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An integer n is called a totient, if there is some integer x, such that ϕ(x) = n,
where ϕ is Euler’s function. If this equation is not solvable, n is called a nontotient.
In 1956 Schinzel[4] proved, that for any positive k, 2 · 7k is a nontotient. In 1961,
Ore (see [1])proved that for every α, there is some odd number k, such that 2α ·k is
a nontotient. In 1963, Selfridge[1] showed that the same is true with k restricted by
k ≤ 271129. Recently Mhingzhi[3] proved, that for any given d there are infinitely
many primes p, such that dp is a nontotient. In fact, his proof gives the existence
of integers a, q with (a, q) = 1, such that for any sufficiently large prime p ≡ a
(mod q), dq is a nontotient. Thus by the prime number thoerem for arithmetic
progressions, a positive percentage of all primes p has this property. However, here
q > dτ(d), where τ(n) denotes the number of divisors of n, thus this percentage
is quiet small. In this note we will show that this is true for almost all primes
p. Further we describe explicitly a large class of nontotients. We will prove the
following theorems.

Theorem 1. There is an absolute constant c, such that for any integer d the number
of primes p ≤ x, such that dp is a totient, is bounded by cτ(d2) x

log2 x
.

Here and in the sequel the letter c denotes absolute positive constants, the letters
p and q denote prime numbers only.

Theorem 2. Set m = 3 · 5 · 7 · 13 · 19 · 37 · 73, a = 35274404. If d is an integer
relatively prime to m, such that for every prime divisor p of d, p is a quadratic
residue (mod 73), and q ≡ a (mod m) is a prime number, such that q−1 6 |d, then
dq is a nontotient.

It will be apparent from the proof that the value of a is by no means unique.
Also m may be subject to variation, we only use the fact that m has many prime
divisors, and that the least common multiple of all p− 1, where p ranges over the
prime divisors of m, is very small. However, for other values of m the computaions
would become extremely long.

The proof of theorem 1 will be based on the following theorem of Erdős [2].

Theorem 3. There is an absolute constant c, such that for any integer a we have
for the number Na(x) of primes p ≤ x, such that ap+ 1 is also prime the inequality

Na(x) ≤ c x
log2 x

∏
q|a

(
1− 1

q

)−1
.

To prove theorem 1, assume that p is some prime, such that dp is a totient, say
dp = ϕ(n) . Since ϕ is multiplicative, and for prime numbers q we have ϕ(q) = q−1,
there is either some prime divisor q of n, such that q ≡ 1 (mod p), say q = ap+1, or
n is divisible by p2. In the latter case we have n = pkm, where (p,m) = 1. Thus we
get dp = (p−1)pk−1ϕ(m), and p−1|d. Thus the number of such p is ≤ τ(d). In the
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first case we have n = qm with (q,m) = 1, thus we get dp = (q−1)ϕ(m) = apϕ(m).
Especially, a is some divisor of d. We now fix some a, and count the number of
primes p ≤ x, such that the equation dp = ϕ(qm) is solvable with q = ap + 1 is
prime. This is at most the number of p ≤ x, such that q = ap+ 1 is prime, and by

theorem 2 this number is ≤ c x
log2 x

∏
q|a

(
1− 1

q

)−1
. Since a is a divisor of d, the total

number of solutions is at most

c
x

log2 x

∑
a|d

∏
q|a

(
1− 1

q

)−1
We have ∏

q|a

(
1− 1

q

)−1
=

∏
q|a

(
1 +

1

q

)∏
q|a

(
1− 1

q2

)−1
<

π2

6

∏
q|a

(
1 +

1

q

)
≤

∑
t|a

1

t

Hence the sum above can be estimated as∑
a|d

∏
q|a

(
1− 1

q

)−1
≤ c

∑
a|d

∑
t|a

1

t

The function f(d) =
∑
a|d
∑
t|a

1
t is multiplicative, since it is the Dirichlet convo-

lution of multiplicative functions. For prime powers we have

f(pk) =
∑

0≤l≤k

∑
0≤m≤l

p−m =
∑

0≤m≤k

(k −m+ 1)p−m < 2k + 1 = τ(p2k)

By multiplicativity, we get f(n) ≤ τ(n2) for any n. Hence the total number of
primes p ≤ x, such that dp is totient, is at most

c
x

log2 x
τ(d2) + τ(d)

and by increasing c slightly, the second term may be neglected. This proves theorem
1.

To prove theorem 2 note that if the equation ϕ(x) = dq is solvable, either q2|x,
or there is some prime p ≡ 1 (mod q) such that p− 1|dq. In the first case we have
q(q−1) = ϕ(q2)|ϕ(x) = dq, thus q−1|d contradicting our first assumption on d. In
the second case number the prime divisors of m by rj , 1 ≤ j ≤ 7, and choose some
primitive root πj for each j. We may assume that p does not divide m, thus the
condition that p is prime implies rj 6 |p. This is equivalent to d′q 6≡ 1 (mod rj) for
a certain divisor d′ of d. Write d′ =

∏n
i=1 p

xi
i , define αij by π

αij

j ≡ pi (mod rj) and

define bj by πj
bj ≡ q ≡ a (mod rj). Then the condition on p implies the system of

incongruences
n∑
i=1

αijxi 6≡ −bj (mod rj − 1)
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Now choosing πj to be the least primitive root (mod rj), i.e. πj = 2 for j 6= 3, 7,
π3 = 3 and π7 = 5, we obtain b1 = 1, b2 = 2, b3 = 4, b4 = 8, b5 = 12, b6 = 24, b7 = 0.
(Note that here we have much more freedom: we could choose different primitive
roots, and we could use different values for the bj , each resulting in different values
for a) To prove our claim, note first that by assumption all pi are quadratic residues
(mod 73), thus all αi7 are even. Thus since b7 is even, too, we may divide the
seventh incongruence by 2, obtaining an incongruence (mod 36). Further, for all
j we have rj − 1|36, thus every incongruence (mod rj − 1) may be written as a
set of incongruences (mod 36). Now the solvability of the system is equivalent to
the existence of some residue class (mod 36), which is not contained in one of the
following seven sets, each defined by one of the seven incongruences:

{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35}
{2, 6, 10, 14, 18, 22, 26, 30, 34}
{4, 10, 14, 20, 26, 32}
{8, 20, 32}, {12, 30}, {24}, {36}

By construction, the first four sets define residue classes (mod 12), and one easily
checks that all but the class 0 are covered, whereas the last three sets contain the
remaining class. Thus our initial assumption on the solvability of the equation
ϕ(x) = dq was wrong, proving theorem 2.

References

[1] P. T. Bateman, J. L. Selfridge, Solution to the problem 4995, American Mathematical Monthly

70, 101-102 (1963)
[2] P. Erdös, On the normal number of prime factors of p−1 and some related problems concerning

Euler’s ϕ-function, Q. J. Math., Oxf. Ser. 6, 205-213 (1935)
[3] Z. Mingzhi, On Nontotients, J. Number theory 43, 168 - 172 (1993)

[4] A. Schinzel, Sur l’equation φ(x) = m, ELem. Math. 11, 75 - 78 (1956)

AMS-Classification 11A25


