to a linear map, and we deduce that there exist constants ατj,
1 ≤ τ ≤ t, 1 ≤ j ≤ u, such that

λτ =
u∑
j=1

ατjmj.

We claim that

ατj =

{
1, Stabρj(1) ∼= Uτ
0, otherwise

, (7)

which implies our claim. Let N be the kernel of the map ϕ : Γ→ G1 ×G2 × . . .×Gs,
fix a subgroup Uτ and a representation ρj of G1, say. Set H = stabρj(1), and let ∆ ≥ N
be the subgroup of Γ, such that

ϕ(∆) = H × 1 · · · × 1.

For σ 6= 1, Gσ acts regularly on the cosets of ∆, whereas the action of G1 is a multiple
of ρj. Since ∆ is a split extension of the free group N by H, Proposition 3 (ii) implies
that Uτ can only occur as a free factor of ∆, if stabρj(1) ∼= Uτ , that is ατj = 0 for all
other pairs τ, j.

If stabρj
∼= Uτ , then ∆ ∼= U∗λττ ∗Fµ, and, computing the Euler characteristic, we obtain

the equation

λτ

(
1− 1

|Uτ |

)
+ µ− 1 =

|G1| · · · |Gs|
|U |

(
s∑

σ=1

(
1− 1

|Gσ|

)
+ r − 1

)
,

whereas from [12, Proposition 3], we have the equation

µ =
|G1| · · · |Gs|(r + s− 1)

|U |
−
∑
σ≥2

|G1| · · · |Gs|
|Uτ | · |Gσ|

− |G1| · · · |Gs|
|G1|

+ 1,

and combining these equations we obtain

λτ

(
1− 1

|Uτ |

)
= |G2| · · · |Gs| −

|G2| · · · |Gs|
|Uτ |

,

hence λτ = |G2| · · · |Gs|; that is, in this case we have ατj = 1. �

3. The realization problem for isomorphism types

Theorem 4. Let Γ be as in (1), and let t = (λ1, . . . , λt;µ) be a tuple of non-negative
integers. Then there exists a finite-index subgroup with isomorphism type t if, and only
if, the following two conditions are satisfied.
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(i) The quantity

n =

∑
τ λτ

(
1− 1

|Uτ |

)
+ µ− 1∑

σ

(
1− 1

|Gσ |

)
+ r − 1

is a positive integer.
(ii) There exist non-negative integers ντσ, 1 ≤ τ ≤ t, 1 ≤ σ ≤ s, such that∑

τ
|Gσ |
|Uτ | ντσ ≤ n,

∑
σ ντσ = λτ , and ντσ = 0 unless Uτ is isomorphic to a

subgroup of Gσ, where n is given as in (i).

Proof. First, we consider necessity. Condition (i) is but a reformulation of the multi-
plicativity of Euler characteristics. Let ∆ be a subgroup with isomorphism type t, and
let m = (mσκ) be the representation type of ∆. Then by Theorem 1 we have

λτ =
∑
σ,κ

Stabρσκ (1)∼=Uτ

mσκ,

and since the number of points not contained in regular orbits cannot exceed the total
number of points, we have for each σ the inequality

kσ∑
κ=1

dσκmσκ ≤ n. (8)

Hence, setting ντσ =
∑

κ:Stabρσκ (1)∼=Uτ mσκ, we have found non-negative integers as re-

quired by the second condition. To prove that conditions (i) and (ii) are sufficient,
suppose that we are given integers ντσ as in the second condition. For each τ, σ, such
that Gσ contains a subgroup isomorphic to Uτ , we choose such a subgroup, which de-
fines a permutation representation ρσκ. We put mσκ = ντσ, and mσκ′ = 0 for all κ′ 6= κ,
for which Stabρσκ(1) ∼= Uτ .

For this choice of m, Condition (ii) implies (8), and this estimate implies that there
exists a permutation representation of type (mσκ); our task is to construct a transitive
permutation representation of this type. If r ≥ 1 this task is simple, for the action of
Fr can be chosen to be transitive, and the action of the finite free factors can be chosen
according to (mσκ). If r = 0, solving condition (i) for µ and rewriting the λτ in terms
of the representation type, we obtain

s∑
σ=1

kσ∑
κ=1

(dκσ − 1)mσκ − n+ 1 = µ ≥ 0,

and therefore
s∑

σ=1

kσ∑
κ=1

(dκσ − 1)mσκ ≥ n− 1.

Intuitively, this inequality shows that we can find a transitive representation of type
(mσκ), since if we choose domains of transitivity for each transitive constituent one after
the other in such a way that the total number of orbits is diminished as fast as possible,
inserting a domain of size dκσ reduces the number of orbits by dκσ − 1. Since we begin
with n orbits consisting of 1 point each, we should be able to reach a representation
with 1 orbit, that is, a transitive permutation representation of the desired type.
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To make this argument precise, we have to show that we can indeed choose represen-
tations in such a way that either the number of remaining orbits is diminished by the
maximal amount, or we already reach a transitive action at some intermediate stage.
Suppose that according to (mσκ), the number of fixed points of G1 is minimal among all
Gσ, choose the action of G1 according to (mσκ), and list the orbits of this action in some
way. Let Ω1, . . . ,Ω` be the orbits of G1 of size ≥ 2. To define an action of G2 with the
desired representation type it suffices to choose the domains of transitivity containing
≥ 2 points of this action, so let d1, . . . , dm be a list of the occurring orbit sizes (counted
with multiplicities). Then we choose one point in each of Ω1, . . . ,Ωd1 , and let G2 act
transitively on this set. The next domain of transitivity consists of a second point in
Ωd1 together with one point in each of Ωd1+1, . . . ,Ωd1+d2−1. We continue in this way,
until either all m domains of transitivity are chosen, or all the Ωi are linked. In the
latter case we construct orbits of G2 by taking one point not yet used which is moved by
G1, and add sufficiently many fixed points of G1 to obtain a domain of transitivity for
G2 of the required size. In this way we continue until one of the following happens: all
orbits of G2 are chosen, there are not sufficient fixed points of G1 left to choose from, or
all points moved by G1 are used up, but there are still orbits for G2 to be constructed.
In the first case, we have constructed an action of G2 such that the number of orbits is
in fact as small as predicted, whereas in the second case we construct one orbit of G2

consisting of the remaining points fixed by G1, and arbitrary other points not yet used
for G2, thereby reaching a transitive action. In the last case, all points moved by G1

are also moved by G2, but there is at least one orbit of G2 of size ≥ 2 containing only 1
point moved by G1, that is, G2 has less fixed points then G1, contrary to our choice of
G1. Hence, the last case cannot happen. Now we repeat this argument for the groups
G3, . . . , Gs: let Ω′1, . . . ,Ω

′
`′ be the domains of transitivity of 〈G1, G2〉, and choose the

domains of G3 with respect to these sets. Again, we either obtain a transitive action,
or the number of orbits decreases by the right amount. We continue until the actions
for all groups are defined, and either obtain a transitive action at some intermediate
stage, or reach it in the final step. Hence, we obtain a transitive action determining a
group ∆ with isomorphism type t; that is, t is realized. �

At first sight, the second condition of Theorem 4 appears to be unwieldy; however,
in every concrete situation, this condition can be given a transparent form. In fact,
the non-zero entries of the tuple (ντσ) are restricted by linear inequalities, and the
possible values for (λτ ) are the image of the occurring (ντσ) under a linear map, hence,
the second condition describes the lattice points in a certain polytope. Indeed, in the
following example the occurrence of the modulus 7 appears more surprising than the
inequalities.

Example 1. Let Γ = (C2 × C2) ∗ S3. Then there exists a finite-index subgroup ∆
isomorphic to C∗λ1

2 ∗ C∗λ2
3 ∗ (C2 × C2)∗λ3 ∗ S∗λ4

3 ∗ Fµ if, and only if,

6λ1 + 8λ2 + 9λ3 + 10λ4 + 12µ ≡ 5 (mod 7)
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and the following inequalities are satisfied:

λ1, λ2, λ3, λ4, µ ≥ 0,

5λ1 + 2λ2 + λ3 + λ4 ≤ 2n,

λ3 ≤ n,

2λ2 + λ4 ≤ n,

with the exceptions of ∆ = C∞ and ∆ = C2 ∗ C2, which cannot occur as finite-index
subgroups.

Proof. Expanding Condition (i), we find that the quantity

6λ1 + 8λ2 + 9λ3 + 10λ4 + 12µ− 12

7

has to be a positive integer. This expression is integral if, and only if, the stated
congruence holds true, and it is non-positive only in the stated exceptional cases. Next,
we have to consider the second condition of Theorem 4. In the notation of the theorem,
we have ν21 = ν32 = ν42 = 0, and the remaining five variables satisfy

ν11, ν12, ν22, ν31, ν42 ≥ 0,

2ν11 + ν31 ≤ n,

3ν12 + 2ν22 + ν42 ≤ n,

as well as
λ1 = ν11 + ν12, λ2 = ν22,
λ3 = ν13, λ4 = ν42.

The last equations transform the stated inequalities for the ντσ into the stated inequal-
ities for the λτ . �

The second condition in Theorem 4 becomes particularly simple, if for all 1 ≤ σ1, σ2 ≤ s
the groups Gσ1 and Gσ2 are either isomorphic or have coprime order. In this case the
resulting inequalities take the form∑

τ
(|Uτ |,|Gσ |)>1

|Gσ|
|Uτ |

λτ ≤ n
∑
τ

(|Uτ |,|Gσ |)>1

1, (1 ≤ τ ≤ t).

We next consider some miscellaneous applications of Theorem 1. Our first result deals
with normal subgroups.

Proposition 4. Let Γ be as in (1), and let ∆ be a normal subgroup of index n in Γ and
with isomorphism type (λ1, . . . , λt;µ). Then n | λτmτ for all τ, where mτ is the least

common multiple of |Gσ ||Uτ | taken over all σ such that Uτ is isomorphic to a subgroup of

Gσ.

Proof. If ∆ is normal in Γ, the restriction of the corresponding permutation represen-
tation to Gσ is similar to a multiple of some transitive representation; hence, mσκ is
either 0 or n

dσκ
. Our claim now follows from Theorem 1. �
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Corollary 1. Let Γ be as in (1), and let mΓ be the least common multiple of |G1|, . . . , |Gσ|.
Then for a subgroup ∆ of index n with isomorphism type (λ1, . . . , λt;µ) the index
(NΓ(∆) : ∆) divides each entry of the tuple (n,mΓλ1, . . . ,mΓλt).

Proof. Apply Proposition 4 to NΓ(∆) instead of Γ and note that each mτ is a divisor
of mΓ. �

Corollary 2. Let G1, G2 be finite groups, G1 not isomorphic to a subgroup of G2, and
let ∆ be a normal subgroup of Γ = G1 ∗ G2 which has G1 as free factor. Then Γ/∆ is
a quotient of G2.

Proof. By Theorem 1 we know that G1 is a free factor of ∆ if and only if the action of
G1 on ∆ has at least one fixed point. If ∆ is normal, this implies that the action of G1

is trivial, hence, the map Γ→ G1 ∗G2 factors through G2, which implies our claim. �

Corollary 3. Let f̄(n) be the number of normal subgroups of index n in Γ = C2 ∗ C4

which are not free. Then we have f̄(n) = 1 for even n, and f̄(n) = 0 for odd n with the
exceptions f̄(1) = 1, f̄(2) = 3, and f̄(4) = 2.

Proof. Checking the groups of order ≤ 4 individually, it suffices to prove our claim
for n ≥ 5. Let ∆ be a normal subgroup of index n which is not free, and let x, y be
generators of Γ such that x2 = y4 = 1. If one of x and y acts trivially on Γ/∆, we would
have n ≤ 4, if both would act regularly, ∆ would be free. Hence, we may suppose that
both x and y act by 2-cycles only, so that the map Γ→ Γ/∆ factors through Γ/〈〈y2〉〉,
which is isomorphic to C2∗C2. On the other hand, each free normal subgroup of C2∗C2

defines a regular action of x and y2, thus a non-free normal subgroup of Γ. Hence, for
n ≥ 5 the number of non-free normal subgroups of Γ equals the number of free normal
subgroups of C2 ∗ C2, which is 1 for even n ≥ 6 and 0 for n odd. �

Next we show that a slight sharpening of the conditions of Theorem 4 ensures existence
of non-maximal subgroups of given type. This observation is remarkable, since in the
context of large groups usually almost all subgroups are maximal; cf. Proposition 6 for
the case of groups of the form (1).

Proposition 5. Let Γ be as in (1), and suppose that χ(Γ) < 0. Then there exists some
constant c such that the following holds true. Let t = (λ1, . . . , λt;µ) be a tuple of non-
negative integers satisfying Condition (i) in Theorem 4. Suppose there exist integers
ντσ such that ντσ = 0 for all τ with the property that Gσ does not contain a subgroup
isomorphic to Uτ ,

∑
σ ντσ = λτ and∑

τ

ντσ ≤ αn− cmin
d|n

(d+ n/d),

where α = min
(
1, −χ(Γ)
−χ(Γ)−r+1

)
. Then there exists a non-maximal subgroup ∆ of finite

index in Γ, which is of type t.

Proof. Our assertion holds trivially if Γ is free, so suppose that Γ is not free. Let
d be a divisor of n. We first choose a subgroup ∆′ of index d which is close to be-
ing a free power of Γ, that is, if we order the groups U1, . . . , Ut in such a way that
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{U1, . . . , Ur} = {G1, . . . , Gs} we look for a subgroup ∆′ of index d with isomorphism
type t′ = (m1x,m2x, . . . ,mrx, 0, . . . , 0;µ) where mτ is the number of groups among
G1, . . . , Gs, which are isomorphic to Uτ , and µ is as small as possible. Altering x by
a bounded amount, we can always ensure integrality of the quotient corresponding to
∆′ occurring in Condition (i) of Theorem 4. The inequalities in Condition (ii) become
fairly easy due to the special structure of t′. In fact, choosing the ντσ in such a way
that ντσ = 0 unless Gσ

∼= Uτ , we obtain the inequalities mτx ≤ mτd, that is the second
condition is satisfied for x ≤ d. The Euler characteristic equation yields

r∑
τ=1

mτx
(
1− 1

|Uτ |
)

+ µ− 1 = d
( r∑
τ=1

mτ

(
1− 1

|Uτ |
)

+ r − 1
)
,

which is compatible with the condition µ ≥ 0 provided that

x ≤ d

∑r
τ=1mτ

(
1− 1

|Uτ |

)
+ r − 1∑r

τ=1mτ

(
1− 1

|Uτ |

) = d
−χ(Γ)

−χ(Γ) + 1− r
,

where the last quotient is positive since χ(Γ) < 0 and Γ is not free. Combining these
estimates, we find that there exists a subgroup ∆′ of index d and type t′ with x > αd−C1

for some C1 depending only on Γ and α as in the proposition. Next, we have to show
that ∆′ has a subgroup of index n/d with type t. To do so, we take Γ = ∆′ in Theorem 4.
By assumption, t satisfies Condition (i) with respect to Γ, hence, by multiplicativity
of the Euler characteristic, t satisfies this condition with respect to ∆′ as well, and it
suffices to find integers ν ′τσ satisfying Condition (ii) with respect to ∆′. Since every
finite free factor of Γ occurs x-times as free factor of ∆′, our task is to find non-negative
integers ν ′τσk for 1 ≤ τ ≤ t, 1 ≤ σ ≤ s, and 1 ≤ k ≤ x such that ν ′τσk = 0 unless
Uτ is isomorphic to a subgroup of Gσ,

∑
σ,k ν

′
τσk = λτ and

∑
τ ν
′
τσk ≤ n/d. We do so

by choosing ν ′τσk ∈ {[ντσ/x], [ντσ/x] + 1} such that
∑

k ν
′
τσk = ντσ. Clearly, ν ′τσk = 0

whenever ντσ = 0, and the integers ν ′τσk induce the isomorphism type t. It remains to
check that

∑
τ ν
′
τσk ≤ n/d. We have∑

τ

ν ′τσk ≤
∑
τ

[ντσ
x

]
+ 1 ≤ 1

x

∑
τ

ντσ + t

≤ 1

αd− C1

∑
τ

ντσ + t ≤ 1

αd

∑
τ

ντσ + t+ C2
n

d2
≤ n

d
,

provided that
∑

τ ντσ ≤ αn− C3(d+ n/d). �

As we shall see later, almost all subgroups of index n have type (λ1, . . . , λt;µ) with
λτ �

√
n, thus even for α < 1 the conditions of Proposition 5 are satisfied for almost

all subgroups; that is, almost all subgroups of finite index have an isomorphism type
realized by a non-maximal finite-index subgroup.

4. Asymptotic enumeration of isomorphism types

For a representation type m = (mσκ)1≤σ≤s
1≤κ≤kσ

denote by sm(Γ) the number of subgroups ∆

with representation type m. Note that the representation type determines the index,
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hence, sm is finite for all m. Similarly, for an isomorphism type t denote by st the
number of finite-index subgroups realizing t. We will now give an asymptotic formula
for sm for a certain domain of representation types.

Theorem 5. Let Γ be as in (1), let pσ be the least prime divisor of |Gσ|, and let ε > 0
be given. Set

M =
{

(`1, . . . , `s) ∈ [0, 1]s :
∑
σ

min
(pσ − 1

pσ
, 1− `σ

)
> 1 + ε

}
.

Number the representations of the groups Gσ in such a way that ρσ1 is the trivial rep-
resentation for each σ. Then the asymptotic formula

sm(Γ) =
(

1 +O
(
n−α+ε

)) n · n!s+r−1∏s
σ=1

∏kσ
κ=1 mσκ! dmσκσκ

(9)

holds true with α =
∑

σ min(pσ−1
pσ

, 1 − `σ) − 1 uniformly in the set of all types m with

the property that ( logm11

logn
, . . . , logms1

logn
) ∈M.

Our result is optimal in the sense that if in the definition ofM we replace ε by −ε the
conclusion is false; however, (9) holds true e.g. for representation types containing many
trivial and many very large orbits, which are not covered by the theorem. Comparing
with Theorem 3, we find that Theorem 5 covers almost all subgroups, therefore we do
not see much merit in aiming for the utmost generality.

Proof. Without loss we may assume that `σ ≥ 1 − 1
pσ

holds true for all σ. For a

representation type m denote by hm(Γ) the number of permutation representations of
Γ of type m, and by htm(Γ) the number of transitive representations of type m. We
have

hm(Γ) =
n!s+r∏s

σ=1

∏kσ
κ=1mσκ! dmσκσκ

and

sm(Γ) =
htm(Γ)

(n− 1)!
;

hence, it suffices to show that the proportion of non-transitive representations among
all permutation representations of type m is sufficiently small. We do so by bounding
the probability that a random representation leaves invariant some proper subset Ω of
{1, . . . , n}. Let ρ be a representation of type m chosen at random, and, for 1 ≤ σ ≤ s,
denote by ρ(σ) the induced representation of Gσ. Let Ω be an arbitrary set of size k, let
Pk be the probability that ρ(1) stabilizes Ω, that is, the probability that Ω is the union of
orbits of ρ(1), and let P ∗k be the conditional probability subject to the condition that ρ(1)

acts without fixed points on Ω. We may suppose that k ≤ n/2, since the complement
of an invariant set is automatically invariant as well. By choosing fixed points first, we
find that

Pk ≤
k∑
ν=0

(
k

ν

)(m11

n

)ν
P ∗k−ν ≤

k∑
ν=0

(
k

ν

)
n−ν(1−`1)P ∗k−ν .

To estimate P ∗k , consider the orbit containing some point a ∈ Ω. We know that this orbit
has size ≥ pσ, the precise probability distribution of its orbit size being given by the
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distribution of orbit lengths of ρ(1).1 Suppose that with probability Q`, p1 ≤ ` ≤ |G1|,
the orbit of 1 under ρ(1) consists of ` points. Then we have

P ∗k =

|G1|∑
`=p−1

(
k − 1

`− 1

)(
n− 1

`− 1

)−1

Q`P
∗
k−` ≤

|G1|∑
`=p−1

(k − 1

n− 1

)`−1

Q`P
∗
k−`,

from which it follows by induction on k, using the fact that
∑

`Q` = 1, that

P ∗k ≤ kp1

( k!

nk

)1− 1
p1 ,

and therefore

Pk ≤ kp1

k∑
ν=0

(
k

ν

)
n−ν(1−`1)

((k − ν)!

nk−ν

)1− 1
p1

≤ kc
√
k

(
n

k

)`1−1

.

Since there are
(
n
k

)
sets Ω to consider, and the events ‘ρ(σ) fixes Ω’ are stochastically

independent, we find that the probability that there exists a set of k points left invariant
by ρ is bounded above by

kc
√
k

(
n

k

)1−s+
∑
σ `σ

≤
(
n

k

)1−s+
∑
σ `σ+ε

for k ≤ n/2. Obviously,

n/2∑
k=1

(
n

k

)1−s+
∑
σ `σ+ε

� n1−s+
∑
σ `σ+ε,

provided the exponent is negative, and our claim follows. �

As an illustration of the fact that more specific information on the representation type
may be turned into a more precise asymptotic estimate, we note the following conse-
quence of the argument leading to Theorem 5.2

Corollary 4. Let Γ be as in (1), suppose that χ(Γ) < 0, and denote by fn(Γ) =
s(0,...,0;µ)(Γ) the number of free subgroups of index n in Γ, where µ = −nχ(Γ) + 1. Then
we have for any fixed ε > 0 the estimate

fn(Γ) =
(

1 +O
(
nχ(Γ)+ε

)) s∏
σ=1

n!

(n/|Gσ|)!|Gσ|n/|Gσ |
,

if n is divisible by |Gσ| for all σ, and fn(Γ) = 0 otherwise.

We are now in a position to prove Theorem 2.

1It is at this point that one can obtain better results provided more detailed information on m is
available.

2A more precise result for the free subgroup growth of an arbitrary virtually free group can be found
in [9].
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Proof of Theorem 2. In view of Theorem 1 we have for an isomorphism type t =
(λ1, . . . , λt;µ) the equation

st(Γ) =
∑

m=(mσκ)

∀τ :
∑

σ,κ:Stabρσκ (1)∼=Uτ
mσκ=λτ

sm(Γ).

By assumption, the number of fixed points of all occurring representations is sufficiently
small to apply Theorem 5, and by collecting all terms which do not depend on m we
obtain

st(Γ) =
(

1 +O
(
n−α+ε

))∑
m

n · n!s+r−1∏s
σ=1

∏kσ
κ=1 mσκ! dmσκσκ

=
(

1 +O
(
n−α+ε

)) n · n!s+r−1∏t
τ=1 |Uτ |λτ

∑
m

1∏s
σ=1

∏kσ
κ=1mσκ!

. (10)

We compute the right-hand side of the last equation by means of the generating function

F (z1, . . . , zt) =
∑

n1,...,nt≥0

zn1
1 · · · zntt

∑
ρ=(mσκ)

∀τ :
∑

σ,κ:Stabρσκ (1)=Uτ

mσκ=nτ

1∏s
σ=1

∏kσ
κ=1 mσκ!

.

For σ, κ define τ(σ, κ) to be the unique index τ such that Stabρσκ(1) ∼= Uτ . Then we
have

F (z1, . . . , zt) =
s∏

σ=1

kσ∏
κ=1

∑
mσκ≥0

zmσκτ(σ,κ)

mσκ!

=
t∏

i=τ

exp(µτzτ )

=
∑

n1,...,nt

µn1
1 · · ·µntt
n1! · · ·nt!

zn1
1 · · · zntt .

Inserting the coefficient of zλ1
1 · · · zλtt into (10) yields our claim. �

Proposition 6. Let Γ be as in (1), and suppose that χ(Γ) < 0. Denote by s¬max
n (Γ) the

number of non-maximal subgroups of index n in Γ. Then we have for any fixed ε > 0
the estimate

s¬max
n (Γ)

sn(Γ)
� 2(χ(Γ)+ε)n,

in particular, almost all finite-index subgroups are maximal.

Proof. The proof runs parallel to that of [12, Prop. 9], therefore, we only sketch the
argument. Define ht,¬max

n (Γ) to be the number of homomorphisms ϕ : Γ→ Sn such that
ϕ(Γ) acts transitively and imprimitively on [n]. We have s¬max

n (Γ) = ht,¬max
n (Γ)/(n−1)!

as well as htn ∼ hn, hence, it suffices to bound ht,¬max
n (Γ)/hn. Let ϕ be a homomor-

phism counted by ht,¬max
n (Γ), Ω a domain of imprimitivity for ϕ consisting of d points.
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The image of ϕ(Γ) is contained in a subgroup of Sn isomorphic to Sd o Sn/d, which is
determined by Ω and its translates. Hence, we obtain the inequality

ht,¬max
n (Γ) ≤

∑
d|n

1<d<n

(n/d)!−1

(
n

d, . . . , d

)
|Sd o Sn/d|r

s∏
σ=1

|Hom(Gσ, Sd o Sn/d)|. (11)

For τ = 1, . . . , t define functions

fτ (n) =

(
|Hom(Uτ , Sn)|
n!1−1/|Uτ |

)1/n

and f(n) = maxτ fτ (n). Setting H = {1} in the first part of Lemma 1 we obtain

|Hom(Uτ , Sn)| = n!1−1/|Uτ |eO(
√
n),

and therefore that f is bounded and tends to 1 as n→∞. To evaluate |Hom(Gσ, Sd o
Sn/d)|, first choose a homomorphism ψ : Uτ → Sn/d of representation type m =
(m′κ)1≤κ≤kτ . Then the number of extensions of a given ψ to a homomorphism Gσ →
Sd o Sn/d equals

d!n/d−
∑
m′κ

kτ∏
κ=1

|Hom(Uτ , Sd)|m
′
κ ,

where Uτ is the stabilizer of the representation ρσκ of Gσ. Hence we obtain

|Hom(Gσ, Sd o Sn/d)| =
∑
m

d!n/d−
∑
m′κ

kτ∏
κ=1

|Hom(Uτ , Sd)|m
′
κ

×
∣∣{ψ : Gσ → Sn/d : ψ realizes m

}∣∣,
where the summation runs over all representation types m = (m′κ) of Uτ in Sd. We now

simplify the right-hand expression by introducing f and use the fact that
∑

κm
′
κ
|Gσ |
|Uκ| =

n
d
, to obtain

|Hom(Gσ, Sd o Sn/d)| ≤ d!n/d
∑
m

kτ∏
κ=1

(f(d) d!1−1/|Uκ|

d!

)m′κ
×
∣∣{ψ : Gσ → Sn/d : ψ realizes m

}∣∣
≤ d!(1−1/|Gσ |)n/df(d)n/d

∑
m

∣∣{ψ : Gσ → Sn/d : ψ realizes m
}∣∣

= d!(1−1/|Gσ |)n/df(d)n/d|Hom(Gσ, Sn/d)|
≤ d!(1−1/|Gσ |)n/df(d)n/df(n/d)n/d(n/d)!1−1/|Gσ |.

Inserting this bound into (11) and arguing as in [12, section 6.2, pp. 35–36] our claim
follows. �
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5. Distribution of isomorphism types

Lemma 3. Let G be a finite group of order m. Then there exist constants cd, d|m,
such that

|Hom(G,Sn)|
|Hom(G,Sn−`)|

= n`(1−1/m)

(
1 + `

∑
d|m
d<m

cdn
−1+d/m +O

(`2

n

))

uniformly in ` <
√
n.

Proof. For ` = 1 this follows from [10, Theorem 6]. We now write

|Hom(G,Sn)|
|Hom(G,Sn−`)|

=
n∏

ν=n−`+1

ν(1−1/m)

(
1 +

∑
d|m
d<m

cdν
−1+d/m +O

( 1

n

))

and consider the two factors separately. The first factor yields
n∏

ν=n−`+1

ν(1−1/m) = n`(1−1/m) exp
(
− (1− 1/m)

n∑
ν=n−`+1

n− ν
n

+O
( `2

n2

))
= n`(1−1/m)

(
1 +O

(`2

n

))
,

whereas the second factor can be written as

exp

( n∑
ν=n−`+1

log
(

1+
∑
d|m
d<m

cdν
−1+d/m+O

( 1

n

)))
= exp

( n∑
ν=n−`+1

∑
d|m
d<m

cdν
−1+d/m+O

( 1

n

))
,

where we have inserted the Taylor series for log(1 + z). Note that the largest occurring
exponent of ν is≤ −1/2, hence, in the Taylor series for log(1+z) all terms of order higher
than linear can be absorbed into the error term. Since n−1+d/m− ν−1+d/m � `n−2+d/m,
we obtain

n∏
ν=n−`+1

(
1 +

∑
d|m
d<m

cdν
−1+d/m +O

( 1

n

))
= exp

(
`
∑
d|m
d<m

cdn
−1+d/m +O

( `
n

+
`2

n3/2

))

= 1 + `
∑
d|m
d<m

cdn
−1+d/m +O

(`2

n

)
,

where we have again used the fact that n appears with exponent −1/2 at most. Our
claim now follows by combining the preceding estimates. �

Lemma 4. Let G be a finite group of order m, and let ρ1, . . . , ρk be a complete list
of non-regular transitive permutation representations of G, where ρi acts on mi points,

and let ρ be the regular representation. Define random variables ξ
(n)
i , 1 ≤ i ≤ k, as

follows. Let ϕ : G → Sn be a permutation representation chosen at random, and

set ϕ = κρ ⊕
⊕

ξ
(n)
i ρi. Then, as n → ∞, the ξ

(n)
i are asymptotically independent,

and
ξ
(n)
i −n

mi/m

nmi/2m
converges to a standard normal distribution. More precisely, denote by
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M
(n)
r the r-th moment of ξ

(n)
i , and by M̃r the r-th moment of the corresponding normal

distribution. Then we have

M (n)
r =

(
1 +O(r2n−1/mi)

)
M̃r (12)

uniformly in r <
√
n.

Proof. For ϕ : G→ Sn chosen at random, define for 1 ≤ i ≤ n the random variable ζi to
be k, if G acts on the orbit of i as described by ρk, and ζi = 0, if G acts regularly on the
orbit of ρi. We first compute the probability of the event ζ1 = k. Every homomorphism
ϕ : G → Sn such that G acts on the orbit of 1 like ρk can be constructed as follows.
First, choose the orbit of 1, which can be done in

(
n−1
mk−1

)
ways; then identify the points

in the orbit with cosets of the stabilizer of 1, which can be done in (mk − 1)! ways.
Finally, on the remaining n−mk points, choose an arbitrary action of G. Hence, using
Lemma 3, we obtain

P (ζ1 = k) =
n(n− 1) · · · (n−mk + 2)|Hom(G,Sn−mk)|

Hom(G,Sn)

= n
mk
|G|−1

{
1 +

m−1∑
ν=1

cνn
−ν/m +O(n−1)

}
.

Next we compute the probability of the event ζ1 = k under the condition that ζ2 =
a2, . . . , ζr = ar. First choose the orbits containing 2, . . . , r. With probability 1 +
O(rn−1), the point 1 is not contained in the union of these orbits; that is, the probability
for ζ1 = k is the same as the probability for a randomly chosen representation G→ Sn−`,
where ` denotes the size of the union of the orbits of 2, . . . , r. Hence, we obtain

P (ζ1 = k | ζ2 = a2, . . . , ζr = ar)

=
(n− `) · · · (n− `−mk + 2)|Hom(G,Sn−`−mk)|

|Hom(G,Sn−`|)
+O(rn−1).

Inserting Lemma 3, we obtain

P (ζ1 = k | ζ2 = a2, . . . , ζr = ar) = P (ζ1 = k)
(
1 +O(r2n−1)

)
+O(rn−1);

hence, the variables ξ
(n)
k are asymptotically independent. Set ηi = 1 if ζi = k, and ηi = 0

otherwise, and let η̂i be independent random variables with the same distribution. Then
we obtain

E

(
n∑
i=1

ηi

)r

− E

(
n∑
i=1

η̂i

)r

=
∑
I⊆[n]

|I|=r

E
(∏
i∈I

ηi
)
−
∏
i∈I

Eηi

=

(
n

r

)( r∏
i=1

P (ηi = 1 | η1 = · · · = ηi−1 = 1)− P (η1 = 1)r

)

�
(
n

r

)
P (η1 = 1)r

(
r3

n2
+

r2

nP (η1 = 1)

)
� E

(
n∑
i=1

η̂i

)r (
r3

n2
+

r2

n1/mk

)
,
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which implies the claimed estimates for the moments of ξi. The convergence to a normal
distribution now follows form the fact that the normal distribution is determined by its
moments. �

We now use Theorem 1 together with Lemma 4 to prove Theorem 3.

Proof of Theorem 3. By Theorem 5 we know that almost all permutation representa-
tions ρ with mσκ = o(n) are transitive, whereas from Lemma 4 we find that almost
all subgroups have representation type satisfying mσκ �

√
n; moreover, in the range

r <
√
n other types occur too seldomly to influence the r-th moment significantly.

Hence, instead of transitive representations it suffices to consider all permutation rep-
resentations. The distribution of the representation type of a random homomorphism
is given by Lemma 4, and by Theorem 1 this distribution is mapped onto a distri-
bution of isomorphism types. All occurrences of Uτ as a subgroup of some Gσ such
that (Gσ : Uτ ) > dτ yield normal distributions with mean value � n1/(dτ+1), which are
negligible, that is, up to an error of size n1/dτ (dτ+1), ξτ is the sum of mτ independent
random variables satisfying (12), and our claim follows from the fact that the sum of in-
dependent normally distributed variables is again normally distributed with parameters
behaving additively. �
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