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Abstract This paper continues the investigation of the groups RF (G) introduced and stud-
ied in [I.M. Chiswell and T.W. Müller, A class of groups with canonical R-tree action,
Springer LNM, to appear]. Two new concepts, that of a test function, and that of a pair
of locally incompatible (test) functions are introduced, and their theory is developed. As
application, we obtain a number of new quantitative as well as structural results concerning
RF (G) and its quotient RF (G)/E(G) modulo the subgroup E(G) generated by the elliptic
elements. Among other things, the cardinality of RF (G) is determined, and it is shown that
both RF (G) and RF (G)/E(G) contain large free subgroups, and that their abelianizations
both contain a large Q-vector space as direct summand.
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1 Introduction

In recent joint work of I.M. Chiswell and the first-named author, a powerful new construction
was introduced and studied, which associates to each (discrete) group G a group RF (G)

together with a canonical R-tree action RF (G) → Iso(XG); cf. [3]. To some extent, in
particular when working with their hyperbolic elements, these groups RF (G) appear as
continuous analogues of free groups, whereas in other respects they behave more like amal-
gamated products, while in fact being neither. For the benefit of the reader, and since [3]
has not yet appeared in print, Sect. 2 provides a quick introduction to some basic aspects of
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the theory developed in [3], as far as this is needed in the present context: we briefly review
the definition of the group RF (G) itself, as well as that of its associated R-tree XG, we
comment in some detail on the action of RF (G) on XG, and describe the structure of the
centralizer of an arbitrary hyperbolic element.

The purpose of the present paper is to explain some marked progress in our understanding
of the RF -construction, largely due to the introduction and exploitation of two basic new
concepts: that of a test function, and that of a pair of locally incompatible test functions;
see the beginnings of Sects. 3 and 5 for the relevant definitions. For instance, it was shown
in [3] that two groups G and H having the same number of involutions as well as the
same number of non-involutions satisfy |RF (G)| = |RF (H)|; but the actual cardinality of
RF (G) could not be determined there. In Sect. 6, by constructing a large family of pairwise
locally incompatible test functions, we show that in fact

|RF (G)| = |G|2ℵ0
. (1)

Further, it follows from the mere existence of test functions that RF (G) is never gen-
erated by its elliptic elements, a problem left open in [3] in the case when G is an ele-
mentary abelian 2-group. Also, Theorem 37 in Sect. 8 marks the beginning of a structure
theory for RF (G) and its quotient modulo the subgroup E(G) generated by the elliptic
elements. Among other things, we show that (i) both RF (G) and RF (G)/E(G) contain
a free subgroup of rank |G|2ℵ0 , but are not free; (ii) that every non-trivial torsion-free
abelian group of rank at most 2ℵ0 is realized (up to isomorphism) as centralizer of a hy-
perbolic element in RF (G); (iii) that the abelianized groups RF (G)/[RF (G), RF (G)]
and RF (G)/E(G)[RF (G), RF (G)] both contain a Q-vector space of dimension |G|2ℵ0 ;
and that (iv) every non-trivial normal subgroup N of RF (G) contains a free subgroup of
rank |G|2ℵ0 ; in particular, |N | = |RF (G)|.

We now describe the contents of the paper in more detail. After providing some necessary
background material in Sect. 2, the concept of a test function is introduced in Sect. 3. We
show there that test functions are cyclically reduced, and that non-trivial powers of test
functions are again test functions. Also, by way of settling the existence problem, we exhibit
a concrete example of a test function.

One of the principal problems of RF -theory in its present state is the grave lack of
(known) homomorphisms involving RF (G), a phenomenon largely due no doubt to the fact
that no useful generating system (not to mention defining relations) is known for RF (G). In
Sect. 4, we show how to associate with a given test function f ∈ RF (G) a certain surjective
homomorphism λf : RF (G) → R via Lebesgue measure theory such that λf (E(G)) = 0.
It follows in particular from this construction that RF (G) is never generated by its elliptic
elements; in fact, it is shown in Sect. 8 that

(RF (G) : E(G)) = |RF (G)|.
Section 5 introduces the concept of a pair of locally incompatible functions. We prove that
two locally incompatible functions in RF (G) exhibit no cancellation under multiplication,
and we show how to build new test functions from old ones; cf. Proposition 29.

Section 6 contains the technical main result of our paper, viz. Theorem 30. Given a proper
subgroup � of the additive reals, this result establishes existence of a family F of pairwise
locally incompatible test functions of size |F| = |G|(R:�), such that CRF (G)(f ) ∼= � for all
f ∈ F. Choosing any � with |�| = ℵ0, (1) follows easily, since test functions are reduced.
We also obtain the assertion concerning centralizers in RF (G) mentioned before.
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An alternative proof of (1) is provided in Sect. 7, this time relying on some of the rather
paradoxical properties of the Cantor discontinuum; and the paper concludes with Sect. 8,
which focuses on certain structural properties of RF (G) and RF (G)/E(G), most of which
have already been mentioned.

2 The groups RF(G) and their associated R-trees

2.1 Definition of the group RF (G)

Given a group G, let F (G) be the set of all functions f : [0, α] → G defined on some closed
real interval [0, α] with α ≥ 0. The real number α will be called the length of the function
f , denoted L(f ). The formal inverse f −1 of an element f ∈ F (G) is the function defined
on the same interval [0, α] as f via

f −1(ξ) = (
f (α − ξ)

)−1
, 0 ≤ ξ ≤ α.

We have (f −1)−1 = f . A function f ∈ F (G) is reduced, if to every interior point ξ0 in the
domain of f with f (ξ0) = 1G and every real number ε satisfying 0 < ε ≤ min{α − ξ0, ξ0}
there exists δ such that 0 < δ ≤ ε and f (ξ0 + δ) �= (

f (ξ0 − δ)
)−1

. Clearly, every element
in F (G) of length 0 is reduced; and if f is reduced, then so is its formal inverse f −1. We
denote by RF (G) the set of all reduced functions in F (G).

We now proceed to define a multiplication on F (G) with the property that the product of
two reduced functions is again reduced. Given f,g ∈ F (G) of lengths α respectively β , let

ε0 = ε0(f, g) :=
{

sup E (f, g), f (α) = (
g(0)

)−1
,

0, otherwise,

where

E (f, g) :=
{
ε ∈ [0,min{α,β}] : f (α − δ) = (

g(δ)
)−1

for all δ ∈ [0, ε]
}
,

and define fg on the interval [0, α + β − 2ε0] via

(fg)(ξ) :=

⎧
⎪⎨

⎪⎩

f (ξ), 0 ≤ ξ < α − ε0

f (α − ε0)g(ε0), ξ = α − ε0

g(ξ − α + 2ε0), α − ε0 < ξ ≤ α + β − 2ε0.

For later use, we note that

ε0(f, g) = ε0(g
−1, f −1), f, g ∈ F (G),

as the reader can verify without difficulty. We claim that the product fg of two reduced
functions f and g is again reduced. This is clear if f (α − ε0)g(ε0) �= 1G. So suppose that
f (α − ε0)g(ε0) = 1G, i.e., ε0 ∈ E (f, g), and that there exists ε′ such that 0 < ε′ ≤ min{α −
ε0, β − ε0} and

(fg)(α − ε0 − δ) = (
(fg)(α − ε0 + δ)

)−1
, 0 < δ ≤ ε′.



196 T.W. Müller, J.-C. Schlage-Puchta

By definition of fg this implies that

f (α − η) = (
g(η)

)−1
, ε0 < η ≤ ε0 + ε′, (2)

while the fact that ε0 ∈ E (f, g) gives

f (α − η) = (
g(η)

)−1
, 0 ≤ η ≤ ε0. (3)

Combining Assertions (2) and (3), we conclude that ε0 + ε′ ∈ E (f, g), implying ε′ ≤ 0, a
contradiction. Hence, fg is reduced as claimed.

Denote by 1G the function of length 0 with 1G(0) = 1G. It is easy to see that, for f ∈
F (G),

1Gf = f = f 1G

and

ff −1 = 1G = f −1f,

which shows in particular that 1G is a neutral element for RF (G) with the above multiplica-
tion, and that the formal inverse f −1 of an element f ∈ RF (G) is its inverse. Moreover, one
can show that our multiplication is associative on RF (G) (but not on F (G)), although the
proof of this fact as given in [3, Chap. 1] is quite non-trivial; hence, RF (G) when equipped
with the multiplication defined above is in fact a group. We note that the group G we started
from is embedded into RF (G) as the subgroup

G0 = {
f ∈ RF (G) : L(f ) = 0

}
.

2.2 The star and circle products

There is another product on F (G), which is often useful in that its definition is more straight-
forward than that of reduced multiplication (and consequently computations run much easier
than for the latter product), while the two products are nevertheless related in an important
special case. For f,g ∈ F (G) of lengths α respectively β , define their star product f ∗ g as
the function of length α + β satisfying

(f ∗ g)(ξ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f (ξ), 0 ≤ ξ < α

f (α)g(0), ξ = α

g(ξ − α), α < ξ ≤ α + β

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(ξ ∈ [0, α + β]).

This multiplication is clearly analogous to concatenation of paths in topology. Straightfor-
ward computations show that the star product is associative and satisfies the cancellation
rules

f ∗ f1 = f ∗ f2 =⇒ f1 = f2 and f1 ∗ f = f2 ∗ f =⇒ f1 = f2 (f,f1, f2 ∈ F (G))

as well as

fg = f ∗ g (f,g ∈ F (G), ε0(f, g) = 0).

In particular, we have

f ∗ 1G = f = 1G ∗ f, f ∈ F (G),



On a new construction in group theory 197

so that (F (G),∗) is a cancellative semigroup with identity element ([3, Chap. 1, Prop. 1.1]).
The following result computing values of long star products will be used later; cf. [3,
Chap. 1, Lemma 1.2].

Lemma 1 For k ≥ 1, let f1, f2, . . . , fk+1 ∈ F (G) be functions such that L(fj ) > 0 for
2 ≤ j ≤ k. For 1 ≤ j ≤ k + 1, set ξj := ∑

1≤i≤j L(fi). Then we have

(f1 ∗ f2 ∗ · · · ∗ fk+1)(ξ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1(ξ), 0 ≤ ξ < ξ1

fj (ξ − ξj−1), ξj−1 < ξ < ξj (2 ≤ j ≤ k)

fk+1(ξ − ξk), ξk < ξ ≤ ξk+1

fj (L(fj ))fj+1(0), ξ = ξj (1 ≤ j ≤ k)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(ξ ∈ [0, ξk+1]). (4)

For g1, g2 ∈ F (G), we write g1 ◦ g2 to mean g1 ∗ g2 together with the information that
ε0(g1, g2) = 0, so that

g1 ◦ g2 = g1 ∗ g2 = g1g2, (5)

whenever g1 ◦ g2 is defined; cf. Lemma 1.6 in [3, Chap. 1] and the remark following its
proof. One can think of the ◦-operation as a partial multiplication on F (G), g1 ◦ g2 being
defined if, and only if, ε0(g1, g2) = 0, in which case it equals g1 ∗ g2. It can be shown that, if
one of the products (g1 ◦g2)◦g3 and g1 ◦ (g2 ◦g3) is defined, then so is the other ([3, Chap. 1,
Cor. 1.14]); and the two product are then equal, since ∗-multiplication is associative.

2.3 The R-tree associated with RF (G)

It is not hard to see that the map L : RF (G) → R associating with each reduced function
f the length L(f ) of its domain is a Lyndon length function.1 As is well known, this yields
(and is in fact equivalent to) the existence of an R-tree XG = (XG,dG) on which RF (G)

acts, with a canonical base point x0, and such that L = Lx0 , where

Lx0(f ) := dG(x0, f x0), f ∈ RF (G)

is the displacement function associated with the action of RF (G) on (XG,x0). In particular,
the stabilizer stabRF (G)(x0) of the point x0 under the action of RF (G) is given by

stabRF (G)(x0) = G0.

In order to give the reader some feeling for this correspondence between real Lyndon length
functions and R-tree actions, we briefly describe the construction of XG as pointed metric
space.2 Introduce an equivalence relation ≈ on RF (G) via

f ≈ g :⇐⇒ L(f −1g) = 0,

1See, for instance, [2, p. 73] for the definition.
2See Theorems 4.4 and 4.6 in [2, Chap. 2] for more details.
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and denote by 〈f 〉 the equivalence class of f ∈ RF (G). One easily sees that

f ≈ g ⇐⇒ L(f ) = L(g) and

f |[0,L(f )) = g|[0,L(g)) ⇐⇒ f G0 = gG0,

so that RF (G)/ ≈ is nothing but the coset space RF (G)/G0. Next, we form the set

YG =
{
(〈f 〉, α) : f ∈ RF (G), α ∈ R, 0 ≤ α ≤ L(f )

}
,

and introduce an equivalence relation ∼ on YG via

(〈f 〉, α) ∼ (〈g〉, β) :⇐⇒ ε0(f
−1, g) ≥ α = β.

We denote the equivalence class of (〈f 〉, α) by 〈f,α〉, observing that we always have
〈f,α〉 = 〈f |[0,α], α〉. Then

XG = YG/ ∼,

dG(〈f,α〉, 〈g,β〉) = α + β − 2 min
{
α,β, ε0(f

−1, g)
}
,

and

x0 = 〈1G,0〉.
It can be shown that XG is metrically complete; cf. [3, Chap. 2, Prop. 2.4].

2.4 The action of RF (G) on XG

Whenever a group 
 acts on an R-tree X, we can classify the elements of 
 according to
whether they are elliptic (i.e., possess a fixed point) or hyperbolic (i.e., act as a fixed-point-
free isometry on X). Hyperbolic elements have some local geometry associated to them: if
γ ∈ 
 is hyperbolic, then there exists an isometric copy Aγ ⊆ X of the real line (the so-
called axis of γ ) such that γ acts on Aγ as a non-trivial translation; in particular, hyperbolic
elements have infinite order. The translation length of a hyperbolic element γ on its axis Aγ

is called the hyperbolic length of γ , denoted �(γ ); and one defines �(γ ) to be zero, if γ ∈ 


is elliptic. It is shown in [3] that the action of RF (G) on the R-tree XG is in fact transitive;
cf. [3, Sect. 2.4]. It follows that the set of elliptic elements of RF (G) equals

⋃

t∈RF (G)

tG0t
−1,

the union of all the conjugates of the subgroup G0 of length zero functions in RF (G). As a
consequence, we see that the group RF (G) is torsion-free if, and only if, G is torsion-free.
In fact, more is true.

Proposition 2 Let H be a subgroup of RF (G). Then the following assertions are equiva-
lent.

(i) H is bounded.
(ii) H consist entirely of elliptic elements.

(iii) H is conjugate to a subgroup of G0.
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This is [3, Chap. 2, Prop. 2.24]. Moreover, it is not hard to see that, for a non-trivial
subgroup U of G0, we have

NRF (G)(U) = NG0(U); (6)

in particular, G0 is self-normalizing in RF (G); cf. [3, Chap. 1, Prop. 1.16(ii)]. As a conse-
quence of Proposition 2 and (6), we have the following important observation.

Corollary 3 The only bounded normal subgroup in RF (G) is the trivial group {1G}.

Proof The assertion is trivial if G = {1G}, so we may assume that G is non-trivial, and
consequently, G0 < RF (G). Suppose that N � RF (G) is a non-trivial bounded normal
subgroup. Then N ≤ G0 by Proposition 2 plus normality of N , hence by (6),

RF (G) = NRF (G)(N ) = NG0(N ) = G0,

a contradiction. �

In order to be able to better describe the action of RF (G) on XG, we need to introduce
the concept of a cyclically reduced function, and to explain the process of cyclic reduction.

Definition 4 A function f ∈ RF (G) is called cyclically reduced, if ε0(f,f ) = 0; or, equiv-
alently, if L(f 2) = 2L(f ).

Clearly, every function of length 0 is cyclically reduced; and, if f ∈ RF (G) is cyclically
reduced, then so is every power f k with k ∈ Z; cf. Part (ii) of Lemma 2.6 in [3, Chap. 2].
The following important result, which is [3, Chap. 2, Lemma 2.7], describes existence and
uniqueness of the cyclically reduced core of a reduced function f .

Proposition 5 (i) Let f ∈ RF (G). Then there exist t, f1 ∈ RF (G), such that f = t ◦ f1 ◦
t−1, and f1 is cyclically reduced.

(ii) If f = t ◦f1 ◦ t−1 = s ◦f2 ◦ s−1, where t, s, f1, f2 ∈ RF (G), and f1, f2 are cyclically
reduced, then s = tg and f2 = g−1f1g for some g ∈ G0.

Definition 6 The function f1 described for given f ∈ RF (G) in Proposition 5, which is
unique up to conjugation by a G0-element, is called the (cyclically reduced) core of f ,
denoted c(f ). The passage from f to f1 is called cyclic reduction of f .

The importance of cyclic reduction in the present context stems from the fact that it
allows us to characterise in algebraic terms when a reduced function f is hyperbolic; it also
enables us to compute the hyperbolic length of f ; cf. Proposition 2.16(b) and Corollary 2.21
in [3, Chap. 2].

Proposition 7 A function f ∈ RF (G) is hyperbolic if, and only if, its core c(f ) is a function
of positive length, i.e., L(c(f )) > 0. Moreover, we have

�(f ) = L(c(f )), f ∈ RF (G).

Another useful consequence of Proposition 5 is the fact that the conjugates of G0 in
RF (G) form an amalgam with trivial intersection.
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Corollary 8 Let sG0s
−1 and tG0t

−1 be any two distinct conjugates of G0 in RF (G). Then
sG0s

−1 ∩ tG0t
−1 = {1G}.

Proof Suppose that sG0s
−1 ∩ tG0t

−1 �= {1G}, and let x be a non-trivial element in this
intersection. Then

s ◦ g ◦ s−1 = x = t ◦ h ◦ t−1

for some g,h ∈ G0. Since elements of length 0 are cyclically reduced, Part(ii) of Proposi-
tion 5 gives s = tk for some k ∈ G0, hence sG0s

−1 = tG0t
−1. �

2.5 Centralizers

Since an element of length 0 cannot commute with a function of positive length, we have

CRF (G)(g) = CG0(g), g ∈ G0 \ {1G}.
Consequently, the centralizers in RF (G) of elliptic elements are determined up to isomor-
phism through the centralizer structure of G itself; and nothing further can be said here in
general. The situation is entirely different for hyperbolic elements. In order to be able to
state a precise result, we first need to explain the concept of a (strong) period of a reduced
function f .

Definition 9 Let f ∈ RF (G) be an element of length L(f ) = α > 0.

(i) The points ω ∈ [0, α] satisfying

∀γ, δ ∈ (0, α] : |γ − δ| = ω → f (γ ) = f (δ)

are called periods of f . The set of all periods of f is denoted by �f .

(ii) The elements of the set

�0
f = {

ω ∈ �f : α − ω ∈ �f

}

are termed strong periods of f .

By Part (i) of Proposition 5 together with Proposition 7, every hyperbolic function
f ∈ RF (G) is conjugate to a cyclically reduced function f1 of positive length, which is
normalized in the sense that f1(0) = 1G. Our next result, which is part of [3, Chap. 6, Theo-
rem 6.13], describes the centralizer in RF (G) of such a function f1 as a subset of RF (G),
while also providing an isomorphic model for CRF (G)(f1) via a subgroup of (R,+).

Theorem 10 Let f ∈ RF (G) be cyclically reduced, of length L(f ) = α > 0, and normal-
ized. Then the set

Cf :=
{
f k ◦ f |[0,ω] : (k,ω) ∈ N0 × (

�0
f \ {α}), k + ω > 0

}

forms a positive cone for the centralizer CRF (G)(f ) of f in RF (G), giving CRF (G)(f )

the structure of an ordered abelian group. Moreover, the mapping ρf : CRF (G)(f ) → 〈�0
f 〉

given by
(
f k ◦ f |[0,ω]

)σ �→ σ(kα + ω), σ ∈ {−1,1},
is an isomorphism of ordered abelian groups.
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3 Test functions

Definition 11 A function f ∈ F (G) is called a test function, if L(f ) > 0, and there do not
exist ε > 0 and points ξ1, ξ2 ∈ (0,L(f )) such that

f (ξ1 + η) = f −1(ξ2 + η), |η| < ε.

Clearly, the inverse of a test function is again a test function. A first important observation
is that test functions are automatically reduced. In fact, we can prove slightly more.

Lemma 12 Test functions are cyclically reduced.

Proof Let f be a test function. We first show that f is reduced. Suppose by way of contra-
diction that there exists an interior point ξ0 of the domain [0,L(f )] such that f (ξ0) = 1G,
and a cancelling ε-neighbourhood for f around ξ0. By definition, this means that, for
|η| < ε,

f (ξ0 + η) = (
f (ξ0 − η)

)−1 = f −1(L(f ) − ξ0 + η) = f −1(ξ ′
0 + η),

where ξ ′
0 := L(f ) − ξ0 is again an inner point of the domain of f . Since the resulting equa-

tion

f (ξ0 + η) = f −1(ξ ′
0 + η), |η| < ε

contradicts the definition of a test function, f is indeed reduced, as claimed.
Next, suppose that f is not cyclically reduced; that is, that ε0(f,f ) > 0. Then there exists

ε > 0 such that

f (α − η)f (η) = 1G, 0 ≤ η ≤ ε.

Rewriting the last equation as f (η) = f −1(η), and setting η = ε
2 + η′, we find that

f

(
ε

2
+ η′

)
= f −1

(
ε

2
+ η′

)
, |η′| < ε

2
,

again contradicting the definition of a test function. �

For later usage, we also record the following.

Lemma 13 Let f be a test function of length L(f ) = α, let k be a non-negative integer, and
let α′ be a real number such that 0 ≤ α′ ≤ α. Then the function g = f kf |[0,α′] is again a test
function, provided that k + α′ > 0.

Proof By Lemma 12, f is cyclically reduced, so that

g = f ∗ · · · ∗ f
︸ ︷︷ ︸

k times

∗f |[0,α′];

in particular, L(g) = kα + α′. Assume for a contradiction that there exists ε > 0 and points
ξ1, ξ2 ∈ (0,L(g)), such that

g(ξ1 + η) = g−1(ξ2 + η), |η| < ε. (7)
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We now distinguish three cases.
(i) k = 0. Then g = f |[0,α′] with α′ > 0; and, for |η| < ε and ε sufficiently small, we have

g(ξ1 + η) = f (ξ1 + η),

while

g−1(ξ2 + η) = (
f |[0,α′]

)−1
(ξ2 + η)

= (
f (α′ − ξ2 − η)

)−1

= f −1(α − α′ + ξ2 + η).

It follows from (7) that

f (ξ1 + η) = f −1(α − α′ + ξ2 + η), |η| < ε,

contradicting the fact that f itself is a test function, since we have

0 < ξ1, α − α′ + ξ2 < α.

(ii) α′ = 0. Now we have g = f k with k ≥ 1. By Lemma 1 with k replaced by k − 1 and
fj = f for j = 1,2, . . . , k, we find that the values of g may be computed via the formula

g(ξ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f (ξ mod α), ξ �∈ {α,2α, . . . , kα}
f (α)f (0), ξ ∈ {α,2α, . . . , (k − 1)α}
f (α), ξ = kα

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(ξ ∈ [0, kα]). (8)

By moving ξ1 and ξ2 slightly if necessary, and decreasing ε accordingly, we may suppose
that

ξ1, ξ2 �∈ {
α,2α, . . . , (k − 1)α

}
.

Let

(i − 1)α < ξ1 < iα

and

(j − 1)α < ξ2 < jα

for some 1 ≤ i, j ≤ k. Then, according to (8), for |η| < ε and sufficiently small ε,

g(ξ1 + η) = f (ξ1 − (i − 1)α + η),

while

g−1(ξ2 + η) = (
g(kα − ξ2 − η)

)−1

= (
f (jα − ξ2 − η)

)−1

= f −1(ξ2 − (j − 1)α + η).
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Hence, (7) implies that

f (ξ1 − (i − 1)α + η) = f −1(ξ2 − (j − 1)α + η), |η| < ε,

again contradicting the fact that f itself is a test function, since

0 < ξ1 − (i − 1)α, ξ2 − (j − 1)α < α.

(iii) k > 0 and 0 < α′ < α. Using Lemma 1 again, this time with fj = f for j =
1,2, . . . , k and fk+1 = f |[0,α′], we find that g-values may be computed via

g(ξ) =
{

f (ξ mod α), ξ �∈ {α,2α, . . . , kα}
f (α)f (0), ξ ∈ {α,2α, . . . , kα}

}

(ξ ∈ [0, kα + α′]),

and the rest of the argument proceeds in a manner analogous to that of Case (ii). �

Corollary 14 If f is a test function and k ∈ Z \ {0}, then f k is again a test function.

Proof Since the inverse of a test function is again a test function, we may suppose that k is
a positive integer, in which case the result follows from Lemma 13 with α′ = 0. �

Test functions do in fact exist; this will follow from a much stronger result, demonstrat-
ing the existence of large families of ‘mutually independent’ test functions with prescribed
centralizer; cf. Theorem 30 in Sect. 6. For the moment, we confine ourselves with exhibit-
ing just one concrete example. Let x ∈ G be a non-trivial element. Then the function f0 of
length 1 given via

f0(ξ) =
{

x, ξ 2 ∈ Q

1G, ξ 2 �∈ Q

}

(0 ≤ ξ ≤ 1)

is a test function. Indeed, suppose that there exist ε > 0 and points ξ1, ξ2 ∈ (0,1) such that

f0(ξ1 + η) = f −1
0 (ξ2 + η), |η| < ε. (9)

Choosing η in (9) such that ξ1 + η is rational, we see that (9) is impossible if x2 �= 1G; thus,
we may suppose that x = x−1 is a non-trivial involution, so that (9) simplifies to

f0(ξ1 + η) = f0(ξ
′
2 − η), |η| < ε, (10)

where ξ ′
2 := 1 − ξ2. Equation (10) in turn is equivalent to the assertion that

(ξ1 + η)2 ∈ Q ⇐⇒ (−ξ ′
2 + η)2 ∈ Q, |η| < ε,

which is seen to be impossible; cf. Corollary 35 in Sect. 6.2.
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4 The maps λf

4.1 The sets M+
f (g) and M−

f (g)

Given a test function f of length α, and an arbitrary element g : [0, β] → G of F (G), we
define sets M+

f (g) and M−
f (g) via

M+
f (g) :=

{
ξ ∈ (0, β) : ∃ ε > 0, ∃ ξ ′ ∈ (0, α) s.t. g(ξ + η) = f (ξ ′ + η) for all |η| < ε

}

and

M−
f (g) :=

{
ξ ∈ (0, β) : ∃ ε > 0, ∃ ξ ′ ∈ (0, α) s.t. g(ξ + η) = f −1(ξ ′ + η) for all |η| < ε

}
.

Of course, our notation is supposed to imply that all function values written down are actu-
ally defined; that is, that ε satisfies the inequality

ε ≤ min
{
ξ, ξ ′, β − ξ,α − ξ ′}.

Our next observation is as follows.

Lemma 15 Let f be any fixed test function. Then

M+
f (g) ∩ M−

f (g) = ∅, g ∈ F (G).

Proof Assume for a contradiction that ξ0 ∈ M+
f (g) ∩ M−

f (g) for some g ∈ F (G), and let
L(f ) = α, L(g) = β . Then ξ0 ∈ (0, β), and there exist ε > 0 as well as points ξ1, ξ2 ∈ (0, α)

such that
{

g(ξ0 + η) = f (ξ1 + η)

g(ξ0 + η) = f −1(ξ2 + η)

}

(|η| < ε). (11)

We conclude from (11) that

f (ξ1 + η) = f −1(ξ2 + η), |η| < ε,

contradicting the fact that f is a test function. Hence, the sets M+
f (g) and M−

f (g) are indeed
disjoint for every g ∈ F (G), as claimed. �

Corollary 16 If f is a test function of length α, then, for 0 ≤ α′ ≤ α, we have

M+
f (f |[0,α′]) = (0, α′), (12)

and

M−
f (f |[0,α′]) = ∅. (13)

Proof Equation (12) is clear by definition, and (13) follows from (12) together with
Lemma 15. �

We also note that, for each test function f ,

M+
f (g) = M−

f (g) = ∅, g ∈ G0. (14)
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4.2 Definition of the maps λf

Since the sets M+
f (g), M−

f (g) are defined via open conditions, that is, conditions invariant
under slight perturbation of the point considered, M+

f (g) and M−
f (g) themselves are open

sets, thus Lebesgue measurable. Given a test function f , and defining the sets M+
f (g) and

M−
f (g) for g ∈ RF (G) as described in the previous subsection, we introduce a function

λf : RF (G) → R via

λf (g) := μ
(

M+
f (g)

) − μ
(

M−
f (g)

)
, g ∈ RF (G),

where μ denotes the Lebesgue measure. We observe that, by (14),

λf (G0) = 0. (15)

Moreover, by Corollary 16, we have

λf (f |[0,β]) = β, 0 ≤ β ≤ L(f ) (16)

(note that restrictions of f are reduced since f itself is reduced by Lemma 12).

4.3 λf respects inverses

Our next goal is to show that λf is in fact a homomorphism; in preparation for this argument,
we first observe that λf respects inverses.

Lemma 17 For each fixed test function f , we have

λf (g−1) = −λf (g), g ∈ RF (G). (17)

Proof Suppose that L(f ) = α and L(g) = β . Then, by definition,

M+
f (g−1) =

{
ξ ∈ (0, β) : ∃ ε > 0, ∃ ξ1 ∈ (0, α) s.t. g−1(ξ + η) = f (ξ1 + η) for all |η| < ε

}
.

Since, for ξ ∈ M+
f (g) with corresponding ξ1, ε and |η| < ε,

(
g(β − ξ − η)

)−1 = g−1(ξ + η) = f (ξ1 + η) = (
f −1(α − ξ1 − η)

)−1
,

we find that, for ξ ∈ (0, β),

ξ ∈ M+
f (g) ⇐⇒ ∃ ε > 0, ∃ ξ ′

1 ∈ (0, α) s.t. g(ξ ′ + η′) = f −1(ξ ′
1 + η′) for all |η| < ε

⇐⇒ ξ ′ ∈ M−
f (g),

where ξ ′ := β − ξ , ξ ′
1 := α − ξ1, and η′ = −η. We deduce that

M+
f (g−1) = −(

M−
f (g)

) + β, (18)

and replacing g with g−1 in (18) yields the corresponding formula

M−
f (g−1) = −(

M+
f (g)

) + β. (19)
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The well-known behaviour of Lebesgue measure under linear transformations3 together with
Formulae (18) and (19) now implies that

μ
(

M+
f (g−1)

) = μ
(

M−
f (g)

)

and

μ
(

M−
f (g−1)

) = μ
(

M+
f (g)

)
,

from which we infer that

λf (g−1) = μ
(

M+
f (g−1)

) − μ
(

M−
f (g−1)

)

= μ
(

M−
f (g)

) − μ
(

M+
f (g)

)

= −λf (g);
that is, Formula (17). �

4.4 Visibility of cancellation

The following auxiliary result, which is [3, Chap. 1, Lemma 1.11], plays a crucial role in
the proof of our first main result (Theorem 19 below).

Lemma 18 Let g,h ∈ RF (G) be reduced functions. Then there exist g1, h1, c ∈ RF (G)

such that g = g1 ◦ c, h = c−1 ◦ h1, and gh = g1 ◦ h1.

Because of its importance in the present context, we briefly sketch the proof of
Lemma 18. First, it is not hard to see that, given g ∈ RF (G) of length L(g) = β and a real
number γ such that 0 ≤ γ ≤ β , there exist functions g1, g2 ∈ RF (G) such that g = g1 ◦ g2

and L(g1) = γ ; moreover, one finds that, once one of the values g1(γ ), g2(0) has been spec-
ified, g1 and g2 are in fact uniquely determined, and that one of these values may be chosen
arbitrarily in G (see [3, Chap. 1, Lemma 1.10] for more details).

If ε0 := ε0(g,h) = 0, then the conclusion of Lemma 18 is satisfied with g1 := g, h1 := h,
and c := 1G; hence, we may suppose that ε0 > 0. Decomposing g and h in accordance
with the above remark as g = g1 ◦ c respectively h = d ◦ h1 with L(c) = L(d) = ε0, a
straightforward argument using the fact that ε0 > 0 shows that

(
c(ε0 − η)

)−1 = d(η), 0 ≤ η < ε0;
that is, c−1 and d agree everywhere except possibly on their endpoints. Since c(0) and d(ε0)

can be chosen arbitrarily (and independently of each other), we can certainly arrange that

(
c(0)

)−1 = d(ε0),

so that indeed d = c−1. Finally, noting that

L(gh) = L(g) + L(h) − 2ε0 = L(g1) + L(h1) = L(g1 ∗ h1),

and comparing the values of the function gh with those of g1 ∗ h1, we find after some
calculation that gh = g1 ◦ h1, as required.

3Cf., for instance, [6, Chap. III, § 15, Theorem D].
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4.5 First main result

This is the following.

Theorem 19 For each fixed test function f , the map λf : RF (G) → R defined in Sect. 4.2 is
a surjective homomorphism of groups whose kernel contains E(G), the subgroup generated
by the elliptic elements of RF (G).

Proof Suppose first that g,h ∈ F (G) and that L(g) = β . Then we claim that

M+
f (g ∗ h) − {

β
} = M+

f (g) ∪ (
M+

f (h) + β
)

(20)

and

M−
f (g ∗ h) − {

β
} = M−

f (g) ∪ (
M−

f (h) + β
)
. (21)

Indeed, let L(f ) = α and L(h) = γ . Then, for ξ ∈ (0, β + γ ),

ξ ∈ M+
f (g ∗ h) − {

β
} ⇐⇒

(
∃ ε > 0, ∃ ξ ′ ∈ (0, α) s.t. (ξ − ε, ξ + ε) ⊆ (0, β) and

(g ∗ h)(ξ + η) = f (ξ ′ + η) for all |η| < ε
)

or
(
∃ ε > 0, ∃ ξ ′ ∈ (0, α) s.t. (ξ − ε, ξ + ε) ⊆ (β,β + γ ) and

(g ∗ h)(ξ + η) = f (ξ ′ + η) for all |η| < ε
)

⇐⇒
(
∃ ε > 0, ∃ ξ ′ ∈ (0, α) s.t. g(ξ + η) = f (ξ ′ + η) for all |η| < ε

)

or
(
∃ ε > 0, ∃ ξ ′ ∈ (0, α) s.t. h(ξ − β + η) = f (ξ ′ + η) for all |η| < ε

)

⇐⇒ ξ ∈ M+
f (g) or ξ − β ∈ M+

f (h)

⇐⇒ ξ ∈ M+
f (g) ∪ (

M+
f (h) + β

)
,

whence (20). The proof of (21) is similar. Since a singleton set has measure 0, and Lebesgue
measure is invariant under translations, we infer from (20) and (21) that

μ
(

M+
f (g ∗ h)

) = μ
(

M+
f (g)

) + μ
(

M+
f (h)

)
(22)

and

μ
(

M−
f (g ∗ h)

) = μ
(

M−
f (g)

) + μ
(

M−
f (h)

)
. (23)

Combining Formulae (22) and (23) with (5), we now find that, for g,h ∈ RF (G) such that
ε0(g,h) = 0,

λf (gh) = μ
(

M+
f (gh)

) − μ
(

M−
f (gh)

)

= μ
(

M+
f (g ∗ h)

) − μ
(

M−
f (g ∗ h)

)
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=
(
μ

(
M+

f (g)
) + μ

(
M+

f (h)
)) −

(
μ

(
M−

f (g)
) + μ

(
M−

f (h)
))

= λf (g) + λf (h);

that is, the equation

λf (gh) = λf (g) + λf (h) (g,h ∈ RF (G)) (24)

has been verified whenever g and h are such that ε0(g,h) = 0.
Now let g,h ∈ RF (G) be arbitrary, and apply Lemma 18 to write g = g1 ◦c, h = c−1 ◦h1

so that gh = g1 ◦ h1. Then, using the last observation together with Lemma 17, we find that

λf (gh) = λf (g1 ◦ h1)

= λf (g1) + λf (h1)

= λf (g1) + λf (c) + λf (c−1) + λf (h1)

= λf (g1 ◦ c) + λf (c−1 ◦ h1)

= λf (g) + λf (h),

so that (24) holds in general; that is, λf is a group homomorphism. By (16), we have

[0, α] ⊆ λf (RF (G)),

which, since α > 0, is more than enough to conclude that λf is surjective, and the last
assertion of Theorem 19 follows from (15) together with the fact that E(G) = 〈〈G0〉〉 is the
normal closure of G0. �

As an immediate consequence of Theorem 19 and the existence of test functions (see the
end of Sect. 3), we have established the following.

Corollary 20 Let G be a non-trivial group. Then the quotient group RF (G)/E(G) maps
homomorphically onto R; in particular, RF (G) is not generated by its elliptic elements.

We also obtain the following.

Corollary 21 If f ∈ RF (G) is a test function, then f �∈ E(G)[RF (G), RF (G)].

Proof By (16) with β = L(f ), we have λf (f ) = L(f ) > 0, while Theorem 19 tells us that
λf (E(G)[RF (G), RF (G)]) = 0. �

Corollary 22 Let f be a test function. Then the centralizer CRF (G)(f ) of f in RF (G)

satisfies

CRF (G)(f ) ∩ E(G)[RF (G), RF (G)] = {1G}. (25)
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Proof If f ∈ RF (G) is cyclically reduced, of positive length, and normalized so that
f (0) = 1G, then, according to Theorem 10, the elements of CRF (G)(f ) are of the form

(
f k ◦ f |[0,α′]

)±1
(k ∈ N0, 0 ≤ α′ ≤ L(f )),

with α′ subject to certain further restrictions, which do not matter for the present purpose.
Now let f be a test function such that f (0) = 1G. Then f is cyclically reduced by

Lemma 12, and L(f ) > 0 by definition, so that the above description of centralizer elements
applies. Since the inverse of a test function is again a test function, Lemma 13 yields that,
for f a normalized test function, CRF (G)(f ) \ {1G} consists entirely of test functions, and
(25) follows in this case from Corollary 21. In general, we conjugate f by a G0-element x

to make f̃ = xf x−1 normalized, obtain (25) for f̃ , and then conjugate back to obtain the
same conclusion for f itself. �

5 Locally incompatible test functions

Definition 23 Two functions f1, f2 ∈ F (G) of lengths α1 respectively α2 are called locally
compatible (loc. comp. for short), if there exist ε > 0 and points ξi ∈ (0, αi) such that we
either have

f1(ξ1 + η) = f2(ξ2 + η), |η| < ε

or

f1(ξ1 + η) = f −1
2 (ξ2 + η), |η| < ε.

If f1 and f2 both have positive length, but are not locally compatible, they are called locally
incompatible (loc. incomp. for short).

Local compatibility is clearly a symmetric relation on F (G); that is, we have

f1 loc. comp. f2 =⇒ f2 loc. comp. f1 (f1, f2 ∈ F (G)). (26)

A first observation concerning locally incompatible functions is as follows.

Lemma 24 (i) If f1, f2 ∈ F (G) are locally incompatible, then ε0(f1, f2) = 0.
(ii) If f1, f2 ∈ F (G) are locally incompatible, then so are the functions f −1

1 and f2, as
are the functions f −1

1 and f −1
2 .

Proof (i) Let L(fi) = αi > 0, and suppose that ε0(f1, f2) > 0. Then there exists ε > 0 such
that

f1(α1 − η)f2(η) = 1G, 0 ≤ η ≤ ε;
that is

f2(η) = f −1
1 (η), 0 ≤ η ≤ ε.

It follows that

f2

(
ε

2
+ η′

)
= f −1

1

(
ε

2
+ η′

)
, |η′| < ε

2
;
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hence, f2 is locally compatible to f1, so f1 is locally compatible to f2 by (26), contradicting
our hypothesis.

(ii) If f −1
1 and f2 were locally compatible, we could find ε > 0 as well as points ξ1 ∈

(0, α1) and ξ2 ∈ (0, α2) with L(fi) = αi as above, such that

f −1
1 (ξ1 + η) = f2(ξ2 + η), |η| < ε

or

f −1
1 (ξ1 + η) = f −1

2 (ξ2 + η), |η| < ε.

In the first case, we would conclude that

f1(α1 − ξ1 + η) = f −1
2 (α2 − ξ2 + η), |η| < ε,

while in the second case, we would find that

f1(α1 − ξ1 + η) = f2(α2 − ξ2 + η), |η| < ε;
in both cases, it would thus follow that f1 and f2 are locally compatible, contradicting
our hypothesis that f1, f2 are locally incompatible. The proof of the second assertion is
similar. �

In the remainder of this section we are going to establish a somewhat technical result
to the effect that every finite product of the form

∏
j f

γj

j in pairwise locally incompatible
test functions fj is again a test function; cf. Proposition 29 at the end of this section. This
proposition will be put to good use in the final section, where we derive certain structural
properties of the groups RF (G) and their quotients RF (G)/E(G).

Lemma 25 If f and g are locally incompatible test functions, then fg is again a test func-
tion.

Proof Let L(f ) = α, L(g) = β , and set h = fg. By Lemma 24(i), we have γ := L(h) =
α + β , and

h(ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

f (ξ), 0 ≤ ξ < α

f (α)g(0), ξ = α

g(ξ − α), α < ξ ≤ γ

⎫
⎪⎪⎬

⎪⎪⎭
(ξ ∈ [0, γ ]). (27)

Suppose for a contradiction that there exist ε > 0 and points ξ1, ξ2 ∈ (0, γ ), such that

h(ξ1 + η) = h−1(ξ2 + η), |η| < ε. (28)

We may assume without loss of generality that ξ1 �= α and ξ2 �= β . Suppose first that ξ1 ∈
(0, α). Then, for ε sufficiently small,

h(ξ1 + η) = f (ξ1 + η), |η| < ε,

while

h−1(ξ2 + η) = (
h(γ − ξ2 − η)

)−1 =
⎧
⎨

⎩

f −1(ξ2 − β + η), ξ2 > β

g−1(ξ2 + η), ξ2 < β

⎫
⎬

⎭
, |η| < ε.
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We deduce from (28) that

f (ξ1 + η) =
⎧
⎨

⎩

f −1(ξ2 − β + η), ξ2 > β

g−1(ξ2 + η), ξ2 < β

⎫
⎬

⎭
, |η| < ε.

In the first case, the corresponding assertion contradicts the fact that f is a test function,
while the assertion corresponding to the second case contradicts our hypothesis that f and
g are locally incompatible. The case where ξ1 ∈ (α, γ ) is similar, and is omitted. �

Lemma 26 Let f1, f2 be locally incompatible cyclically reduced functions, and let γ1, γ2

be non-zero integers. Then f
γ1

1 and f
γ2

2 are locally incompatible.

Proof In view of the second part of Lemma 24, it is enough to consider the case when
γ1, γ2 ∈ N. Let L(fi) = αi , and set g := f

γ1
1 and h := f

γ2
2 . Since f1, f2 are of positive

length and cyclically reduced, we have L(g) = γ1α1 > 0 and L(h) = γ2α2 > 0, and g is
governed by the formula

g(ξ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1(ξ mod α1), ξ �∈ {
α1,2α1, . . . , γ1α1

}

f1(α1)f1(0), ξ ∈ {
α1,2α1, . . . , (γ1 − 1)α1

}

f1(α1), ξ = γ1α1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(ξ ∈ [0, γ1α1]),

with a corresponding formula holding for h; cf. (8). Suppose for a contradiction that there
exist ε > 0 and points ξi ∈ (0, γiαi) such that either

g(ξ1 + η) = h(ξ2 + η), |η| < ε (29)

or

g(ξ1 + η) = h−1(ξ2 + η), |η| < ε. (30)

We may clearly assume without loss of generality that ξi �∈ {αi,2αi, . . . , (ki − 1)αi} for
i = 1,2. Let

(j1 − 1)α1 < ξ1 < j1α1

and

(j2 − 1)α2 < ξ2 < j2α2

for integers j1, j2 satisfying 1 ≤ j1 ≤ γ1 respectively 1 ≤ j2 ≤ γ2. Then we have, for suffi-
ciently small ε,

g(ξ1 + η) = f1(ξ1 − (j1 − 1)α1 + η), |η| < ε,

h(ξ2 + η) = f2(ξ2 − (j2 − 1)α2 + η), |η| < ε,

h−1(ξ2 + η) = f −1
2 (ξ2 − (j2 − 1)α2 + η), |η| < ε.

Hence, we find from (29) that

f1(ξ1 − (j1 − 1)α1 + η) = f2(ξ2 − (j2 − 1)α2 + η), |η| < ε,
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while (30) implies that

f1(ξ1 − (j1 − 1)α1 + η) = f −1
2 (ξ2 − (j2 − 1)α2 + η), |η| < ε,

both assertions contradicting our hypothesis that f1 and f2 are locally incompatible. �

Lemma 27 Let f1, f2, f3 be pairwise locally incompatible functions. Then f1f2 and f3 are
locally incompatible.

Proof Let L(fi) = αi > 0, and set g := f1f2. By the first part of Lemma 24,

β := L(g) = α1 + α2 > 0,

and

g(ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

f1(ξ), 0 ≤ ξ < α1

f1(α1)f2(0), ξ = α1

f2(ξ − α1), α1 < ξ ≤ β

⎫
⎪⎪⎬

⎪⎪⎭
(ξ ∈ [0, β]).

Suppose for a contradiction that there exist ε > 0 and points ξ1 ∈ (0, β), ξ2 ∈ (0, α3) such
that either

g(ξ1 + η) = f3(ξ2 + η), |η| < ε (31)

or

g(ξ1 + η) = f −1
3 (ξ2 + η), |η| < ε. (32)

We may assume without loss of generality that ξ1 �= α1, so that there are only two cases,
according to whether ξ1 < α1 or ξ1 > α1. Suppose that ξ1 ∈ (0, α1). Then, for sufficiently
small ε, we have

g(ξ1 + η) = f1(ξ1 + η), |η| < ε;
and (31), (32) imply that either

f1(ξ1 + η) = f3(ξ2 + η), |η| < ε,

or that

f1(ξ1 + η) = f −1
3 (ξ2 + η), |η| < ε;

both assertions contradicting the fact that f1 and f3 are locally incompatible. The case where
ξ1 ∈ (α,β) is similar. �

As a final piece of preparation, we need to generalise Lemmas 25 and 27 to finitely many
factors.

Lemma 28 (a) Let k ≥ 2 be an integer, and let f1, f2, . . . , fk be pairwise locally incompat-
ible functions. Then f1f2 · · ·fk−1 and fk are locally incompatible.

(b) Let f1, f2, . . . , fk be pairwise locally incompatible test functions, where k ≥ 1. Then
f1f2 · · ·fk is again a test function.
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Proof (a) The assertion holds trivially for k = 2, and for k = 3 by Lemma 27. Let k ≥ 4,
suppose by way of induction that Assertion (a) holds with k replaced by k − 1, and let
f1, f2, . . . , fk ∈ F (G) be pairwise locally incompatible. Then the functions f1f2 · · ·fk−2,
fk−1, and fk are pairwise locally incompatible by the induction hypothesis applied to the
sets {f1, . . . , fk−2, fk−1} and {f1, . . . , fk−2, fk}, plus the fact that fk−1 and fk are locally
incompatible. By Lemma 27, f1f2 · · ·fk−1 and fk are locally incompatible, completing the
induction.

(b) This assertion holds trivially for k = 1, and for k = 2 by Lemma 25. Let k ≥ 3,
suppose by way of induction that Assertion (b) holds with k replaced by k − 1, and let
f1, f2, . . . , fk be pairwise locally incompatible test functions. By the induction hypothesis,
f1f2 · · ·fk−1 is a test function, and, by Part (a), f1f2 · · ·fk−1 and fk are locally incompatible;
hence, by Lemma 25, f1f2 · · ·fk is again a test function, completing the induction. �

We come to the main result of this section.

Proposition 29 For k ≥ 1, let f1, f2, . . . , fk be pairwise locally incompatible test functions,
and let γ1, γ2, . . . , γk be non-zero integers. Then f

γ1
1 f

γ2
2 · · ·f γk

k is again a test function.

Proof By Corollary 14 plus Lemmas 26 and 12, f
γ1
1 , f

γ2
2 , . . . , f

γk

k form a set of pairwise
locally incompatible test functions. The result follows now from Part (b) of Lemma 28. �

6 Incompatible test functions with prescribed centralizer

6.1 An existence theorem

The purpose of this section is to establish an important and powerful existence theorem for
families of pairwise locally incompatible test functions with prescribed centralizer, viz. The-
orem 30 below. In what follows, we shall tacidly assume the axiom of choice, in particular
as a hypothesis for the results of this section.

Theorem 30 Let G be a non-trivial group, and let 0 < � < R be any proper subgroup of the
additive reals. Then there exists a family F of pairwise locally incompatible normalized test
functions in RF (G), such that |F| = |G|(R:�), and such that the length function L induces
an isomorphism CRF (G)(f ) → � for each f ∈ F in the sense of Theorem 10; that is, such
that 〈�0

f 〉 = � for all f ∈ F.

Before embarking on the proof of Theorem 30, we list a few consequences, which are
important in their own right.

Corollary 31 Suppose that G is non-trivial. Then there exists a family {fσ }σ∈S of pairwise
locally incompatible test functions in RF (G) with |S| = |G|2ℵ0 and L(fσ ) = ασ for each
σ ∈ S, where {ασ }σ∈S is any given family of positive real numbers indexed by the elements
of S.

Proof Choose any subgroup � in Theorem 30 with |�| countably infinite, to obtain a family
{f̄σ }σ∈S of pairwise locally incompatible test functions, where |S| = |G|2ℵ0 . Scaling the
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functions f̄σ appropriately, by setting

fσ (ξ) := f̄σ (L(f̄σ )ξα−1
σ ) (σ ∈ S, ξ ∈ [0, ασ ]),

the family {fσ }σ∈S meets the requirements of the corollary. �

Corollary 32 Let G be a non-trivial group, and let A be a non-trivial torsion-free abelian
group of rank at most 2ℵ0 . Then there exists a test function f ∈ RF (G) such that
CRF (G)(f ) ∼= A.

Proof Such a group A can be embedded into R as a proper subgroup �, 0 < � < R. Let F

be a family of test functions as described in Theorem 30 with respect to �. Then F �= ∅, and
every function f ∈ F satisfies CRF (G)(f ) ∼= � ∼= A. �

Corollary 33 We have |RF (G)| = |G|2ℵ0 .

Proof Since RF (G) is a subset of F (G), and, by definition,

|F (G)| = |G0| +
∑

α∈R>0

|G|2ℵ0 = |G| + 2ℵ0 · |G|2ℵ0 = |G|2ℵ0
,

we have

|RF (G)| ≤ |G|2ℵ0 ; (33)

cf., for instance [8], in particular Chap. X, § 4. For the reverse inequality,

|RF (G)| ≥ |G|2ℵ0
, (34)

we may assume that G is non-trivial, since (34) holds trivially for G = {1G}. However, if G

is non-trivial, Inequality (34) follows immediately from Corollary 31 together with the fact,
implied by Lemma 12, that test functions are reduced. Inequalities (33) and (34) together
now yield our claim, since we assume the axiom of choice. �

The proof of Theorem 30 will occupy the remainder of this section.

6.2 An arithmetic lemma

The following purely arithmetic result will be needed in Sect. 6.3.

Lemma 34 Let ξ1, ξ2 be real numbers, one of which is rational. Suppose that there exists
ε > 0 such that

(ξ1 + η)2 ∈ Q ⇐⇒ (ξ2 + η)2 ∈ Q, η ∈ (0, ε) ∩ Q̄, (35)

where Q̄ denotes the algebraic closure of Q in R. Then ξ1 = ξ2.

Proof It is enough to establish the desired conclusion (that ξ1 = ξ2) under the (formally
stronger) hypothesis that one of ξ1, ξ2 is rational, and that

(ξ1 + η)2 ∈ Q ⇐⇒ (ξ2 + η)2 ∈ Q, η ∈ (−ε, ε) ∩ Q̄. (36)
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Indeed, suppose that ξ1, ξ2 meet the hypotheses of Lemma 34. Then, choosing η1 ∈
(0, ε

2 ] ∩ Q, and setting ξ ′
i := ξi + η1, one of ξ ′

1, ξ
′
2 is still rational, and we have

(ξ ′
1 + η)2 ∈ Q ⇐⇒ (ξ ′

2 + η)2 ∈ Q, η ∈ (−η1, η1) ∩ Q̄.

The (formally) weaker version of Lemma 34 now yields ξ ′
1 = ξ ′

2, hence also ξ1 = ξ2.
We now prove this formally weaker version of Lemma 34. Suppose without loss of gen-

erality that ξ1 is rational. If q is a rational number satisfying 0 < q < ε, then (ξ1 ± q)2 ∈ Q.
Invoking Condition (36) with η = q and η = −q , we find that (ξ2 + q)2, (ξ2 − q)2 ∈ Q.
Subtracting yields that 4qξ2 is rational, thus ξ2 ∈ Q, since q is rational and non-zero.

Now let r be a rational number such that r �= 0 and r
√

2 ∈ (ξ1, ξ1 + ε). Applying Condi-
tion (36) with

η = r
√

2 − ξ1 ∈ Q̄ ∩ (0, ε),

we obtain that

(ξ2 + r
√

2 − ξ1)
2 = (ξ2 − ξ1)

2 + 2r2 + 2r(ξ2 − ξ1)
√

2 ∈ Q.

Since r �= 0, the assumption that ξ1 �= ξ2 implies that
√

2 is rational, a contradiction. Hence,
ξ1 = ξ2, as claimed. �

Corollary 35 Let ξ1, ξ2 be real numbers, and suppose there exists ε > 0 such that

(ξ1 + η)2 ∈ Q ⇐⇒ (ξ2 + η)2 ∈ Q, η ∈ (0, ε).

Then we have ξ1 = ξ2.

Proof Choose η1 ∈ (0, ε) such that ξ ′
1 := ξ1 + η1 is rational, and set ξ ′

2 := ξ2 + η1. Then ξ ′
1

and ξ ′
2 satisfy

(ξ ′
1 + η)2 ∈ Q ⇐⇒ (ξ ′

2 + η)2 ∈ Q, η ∈ (0, ε − η1).

By Lemma 34, we have ξ ′
1 = ξ ′

2, hence also ξ1 = ξ2. �

The next two subsections take up the proof of Theorem 30, distinguishing cases as to
whether � is cyclic or dense in R.4

6.3 The case where � is cyclic

Let α be any positive real number, and set � := 〈α〉. We are going to construct a family F

of pairwise locally incompatible normalized test functions in RF (G) of size |F| = |G|2ℵ0 ,
such that 〈�0

f 〉 = � for each f ∈ F, where � is as above.
Let x be a non-trivial element of the group G, and define a function

g : ([0, α) ∩ Q̄) ∪ {α} → G

4The reader should recall that every subgroup of the additive reals is either cyclic or dense; cf., for instance,
[2, Chap. 1, Lemma 1.3].
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via

g(ξ) :=
{

x, ξ 2 ∈ Q and ξ �∈ {0, α}
1G, otherwise

}

(ξ ∈ ([0, α) ∩ Q̄) ∪ {α}),

where, as before, Q̄ denotes the set of real numbers which are algebraic over Q. Moreover,
introduce an equivalence relation on (0, α) by setting

ξ1 ∼ ξ2 :⇐⇒ ξ1 − ξ2 ∈ Q̄,

and let T be a complete set of representatives for the quotient

(
(0, α) − Q̄

)
/ ∼ .

Clearly, |T| = 2ℵ0 . Let h : T → G be an arbitrary (set-theoretic) map, and define a function
fh : [0, α] → G via

fh(ξ) :=
{

g(ξ), ξ ∈ ([0, α) ∩ Q̄) ∪ {α}
h(τ), ξ ∼ τ (τ ∈ T)

}

(0 ≤ ξ ≤ α);

in particular,

fh(0) = g(0) = 1G.

We claim that every function fh obtained in this way is in fact a test function, and that fh1

and fh2 are locally incompatible for any two maps h1, h2 : T → G such that h1 �= h2.
Suppose that, for some map h : T → G, the function fh is not a test function. Then there

exist ε > 0 and points ξ1, ξ2 ∈ (0, α) such that

fh(ξ1 + η) = f −1
h (ξ2 + η), |η| < ε. (37)

We may assume without loss of generality that ξ1 is rational. As the set {1,21/3,22/3} is
linearly independent over Q, there exists a positive integer n, such that 3

√
2/n < ε and

(
3
√

2/n + ξ1)
2 �∈ Q. Since we have 3

√
2/n + ξ1 ∈ Q̄ ∩ [0,1], but (

3
√

2/n + ξ1)
2 �∈ Q, the

definitions of the functions fh and g together imply that

fh(
3
√

2/n + ξ1) = g(
3
√

2/n + ξ1) = 1G �= x = g(ξ1) = fh(ξ1).

Using (37), it follows that

fh(α − ξ2) �= fh(α − ξ2 − 3
√

2/n);

however, since on (0, α) − Q̄ the function fh is constant on cosets modulo Q̄, this implies
that α − ξ2 ∈ Q̄. If x2 �= 1G, setting η = 0 in (37) immediately gives a contradiction; while
for x2 = 1G, we find that

(ξ1 + η)2 ∈ Q ⇐⇒ (ξ2 − α + η)2 ∈ Q, η ∈ (−ε, ε) ∩ Q̄.

It follows from Lemma 34 that ξ1 = ξ2 −α, which is impossible, since ξ1, ξ2 ∈ (0, α). Hence,
fh is a test function, as claimed.



On a new construction in group theory 217

Next, suppose that fh1 and fh2 are locally compatible, where h1, h2 ∈ GT. Then there
exist ε > 0 and points ξ1, ξ2 ∈ (0, α) such that either

fh1(ξ1 + η) = fh2(ξ2 + η), |η| < ε (38)

or

fh1(ξ1 + η) = f −1
h2

(ξ2 + η), |η| < ε. (39)

Let us first consider (38). We may again assume that ξ1 is rational; and, arguing in a similar
way as before, we obtain that ξ2 is algebraic. This yields

(ξ1 + η)2 ∈ Q ⇐⇒ (ξ2 + η)2 ∈ Q, η ∈ (−ε, ε) ∩ Q̄,

implying ξ1 = ξ2 by Lemma 34. Let τ ∈ T be an arbitrary representative. Since Q̄ is dense
in R, there exists a real number t such that t ∼ τ and |t − ξ1| < ε. The equation

fh1(t) = fh1(ξ1 + (t − ξ1)) = fh2(ξ1 + (t − ξ1)) = fh2(t)

derived from (38) now shows that h1(τ ) = h2(τ ), thus h1 = h2, since τ ∈ T was arbitrary.
Now suppose that (39) applies. Again, we may assume that ξ1 is rational, and we obtain

as before that α − ξ2 ∈ Q̄. This yields

g(ξ1 + η) = (
g(α − ξ2 − η)

)−1
, η ∈ (−ε, ε) ∩ Q̄. (40)

Choosing η in (40) small and rational shows that we must have x2 = 1G, and we now find
from (40) that

(ξ1 + η)2 ∈ Q ⇐⇒ (ξ2 − α + η)2 ∈ Q, η ∈ (−ε, ε) ∩ Q̄.

Applying Lemma 34, we get that ξ1 = ξ2 −α, which again is impossible, since the left-hand
side is positive, while the right-hand side is negative. Hence, (39) does not arise, while (38)
forces h1 = h2.

All in all, we have shown that the family of functions F = {fh}h∈GT consists of pairwise
locally incompatible normalized test functions of length α; and since |T| = 2ℵ0 , we have
|F| = |G|2ℵ0 , as required.

It only remains to check the assertion concerning centralizers. Since each fh ∈ F is
cyclically reduced, of positive length, and normalized, the length function L on RF (G),
according to Theorem 10, induces isomorphisms CRF (G)(fh) → 〈�0

fh
〉 for all functions

h : T → G; thus, we have to determine the set �0
fh

of strong periods for h ∈ GT.
By definition,

{0, α} ⊆ �0
fh

, h ∈ GT.

Suppose that there exists a period ω ∈ �fh
with 0 < ω < α. If ω is algebraic, then we have

g(ξ) = fh(ξ) = fh(ξ + ω) = g(ξ + ω), ξ ∈ (0, α − ω) ∩ Q̄,

which is equivalent to

ξ 2 ∈ Q ⇐⇒ (ω + ξ)2 ∈ Q, ξ ∈ (0, α − ω) ∩ Q̄.

From Lemma 34, we infer that ω = 0, a contradiction.
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Now suppose that ω is transcendental, and let τω ∈ T be such that ω ∼ τω. Then we have

g(ξ) = fh(ξ) = fh(ξ + ω) = h(τω), ξ ∈ (0, α − ω) ∩ Q̄;

that is, g would have to be constant on the algebraic points of the interval (0, α − ω), which
is clearly impossible: for instance, pick ξ1 rational and ξ2 = 3

√
2/n for n ∈ N sufficiently

large. It follows that

�0
fh

⊆ �fh
⊆ {0, α} ⊆ �0

fh
,

and so
〈
�0

fh

〉 = 〈α〉 = �, h ∈ GT,

as required.

6.4 The case when � is dense

Since (R,+) has no maximal subgroups, we can find a subgroup �′ such that � < �′ < R

and (�′ : �) ≤ ℵ0. Let x be any fixed non-trivial element of G, α a fixed positive element
of �, and let ξ0 be a fixed real number in (R − �′) ∩ [0, α].

Consider functions f : [0, α] → G satisfying the following three conditions.

(i) f is constant on each non-trivial coset of �′ in R.
(ii) We have

f (ξ) =
⎧
⎨

⎩

1G, ξ ∈ �

x, ξ ∈ �′ − �

⎫
⎬

⎭
(ξ ∈ �′ ∩ [0, α]);

in particular, f (0) = 1G.
(iii) We have f (ξ0/2) = 1G and f (α − ξ0/2) = x.

Since ξ0 �∈ �′, we have ξ0/2,−ξ0/2 �∈ �′; moreover, these points are in distinct cosets mod-
ulo �′. Hence, the third condition does not conflict with Conditions (i) and (ii). Denote by
F the family of all functions f : [0, α] → G meeting Conditions (i)–(iii).

The number |F| of such functions f equals the number of functions

R/�′ − {[0], [ξ0/2], [−ξ0/2]} −→ G;

and, since (R : �′) = ∞, the three missing cosets do not change the cardinality of the
domain, thus there are |G|(R:�′) such functions. Moreover, as �′ was chosen such that
(�′ : �) ≤ ℵ0, we have (R : �′) = (R : �), so that

|F| = |G|(R:�′) = |G|(R:�),

as required.
We claim that each function f ∈ F is a test function, and that any two different such

functions are locally incompatible.
Suppose that f ∈ F is not a test function. Then there exist ε > 0 and points ξ1, ξ2 ∈ (0, α),

such that

f (ξ1 + η) = f −1(ξ2 + η), |η| < ε. (41)
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Since � is dense in R, we may assume without loss of generality that ξ1 ∈ �. Further, since
�′ −� is dense in R, we can choose η1 ∈ (−ε, ε) such that ξ1 +η1 ∈ �′ −�; thus, applying
(41) together with Condition (ii), we get that

f (ξ ′
2 − η1) = f (α − ξ2 − η1) = (

f −1(ξ2 + η1)
)−1 = (

f (ξ1 + η1)
)−1 = x−1,

where ξ ′
2 := α − ξ2. Making again use of (41) and (ii), it follows that

f (ξ ′
2) = (

f −1(ξ2)
)−1 = (

f (ξ1)
)−1 = 1G �= x−1 = f (ξ ′

2 − η1),

implying that f is not constant on the coset ξ ′
2 + �′. Since, by Conditions (i) and (ii), the

only coset modulo �′, on which f is not constant, is �′ itself, we deduce that ξ ′
2 ∈ �′,

therefore also ξ2 ∈ �′, since α ∈ �. Using the fact that �′ is dense in R, we can now choose
η2 ∈ (−ε, ε) such that ξ1 + η2 ∈ ξ0/2 + �′. Then, by (41) together with Conditions (i) and
(iii), we have

1G = f (ξ0/2) = f (ξ1 + η2) = f −1(ξ2 + η2) = (
f (ξ ′

2 − η2)
)−1 = (

f (α − ξ0/2)
)−1 = x−1,

a contradiction. Hence, f is a test function, as claimed.
Now suppose that f1, f2 ∈ F are locally compatible. Then there exist ε > 0 and points

ξ1, ξ2 ∈ (0, α), such that either

f1(ξ1 + η) = f2(ξ2 + η), |η| < ε,

or

f1(ξ1 + η) = f −1
2 (ξ2 + η), |η| < ε.

As before, we may assume that ξ1 ∈ �; and reasoning similar to the one above then shows
that ξ2 ∈ �′. Setting η = 0, it follows further that ξ2 ∈ � and, since f1, f2 are constant on
cosets modulo �, we may suppose that ξ1 = ξ2. First consider the case when

f1(ξ1 + η) = f2(ξ1 + η), |η| < ε.

Then f1 and f2 coincide on an open interval, and are periodic with a dense set of periods;
hence, they are equal. Next suppose that

f1(ξ1 + η) = f −1
2 (ξ1 + η), |η| < ε.

Again choosing η2 ∈ (−ε, ε) such that ξ1 + η2 ∈ ξ0/2 + �′, we find that

1G = f1(ξ0/2) = f1(ξ1 + η2) = f −1
2 (ξ1 + η2) = (

f2(α − ξ1 − η2)
)−1

= (
f2(α − ξ0/2)

)−1 = x−1,

a contradiction. Hence, the second case does not arise, while the first case implies f1 = f2.
So far, we have shown that F is a family of pairwise locally incompatible normalized

test functions of length α ∈ �, and that |F| = |G|(R:�). It only remains to verify that the
group generated by the strong periods of f ∈ F coincides with �. Since f is constant on
cosets modulo �, every element in the set � ∩ [0, α] is a period of f . Moreover, since
α ∈ �, every ω ∈ � ∩ [0, α] is also a strong period. As � is dense in R, it is generated by
every intersection with an open interval; hence, the strong periods generate a subgroup of R
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containing �. Now let ω < α be a period of f , and choose points ξ1, ξ2 ∈ (0, α − ω) with
ξ1 ∈ � and ξ2 ∈ �′ − �. Then

f (ξ1 + ω) = f (ξ1) = 1G,

while

f (ξ2 + ω) = f (ξ2) = x.

Since ξ1 − ξ2 ∈ �′, the points ξ1 + ω and ξ2 + ω lie in the same coset modulo �′; and, since
f is constant on �′-cosets different from �′ itself, we conclude that ω ∈ �′. Moreover, since
f (ξ1 + ω) = 1G, we have ω ∈ �. We conclude that every period of f is in fact contained in
�; hence,

� ≤ 〈
�0

f

〉 ≤ 〈
�f

〉 ≤ �,

and so
〈
�0

f

〉 = �,

as desired.

7 The cardinality of RF(G) revisited

Here we give a second proof of Corollary 33 concerning the cardinality of the group RF (G),
this time based on properties of the Cantor discontinuum.

We may assume that G is non-trivial, and may concentrate on the proof of (34). In order
to establish the latter inequality, we shall produce a set of reduced functions of cardinality
|G|2ℵ0 as follows. Let C ⊂ [0,1] be the Cantor discontinuum; that is, the set of real numbers
in [0,1] whose triadic expansion avoids the digit 1. It is well known that C is compact,
of cardinality |C| = 2ℵ0 , and that [0,1] \ C is dense in [0,1]. We shall construct a map
f : [0,1] \ C → G, such that, for every (set-theoretic) function g : C → G, the map f ⊕ g :
[0,1] → G given by

(f ⊕ g)(ξ) :=
⎧
⎨

⎩

f (ξ), ξ �∈ C

g(ξ), ξ ∈ C

⎫
⎬

⎭
(0 ≤ ξ ≤ 1)

is reduced. In this way, Inequality (34) follows and, together with (33), again establishes
Corollary 33.

Let {Cμ}μ∈N0 be an enumeration of the connected components of [0,1]\ C , Cμ = (aμ, bμ)

say, let {αμ}μ∈N0 be the corresponding sequence of interval lengths, αμ = bμ − aμ, and let
{fμ}μ∈N0 be a sequence of pairwise locally incompatible test functions such that L(fμ) = αμ

for all μ ∈ N0 (such a sequence exists by Corollary 31, since G is non-trivial). Then we
define a function f on [0,1] \ C via

f (ξ) := fμ(ξ − aμ), ξ ∈ Cμ.

Now let g : C → G be an arbitrary map. We claim that f ⊕ g : [0,1] → G is reduced.
Suppose otherwise. Then there exists ξ0 ∈ (0,1) and ε > 0 such that (f ⊕ g)(ξ0) = 1G, and

(f ⊕ g)(ξ0 + η)(f ⊕ g)(ξ0 − η) = 1G, 0 < η < ε. (42)
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Suppose first that ξ0 �∈ C . Then ξ0 ∈ Cμ for some μ ∈ N0, and we find that

{
fμ(ξ0 − aμ) = 1G

fμ(ξ0 − aμ + η)fμ(ξ0 − aμ − η) = 1G, 0 < η < ε′

}

, (43)

where ε′ := min{ε, ξ0 − aμ, bμ − ξ0}. Assertions (43) imply however that fμ is not reduced,
contradicting the fact that fμ is a test function in view of Lemma 12.

Now suppose that ξ0 ∈ C . Then we claim that there exist points ξ1, ξ2 ∈ (0,1) satisfying

(i) 0 < ξ0 − ε < ξ1 < ξ0 < ξ2 < ξ0 + ε < 1,

(ii) |ξ1 − ξ0| = |ξ2 − ξ0|,
(iii) ξ1, ξ2 �∈ C .

Indeed, by density of [0,1] \ C in [0,1], there exists ξ ′
1 such that ξ0 − ε < ξ ′

1 < ξ0 and ξ ′
1 �∈ C .

Let ξ ′
1 ∈ Cμ1 , choose ε′′ > 0 such that

(ξ ′
1 − ε′′, ξ ′

1 + ε′′) ⊆ Cμ1 ∩ (ξ0 − ε, ξ0),

and let ξ ′
2 := ξ0 + |ξ ′

1 − ξ0|. Again making use of the density property of [0,1] \ C , there
exists a point ξ2 �∈ C such that ξ ′

2 − ε′′ < ξ2 < ξ ′
2. Let ξ1 := ξ ′

1 + |ξ2 − ξ ′
2|. Then ξ1 ∈ Cμ1 , in

particular, ξ1 �∈ C , and the points ξ1, ξ2 satisfy Properties (i)–(iii) by construction.
We have ξi ∈ Cμi

(i = 1,2) for certain indices μ1,μ2 ∈ N0 such that μ1 �= μ2, and (42)
now implies that

fμ1(ξ1 − aμ1 + η) = f −1
μ2

(αμ2 − ξ2 + aμ2 + η), |η| < ε̃, (44)

where ε̃ > 0 is chosen such that
{

(ξ1 − ε̃, ξ1 + ε̃) ⊆ (ξ0 − ε, ξ0) ∩ Cμ1

(ξ2 − ε̃, ξ2 + ε̃) ⊆ (ξ0, ξ0 + ε) ∩ Cμ2

}

.

However, (44) implies that fμ1 loc. comp. fμ2 , contradicting the choice of the sequence
{fμ}, since μ1 �= μ2. Hence, f ⊕ g is reduced as claimed.

8 A structure theorem

The aim of this final section is to establish a number of structural properties of RF (G) and
its quotient group RF 0(G) := RF (G)/E(G). In what follows, − denotes abelianization,
and the homomorphisms

ab(G) : RF (G) → RF (G)

ab0(G) : RF (G) → RF (G)
/
(E(G)[RF (G), RF (G)])

π : RF (G) → RF 0(G)

are the canonical ones. As a useful piece of general nonsense, we note that, for a group 
, a
normal subgroup � � 
, and a verbal functor VW (·) : Groups → Groups on the category
Groups of groups and homomorphisms associated with a set

W = {
wμ(xν) : μ ∈ M

}
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of words in the variables xν , we have a canonical isomorphism



/
(�VW (
)) ∼= (
/�)

/
VW (
/�).

This follows immediately from the canonical isomorphism



/
(�VW (
)) ∼= 
/�

/
�VW (
)/�

plus the trivial fact that

�VW (
)/� = VW (
/�).

As a special case, we have a canonical isomorphism

RF (G)
/
(E(G)[RF (G), RF (G)]) ∼= RF 0(G),

which we shall tacitly use to view ab0(G) as a map

ab0(G) : RF (G) → RF 0(G).

The following crucial result analyses the subgroup generated by a set of incompatible test
functions, as well as the images of this subgroup under the projections π , ab(G), and
ab0(G).

Proposition 36 Let {fσ }σ∈S be a set of pairwise locally incompatible test functions. Then
we have the following.

(i) The subgroup FS := 〈fσ : σ ∈ S〉 of RF (G) is free with basis {fσ }σ∈S , and satisfies

FS ∩ E(G) = {
1G

}; (45)

in particular, FS is hyperbolic, and the image of FS under the projection π is free with
basis {π(fσ )}σ∈S .

(ii) The image of FS under the projections ab(G) respectively ab0(G) is free abelian with
basis {ab(G)(fσ )}σ∈S and {ab0(G)(fσ )}σ∈S , respectively.

Proof We first establish Part (ii). Let N denote either of the normal subgroups [RF (G),

RF (G)] or E(G)[RF (G), RF (G)], and consider a relation

(fσ1N)γ1(fσ2N)γ2 · · · (fσr N)γr = (f γ1
σ1

f γ2
σ2

· · ·f γr
σr

)N = N (46)

in ab(G)(FS) respectively ab0(G)(FS) with r ≥ 0, distinct indices σ1, σ2, . . . , σr , and ex-
ponents γ1, γ2, . . . , γr ∈ Z \ {0}. If r > 0, then the function f γ1

σ1
f γ2

σ2
· · ·f γr

σr
is a test function

by Proposition 29, thus f γ1
σ1

f γ2
σ2

· · ·f γr
σr

�∈ N by Corollary 21, contradicting (46). Hence, we
must have r = 0, so ab(G)(FS) and ab0(G)(FS) are indeed free abelian groups of rank |S|,
freely generated by the sets {ab(G)(fσ )}σ∈S respectively {ab0(G)(fσ )}σ∈S .

Next, we show that the group FS itself is free with basis {fσ }σ∈S . Consider a non-empty
reduced word w(fσ ) = f γ1

σ1
f γ2

σ2
· · ·f γr

σr
, where γ1, γ2, . . . , γr ∈ {1,−1}. We shall prove by

induction on ρ that

L(f γ1
σ1

f γ2
σ2

· · ·f γρ
σρ ) =

ρ∑

j=1

L(fσj
), ρ = 1,2, . . . , r. (47)
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Indeed, the equation in (47) holds trivially for ρ = 1; and if the equation in (47) holds for
some ρ < r , then

f γ1
σ1

f γ2
σ2

· · ·f γρ
σρ = f γ1

σ1
◦ f γ2

σ2
◦ · · · ◦ f

γρ
σρ .

Since w(fσ ) is freely reduced, we either have σρ �= σρ+1, or σρ = σρ+1 and γρ = γρ+1. In
the first case, we have

ε0(f
γρ
σρ , f

γρ+1
σρ+1 ) = 0 = ε0(f

γ1
σ1

f γ2
σ2

· · ·f γρ
σρ , f

γρ+1
σρ+1 )

by Lemma 24, so that the equation in (47) holds with ρ replaced by ρ + 1, while in the
second case

ε0(f
γρ
σρ , f

γρ+1
σρ+1 ) = ε0(f

γρ
σρ , f

γρ
σρ ) = 0 = ε0(f

γ1
σ1

f γ2
σ2

· · ·f γρ
σρ , f

γρ+1
σρ+1 )

by Lemma 12, from which we conclude again that the equation in (47) holds with ρ replaced
by ρ +1. This proves Assertion (47). It follows that a non-empty freely reduced word w(fσ )

as above satisfies

L(w(fσ )) =
r∑

j=1

L(fσj
) > 0;

in particular, w(fσ ) �= 1G. This shows that the subgroup FS is freely generated by the test
functions fσ , as claimed.

In order to establish (45), it clearly suffices to show that every subgroup of RF (G)

generated by finitely many members of the family {fσ }σ∈S meets E(G) trivially. Let
σ1, σ2, . . . , σk ∈ S be distinct indices, where k ≥ 1. Then

N := 〈
fσ1 , fσ2 , . . . , fσk

〉 ∩ E(G)

is normal in the finitely generated free group

F := 〈
fσ1 , fσ2 , . . . , fσk

〉
,

and the quotient

F /N ∼= F E(G)/E(G)

projects onto

F̃ := 〈
ab0(G)(fσ1),ab0(G)(fσ2), . . . ,ab0(G)(fσk

)
〉 ≤ RF 0(G).

By Part (ii), F̃ if free abelian of rank k; in particular, (F : N ) = ∞, implying N = 1 by a
result of Greenberg [5]; cf. also [7, Chap. I, Prop. 3.11]. Hence, Assertion (45) is proven.
It follows that FS is hyperbolic, and that the restriction π |FS

: FS → RF 0(G) is an em-
bedding, so π(FS) is free with basis {π(fσ )}σ∈S as claimed. The proof of Proposition 36 is
complete. �

We are finally in a position to state and prove the following structure theorem concerning
RF (G) and its quotient group RF 0(G).

Theorem 37 Let G be a non-trivial group, set cG := |G|2ℵ0 , and assume the axiom of choice.
Then the following holds true.
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(i) The groups RF (G) and RF 0(G) contain a free subgroup of rank cG, but are not free;
in particular, |RF 0(G)| = cG.

(ii) Every non-trivial torsion-free abelian group of rank at most 2ℵ0 is realized (up to iso-
morphism) as the centralizer of a hyperbolic element in RF (G).

(iii) The abelianized groups RF (G) and RF 0(G) contain a Q-vector space of dimension
cG as a direct summand; in particular, these groups contain a free abelian subgroup of
rank cG, but are not free abelian, and

∣
∣RF (G)

∣
∣ = cG = ∣

∣RF 0(G)
∣
∣.

(iv) Every non-trivial normal subgroup N � RF (G) contains a free subgroup of rank cG;
in particular, |N | = cG and N is not soluble.

(v) If N � RF (G) has a non-trivial elliptic element, then N contains a subgroup isomor-
phic to a free power of the form U

∗cG

0 , where U0 := N ∩ G0.

Proof Let {fσ }σ∈S be a family of pairwise locally incompatible test functions with |S| = cG,
and CRF (G)(fσ ) ∼= (Q,+) for all σ ∈ S (such a family exists by Theorem 30). By Part (i) of
Proposition 36, the group FS = 〈fσ : σ ∈ S〉 is a free subgroup of RF (G) of rank cG; and its
image under the projection π is a free subgroup of RF 0(G) of the same rank. This last fact
forces |RF 0(G)| ≥ cG, and equality in this equation follows (in the presence of the axiom
of choice) from Corollary 33.

Next, set

C := 〈
CRF (G)(fσ ) : σ ∈ S

〉 ≤ RF (G),

and consider the homomorphic images C′ := ab(G)(C) and C′
0 := ab0(G)(C) of C in RF (G)

and RF 0(G), respectively. Both C′ and C′
0 are divisible, and contain a free abelian sub-

group of rank cG by Part (ii) of Proposition 36, namely the group ab(G)(FS) respec-
tively ab0(G)(FS). By the structure theorem on divisible groups, C′ and C′

0 decompose
as C′ = V ′ ⊕ T ′ respectively C′

0 = V ′
0 ⊕ T ′

0 , where V ′ and V ′
0 are Q-vector spaces, and

T ′, T ′
0 are the respective torsion subgroups of C′ and C′

0; cf. [4, Theorem 19.1]. Since
ab(G)(FS) and ab0(G)(FS) are torsion-free, they are embedded via the canonical projection
V ′ ⊕ T ′ → V ′ respectively V ′

0 ⊕ T ′
0 → V ′

0 into V ′ respectively V ′
0, implying dimQ V ′ ≥ cG

and dimQ V ′
0 ≥ cG; and, since |RF (G)| = cG by Corollary 33, we have

dimQ V ′ = cG = dimQ V ′
0.

Further, by a result of Baer, a divisible subgroup of an abelian group is a direct summand;
cf. [1] or [4, Theorem 18.1]. It follows that V ′ is a direct summand of RF (G), and that V ′

0
is a direct summand of RF 0(G). The assertions concerning the cardinalities of RF (G) and
RF 0(G) follow from the above plus Corollary 33.

Part (ii) of the theorem follows immediately from Proposition 7, Lemma 12, and Corol-
lary 32.

The fact that RF (G) (for G �= {1G}) is not a free group, follows for instance from the ex-
istence of non-trivial elements with non-cyclic centralizer; or from the (already established)
fact that RF (G) is not free abelian. Similarly, the fact that RF 0(G) is not free abelian
serves to show that RF 0(G) itself is not free; alternatively, Corollary 32, in conjunction
with Corollaries 21 and 22, allows us to exhibit non-trivial elements with non-cyclic cen-
tralizer in RF 0(G).
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Next, we prove (iv). Let {fσ }σ∈S be a family of test functions as described in Corollary 31
with L(fσ ) = 1 for all σ ∈ S, say. Since N is non-trivial, it must (according to Proposition 2
and Corollary 3) contain a hyperbolic element h and, since N is normal, h1 = c(h) ∈ N . By
definition, h1 is cyclically reduced, and α1 := L(h1) > 0 in view of Proposition 7, since h is
hyperbolic. We claim that for all but at most two indices σ ∈ S we have

fσ h1f
−1
σ = fσ ◦ h1 ◦ f −1

σ . (48)

Indeed, suppose there are three distinct indices σ1, σ2, σ3 ∈ S such that

ε0(fσi
, h1) + ε0(h1, f

−1
σi

) > 0, i = 1,2,3.

Then there are two indices out of these three, to fix ideas say σ1 and σ2, such that

ε0(fσ1 , h1) > 0 and ε0(fσ2 , h1) > 0

or

ε0(fσ1 , h
−1
1 ) > 0 and ε0(fσ2 , h

−1
1 ) > 0.

In both cases, we conclude that there exists ε > 0 such that

fσ1

(
1 − ε

2
+ η′

)
= fσ2

(
1 − ε

2
+ η′

)
, |η′| < ε

2
,

contradicting the fact that fσ1 and fσ2 are locally incompatible. Hence, at most two of the test
functions fσ exhibit cancellation when conjugating h1. Deleting these exceptional functions,
we obtain a family {fσ }σ∈S′ of pairwise locally incompatible test functions with |S ′| = |S|,
such that (48) holds for all σ ∈ S ′.

We claim that the subgroup

F := 〈
fσ h1f

−1
σ : σ ∈ S ′〉 ≤ N

is freely generated by the elements fσ h1f
−1
σ with σ ∈ S ′. To see this, consider a reduced

word

w = w(fσ h1f
−1
σ ) = fσ1h

γ1
1 f −1

σ1
fσ2h

γ2
1 f −1

σ2
· · ·fσk

h
γk

1 f −1
σk

, (49)

where k ≥ 0, γj ∈ Z \ {0}, and σ1, σ2, . . . , σk ∈ S ′ are indices such that σj �= σj+1 for j +
1,2, . . . , k − 1. Since h1 is cyclically reduced, we have

h
γj

1 = h
sgn(γj )

1 ◦ · · · ◦ h
sgn(γj )

1︸ ︷︷ ︸
|γj | factors

,

and since, for σ ∈ S ′,

ε0(fσ ,h1) = 0 = ε0(h1, f
−1
σ )

by construction and L(h1) > 0, we have

fσj
h

γj

1 f −1
σj

= fσj
◦ h

sgn(γj )

1 ◦ · · · ◦ h
sgn(γj )

1︸ ︷︷ ︸
|γj | factors

◦f −1
σj

;
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in particular,

L(fσj
h

γj

1 f −1
σj

) = |γj |α1 + 2.

Moreover, by Part (i) of Lemma 24,

ε0(fσj
h

γj

1 f −1
σj

, fσj+1h
γj+1
1 f −1

σj+1
) = ε0(f

−1
σj

, fσj+1) = 0,

from which we conclude that

L(w) = α1(|γ1| + · · · + |γk|) + 2k.

Hence, w = 1G forces k = 0, so that w has to be the empty word.
Finally, we establish Part (v). Since every non-trivial element of fσ G0f

−1
σ has length 2,

we have

G0 �= fσ G0f
−1
σ , σ ∈ S;

and fσ1G0f
−1
σ1

= fσ2G0f
−1
σ2

for σ1, σ2 ∈ S implies σ1 = σ2, since fσ1 and fσ2 are locally
incompatible for σ1 �= σ2. Hence, the union

U0 ∪
⋃

σ∈S

fσ U0f
−1
σ

forms an amalgam with trivial intersection by Corollary 8. Now consider the canonical pro-
jection

ϕ : U0 ∗ ∗
σ∈S

fσ U0f
−1
σ −→

〈
U0 ∪

⋃

σ∈S

fσ U0f
−1
σ

〉
,

and let

t1u1t
−1
1 · t2u2t

−1
2 · · · trur t

−1
r = 1G (50)

be a normal form element in the kernel of ϕ; that is, tj ∈ {1G}∪ {fσ }σ∈S , uj ∈ U0 \ {1G}, and
L(t−1

j tj+1) > 0. We claim that

L(t1u1t
−1
1 · t2u2t

−1
2 · · · tiui t

−1
i ) = 2

i∑

j=1

L(tj ), i = 1,2, . . . , r, (51)

which would imply that the left-hand side of (50) is the empty word, so that ϕ is an iso-
morphism. The proof of (51) is by induction on i; the case where i = 1 being obviously
true, since u1 �= 1G, so that ε0(t1u1, t

−1
1 ) = 0. Suppose then that (51) holds for some i with

1 ≤ i < r , and consider the normal form word

t1u1t
−1
1 · t2u2t

−1
2 · · · tiui t

−1
i · ti+1ui+1t

−1
i+1.

Now there are several cases.
(i) We have ti = 1G and i = 1. Then ti+1 = t2 = fσ for some σ ∈ S; and, since L(fσ ) > 0

and u2 �= 1G, the equation

L

(
i+1∏

j=1

tj uj t
−1
j

)

= 2
i+1∑

j=1

L(tj ) (52)

holds in this case.
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(ii) We have ti = 1G and i ≥ 2. Then ti−1 = fσ1 and ti+1 = fσ2 with σ1, σ2 ∈ S. If σ1 �= σ2,
then (52) follows from Lemma 24 plus the fact that ui+1 �= 1G, while, for σ1 = σ2, the same
conclusion follows since ui, ui+1 �= 1G.

(iii) We have ti = fσ for some σ ∈ S, and ti+1 = 1G. In this case, (52) holds trivially.
(iv) We have ti = fσ1 and ti+1 = fσ2 with σ1, σ2 ∈ S. In this case, we must have σ1 �= σ2,

and (52) follows again, this time from Lemma 24 plus the fact that ui+1 �= 1G.
This completes the proof by induction of (51).
We have shown that

〈
U0 ∪

⋃

σ∈S

fσ U0f
−1
σ

〉
∼= U0 ∗ ∗

σ∈S
fσ U0f

−1
σ

∼= U
∗cG

0 ,

and the group described on the left-hand side is clearly contained in N , finishing the proof
of Part (v), and of the theorem. �
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