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The Large Sieve inequality in the form
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is essentially optimal. However, in several applications many of the an vanish, and one
might expect better estimates then. In fact, such estimates were given by P. D. T. A.
Elliott[1]. He showed the following estimate:

Theorem 1. N and Q be integers, ap be complex numbers for all primes p ≤ N . Then
we have the estimate
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Under GRH, Q54/11 may be replaced by Q4+ε. In analogy to the large sieve, he
conjectured that one may replace this term by Q2+ε.

Using a completely different approach, Y. Motohashi[4] showed that

(1)
∑
q≤Q

∑
χ (mod q)

∗|π(x, χ)|2 ≤ (2 + o(1))x2

log x log x/Q1/2

for x > Q5+ε, where π(x, χ) =
∑
p≤x χ(p). He also conjectured, that Q5+ε may be

replaced by Q2+ε.
Here we will combine the Large Sieve principle with Selberg’s sieve to prove the con-

jecture of Elliott and give a version of (1) valid for x > Q2+ε.
I would like to thank D. R. Heath-Brown for his help on Proposition 9 which allowed

me to reduce the exponent to 2 + ε, and the referee for pointing out some mistakes.

Theorem 2. Let N and Q be integers with N > Q2+ε, ap be complex numbers for any

prime p ≤ N , and let 2 ≤ R ≤
√
N be an integer. Then we have the estimate
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As this estimate is the analogue of the large sieve estimate, we can give analogues
of Halász-type inequalities, too. As there is a variety of different large value estimates,
the same is true for these bounds. However, since the optimal estimate depends on the
particular application, we only mention the following:
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Theorem 3. Let q be an integer. Let C be a set of characters (mod q), ap be complex
numbers for any prime p ≤ N . Then we have for k = 2, 3 or, if q is cubefree, for any
integer k ≥ 2, the estimates
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If C is a set of characters to moduli q ≤ Q, the same bounds apply with q replaced by Q2,
where k can be chosen arbitrarily, if all occuring values of q are cubefree, and k = 2, 3
otherwise.

From this we conclude immediately

Corollary 4. We have for x > Q2+ε the estimate∑
q≤Q

∑
χ (mod q)

∗|π(x, χ)|2 ≤ Cε
x2

log2 x

Moreover, for x > Q3+ε this can be made completely explicit:∑
q≤Q

∑
χ (mod q)

∗|π(x, χ)|2 ≤ (2 + o(1))x2

log x log x/Q3

We can also consider a single character:

Corollary 5. Let χ be a complex character. Then we have

|π(x, χ)| ≤

((
1 + φ/α

2− 2φ/α

)1/2

+ o(1)

)
x

log x
,

where α = log x
log q and φ = 1

4 if q is cubefree, and φ = 1
3 otherwise.

Note that this estimate is nontrivial as soon as x > q3/4 resp. x > q, depending on
whether q is cubefree or not. With a little more work, we obtain the following statement.

Corollary 6. Let D,x,Q be parameters with x > Q1+εD2. Let N be the number of
moduli q ≤ Q, such that there is some primitive character χ of order d ≤ D and some
d-th root of unity ζ, such that there is no prime p ≤ x with χ(p) = ζ. Then we have
N �ε D.

This was proven by Elliott with D = 3 under the condition x > Q54/11+ε.
We begin the proof of our Theorems with the following two sieve principles.

Lemma 7 (Bombieri). Let V, (·, ·) be an inner product space, vi ∈ V . Then for any
Φ ∈ V we have ∑

i

|(Φ, vi)|2 ≤ ‖Φ‖2 max
i

∑
j

|(vi, vj)|

This is Lemma 1.5 in [3].

Lemma 8 (Selberg). Let R,N be integers, such that R2 < N . Then there is a function
g, which has the following properties:
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(1) g(1) = 1, |g(n)| ≤ 1 for n ≤ R, g(n) = 0 for n > R.

(2)
∑
n≤N

(
(1 ∗ g)(n)

)2 ≤ N
logR +R2

This is the usual formulation of Selberg’s sieve when used to count the set of primes
≤ N , see e.g. [2], chapter 3, especially Theorem 3.3. In the sequel, we will denote the

function given by Lemma 8 with g and set f =
(
1 ∗ g

)2
. We will have to bound character

sums involving f , these computations are summarized in the following Proposition.

Proposition 9. Let χ (mod q) be a character, R,N, f and g as in Lemma 8, and define
S =

∑
n≤N f(n)χ(n).

(1) If χ is principal, we have |S| < N
logR +R2.

(2) Assume that χ is nonprincipal. Then we have for any fixed A the estimate∑∞
ν=1 f(ν)χ(ν)e− log2(ν/N) �ε,A R

2q1/2
(
N
R2q

)−A
.

(3) If χ is nonprincipal, we have the bounds |S| ≤ R2√q log q and |S| ≤ ck,εR2/kN1−1/kq(k+1)/(4k2)+ε

for k = 2, 3, or, if q is cubefree, for k ≥ 2 arbitrary.

Proof: The first assertion is already contained in Lemma 8.
Assume now that χ is nonprincipal. Then we have∣∣∣∣∣∣

∑
n≤N

f(n)χ(n)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∑
n≤N

∑
d|n

g(d)

2

χ(n)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

d1,d2≤R

g(d1)g(d2)χ ([d1, d2])
∑

n≤N/[d1,d2]

χ(n)

∣∣∣∣∣∣
≤

∑
d1,d2≤N

|g(d1)g(d2)| ·

∣∣∣∣∣∣
∑

n≤N/[d1,d2]

χ(n)

∣∣∣∣∣∣
≤

∑
d1,d2≤R

∣∣∣∣∣∣
∑

n≤N/[d1,d2]

χ(n)

∣∣∣∣∣∣
The inner sum can be estimated using either the Polya-Vinogradoff-inequality or Burgess

estimates, leading to |S| ≤ R2√q log q resp. |S| ≤ ck,εR2/kN1−1/kq(k+1)/(4k2)+ε, thus we
obtain the third statement.

To prove the second statement, we begin as above to obtain the inequality∣∣∣∣∣
∞∑
n=1

f(n)χ(n)e− log2(n/N)
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Write d = [d1, d2]. Using the Mellin-transform 1

2
√
πi

∫
(2)
x−ses

2/4ds = e− log2 x, the inner

sum can be expressed as

∞∑
n=1

χ(n)e− log2(dn/N) =
1

2
√
πi

∫
(2)

L(s, χ)es
2/4(N/d)sds
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Now we shift the path of integration to the line <s = −A with A > 0. Denote with χ1

the primitive character inducing χ. Then we have

L(s, χ) =
∏
p|q2

(
1− χ1(p)p−s

)
L(s, χ1).

For A > 2, the first factor is� qA2 , whereas the L-series can be estimated using the func-

tional equation to be� (q1(|t|+2))A+1/2, hence the right hand side is�A q
1/2
(
N
dq

)−A
≤

q1/2
(
N
R2q

)−A
. Hence the whole sum can be bounded by c(A)R2q1/2

(
N
R2q

)−A
.

To prove Theorem 2, we follow the lines of the proof of the large sieve resp. the
Halász-inequality, however, we apply Lemma 7 to a different euclidean space. Consider
the subspace V < l∞ consisting of all bounded sequences (an), such that an = 0 when-
ever f(n) = 0, where f is defined as in Lemma 8. On this space define a product as

〈(an), (bn)〉 :=
∑∞
n=1 f(n)e− log2(n/N)anbn. Now we apply Lemma 7 to this space and

the set of vectors Φ = (ân), where âp = ape
log2 p/N , for prime numbers p in the range

R2 < p ≤ N , and ân = 0 otherwise, and vi = (χ̂(n)), where similary χ̂(n) = χ(n), if
f(n) 6= 0, and 0 otherwise. Now the inequality reads as

∑
q≤Q

∑
χ (mod q)

∣∣∣∣∣∣
∑

R2<p≤N

apχ(p)

∣∣∣∣∣∣
2

≤ max
χ

 ∞∑
n=1

f(n)e− log2 n/N +
∑
χ′ 6=χ

∣∣∣∣∣∣
∑
n≤N

f(n)e− log2 n/Nχχ′(n)

∣∣∣∣∣∣


×
∑
p≤N

|ap|2e2 log2(p/N)

where the maximum is taken over all characters with moduli at most Q. From Lemma 8 it
follows that the first term inside the brackets is� N

logR , provided that R < N1/3, say. For

the second term, let χ be a character (mod q) and χ′ a character (mod q′). Then χχ′ is
a character (mod [q, q′]). By Proposition 9, each term in the outer sum can be bounded

by c(A)R2[q, q′]1/2
(

N
R2[q,q′]

)−A
, hence the whole sum is ≤ c(A)Q3R2

(
N

R2Q2

)−A
. Since

by asumption N > Q2+ε, we can choose R = Qε/4, A = 6/ε + 1 to bound this by some
constant depending only on ε. Thus we get the estimate

∑
q≤Q

∑
χ (mod q)
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apχ(p)
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2

�
(

N

ε logN
+ Cε

)∑
p≤N

|ap|2.

The range n ≤ R2 can be estimated using the usual large sieve inequality, which gives
(R2 +Q2)

∑
p≤N |ap|2, which is negligible. Hence Theorem 2 is proven.

The proof of Theorem 3 is similar, but simpler. First, assume that all characters in
C are characters to a single modulus q. We consider the vector space V < CN consist-
ing of sequences (an)Nn=1 with an = 0 for all n with f(n) = 0 and the scalar product
〈(an), (bn)〉 :=

∑
n≤N f(n)anbn. Applying Lemma 7 as above, we obtain the estimate

∑
χ∈C

∣∣∣∣∣∣
∑
p≤N

apχ(p)

∣∣∣∣∣∣
2

≤
(

N

logR
+R2 +

(
|C| − 1

)
∆(R,N, q)

) ∑
R≤p≤N

|ap|2

where ∆(R,N, q) is the bound obtained by Proposition 9, i.e. ∆(R,N, q) ≤ R2√qlog q,

resp. ∆(R,N, q) < ck,εq
(k+1)/(4k2)+εN1−1/kR2/k. The term R2 can be neglected in
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comparison with ∆(R,N, q). This is obvious in the first case. In the second case, we may
assume that ∆(R,N, q) < N , since otherwise Theorem 3 is an immediate consequence of
the Cauchy-Schwarz-inequality. This implies R < N1/2q−(k+1)/(2k), which in turn implies
R2 < N1−1/kq−1−1/k < ∆(R,N, q). Hence we obtain Theorem 3 for sets of characters
belonging to a single modulus.

The proof for the case that the characters belong to different moduli is similar, note
that [q1, q2] is cubefree, if both q1 and q2 are cubefree.

In the range Q2+ε ≤ x < Q3+ε, Corollary 4 follows from Theorem 2 by choosing ap = 1
for all prime numbers p ≤ N , whereas in the range x > Q3+ε it follows from Theorem 3.
Similarly we obtain corollary 5 from Theorem 3. We choose C = {χ0, χ, χ} to obtain the
estimate

|π(x)|2 + 2|π(x, χ)|2 ≤ x

log ck,εx1/2q(k+1)/(8k)+ε
π(x)

and choosing either k = 3 or k ↗∞ we obtain the result by solving for |π(x, χ)|.
To prove corollary 6, let P be the set of prime numbers p, such that there is some

character χ of order d as described in the corollary. For every such p, choose such a
character χ1 together with all its powers, and denote the set of all these character with
C. Let ζ be a d-th root of unity. We have∑

χd=χ0
χ6=χ0

|π(x, χ)|2 = d

d∑
a=1

∣∣∣∣#{p ≤ x|χ1(p) = ζa} − 1

d
π(x, χ0)

∣∣∣∣2
Since by assumption, one of the terms on the right hand side is large, the right hand side

is � x2

d log2 x
≥ x

D log2 x
. Now we have |C| ≤ D · |P|, thus we get

|P| x2

D log2 x
� x2

log x logR
+ xDR2|P|Q logQ

If D2Q logQ < x1−ε, we can choose R = xε/4, and the second term on the right hand
side is still of lesser order then the left hand side. With this choice the inequality can be
simplified to |P| �ε D.
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matics to the Memory of P. Turán, P. Erdős (ed.), Akademia Kiado, Budapest, 1983, 507-515

Jan-Christoph Puchta
Mathematical Institute
University of Oxford
24-29 St. Giles’ Street
Oxford, OX1 3LB
United Kingdom
puchta@maths.ox.ac.uk


