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1. Introduction

The purpose of this paper is three-fold. On the one hand – and that was its original
motivation – we establish an asymptotic estimate for the subgroup growth of Fuchsian
groups, that is, groups Γ of the form

Γ =
〈
x1, . . . , xr, y1, . . . , ys, u1, v1, . . . , ut, vt

∣∣
xa1

1 = · · · = xarr = x1 · · ·xrye11 · · · yess [u1, v1] · · · [ut, vt] = 1
〉

(1)

with integers r, s, t ≥ 0 and e1, . . . , es ≥ 2, and a1, . . . , ar ∈ N ∪ {∞}. Although this
definition appears not to be standard, it encompasses all different notions of Fuchsian
groups known to the authors.

Theorem A. Let Γ be a Fuchsian group such that

α(Γ) :=
∑
i

(
1− 1

ai

)
+
∑
j

2

ej
+ 2(t− 1) > 0, (2)

and let

µ(Γ) =
∑
i

(
1− 1

ai

)
+ s + 2(t− 1)

be the hyperbolic measure of Γ. Then the number sn(Γ) of index n subgroups in Γ
satisfies an asymptotic expansion

sn(Γ) ≈ δLΓ(n!)µ(Γ)ΦΓ(n)

{
1 +

∞∑
ν=1

aν(Γ)n−ν/mΓ

}
, (n→∞). (3)
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Here,

δ =

{
2, ∀i : ai finite and odd,∀j : ej even

1, otherwise,

LΓ = (2π)−1/2−
∑
i(1−1/ai)

( ∏
i:ai 6=∞

a
−1/2
i

)
exp

−∑
i

2|ai

1

2ai

 ,

ΦΓ(n) = n3/2−
∑
i(1−1/ai) exp

 r∑
i=1

∑
t|ai
t<ai

nt/ai

t

 ,

mΓ = [a1, a2, . . . , ar],

and the aν(Γ) are explicitly computable constants depending only on Γ.

Here, ≈ denotes an asymptotical series, confer the end of this section.

On the other hand, the proof of Theorem A requires the representation-theoretic ap-
proach initiated in [27], and large parts of the present paper are concerned with various
statistical aspects of symmetric groups, and rather subtle estimates for values and mul-
tiplicities of their characters, which are also of independent interest. In particular, we
show the following.

Theorem B. Let ε > 0 and an integer q be given, n sufficiently large, and let χ be an
irreducible character of Sn.

(i) We have |χ(c)| ≤
(
χ(1)

)1−δ
with

δ =

((
1− 1/(log n)

)−1 12 log n

log(n/f)
+ 18

)−1

,

where c is any conjugacy class of Sn with f fixed points.

(ii) We have ∑
πq=1

|χ(π)| ≤
(
χ(1)

) 1
q

+ε
∑
πq=1

1.

(iii) Let m
(q)
χ be the multiplicity of χ in the q-th root number function of Sn. Then

m(q)
χ ≤

(
χ(1)

)1−2/q+ε
.

All these bounds are essentially best possible. In characteristic zero, estimates for
character values and multiplicities are among the least understood topics in the rep-
resentation theory of symmetric groups. In recent times, additional interest in this
circle of problems was sparked by the theory of random walks on finite groups. In this
context, Theorem B enables us to prove the following.

Theorem C. Let c be a non-trivial conjugacy class in Sn. Denote by tc(c) the least
even integer such that tc(c) elements chosen at random from c have, with probability
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≥ 1− 1
n
, no common fixed point, and let ts(c) be the mixing time for the random walk

generated by c. Then, for n ≥ 4000, we have

tc(c) ≤ ts(c) ≤ 10tc(c).

We call the quantity tc combinatorial mixing time, since after tc steps the distribution
of a single point cannot be distinguished from the uniform distribution.

Theorem C establishes in full generality a conjecture of Roichman; cf. [29, Conj. 6.6].
For special choices of c, Roichman’s conjecture had already been known to hold: Dia-
conis and Shahshahani [8] established it for transpositions, Roichman [29] generalised
their result to conjugacy classes having at least cn fixed points, and Fomin and Lulov
[11] established a character bound implying Theorem C for conjugacy classes having
only cycles of the same length.

In the remainder of this introduction, we describe in more detail the organisation of our
paper, and the contents of individual sections. After a short introduction to random
walks on finite groups generated by conjugacy classes and their connection with char-
acter theory, Section 2 establishes Theorem C and the first part of Theorem B. This
includes the proof of a variety of preliminary character estimates for arbitrary conju-
gacy classes, which are used throughout the paper. The main tools here are the hook
formula and the Murnaghan-Nakayama rule. Section 3 gives the proof of Theorem B
(ii). In preparation for this argument, we derive a number of results concerning the
statistics of symmetric groups, mostly dealing with the distribution of cycles in various
subsets of Sn; cf. Subsection 3.1. Again, this group of results is also used in other
sections. The theory developed up to this point would already enable us to estimate
the subgroup growth of Fuchsian groups with s = 0; that is, of Fuchsian groups where
none of the generators y1, . . . , ys in (1) are present. However, in order to deal with
Fuchsian groups in full generality, we also need some insight into the growth behaviour
of multiplicities of root number functions for symmetric groups, measured against the
degree of the corresponding irreducible character; in particular, we have to establish
Theorem B (iii). Section 4 is devoted to the proof of this and related results.

Proof and discussion of Theorem A are the principal themes of Section 5. Following
the argument establishing Theorem A, we demonstrate that condition (2) is in fact
necessary. More specifically, we show the following.

Theorem D. Let Γ be as in (1) with r = t = 0, s ≥ 2 and α(Γ) < 0 (that is, Γ is the
one-relator group associated with the defining relation ye11 y

e2
2 · · · yess = 1). Then, as n

tends to infinity, we have

sn(Γ) ∼ K(n!)µ(Γ)−α(Γ)/2 exp

(
s∑
j=1

∑
vj |ej
νj<ej

nνj/ej

νj
+

α(Γ)− 2µ(Γ) + 2

4
log n

)
.

This is the contents of Theorem 4, where also the constant K is given explicitly. Ac-
cording to Theorem D, the subgroup growth of these one-relator groups is faster than
might be expected in view of Theorem A. In Subsection 5.2, we discuss the explicit
computation of the coefficients aν(Γ) in general, and, as an example, compute the first
22 of these coefficients for the triangle group Γ(2, 3, 7), only 10 of which turn out to be
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non-vanishing. As a further application of Theorem B (iii), we determine the subgroup
growth of a discrete analogue of Demuškin groups. Demuškin groups are pro-p-groups
1 with Poincaré duality and homological dimension 2. For p > 2, these are known to
be one-relator groups with defining relation of the form

R = xp
h

1 [x1, x2][x3, x4] · · · [xm−1, xm], h ∈ N ∪ {∞}.
In Subsection 5.4, we prove the following result.

Theorem E. For integers q ≥ 1 and d ≥ 2, let

Γq,d =
〈
x1, y1, . . . , xd, yd

∣∣xq−1
1 [x1, y1] · · · [xd, yd] = 1

〉
.

Then there exist explicitly computable constants γν(Γq,d), such that

sn(Γq,d) ≈ δn(n!)2d−2

{
1 +

∞∑
ν=1

γν(Γq,d)n
−ν

}
, n→∞,

where

δ =

{
1, q even

2, q odd.

Introduce an equivalence relation ∼ on the class of finitely generated groups via

Γ ∼ ∆ :⇔ sn(Γ) = (1 + o(1))sn(∆), (n→∞).

In [25, Theorem 3] a characterisation in terms of structural invariants is given for the
equivalence relation ∼ on the class of groups Γ of the form

Γ = G1 ∗G2 ∗ · · · ∗Gs ∗ Fr
with r, s ≥ 0 and finite groups Gσ, and it is shown that each ∼-class of free products
decomposes into finitely many isomorphism classes. Our final section is concerned with
the analogous problems for Fuchsian groups.

Theorem F. The multi-set {a1, a2 . . . , ar} together with the numbers µ(Γ) and δ form
a complete system of invariants for the equivalence relation ∼ on the class F of all
Fuchsian groups Γ satisfying α(Γ) > 0.

Theorem F allows us to construct an infinite sequence of pairwise non-isomorphic Fuch-
sian groups, all of which are ∼-equivalent to the same Fuchsian group Γ; in particular
there cannot be a finiteness result for the relation ∼ on F . The situation changes,
if we take into account the full precision of (3) in Theorem A. More specifically, con-
sider three refinements of the equivalence relation ∼ on F : (i) the relation ≈ of strong
equivalence1 defined via

Γ ≈ ∆ :⇔ sn(Γ) = sn(∆)(1 +O(n−A)) for every A > 0,

(ii) isomorphy, and (iii) equality of the system of parameters

(r, s, t; a1, a2 . . . , ar, e1, e2, . . . , es)

1The symbols ∼ and ≈ as relations on F correspond to the relations on functions denoted by the
same symbols.
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in the Fuchsian presentation (1), denoted Γ = ∆ (strictly speaking, all these equivalence
relations are now defined on the set FP of Fuchsian presentations in the sense of (1)
satisfying α(Γ) > 0). Clearly,

Γ = ∆⇒ Γ ∼= ∆⇒ Γ ≈ ∆⇒ Γ ∼ ∆.

It can be shown that all these implications are in fact strict. For these relations, we
have the following surprising result.

Theorem G. Each ≈-equivalence class of FP decomposes into finitely many classes
with respect to =; that is, each group Γ ∈ F has only finitely many presentations of the
form (1), and is ≈-equivalent to at most finitely many non-isomorphic F-groups.

Some notation. Permutations are denoted by π, σ, or τ . For π ∈ Sn and 1 ≤ i ≤ n,
let ci(π) be the number of i-cycles of π. The support supp(π) of π is the set of points
moved by π. For integer partitions we mostly follow the conventions of [21, Chap. I,
Sec. 1]. Specifically, a partition λ = (λ1, λ2, . . .) is a weakly decreasing sequence of
non-negative integers λj, such that λj = 0 for j sufficiently large. The weight |λ| of λ is
|λ| =

∑
j λj, and the norm ‖λ‖ of λ is the largest j such that λj 6= 0. As usual, we write

λ ` n for |λ| = n, and say that λ is a partition of n. For partitions λ, µ we write µ ⊆ λ,
if µj ≤ λj for all j (that is, the Ferrers diagram of µ is contained in the Ferrers diagram
of λ). For a partition λ, we denote by λ′ the conjugate partition: λ′i = max{j : λj ≥ i}
(that is, the Ferrers diagram of λ′ is obtained from that of λ by reflection through
the main diagonal). By λ \ λ1 we mean the partition λ \ λ1 = (λ2, λ3, . . .) (that is, the
Ferrers diagram of λ\λ1 is obtained from that of λ by deleting the first row). Whenever
convenient, we shall denote the integer |λ| − λ1 by ∆. For a partition λ ` n, we denote
by χλ the irreducible character of Sn associated with λ. For a finite group G, let Irr(G)
be the set of irreducible characters of G. The usual scalar product on the space CG is
denoted by 〈·, ·〉G, or simply by 〈·, ·〉 if G is a symmetric group.

We use what we believe to be standard number-theoretic notation. Specifically, the
partition function is denoted p(n), τ(n) and σ(n) are the number of divisors and the
sum of divisors of n, respectively, S(n,m) is the number of (set theoretic) partitions of
an n-set into m non-empty blocks (a Stirling number of the second kind). For integers m
and n, we denote their greatest common divisor and least common multiple by (m,n)
respectively [m,n]. For arithmetic functions f, g : N → R we use the Vinogradov
symbol f(n) � g(n) to mean f(n) = O(g(n)). If f(n) � g(n) � f(n), we write
f(n) � g(n). Asymptotic equivalence is denoted by ∼: we write f(n) ∼ g(n) to mean
f(n) = g(n)(1 + o(1)). We use ≈ to denote asymptotic expansions in the sense of
Poincaré; for instance we write

f(n) ≈ g(n)

{
1 +

∞∑
ν=1

aνn
−ν/q

}
, (n→∞),

if for every integer A we have

f(n) = g(n)

{
1 +

A∑
ν=1

aνn
−ν/q +O(n−(A+1)/q)

}
,
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where the implied constants may depend on A. Finally, we use some notation from
probability theory: 1X denotes the characteristic function for a subset X ⊆ Ω of the
sample space Ω, and Eξ is the expected value of the random variable ξ.

2. Character Estimates and Random Walks on symmetric groups

2.1. Roichman’s Conjectures. Let E = E1, E2, E3, . . . be a Markov chain on a metric
space X. The random walk (xk)k≥0 on X determined by E is by definition the collection
of all infinite paths on X with probability distribution induced by E. If X is finite, then
E can be determined by its transition matrix P . In what follows, we will be interested
in the case when X is a finite symmetric group given with the discrete metric.2 Let
X = Sn, and let 1 6= c ⊆ Sn be a non-trivial conjugacy class. The random walk wc

generated by c has initial state x0 = 1 and the transition matrix Pc = (pcσπ)σ,π∈Sn where

pcσπ :=

{
1
|c| , πσ−1 ∈ c

0, otherwise.

The distribution in the k-th step of wc is given by the convolution formula

P (xk = π) =
1

|c|
∑
σ∈Sn

P (xk−1 = πσ−1).

More generally, for two functions f, g : Sn → C, the convolution f ∗ g : Sn → C is given
by

(f ∗ g)(π) =
∑
σ∈Sn

f(σ)g(πσ−1);

in particular, P (xk = π) is the k-fold convolution of the function 1
|c|1c. In the sequel we

shall always take k even, to avoid parity problems. Given a norm ‖ · ‖ on the complex
algebra CSn and ε > 0, we say that the random walk wc has reached ε-equidistribution
with respect to ‖ · ‖ in step k, if∥∥∥∥P (xk = π)− 2

n!
1An

∥∥∥∥2

≤ ε ·
∥∥∥∥ 2

n!
1An

∥∥∥∥ .
We define the statistical mixing time ts(c) of wc as the least even integer k for which
wc has reached 1

n
-equidistribution with respect to the `2-norm. A first lower bound for

ts(c) is given by the combinatorial mixing time tc(c) of c, that is, the least even integer
k, such that any k elements of c have no common fixed point with probability at least
1− 1

n
. In [29], Roichman conjectured that for every non-trivial conjugacy class c ⊆ An,

ts(c)� tc(c). (4)

His main result [29, Theorem 6.1] establishes this conjecture for classes c with cn fixed
points. Roichman suggests an approach to the general conjecture (4) via a certain
estimate for character values in symmetric groups. More precisely, he conjectures that,

2Cf. [7] for more details on random walks on finite groups and their applications.
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for every ε > 0, n sufficiently large, each conjugacy class c ⊆ Sn, and every partition
λ ` n

|χλ(c)| ≤ χλ(1)

(
max

(
λ1

n
,
‖λ‖
n
,
1

e

))(1−ε)n log n
n−|supp(c)|+1

, (5)

which would imply (4). Unfortunately, as it stands, estimate (5) is false. This can be
seen, for instance, as follows. For c fixed-point free, λ such that λ1, ‖λ‖ ≤ n

e
, and ε = 1

2
,

(5) simplifies to

|χλ(c)| ≤ χλ(1)e−(n logn)/2. (6)

The right-hand side of (6) is bounded above by
√
n!n−n/2 < 1; that is, for c and λ as

above, and n sufficiently large, it would follow that χλ(c) = 0. Since the irreducible
characters {χλ}λ`n form a basis for the space of class functions on Sn, this would imply
that, for n sufficiently large, the characters{

χλ : λ ` n,max(λ1, ‖λ‖) > n/e
}

would generate the space of class functions on the set of fixed-point free conjugacy
classes of Sn. Comparing the size of the former set with the dimension of the latter
space, we find that, for large n,

2
∑

0≤ν≤n−n/e

p(ν) ≥ p(n)− p(n− 1), (7)

where p(n) is the number of partitions of n. The right-hand side can be estimated via
the first term of Rademacher’s series expansion for p(n) (see for example [1, Theorem
5.1]) to give

p(n)− p(n− 1) ∼ πeπ
√

2n
3

12
√

2n3/2
, n→∞.

Bounding the left-hand sum in (7) by means of the estimate3 p(n) < π√
6n
eπ
√

2n/3 we

obtain

2
∑

0≤ν≤n−n/e

p(ν) ≤ 2np(n− bn/ec) ≤ 2π
√
n/6eπ

√
2(1−1/e)n/3.

From these two estimates it is clear that Inequality (7) is violated for large n.

However, the basic idea behind Roichman’s approach turns out to be correct. As a
substitute for (5), we prove the following.

Theorem 1. For sufficiently large n, a non-trivial conjugacy class c ⊆ Sn, and a
partition λ ` n, we have

|χλ(c)| ≤
(
χλ(1)

)1− 1−1/(logn)
6tc(c) (8)

and, for 1 ≤ c1(c) ≤ n− 2, ∣∣∣∣tc(c)− 2 log n

log(n/c1(c))

∣∣∣∣ ≤ 3, (9)

whereas tc(c) = 2 for c1(c) = 0.

3Cf., for instance, [18, Satz 7.6].
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This result in turn allows us to establish Roichman’s conjecture (4) for the mixing time
of random walks on symmetric groups.

Theorem 2. For n ≥ 4000 and each non-trivial conjugacy class c ⊆ Sn, we have

tc(c) ≤ ts(c) ≤ 10tc(c). (10)

The constants in Theorems 1 and 2 are most certainly not optimal, but we have not
attempted to tighten our numerical estimates.

This section is organised as follows. In Subsection 2.2 we describe the general connec-
tion between random walks on finite groups and character estimates, and we explain,
how Theorem 2 can be deduced from Theorem 1. The next subsection establishes cer-
tain elementary estimates for values and degrees of irreducible characters of symmetric
groups, which will be used throughout the paper. Finally, Subsections 2.4 and 2.5
contain the proof of Theorem 1.

2.2. Character Theory and Random walks. Here, we describe the connection be-
tween character theory and probability measures on finite groups. For a more detailed
presentation, see [7] and [31]. Let G be a finite group. For a class function ϕ : G→ C
and an irreducible character χ of G, define the Fourier coefficient αχ(ϕ) by means of
the equation

ϕ(g) =
∑
χ

αχ(ϕ)χ(g), g ∈ G.

There is some ambiguity as how to define the scalar product on the space of functions
ϕ : G→ C. In group theory one usually defines

〈ϕ, ψ〉 =
1

|G|
∑
g∈G

ϕ(g)ψ(g);

however, when adopting the point of view of distributions, the factor 1
|G| appears unnat-

ural. Here, we shall adopt the convention of group theory, although we shall frequently
change our point of view, which leads to formulae looking slightly unusual.

Since irreducible characters form a basis of the space of class functions, the Fourier
coefficients exist and are uniquely defined by this equation. The following Lemma
states the basic properties of Fourier coefficients.

Lemma 1. (i) αχ(ϕ) = 〈ϕ, χ〉,
(ii) αχ(ϕ ∗ ψ) = αχ(ϕ)αχ(ψ)

χ(1)
,

(iii)
∑

χ |αχ(ϕ)|2 = 1
|G|
∑

g∈G |ϕ(g)|2.

Proof. With respect to the standard scalar product, the irreducible characters form an
orhtonormal basis of the vector space of all class functions, hence, the first and the
third statement follow from general facts about euclidean vector spaces. For the second
statement we first compute with matrices. Let χ be a character, and ρ the associated
representation. The advantage of this approach is the fact that ρ(gh) = ρ(g)ρ(h), since
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ρ is a homomorphism, whereas for χ, being the trace of this homomorphism, no simple
formula for χ(gh) exists. We have

αχ(ϕ ∗ ψ) =
1

|G|
∑
g∈G

tr(ρ(g))
∑
h∈G

ϕ(h)ψ(h−1g)

=
1

|G|
tr
(∑
g∈G

ρ(g)
∑
h∈G

∑
χ1

αχ1(ϕ)χ1(h)
∑
χ2

αχ2(ψ)χ2(h−1g)
)

=
1

|G|
tr
(∑

χ1

αχ1(ϕ)
∑
χ2

αχ2(ψ)
∑
g,h∈G

χ1(g)χ2(h) ρ(gh)︸ ︷︷ ︸
=ρ(g)ρ(h)

)
.

By Schur’s Lemma we see that for every conjugacy class c of G, the matrix
∑

g∈c ρ(g)

is diagonal with entries |c|χ(c)
χ(1)

, thus, we obtain

αχ(ϕ ∗ ψ) =
1

|G|χ(1)

∑
χ1

αχ1(ϕ)
∑
χ2

αχ2(ψ)
∑
g,h∈G

χ1(g)χ2(h)χ(g)χ(h)

=
|G|
χ(1)

∑
χ1

αχ1(ϕ)
∑
χ2

αχ2(ψ)〈χ, χ1〉〈χ, χ1〉

=
|G|
χ(1)

αχ(ϕ)αχ(ψ),

and the second claim is proven. �

Using Lemma 1, we obtain the following, which is a variant of the upper bound lemma,
confer [7, Lemma 1, Chapter 3B].

Lemma 2. Let c ⊆ Sn be a conjugacy class, and let k be an integer. Suppose that k is
even, or that c ⊆ An. Then we have

(n!2)

∥∥∥∥∥
(

1

|c|
1c

)∗k
− 1

n!
1An

∥∥∥∥∥
2

2

=
∑
χ(1)6=1

|χ(c)|2k

(χ(1))2k−2
.

Proof. Let χ0 be the trivial character of Sn, χ1 be the sign character. Then

αχ0

( 1

|c|
1c

)
= αχ0

( 1

n!
1An
)

= αχ0

( 1

n!
1An
)

= 1,

whereas

αχ0

( 1

|c|
1c

)
=

{
1, c ⊆ An,

−1, c ⊆ Sn \ An.

Hence, for k even or c ⊆ An, the Fouriercoefficients of the linear characters of
(

1
|c|1c

)∗k
−

1
n!

1An vanish, whereas the Fouriercoefficient for a non-linear character χ equal χ(c)k

n!χ(1)k−1

by Lemma 1 (ii). Our claim now follows from Lemma 1 (iii). �
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In contrast to [7], we will only consider the `2-norm. The passage from the `2-norm to
`p-norms with p ≤ 2 is immediate by Hölder’s inequality; however, in the context of
random walks, the passage from `2 to `∞ is possible as well.

Lemma 3. Let G be a finite group, and let f : G → [0,∞) be a probability measure.
Then we have ∥∥∥∥f ∗ f − 1

|G|
1

∥∥∥∥
∞
≤
∥∥∥∥f − 1

|G|
1

∥∥∥∥2

2

.

In particular, if wc reaches ε-equidistribution with respect to the `2-norm after k steps,
it reaches ε2-equidistribution with respect to the `∞-norm after 2k steps.

Proof. We have

(f ∗ f)(g) =
∑
h∈G

f(h)f(gh−1)

=
∑
h∈G

(
f(h)− 1

|G|

)(
f(gh−1)− 1

|G|

)
+

2

|G|
∑
h∈G

f(h)− 1

|G|

=
1

|G|
+
∑
h∈G

(
f(h)− 1

|G|

)(
f(gh−1)− 1

|G|

)
,

since
∑
f(h) = 1. Applying the Cauchy-Schwarz-inequality to the last sum, our claim

follows. �

We can now explain how to deduce Theorem 2 from Theorem 1. Let c ⊆ Sn be a non-
trivial conjugacy class. Arguing as in the proof of Lemma 2 we know that wc reaches
1
n
-equidistribution with respect to the `2-norm after k steps, if and only if∑

χ

χ(1)6=1

|χ(c)|2k

(χ(1))2k−2
≤ 2

n
.

By Theorem 1, the left-hand side can be bounded above by∑
χ

χ(1)6=1

(
χ(1)

)2− 2k(1−1/(logn))
6tc(c) .

For k ≥ 10tc(c), this in turn is less than∑
χ

χ(1)6=1

(
χ(1)

)−5/4
,

and from [27, Theorem 1] we deduce that the latter quantity is O(n−5/4). Hence, for
n sufficiently large, we obtain the bound ts(c) ≤ 10tc(c). We postpone the argument
leading to the lower bound n ≥ 4000 to the end of the proof of Theorem 1 in Subsec-
tion 2.4.
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2.3. Estimates for Character Values. Our main tools in this subsection are the
hook formula for the dimension of χλ and the Murnaghan-Nakayama rule.

The hook formula.4 We have

χλ(1) =
n!∏

(i,j)∈λ hi,j
, (11)

where hi,j is the hook length of the box (i, j).

The Murnaghan-Nakayama rule describes a procedure to recursively compute arbitrary
character values.

Murnaghan-Nakayama rule.5 Let π = σγ be the disjoint product of σ ∈ Sn−k and a
k-cycle γ. Then we have

χλ(π) =
∑
τ

(−1)l(τ)χλ\τ (σ). (12)

Here, the sum extends over all rim hooks τ of size k in λ, and l(τ) is the leg length of
τ .

Let λ be a partition of n. By sq(λ) we mean the side length of the largest square
contained in the Ferrers diagram of λ; that is, the largest j such that λj ≥ j. Note that
for λ ` n we have

(sq(λ)− 1)sq(λ) ≤ n− λ1, (13)

which we will apply mostly in the simpler version sq(λ) ≤
√
n− λ1 + 1. The quantity

sq(λ) leads to a useful inequality for χλ(1).

Lemma 4. Let λ be a partition of n, and let s = sq(λ). Then

χλ(1) ≥
(
n

s2

)( s
n

)s2
(s2)!.

Proof. Each of the n − s2 points of λ outside the maximal square lies in precisely s
hooks hij with i, j ≤ s, while the point (i, j) with i, j ≤ s lies in exactly i+ j − 1 such
hooks. Hence, ∑

i,j≤s

hij = s(n− s2) +
∑
i,j≤s

(i+ j − 1) = sn.

By the arithmetic-geometric inequality, this gives

∏
i,j≤s

hij ≤

(
1

s2

∑
i,j≤s

hij

)s2

=
(n
s

)s2
.

Bounding the product of the hook lengths corresponding to points outside the maximal
square by (n− s2)!, our claim follows from the hook formula. �

Our next result gives an upper bound for the modulus of character values χλ(c) in
terms of sq(λ) and the number of cycles of c.

4COnfer, for instance, [15, Theorem 2.3.21]
5Confer, for instance, [15, Formula 2.4.7]
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Lemma 5. Let c ⊆ Sn be a conjugacy class with c cycles, and let λ ` n be a partition.
Then we have

|χλ(c)| ≤ (2sq(λ))c.

Proof. If µ ⊆ λ is a partition, then certainly sq(µ) ≤ sq(λ), hence, arguing by induction
on c and applying the Murnaghan-Nakayama rule, it suffices to show that for any given
k, a partition λ has at most 2sq(λ) removable rim hooks of length k. Let r be such a
rim hook. The right-uppermost box of r is either to the right of the maximal square
contained in the Ferrers diagram of λ, or the left-lowest box of r is below the maximal
square of λ, or both. Since the right-uppermost box of a rim hook is always at the end
of a row, while the left-lowest box is at the end of a column, our claim follows. �

If λ1 is of similar size as n, Lemma 5 is of little use. In this case we will apply the
following.

Lemma 6. Let λ ` n be a partition, and let c ⊆ Sn be a conjugacy class with c cycles
of length ≥ 2 and f fixed points. Then we have the bounds

|χλ(c))| ≤ χλ\λ1(1)
∑
a,b≥0

a+2b≤n−λ1

(
f

a

)(
c− f
b

)
. (14)

and

|χλ(c)| ≤ n max
ν≤n−λ1

(2
√
n− λ1)ν

(
c

ν

)
, (15)

which improves on (14) if c is considerably smaller then n− λ1.

Proof. Neglecting the sign in the Murnaghan-Nakayama rule, we see that the modulus
of χλ(c) is bounded above by the number of possible ways to completely deconstruct
λ by removing rim hooks of sizes given by the cycle structure of c. To prove the first
estimate, we classify these deconstructions by means of the number a of fixed points
of c contained within λ \ λ1, and the corresponding number b of cycles of lengths ≥ 2.
Given a and b, there are

(
f
a

)
ways to choose the fixed points of c to be removed from

λ \ λ1, and
(
c−f
b

)
ways to choose the corresponding set of cycles. Once these sets are

given, there are at most χλ\λ1(1) ways to remove these fixed points and cycles.

For the second bound we argue in a similar manner, this time bounding the number of
deconstructions of λ \ λ1 as in the proof of Lemma 5. �

The next lemma will be useful in computing values of characters of small degrees.

Lemma 7. Let λ ` n be a partition, µ = λ\λ1, and let π ∈ Sn be a permutation. Then

χλ(π) =
∑
µ̃⊆µ
µ̃1=1

(−1)|µ̃|
∑

c⊆S|µ|−|µ̃|

χµ,µ̃(c)
∏
i≤|µ|

(
ci(π)

ci

)
,

where c runs over all conjugacy classes of S|µ|−|µ̃|, χµ,µ̃(c) denotes the number of ways
to obtain µ̃ from µ by removing rim hooks according to the cycle structure of c, counted
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with the sign prescribed by the Murnaghan-Nakayama rule, and ci is the number of
i-cycles of an element of c.

Proof. We may assume that λ1 > 2|µ|, and that π contains a cycle of length > |µ|.
For, if we replace λ1 by λ1 + 2n, and add a cycle of length 2n to π, both conditions
are satisfied; on the other hand, the only way to remove a cycle of length 2n from the
new partition is within the first row, hence χλ(π) is not affected by these changes. Now
we use the Murnaghan-Nakayama rule to remove all cycles of length ≤ |µ|. If we are

left with a partition not of the form λ̃ = (λ̃1, 1, . . . , 1), the remaining partition cannot

be removed by deleting rim hooks of length > |µ|, so µ̃ = λ̃ \ λ̃1 can be assumed to

be of the form (1, . . . , 1). Since λ̃ can be removed in precisely one way by deleting rim
hooks of lengths > |µ|, and all but the last one are contained in the first row, the value
of χλ̃(π̃) is (−1)|µ̃|, where π̃ is the element obtained from π by removing all cycles of
lengths ≤ |µ|. The rim hooks which are removed and do not contain any box from
the first row define a conjugacy class c within S|µ|−|µ̃|; counting all possible placements
of the cycles of c in µ \ µ̃ with the sign prescribed by the Murnaghan-Nakayama rule
yields χµ,µ̃(c). Finally, for fixed c, the set of i-cycles to be placed in µ \ µ̃ among all

i-cycles of π can be chosen in
(
ci(π)
ci

)
ways, and our claim follows. �

Finally, we shall also need the following lower bounds for character degrees.

Lemma 8. Let λ ` n be a partition. Then

(i) χλ(1) ≥ 2n/8, ‖λ‖ ≤ λ1 ≤ 3n/4;

(ii) χλ(1) ≥
(

λ1

n− λ1

)
χλ\λ1(1), λ1 ≥ n/2.

Proof. (i) We distinguish the cases λ1 ≤ n/4, λ1 ≥ n/4 and λ2 ≤ n/8, and λ1 ≥
n/4, λ2 ≥ n/8. In the first case it was shown in [27, Formula (23)] that χλ(1) ≥
(3/2)n/4 ≥ 2n/8. In the second case, for any given bn/8c-tuple (t1, . . . , tbn/8c) of 0’s and
1’s, we can start to deconstruct λ by choosing in the i-th step a box from the first row,
if ti = 1, and from λ\λ1, if ti = 0. Hence, there are at least 2n/8 ways of deconstruction.
In the final case, note that χλ(1) ≥ χµ(1) for any partition µ contained in λ; choosing
µ = (bn/4c, bn/8c), our claim follows by applying to µ the argument used in the second
case.

(ii) This follows as in the proof of [27, Formula (21)], observing that the hook product

H[(λ2, . . . , λk)] equals (n−λ1)!
χλ\λ1

(1)
. �

2.4. Proof of Theorem 1. The proof of Theorem 1 makes use of the following two
auxiliary results, whose proofs will be given in the next subsection.

Lemma 9. Let c ⊆ Sn be a non-trivial conjugacy class, and let π be the element visited
by the random walk wc after 3tc(c) steps. Then, for each k ≥ 1, the probability that π
has more than k fixed points is bounded above by

max

(
2k

(k − 1)!
,

2n/2

(bn/2c − 1)!

)
.
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Lemma 10. Let c1, c2 ⊆ Sn be non-trivial conjugacy classes with f1 respectively f2

fixed points. For i = 1, 2, let xi ∈ ci be chosen at random. Then the probability that x1

and x2 have l common fixed points, is at most(
n

l

)(
f1f2

n2

)l
.

Moreover, the probability for x1x2 to have k cycles on supp(x1) ∪ supp(x2) is bounded
above by

(log n)k−1/(k − 1)!.

The proof of Theorem 1 now proceeds as follows. Define g1 : Sn → [0,∞) to be the
density of the random walk wc after 3tc(c) steps, and let g2 be the corresponding density
after 6tc(c) steps. Using the fact that g1 is a class function, we decompose g1 as

g1 =
∑
c′

αc′1c′ ,

and compute g2 in the form

g2(π) =
∑
σ∈Sn

g1(σ)g1(πσ−1) =
∑
c1,c2

αc1αc2

∣∣{(c1, c2) ∈ c1 × c2 : c1c2 = π
}∣∣.

From Lemmas 5, 9, and 10 we deduce that

|〈g2, χλ〉| ≤
1

n!

∑
c1,c2

αc1αc2

∑
c1∈c1

c2∈c2

(2sq(λ))# cycles of c1c2

=
1

n!

∑
k,l

(2sq(λ))k+l
∑
c1,c2

αc1αc2 |c1||c2|Pk,l(c1, c2)

≤ 1

n!

∑
k,l

(2sq(λ))k+l
∑
f1,f2≥l

∑
c1,c2

c1(c1)=f1

c1(c2)=f2

αc1αc2|c1||c2|
(
n

l

)(
f1f2

n2

)l
(log n)k−1

(k − 1)!

=
1

n!

∑
k,l

∑
f1,f2≥l

(2sq(λ))k+l

(
n

l

)(
f1f2

n2

)l
(log n)k−1

(k − 1)!

×

( ∑
c1

c1(c1)=f1

αc1|c1|

)( ∑
c2

c1(c2)=f2

αc2|c2|

)

≤ 1

n!

∑
k,l

∑
f1,f2≥l

(2sq(λ))k+l

(
n

l

)(
f1f2

n2

)l
(log n)k−1

(k − 1)!

× max
(f12f1

f1!
,

2n/2

(bn/2c − 1)!

)
max

(f22f2

f2!
,

2n/2

(bn/2c − 1)!

)
.

Here, Pk,l(c1, c2) denotes the probability that, for x1 and x2 chosen at random from
c1 respectively c2, x1 and x2 have l common fixed points, and the product x1x2 has
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precisely k cycles on the remaining n−l points. If f1 is in the interval [l, n/2], increasing
f1 by 1 changes the value of a summand by a factor

2

(
f1 + 1

f1

)l+1
1

f1

≤ 2e

f1

,

while each summand increases with f1 in the range n/2 ≤ f1 ≤ n. The same is true for
f2; hence, by symmetry, we obtain

n!|〈g2, χλ〉| ≤ 80n2
∑
k,l

(2sq(λ))k+l

(
n

l

)(
l2

n2

)l
(log n)k−1

(k − 1)!

(
2l

(l − 1)!

)2

+80n2
∑
k,l

(2sq(λ))k+l

(
n

l

)
(log n)k−1

(k − 1)!

(
2n/2

(bn/2c − 1)!

)2

.

For n→∞, the second sum tends to zero; thus, applying Stirling’s formula,

n!|〈g2, χλ〉| ≤ 1 + 80n2
∑
k,l

(2sq(λ) log n)k

(k − 1)!
· (8sq(λ)nl2)l

l!((l − 1)!)2n2l

≤ 1 + 80n5
∑
k,l

(2sq(λ) log n)k

k!
·
(

8e3sq(λ)

ln

)l
.

Since sq(λ) ≤
√
n, the second factor tends to zero, as n tends to infinity, while the

summation over k yields an exponential series. Hence, we obtain the bound

n!|〈g2, χλ〉| ≤ n2sq(λ)+7.

On the other hand, from Lemma 4, we deduce the bound χλ(1) ≥ (sq(λ)/e)sq(λ)2
, and

for χλ(1) > e3(logn)4
, we deduce that

n!|〈g2, χλ〉| ≤ χλ(1)1/(logn).

By Lemma 1 (ii), we have

n!|〈g2, χλ〉| = n!

∣∣〈 1
|c|1c, χλ

〉∣∣6tc(c)
(n!)6tc(c)−1

χλ(1)6tc(c)−1
=
|χλ(c)|6tc(c)

χλ(1)6tc(c)−1
,

and together with our estimate for |〈g2, χλ〉| we obtain

|χλ(c)| ≤ (χλ(1))1− 1−1/(logn)
6tc(c) .

Before establishing the upper bound for |χλ(c)| for characters associated to partitions
λ satisfying n − λ1 ≤ 3 log4 n, we prove the estimate for tc(c). Let ξk be the random
variable which for permutations π1, . . . , πk chosen independently at random from c
counts the number of points fixed by all of them. The probability that 1 is fixed by

all of the permutations equals
(
c1(c)
n

)k
, whereas the probability that both 1 and 2 are

fixed by all the permutations equals(
c1(c)(c1(c)− 1)

n(n− 1)

)k
.
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Hence, Eξk = n
(
c1(c)
n

)k
, and

E(ξ2
k) = n

(
c1(c)

n

)k
+ n(n− 1)

(
c1(c)(c1(c)− 1)

n(n− 1)

)k
≤ Eξk + (Eξk)

2.

Using the fact that ξk takes only integral values, we deduce the inequality

1− Eξk ≤ P (ξk = 0) ≤ 1− Eξk +
1

2

(
Eξk

)2
;

hence, we obtain for tc(c) the bounds

min

{
k ∈ 2N :

(
c1(c)

n

)k
≤ 1

n(n− 1)

}
≤ tc(c) ≤ min

{
k ∈ 2N :

(
c1(c)

n

)k
≤ 1

n2

}
.

Since c1(c) ≤ n− 2 for every non-trivial class, the solutions of the equations(
c1(c)

n

)k
=

1

n(n− 1)
and

(
c1(c)

n

)k
=

1

n2

differ by less than 1. Solving for k gives our claim.

Now we bound χλ(c) with n− λ1 ≤ 3 log4 n using Lemma 6. We have

|χλ(c)| ≤ χλ\λ1(1)
∑

a+2b≤n−λ1

(
c1(c)

a

)(
bn/2c
b

)
.

Assume first that c1(c) ≤ n2/3. Then, using Lemma 8 (ii),

|χλ(c)| ≤ (n− λ1)!1/2
∑

a+2b≤n−λ1

n2a/3+b ≤ 2(n− λ1)!3/2
(

n

b2(n− λ1)/3c

)
≤ χλ(1)2/3+ε,

which is sufficiently small, since tc(c) ≥ 2. If, on the other hand, c1(c) > n2/3, replacing
b by b− 1 and a by a+ 2 changes the value of a summand by

(c1(c)− a)(c1(c)− a− 1)b

(a+ 1)(a+ 2)(n/2− b+ 1)
> n1/4,

and, if a + 2b < n − λ1, replacing a by a + 1 changes the value of a summand by
c1(c)−a
a+1

> n1/2, hence, for n sufficiently large, the whole sum over a and b is at most
twice its greatest term. Again using Lemma 8, we deduce from this that

|χλ(c)| ≤ 2χλ\λ1(1)

(
c1(c)

n− λ1

)
≤ 2χλ(1)

(
c1(c)

n

)n−λ1

< 2χλ(1)1− log(n/c1(c))
logn ,

which is again sufficiently small by the lower bound for tc(c).

We now sketch the computations needed to show that Theorem 2 holds in fact for
all n ≥ 4000. In the form given above, the proof only applies to n ≥ e40. First, in
the deduction of Theorem 2 from Theorem 1, we can handle the characters χ(n−1,1),
χ(2,1,1,...,1) separately, noting that for n ≥ 4000 we have∑

λ

∗
χλ(1)−0.7 <

1

n
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where the summation is extended over all partitions λ ` n apart from (n), (n − 1, 1),
(2, 1, 1, . . . , 1) and (1, 1, . . . , 1). Following through the proof of Theorem 1, we find that
the contribution of all characters χλ with λ1 ≤ 3n/4 or n − λ1 ≤ n1/3 is sufficiently
small. To close this gap, we estimate |〈g2, χλ〉| as above, but use Lemma 6 instead of
Lemma 5, that is, the bound for |χλ(c)| now reads

min

(
χλ(1), max

ν≤n−λ1

(2
√
n− λ1)ν

(
k + l

ν

))
instead of (2sq(λ))k+l;

as a result, we obtain a bound of sufficient quality for all characters χλ satisfying
χλ(1) > 2e

10
19

log2 n+ 20
19

logn; and we conclude the proof by noting that for n ≥ 4000, the
degree of a character χλ with ‖λ‖ ≤ λ1 < n− n1/3 is larger than this bound.

Note that in the intermediate range, we established a bound somewhat weaker than
Theorem 1; in particular, we do not claim that Theorem 1 holds for all n ≥ 4000.
However, it may well be true that both theorems are in fact true for all integers n
without any exception.

2.5. Proof of Lemmas 9 and 10. To complete the proof of Theorem 1, it remains
to establish Lemmas 9 and 10.

Proof of Lemma 9. Let a, b be integers, and let π1, . . . , π3tc(c) ∈ c be elements chosen
at random. Denote by P (a, b) the probability that the points 1, . . . , a are fixed by all
the πi, and that, for each β with a+ 1 ≤ β ≤ a+ b, there is some i such that πi moves
β, while the product π1 · · · π3tc(c) fixes β. We have

P (a, 0) = P (π1 fixes 1, . . . , a)3tc(c) ≤ P (π1 fixes 1)3atc(c) =

((
c1(c)

n

)tc(c)
)3a

.

By the definition of tc(c), we have
(
c1(c)
n

)tc(c)

< 1
n
; hence, P (a, 0) is bounded by n−3a.

Next, consider P (0, b). The product π1 · · · π3tc(c) fixes β if and only if(
π1 · · · π3tc(c)−1

)
(β) = π−1

3tc(c)(β).

Let h ∈ Sym
(
[n] \ {(π1 · · · π3tc(c)−1)(γ) : γ ≤ b, γ 6= β}

)
be chosen at random. Then

replacing π3tc(c) by πh3tc(c) does not alter (π1 · · · π3tc(c)−1)(γ) for γ ≤ b, γ 6= β, while(
π1 · · · π3tc(c)−1

)
(β) =

(
πh3tc(c)

)−1
(β) holds with probability 1

n−b−1
or 0. Since the πi

are chosen from a conjugacy class, conjugating with a random element from some
subgroup does not affect the equidistribution of the πi, hence, we obtain P (0, b) ≤
(n− b+ 1)b. Finally, a permutation π ∈ Sn that fixes the points 1, . . . , a can be viewed
as a permutation on n−a elements, thus P (a, b) ≤ n−3a(n−a−b+1)−b. If a+b ≤ n/2,

we deduce P (a, b) ≤ 2b

n3a+b , and, summing over all pairs a, b with a + b ≥ k we obtain
our claim. Note that P is decreasing in both a and b; hence, if a + b > n/2, we may
replace the pair (a, b) by some pair (a′, b′) satisfying a′+b′ = bn/2c and use our estimate
for the latter pair. Since the probability that there exist k points which are fixed by
the product π1 · · · π3tc(c) is at most

(
n
k

)
times the probability that π1 · · · π3tc(c) fixes the

points 1, . . . , k, our claim follows. �
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Proof of Lemma 10. The probability that both x1 and x2 fix 1 equals f1f2

n2 , and the
conditional probability

P
(
x1 and x2 fix 1 | ∃a1, . . . ak : ai 6= 1, x1 and x2 fix ai,∀i ≤ k

)
is smaller, thus, the first claim of the lemma follows. Now let x1, x2 be chosen at
random from c1 and c2, respectively. Assume that not both of them fix 1, without loss
we assume that x1(1) 6= 1. Then 1 lies in a cycle of length i of x1x2 if and only if(

x2(x1x2)i−1
)
(1) = x−1

1 (1) (16)

with i chosen minimal among all positive integers with this property. Choose an element
h ∈ Sym

(
[n] \ {x2(x1x2)j(1) : 0 ≤ j ≤ i− 2}

)
at random, and replace x1 by xh1 . Then

(16) becomes true with probability 1
n−i+1

. Increasing i until (16) happens to hold, we
obtain one cycle of x1x2. Next, choose some point outside this cycle, and repeat the
procedure, where h is to be chosen in such a way that h fixes all points in all cycles
already determined as well as the points already constructed in the current cycle. In
this way, we obtain the number c of cycles of x1x2 as the value returned by the following

Stochastic Algorithm

(i) Set m := n, i := 0 and c := 0.

(ii) Increase i by 1.

(iii) With probability 1− 1
m−i+1

, go to (ii); otherwise continue with (iv).

(iv) Set m := m− i, c := c+ 1 and i := 0.

(v) If m = 0, stop and return c; otherwise go to (ii).

Let P be the probability that x1x2 has k cycles, and that their lengths are c1, . . . ck.
Then, in step (iii) of the algorithm, the second possibility was chosen k times, and the
probabilities were 1

n−c1+1
, 1
n−c1−c2+1

, . . . , 1
n−c1−...−ck+1

, respectively. Hence, P is bounded
above by the product of these probabilities; and, writing ij := ck−j+1 + · · ·+ ck + 1, we
obtain

P (x1x2 has k cycles) ≤
∑

1=i1<i2<···<ik≤n

k∏
j=1

1

ij

≤ 1

(k − 1)!

∑
2≤i2,...,ik≤n

k∏
j=1

1

ij

=
1

(k − 1)!

( ∑
2≤i≤n

1

i

)k−1

≤ (log n)k−1

(k − 1)!
,

which proves our claim. �
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3. Character estimates for elements of prescribed order

As it stands, Theorem 1 is not strong enough to obtain an asymptotic estimate for the
subgroup growth of Fuchsian groups. When combined with the methods of Subsec-
tion 3.2, it could be used to determine the asymptotics of sn(Γ) for certain Fuchsian
groups Γ, namely those given by a presentation of the form

Γ =
〈
x1, . . . , xr

∣∣xa1
1 = xa2

2 = · · · = xarr = x1x2 · · ·xr = 1
〉

where ai ≥ 2 and r ≥ 73. Unfortunately, this would exclude all better known examples
in this class. From the point of view of an application to the subgroup growth of Fuch-
sian groups, the weakness of Theorem 1 is caused by its generality. Combining instead
an estimate by Fomin and Lulov [11] for character values χλ(π) where all cycle lengths
of π are equal, with combinatorial arguments plus the estimates of Subsection 2.3, we
shall derive the following sharper estimate.

Proposition 1. Let q ≥ 2 be an integer, ε > 0, and let n be sufficiently large. Then,
for every partition λ ` n, we have∑

π∈Sn
πq=1

|χλ(π)| ≤
(
χλ(1)

) 1
q

+ε|Hom(Cq, Sn)|. (17)

We begin with some results concerning the statistical distribution of permutations in
Sn and in wreath products, which will be used in the proof of Proposition 1 as well as
in the next section.

3.1. Statistics of the symmetric group. For integers n ≥ 1 and q ≥ 2, define
N(n, q) to be the number of elements π ∈ Sn with πq = 1. Furthermore, for integers ct
with t|q and t < q, define N(n, q, c1, . . . , cT ), to be the number of elements π ∈ Sn with
πq = 1 and ct(π) = ct for all t|q, t < q.

Lemma 11. Let q ≥ 2 be an integer, n sufficiently large, and let c1, . . . , cT be given in
such a way that n ≡ 1 · c1 + · · ·+ T · cT (mod q). Then we have the estimate

N(n, q, c1, . . . , cT )

N(n, q)
≤ qσ(q)

∏
t

ct>2ent/q

(
ent/q

tct

)ct
, (18)

where σ(q) denotes the sum of divisors of q.

Proof. Put S :=
∑
t|q
t6=q

tct. We have

N(n, q, c1, . . . , cT ) =
n!

((n− S)/q)!c1! · · · cT !1c1 · · ·T cT · q(n−S)/q
.

Let

c̃t :=

{
ct, ct ≤ 2ent/q,

ct mod q/t, ct > 2ent/q
(t|q, t < q),
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where ct mod q/t takes values in {0, 1, . . . , q/t− 1}, and put S̃ :=
∑
t|q
t6=q

ts̃t. Then we get

N(n, q, c1, . . . , cT )

N(n, q)
≤ N(n, q, c1, . . . , cT )

N(n, q, s̃1, . . . , s̃T )

=
((n− S̃)/q)!s̃1! · · · s̃T !1s̃1 · · ·T s̃T · q(n−S̃)/q

((n− S)/q)!c1! · · · cT !1c1 · · ·T cT · q(n−S)/q

≤
∏
t

ct>2ent/q

ntct/q(q/t)!

ct!tct−q/t

≤
∏
t

ct>2ent/q

qq/t
(
ent/q

tct

)ct

≤ qσ(q)
∏
t

ct>2ent/q

(
ent/q

tct

)ct
,

as claimed. �

For a conjugacy class c of Sn, denote by CSn(c) the centraliser of c in Sn. Then CSn(c)
is isomorphic to a direct product of the form

CSn(c) ∼=
∏
d|q

Cd o Scd(σ),

where σ is some element of c.

Lemma 12. Let q and k be integers, and let c ∈ Sn be a conjugacy class with cq = 1.

(i) The number of π ∈ Sn with at least k cycles is bounded above by

n!(log n)k−1/((k − 1)!).

(ii) The number of π ∈ CSn(c) with at least k cycles is bounded above by

|CSn(c)|
(

3q log n

k

)k/q
,

provided that k ≥ (log n)3 and n ≥ n0(q).

Proof. (i) Let π ∈ Sn be chosen at random. Then 1 is a fixed point of π with probability
1
n
. If it is not a fixed point, then it lies in a 2-cycle with probability 1

n−1
, and, more

generally, the conditional probability for 1 to lie in a cycle of length c, provided that it
lies in a cycle of length at least c is 1

n−c+1
. Arguing now as in the proof of Lemma 10

establishes our claim.

(ii) Consider a single direct factor G := Cd o Scd(σ) of CSn(c), and let φ : G→ Scd(σ) be
the canonical projection. Let c be a cycle in G. Then, the projection c of c in Scd(σ) is a
cycle, too, and there are at most d cycles c1, . . . , cd ∈ G which have the same image in



CHARACTERS, FUCHSIAN GROUPS, AND RANDOM WALKS 21

Scd(σ). We deduce that the probability that a permutation π, chosen at random in G,
has k cycles is at most the probability that a permutation chosen at random in Scd(σ)

has dk/de cycles. Together with part (i) of this lemma, we obtain

1

|CSn(c)|

∣∣∣{π ∈ CSn(c) : |Orbits(π)| ≥ k
}∣∣∣ ≤ ∑

∑
d|q dκd=k

∏
d|q

min

(
1,

(log n)κd−1

(κd − 1)!

)

≤ kτ(q) max∑
d|q dκd=k

∏
d|q

min

(
1,

(log n)κd−1

(κd − 1)!

)

≤ kτ(q) max∑
d|q dκd=k

∏
d|q

κd≥3 logn

(log n)κd−1

(κd − 1)!
.

If we replace κd by κd + q
d
, and κq by κq − 1, a single summand is changed by a factor

(log n)
q
d
−1(κq − 1)

κd(κd + 1) · · · (κd + q/d− 1)
,

which is less than 1, provided that κd > (log n)
√
κq. Hence, the maximum is attained

for some tuple (κ1, . . . , κq) satisfying κq ≥ k/q − q
√
k log n. From this we deduce

1

|CSn(c)|

∣∣∣{π ∈ CSn(c) : |Orbits(π)| ≥ k
}∣∣∣ ≤ kτ(q) (log n)k/q−q

√
k(logn)−1

bk/q − q
√
k(log n)− 1c!

≤
(

3q log n

k

)k/q
,

provided that k ≥ (log n)3 and n ≥ n0(q). �

Lemma 13. Let π ∈ Sn be chosen at random, and let d, d1, d2 be positive integers.

(i) As n → ∞, the distribution of cd(π) converges to a Poisson distribution with
mean 1

d
, and we have

1

n!

∑
π∈Sn

(
cd(π)

)q → q∑
ν=1

d−νS(q, ν), n→∞,

where the S(q, ν) are Stirling numbers of the second kind.

(ii) As n→∞, the random variables cd1(π) and cd2(π) are asymptotically indepen-
dent.

Proof. (i) Let P (d, k) be the probability that for π chosen at random from Sn, π contains

the d-cycles (12 . . . d), (d+1 . . . 2d), . . . , ((k−1)d+1 . . . kd). Then, as P (d, k) = (n−kd)!
n!

,
we have for k ≤ n/d,

1

n!

∑
π∈Sn

(
cd(π)

k

)
=

n!

dkk!(n− kd)!
P (d, k) =

1

dkk!
.
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On the other hand, for a random variable ξ which has Poisson distribution with mean
1/d, we have

E

(
ξ

k

)
=
∞∑
ν=0

(
ν

k

)
e−1/d

dνν!
=
e−1/d

dkk!

∞∑
ν=k

1

(ν − k)!dν−k
=

1

dkk!
.

We conclude that the first bn/dc moments of ξ and cd(π) coincide, hence, by the method
of moments,6 the distributions are identical, proving the first assertion. Let ξ be a
random variable with mean 1/d and Poisson distribution. Then Eξq is the expected
number of q-multi-sets in [ξ]. A set S of ν elements gives rise to S(q, ν) different multi-
sets M , such that M = S as sets, and the computation of E

(
ξ
ν

)
shows, that the expected

number of ν-sets is d−ν , whence the second assertion.

(ii) For i ≤ t, i 6= d, fix integers ei. We compute the conditional expectation

E

((
cd(π)

k

) ∣∣∣ ci(π) = ei, i ≤ t, i 6= d

)
=

(n− E)!

dkk!(n− E − kd)!
P (d, k),

where E =
∑
q 6=i≤t

iei. As n tends to infinity, the right hand side converges to 1
dkk!

, proving

our claim. �

Our next group of results describes the distribution of cycles in permutations of pre-
scribed order. The proof makes use of the following purely analytic result.

Lemma 14. Let P (z) =
∑q

k=1 akz
k be a real polynomial, and let Q(z) =

∑q
k=1 |ak|zk.

Assume that P (z) 6= ±Q(±z), and that {k : ak 6= 0} has greatest common divisor 1.
Define the sequences (bn), (b+

n ) by means of the equations

eP (z) =
∞∑
n=0

bn z
n/(n!), eQ(z) =

∞∑
n=0

b+
n z

n/(n!).

Then we have |bn| < b+
n e
−cn1/q

for some c > 0 and sufficiently large n.

Proof. We first claim that there is some constant c, such that for all real numbers r
sufficiently large, and all complex numbers z with |z| = r, we have <P (z) ≤ Q(r)− cr.
For otherwise we would have <akzk ≥ |ak|rk− cr, that is,

∣∣ z
|z| − ζ

∣∣ < ε for some (2k)-th

root of unity ζ, and ε arbitrarily small. Since by assumption the set {k : ak 6= 0} has
greatest common divisor 1, we deduce that | arg z| < ε or | arg z−π| < ε. However, the
assumptions P (z) 6= ±Q(±z) and ak 6= 0 for at least one odd k imply, that in these cases
<akzk was negative for at least one value of k. From this we obtain that |eP (z)| ≤ eQ(r)−cr

for some c > 0 and all z with |z| = r. Let rn be the solution of the equation rQ′(r) = n.

Then we deduce from Cauchy’s bound that βn ≤ eQ(rn)−crn

rnn
, while from [14, Corollary

II] we obtain the lower bound β+
n ≥ eQ(rn)

rnnn
c with some absolute constant c. From these

bounds and the asymptotics rn ∼ q
√
n/(qaq) the lemma follows. �

Lemma 15. Let q ≥ 2 and et ≥ 0 (t|q, t < q) be integers.

6Cf., for instance, [10].
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(i) There exist constants α
(d)
e1,...,eT , such that, for all n ≥ 1,∑

πq=1

∏
t|q
t<q

(
ct(π)

)et
=

D∑
ν=0

α(ν)
e1,...,eT

n!

(n− ν)!
|Hom(Cq, Sn−ν)|, (19)

where D =
∑

t tet. The coefficients α
(d)
e1,...,eT are recursively determined by means

of the equations

α(d)
e1,...,eq

=


1

d

∑
t|q
t<q

et∑
ν=1

(
et
ν

)
α

(d−t)
e1,...,et−ν,...,eT , d ≥ 1

1, d = 0.

(ii) We have ∑
πq=1

∏
t|q
t<q

(
ct(π)

)et
=
(

1 +O(n−1/q)
)
αDe1,...,eTn

D/q.

(iii) If q is even, then there exists a constant c > 0 such that, for n sufficiently large,∑
πq=1

∏
t|q
t<q

(−1)(t−1)ct(π)
(
ct(π)

)et
< e−cn

1/q |Hom(Cq, Sn−ν)|. (20)

Proof. (i) It will be convenient to allow t to run over all divisors of q, setting eq := 0.
Abbreviate the left-hand side of (19) as Se1,...,eq(n), and let π be a permutation in Sn
with πq = 1. Then n occurs in some cycle of π of length t for some t|q. Let π′ ∈ Sn−t
be the permutation resulting from π by deleting the cycle containing n. We have
cd(π

′) = cd(π) for d 6= t, and ct(π
′) = ct(π)− 1, that is,∏

d|q

(
cd(π)

)ed =
(
ct(π

′) + 1
)et∏

d|q

(
cd(π

′)
)ed .

The t-cycle containing n can be chosen in (n−1)!
(n−t)! ways; hence, we obtain for n ≥ 1 the

recursion formula

Se1,...,eq(n) =
∑
t|q

(n− 1)!

(n− t)!

et∑
ν=0

(
et
ν

)
Se1,...,et−ν,...,eq(n− t), (21)

where

Se1,...,eq(0) =

{
1, (e1, . . . , eq) = (0, . . . , 0)

0, otherwise,

and Se1,...,eq(n) = 0 if one of the et or n is negative. Introducing the exponential
generating functions

Se1,...,eq(z) =
∞∑
n=0

Se1,...,eq(n) zn/(n!),
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multiplying (21) by zn−1

(n−1)!
, and summing over n ≥ 1, this recurrence relation translates

into the differential equation

S′e1,...,eq(z)−
(∑

t|q

zt−1

)
Se1,...,eq(z) =

∑
t|q

zt−1

et∑
ν=1

(
et
ν

)
Se1,...,et−ν,...,eq(z).

Integrating the latter equation, we find that

Se1,...,eq(z) = exp

(∑
t|q

zt

t

)∑
t|q

et∑
ν=1

(
et
ν

)∫ z

0

(
ζt−1 exp

(
−
∑
t|q

ζt

t

)
Se1,...,et−ν,...,eq(ζ)

)
dζ

+ exp

(∑
t|q

zt

t

)
, (22)

where the value of the integration constant has been determined by comparing the
coefficients of z. We claim that there exist polynomials Pe1,...,eq(z), such that

Se1,...,eq(z) = Pe1,...,eq(z) exp

(∑
t|q

zt

t

)
. (23)

The proof is by induction on e =
∑

t|q et. If et = 0 for all t, then S0,...,0(n) =

|Hom(Cq, Sn)|, that is7, S0,...,0(z) = exp
(∑

t|q
zt

t

)
, and (23) holds with P0,...,0(z) = 1.

Suppose now that our claim holds for all tuples (e′1, . . . , e
′
q) with

∑
t|q e

′
t < e, and some

e ≥ 1, and let (e1, . . . , eq) be a tuple with
∑

t|q et = e. Inserting (23) into the right-hand

side of (22), we find that

Se1,...,eq(z) = exp

(∑
t|q

zt

t

)∑
t|q

et∑
ν=1

(
et
ν

)∫ z

0

ζt−1Pe1,...,et−ν,...,eq(ζ) dζ + exp

(∑
t|q

zt

t

)
,

that is, (23) holds for (e1, . . . , eq) with

Pe1,...,eq(z) = 1 +
∑
t|q

et∑
ν=1

(
et
ν

)∫ z

0

ζt−1Pe1,...,et−ν,...,eq(ζ) dζ.

Comparing coefficients in (23) and in the recurrence relation determining the polyno-
mials Pe1,...,eq(z), the assertions of (i) follow.

(ii) By [25, Eq. (22)], we have

|Hom(Cq, Sn)‖
|Hom(Cq, Sn−k)|

=
(
1 +O(n−1/q)

)
nk(1−1/q).

Together with part (i), our claim follows.

(iii) Denote the left-hand side of (20) by S∗e1,...,eq(n). In this case, we obtain the recur-
rence relation

S∗e1,...,eq(n) =
∑
t|q

(−1)t−1 (n− 1)!

(n− t)!

et∑
ν=0

(
et
ν

)
S∗e1,...,et−ν,...,eq(n− t).

7Cf., for instance, [9, Prop. 1].
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Arguing as in part (i), the corresponding exponential generating function S∗e1,...,eq(z) is
found to satisfy

S∗e1,...,eq(z) = P ∗e1,...,eq(z) exp

(∑
t|q

(−1)t−1 z
t

t

)
with certain polynomials P ∗e1,...,eq . Our claim follows from this and Lemma 14. �

Lemma 16. Define the polynomials Pe1,...,eq as in the proof of Lemma 15. Then we
have

P~et(z) = 1 +
zt

t
,

P~et1+~et2
(z) = 1 +

zt1

t1
+
zt2

t2
+
t1 + t2
(t1t2)2

zt1+t2 ,

Pk·~et(z) =
k∑
ν=0

S(k + 1, ν + 1)
zνt

tν
,

where ~et denotes the tuple with et = 1 and ed = 0 for d 6= t.

Proof. The first two equations follow directly from the definition. The third equation
is established by induction on k. For k = 1 the claim is already proven. Assuming the
result for Pκ·~et(z) with κ < k and some k ≥ 2, we find that

Pk·~et(z) = 1 +
k∑
ν=1

(
k

ν

)∫ z

0

ζt−1P(k−ν)·~et(ζ) dζ

= 1 +
k∑
ν=1

(
k

ν

) k−ν∑
µ=0

S(k − ν + 1, µ+ 1)
z(µ+1)t

(µ+ 1)tµ+1

= 1 +
k−1∑
µ=0

z(µ+1)t

tµ+1
· 1

µ+ 1

k−µ∑
ν=1

(
k

ν

)
S(k − ν + 1, µ+ 1).

Hence, our claim would follow from the identity

(µ+ 1)S(k + 1, µ+ 2) =

k−µ∑
ν=1

(
k

ν

)
S(k − ν + 1, µ+ 1),

which can be seen to hold as follows: the left-hand side counts the number of partitions
of a set with k + 1 points, with one special point distinguished, into µ + 2 non-empty
parts with one part distinguished, which does not contain the special point. On the
right-hand side, we first determine the size ν of the distinguished part, then select the
points for this part avoiding the distinguished point, and finally partition the remaining
(k + 1 − ν)-set into µ + 1 non-empty parts. The number of possibilities in the latter
case clearly matches the combinatorial description of the left-hand side, and the result
follows. �
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3.2. Proof of Proposition 1.

Lemma 17. Let π ∈ Sn be a permutation consisting only of cycles of length q. Then,

for every irreducible character χ, we have |χ(π)| ≤
√
n
(
χ(1)

)1/q
.

This follows from [11, Theorem 1.1] together with the Murnaghan-Nakayama rule.

Lemma 18. Let q ≥ 2 be an integer, let π ∈ Sn be a permutation with s cycles of
lengths different from q, and let λ be a partition of n. Then

|χλ(π)| ≤
√
n
(
2 sq(λ)

)s(q−1)/q(
χλ(1)

)1/q
. (24)

Proof. For every partition µ denote by N(µ, λ) the number of ways to obtain µ from λ
by stripping off s rim hooks of lengths according to the cycle structure of π, ending in
an element π0 containing only cycles of length q. By the Murnaghan-Nakayama rule,
we have

χλ(1) ≥
∑
µ

N(µ, λ)χµ(1). (25)

Neglecting the sign in the Murnaghan-Nakayama rule, and applying Lemma 17, Hölder’s
inequality, and the estimate (25), we get

|χλ(π)| ≤
∑
µ

N(µ, λ) |χµ(π0)|

≤
√
n
∑
µ

N(µ, λ)
(
χµ(1)

)1/q

≤
√
n

(∑
µ

N(µ, λ)

)(q−1)/q(∑
µ

χµ(1)N(µ, λ)

)1/q

≤
√
n

(∑
µ

N(µ, λ)

)(q−1)/q (
χλ(1)

)1/q
.

Arguing as in the proof of Lemma 5, we see that the s cycles of length different from q
can be chosen in at most (2 sq(λ))f ways, that is,∑

µ

N(µ, λ) ≤
(
2 sq(λ)

)s
,

and our claim follows. �

Lemma 19. Let q ≥ 2 be an integer, let π ∈ Sn be a permutation with cycle lengths
≤ q, and let λ ` n be a partition of n satisfying λ1 ≥ ‖λ‖. Set ∆ = n − λ1, and let
ε > 0 be given. Then there exists a constant C = C(q, ε), such that, for ∆ ∈ [C, n/C]
and n sufficiently large,

|χλ(π)| ≤ χλ(1)
1
q

+ε
∏
t<q

E(n,∆, t, ct(π)),
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where

E(n,∆, t, s) =


(∆(q+2t−1)/2q

nt/q

)s
, if ts ≤ ∆( s

∆
2qt−2t−q+1

2qt nt/q

)∆

, if ts > ∆.

Proof. The proof is by induction on the minimum m(π) of the cycle lengths in π from
q down to 1. For m(π) = q, our claim follows immediately from Lemma 17. Suppose
that our assumption holds for all π with m(π) ≥ t + 1 and some t ∈ [q − 1]. Write
µ = λ \ λ1. For a partition ν ⊆ λ denote by N(ν, λ) the number of ways to obtain
ν from λ by removing ct(π) rim hooks of length t, let π ∈ Sn be a permutation with
m(π) = t, and let π0 ∈ Sn−tct(π) be a permutation whose cycle structure is the same as
that of π with all t-cycles removed. Then we have

|χλ(π)| ≤
∑
ν

N(ν, λ) |χν(π0)|.

We claim that for a partition ν such that N(ν, λ) 6= 0,

|χν(π0)| ≤
(
χλ(1)

)ε(
χν(1)

) 1
q

+ε
∏
t<τ<q

E(n,∆, τ, cτ (π)).

Indeed, if ∆′ = n − tct(π) − ν1 ≥ ε∆, then this assumption holds (even without the
factor (χλ(1))ε) by the inductive hypothesis; otherwise, using Lemma 8 and the fact
that ∆ ≤ n/C, we get

|χν(π0)| ≤ χν(1) ≤ n∆′ ≤ nε∆ ≤ (χλ(1))2ε.

Setting

E :=
∏
t<τ<q

E(n,∆, τ, cτ (π)),

this gives

|χλ(π)| ≤ E
(
χλ(1)

)ε∑
ν

N(ν, λ)
(
χν(1)

)1/q

= E
(
χλ(1)

)ε ∑
a≤ct(π)

∑
ν

ν1=λ1−(ct(π)−a)t

N(ν, λ)
(
χν(1)

)1/q
. (26)

Put κ := ν \ ν1. Given a, we bound χν(1) as follows: we choose a set I of |κ| = ∆− at
integers in [n − tct(π)], and then count the number of ways of removing all boxes of
ν in such a way that, in the i-th step, a box outside the first row is removed if and
only if i ∈ I. We claim that the latter number is bounded by χκ(1) ≤ χµ(1)N(κ, µ)−1.
Indeed, refining the removal of a rim hook into a sequence of removals of single boxes,
we see that there are at least N(κ, µ) ways to obtain κ from µ by removing single boxes,
while there are χκ(1) ways to remove κ completely by deleting boxes. Hence, we have
χµ(1) ≥ N(κ, µ)χκ(1), from which the last claim follows. Since I can be chosen in(
n−tct(π)

∆−at

)
different ways, we obtain that

χν(1) ≤
(
n− tct(π)

∆− at

)
χµ(1)N(κ, µ)−1. (27)
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Next, if ν1 = λ1 − (ct(π)− a)t, N(ν, λ) is the number of ways to remove ct(π)− a rim
hooks from the first row of λ, and a rim hooks from µ. The position in the sequence
of steps where a rim hook is removed from the first row can be chosen in

(
ct(π)
a

)
ways,

thus

N(ν, λ) =

(
ct(π)

a

)
N(κ, µ). (28)

Inserting (27) and (28) into (26), we get

|χλ(π)| ≤ E
(
χλ(1)

)ε ∑
a≤ct(π)

∑
κ⊆µ

κ`∆−at

(
ct(π)

a

)(
n− tct(π)

∆− at

)1/q

N(κ, µ)1−1/q
(
χµ(1)

)1/q
.

Finally, ∑
κ⊆µ

κ`∆−at

N(κ, µ)

is the number of ways to remove a rim hooks from µ, which can be done in at most
(2sq(µ))a ≤ (2

√
∆)a ways, as we saw in the proof of Lemma 2. Applying Hölder’s

inequality, and observing the fact that the number of partitions of ∆ is ec
√

∆ ≤ (χλ(1))ε,
we obtain

|χλ(π)| ≤ E
(
χλ(1)

)ε ∑
a≤ct(π)

(
ct(π)

a

)(
n− tct(π)

∆− at

)1/q

(2
√

∆)(1−1/q)a
(
χµ(1)

)1/q
.

Since by Lemma 8 (ii) we have for C > 3/ε

(
χλ(1)

) 1
q

+ε ≥
(
n∆

∆!

)1/q (
χµ(1)

)1/q
,

we obtain

|χλ(π)|
(χλ(1))

1
q

+ε
≤ E

(
∆!

n∆

)1/q ∑
a≤ct(π)

(
ct(π)

a

)(
n− tct(π)

∆− at

)1/q

(2
√

∆)(1−1/q)a. (29)

Since by assumption ∆ ≥ C, the number ct(π) ≤ n of summands is of order at most
(χλ(1))ε; in particular, we can estimate the sum over a by its largest term. We now
distinguish two cases, according to whether ∆ ≥ tct(π) or ∆ < tct(π).

Case 1: ∆ ≥ tct(π). We first note that terms of the order of magnitude ec∆ can be
neglected on the right-hand side of (29), since they are bounded above by (χλ(1))ε; in

particular,
(
ct(π)
a

)
≤ 2∆/t and 2a ≤ 2∆/t are absorbed into the term (χλ(1))ε. We now

split the summation over a into the ranges a ≤ εct(π), εct(π) < a < ct(π) − ε∆ and
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a ≥ ct(π)− ε∆. In the last case, we have(
∆!

n∆

)1/q (
n− tct(π)

∆− at

)1/q

∆
q−1
2q

a ≤
(

∆!n∆−tct(π)+ε∆t

n∆(∆− tct(π) + ε∆t)!

)1/q

∆
q−1
2q

ct(π)

≤ nε∆t/q

(
∆

1
2

+ t
q
− 1

2q

nt/q

)ct(π)

≤
(
χλ(1)

)ε(∆
1
2

+ t
q
− 1

2q

nt/q

)ct(π)

.

Hence, every term in this range is of the desired magnitude, and therefore this part of
the sum is sufficiently small.

Next, we turn our attention to terms with a ≤ εct(π). In this case, we obtain(
∆!

n∆

)1/q (
n− tct(π)

∆− at

)1/q

∆
q−1
2q

a ≤
(

∆!

n∆

)1/q (
n

∆

)1/q

∆ε q−1
2q

ct(π)

≤
(
χλ(1)

)ε
.

Finally, consider the range εct(π) < a < ct(π) − ε∆. It suffices to consider the case
where the terms in this range are not dominated by terms in the other ranges, that is,
we may assume that the maximal term lies within this range. If we increase a by 1, a
single summand in (29) is changed by a factor

F (a) :=

(
(n− tct(π)−∆ + at) · · · (n− tct(π)−∆ + at− t+ 1)

)1/q(
(∆− at+ 1) · · · (∆− at+ t)

)1/q
∆1/2−1/2q

.

F (a) is monotonically increasing, hence there is a unique positive solution x0 of the
equation F (x) = 1, and the value amax for which the corresponding summand is maxi-
mal, differs from x0 by at most 1. Using the bounds for a, we find that

F (a) � nt/q

∆
q+2t−1

2q

, a ∈ (εct(π), ct(π)− ε∆);

hence, we can neglect this range, unless the expression on the right-hand side, which
does not depend on a, is � 1; that is, n � ∆(q+2t−1)/2t. In the latter case, we have(

∆!

n∆

)1/q (
n− tct(π)

∆− at

)1/q

∆
q−1
2q

a ≤ ∆at/q+ q−1
2q

a

nat/q

≤
(

∆q+2t−1

n2t

) a
2q

≤ ec∆

≤
(
χλ(1)

)ε
.
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Case 2: tct(π) > ∆. Note that we have a ≤ ∆/t. We begin with a in the range
a ≥ (1− ε)∆/t. Then we have(

∆!

n∆

)1/q (
ct(π)

a

)(
n− tct(π)

∆− at

)1/q

∆
q−1
2q

a ≤
(

∆!

n∆

)1/q (
ct(π)

∆

)(
n− tct(π)

ε∆

)1/q

∆
q−1
2qt

∆

≤
(
χλ(1)

)ε( ct(π)

∆
2qt−2t−q+1

2qt n1/q

)∆

,

which is the desired result.

If a ≤ ε∆/t, then we have(
∆!

n∆

)1/q (
ct(π)

a

)(
n− tct(π)

∆− at

)1/q

∆
q−1
2q

a ≤
(

∆!

n∆

)1/q (
ct(π)

ε∆/t

)(
n

∆

)1/q

∆ε q−1
2q

∆

≤
(
χλ(1)

)ε(ct(π)

∆

)ε∆
,

which is less than (χλ(1))εE(n,∆, t, ct(π)).

Finally, if a ∈ (ε∆/t, (1 − ε)∆/t), increasing a by 1 changes a single summand by a
factor

F (a) :=
(ct(π)− a)

(
(n−∆− tct(π) + at) · · · (n−∆− tct(π) + at− t+ 1)

)1/q

(a+ 1)∆1/2−1/2q
(
(∆− at+ 1) · · · (∆− at+ t)

)1/q

� nt/q∆1/2−t/q+1/2q

ct(π)
;

and, as in the first case, the summands corresponding to these values of a can be
neglected, unless the last expression is � 1. If this is the case, we compute a single
summand to be(

∆!

n∆

)1/q (
ct(π)

a

)(
n− tct(π)

∆− at

)1/q

∆
q−1
2q

a ≤
(
χλ(1)

)ε(∆!

n∆

)1/q (
ct(π)

∆1/2+1/2q

)a(
n1/q

∆1/q

)∆−at

≤
(
χλ(1)

)ε( ct(π)

∆1/2−t/q+1/2qnt/q

)a
≤

(
χλ(1)

)ε
ec∆.

�

We are now in a position to prove Proposition 1. Let λ be a partition of n, q ≥ 2 an
integer, and π ∈ Sn a permutation such that πq = 1. Then ct(π) = 0, unless t|q. We
prove (17), using estimates in different ranges for cycle numbers of π and ∆ = n− λ1.

If ∆ = 0, the assertion is trivial, and if 1 ≤ ∆ ≤ nε, and ct(π) ≥ 2ent/q for some t, then
we use the trivial estimate χλ(π) ≤ χλ(1) ≤ n∆, together with Lemma 11 to see that

the contribution of such terms to the sum in question is < e−cn
1/q

. If on the other hand
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ct(π) < 2ent/q for all t, we estimate |χλ(π)| as follows. As in the proof of Lemma 6, we
choose at cycles of length t without boxes from the first row, and obtain

|χλ(π)| ≤ ∆!
∑

∑
t tat≤∆

∏
t

(
2ent/q

at

)
≤ ∆!∆τ(q)(2en)∆/q ≤ (∆!)2

(
χλ(1)

)1/q
,

and this is of the desired order of magnitude, since(
χλ(1)

)3ε ≥
( n

∆

)3ε∆

≥ n2ε∆ ≥ ∆2∆.

Next, we consider the case where ∆ is in the range [nε, n/C] for some sufficiently large
constant C. Assume first, that there is some t such that ct(π) < 2ent/q. Then we have
E(n,∆, t, ct(π)) ≤ (χλ(1))ε. For, either ∆ < tct(π), which implies

ct(π) < 2ent/q ≤ ∆1/2qnt/q ≤ ∆
q−2t+1

2q nt/q;

or tct(π) ≤ ∆ ≤ tct(π)1+1/2q, in which case

∆
q−2t+1

2q ≤ ∆1−1/(2q) ≤ t
(
ct(π)

)1−1/(4q2) ≤ nt/q;

or, finally, ∆ > tct(π)1+1/2q, which implies

E(n,∆, t, ct(π)) ≤ nct(π) ≤ 2∆ ≤
(
χλ(1)

)ε
.

Hence, disregarding the factor corresponding to such a value of t does not change the
estimate in Lemma 19 significantly. From this observation and Lemmas 11 and 19 we
obtain for π of order dividing q

N(q, n, c1(π), . . . ct(π))

N(q, n)
|χ(π)| ≤

(
χλ(1)

) 1
q

+ε
∏
t|q
t<q

ct(π)≥2ent/q

(
ent/q

tct(π)

)ct(π)

E(n,∆, t, ct(π)).

(30)
If t is such that ct(π) > ∆, then(

ent/q

ct(π)

)ct(π)

E(n,∆, t, ct(π)) =

(
ent/q

ct(π)

)ct(π)−∆

∆−
2qt−2t−q+1

2qt
∆ < 1;

if ∆/t ≤ ct(π) ≤ ∆, we find that(
ent/q

ct(π)

)ct(π)

E(n,∆, t, ct(π)) =

(
ent/q

ct(π)

)ct(π)−∆

∆−
2qt−2t−q+1

2qt
∆

≤ ec∆
(

∆

nt/q

)(1− 1
t
)∆

∆−
2qt−2t−q+1

2qt
∆

≤ ec∆

(
∆−

1
2t

+ 1
q
− 1

2qt

n(t−1)/q

)∆

≤
(
χλ(1)

)ε
,
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since t is bounded by q/2. Finally, if tct(π) ≤ ∆, we have(
ent/q

ct(π)

)ct(π)

E(n,∆, t, ct(π)) =

(
e∆

q+2t−1
2q

ct(π)

)ct(π)

≤
(
e∆1−1/2q

ct(π)

)ct(π)

,

and either ct(π) < ∆1−1/4q, in which case this factor is ≤ (χλ(1))ε, or ct(π) ≥ ∆1−1/4q,
in which case it is less than 1. Hence, in any case the right-hand side of (30) is bounded
by (χλ(1))ε. Summing over all possible values for the ct(π) gives an additional factor
≤ nτ(q), which is absorbed into (χλ(1))ε as well. Hence, for these characters (17) holds.

Finally, we have to consider partitions with ∆ > n/C. By Lemma 8, this implies
χλ(1) ≥ ecn. By Lemma 18, we have

|χλ(π)| ≤ (2
√
n)

q−1
q
s
(
χλ(1)

) 1
q

+ε
,

where s =
∑

t<q ct(π). Together with Lemma 11, we deduce

|χλ(π)|N(n, q, c1(π), . . . , ct(π))

(χλ(1))1/q+εN(n, q)
≤ (4n)

q−1
2q

s
∏
t|q
t<q

(
ent/q

ct(π)

)ct(π)

=
∏
t|q
t<q

(
4en

q+2t−1
2q

ct(π)

)ct(π)

.

In the last product, all factors with ct(π) > 4en
q+2t−1

2q are bounded by 1, while for t such

that ct(π) ≤ 4en
q+2t−1

2q the corresponding factor is at most nn
1− 1

2q
< (χλ(1))ε. Hence,

also in this case, the left-hand side of (17) has the desired order of magnitude, and the
proof of Proposition 1 is complete.

4. The multiplicities of root number functions

In order to be able to estimate the subgroup growth of Fuchsian groups, we also need to
establish certain properties of the multiplicities of root number functions for symmetric
groups. These are summarised in our next two results. For a positive integer q, define
the q-th root number function rq : Sn → N0 via

rq(π) :=
∣∣{σ ∈ Sn : σq = π

}∣∣,
and, for each irreducible character χ of Sn, let

m(q)
χ := 〈rq, χ〉

be the multiplicity of χ in rq. It is known that the functions rq are proper characters,

that is, the m
(q)
χ are non-negative integers; cf. [30].

Proposition 2. Let q ≥ 2 be an integer, ε > 0, n ≥ n0(ε), and let λ ` n be a partition
with corresponding character χλ.

(i) We have m
(q)
χλ ≤ (χλ(1))1−2/q+ε.
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(ii) Given a partition µ ` ∆, there exists some constant Cq
µ, depending only on µ

and q, such that, for λ \ λ1 = µ and n sufficiently large, we have m
(q)
χλ = Cq

µ. In
particular, we have

Cq
(1) = τ(q)− 1,

Cq
(2) =

1

2

(
σ(q) + τ(q)2 − 3τ(q) + τodd(q)

)
,

Cq
(1,1) =

1

2

(
σ(q) + τ(q)2 − 3τ(q)− τodd(q)

)
+ 1,

where σ(q is the sum of divisors of q, τ(q) is the number of divisors of q, and
τodd(q) is the number of odd divisors of q.

(iii) For a partition µ ` ∆, q odd, and sufficiently large n, we have m
(q)
χλ′ = 0. If q is

even, then m
(q)
χλ′ = m

(q)
χλ .

Proposition 3. Let ε > 0 be given, let q ≥ 2 be an integer, ∆ ≥ ∆0(q, ε) and n ≥
n0(q,∆, ε). Then, for partitions µ ` ∆ and λ ` n with λ \ λ1 = µ, we have that∣∣∣∣ mq

χλ
∆!

χµ(1)Q∆(q)
− 1

∣∣∣∣ < ε,

where Q∆(q) =
∑∆

i=1 S(∆,∆− i)qi.

This section is devoted to the proofs of these results.

4.1. Proof of Proposition 2. We begin by translating the problem of bounding m
(q)
χ

from an algebraic into a combinatorial question.

Lemma 20. For q ≥ 2 and χ ∈ Irr(Sn), we have

m(q)
χ ≤

∑
cq=1

〈
1,
∣∣χ↓CSn (c)

∣∣〉
CSn (c)

,

where the summation extends over all conjugacy classes c in Sn, whose orders divide q,
and CSn(c) denotes the centraliser of some element π ∈ c.

Proof. It is shown in [30] that, for every class c, there exists a linear character φc of
CSn(c) such that rq =

∑
cq=1

φc↑Sn . By Frobenius reciprocity this implies

m(q)
χ =

∑
cq=1

〈
φc↑Sn , χ

〉
Sn

=
∑
cq=1

〈
φc, χ↓CSn (c)

〉
CSn (c)

≤
∑
cq=1

〈
1,
∣∣χ↓CSn (c)

∣∣〉
CSn (c)

.

�
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Proof of Proposition 2. (i) Let ε > 0 be given. We first consider characters χλ with

χλ(1) > nn
1−ε/4

, starting from the formula

m(q)
χλ
≤
∑
cq=1

1

|CSn(c)|
∑

π∈CSn (c)

|χλ(π)|.

The number of summands of the outer sum is ≤ nτ(q) and therefore negligible. In the
inner sum, we bound χλ(π) by either using Lemma 5 or via the trivial bound χλ(1),
depending on the number of cycles of π. Estimating the number of elements π ∈ CSn(c)
with k cycles using Lemma 12 (ii) for k ≥ (log n)3, and trivially otherwise, we obtain

m(q)
χλ
≤
(
χλ(1)

)ε
(2
√
n)(logn)3

+
(
χλ(1)

)ε ∑
k≥(logn)3

min
(
(2
√
n)k, χλ(1)

)(3q log n)k/q

bk/qc!
.

The first summand is negligible. The greatest term of the sum is coming from one of

k = b2 logχλ(1)
logn

c and k = d2 logχλ(1)
logn

e, and these terms differ by a factor n at most; hence,

using Stirling’s formula, we obtain

m(q)
χλ
≤
(
χλ(1)

)1+ε
e−

2
q

logχλ(1)
log logχλ(1)

logn ≤
(
χλ(1)

)1− 2
q

+2ε
,

and our claim is proven in this case. In particular, setting ∆ = n− λ1, our first claim
holds true for all characters χλ belonging to a partition λ with ∆ > n1−ε/2.

Next, we consider the range (log n)4 ≤ ∆ ≤ n1−ε/2. In this range we estimate χλ(π) by
means of Lemma 6 and Equation (15), and we bound the number of centraliser elements
with k cycles again via Lemma 12 (ii), or trivially. In this way, we obtain

m(q)
χλ
≤

(
χλ(1)

)ε
+
(
χλ(1)

)ε ∑
k≥(logn)3

min

(
max
ν≤∆

(2
√

∆)ν
(
k

ν

)
, χλ(1)

)
(3q log n)k/q

bk/qc!

≤
(
χλ(1)

)2ε
∑

k≥(logn)3

min
(

(4
√

∆)k, χλ(1)
)(3q log n)k/q

bk/qc!

≤
(
χλ(1)

)1+3ε
e−

2
q

logχλ(1)
log logχλ(1)

log ∆ .

On the other hand, from Lemma 8 (ii) we see that log logχλ(1)
log ∆

≥ 1 for all ∆ < n/5,

hence, our claim holds in this case as well.

Finally, for ∆ < (log n)4, we see from Lemma 12 (ii) that we may neglect the contri-
bution of permutations with at least (log n)3 cycles. For the remaining ones we have
χλ(π) ≤ (log n)3∆ by Lemma 6, Equation (14), which is less then (χλ(1))ε. This com-
pletes the proof of Proposition 2 (i).

(ii) We describe the computation of m
(q)
χλ for bounded ∆. We have

m(q)
χλ

= 〈χλ, rq〉 =
1

n!

∑
π∈Sn

χλ(π
q).

Let µ ` ∆ be a partition. By Lemma 7, there exists a polynomial Pµ(x1, . . . , x∆), such
that, for every n and λ ` n with λ \ λ1 = µ, we have χλ = Pµ(c1, . . . , c∆). Moreover, if
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xd has weight d, then Pµ has weight at most |µ|. We have

cd(π
q) =

∑
κ

κ/(κ,q)=d

(κ, q)cκ(π), (31)

since the q-th power of a cycle of length κ consists of (κ, q) cycles, each of length κ
(κ,q)

.

Thus, we have to compute

1

n!

∑
π∈Sn

Qµ,q

(
c1(π), c2(π), . . . , c∆q(π)

)
for a certain polynomial Qµ,q of weight at most ∆q.

By Lemma 13, the last expression converges to some constant. Hence, m
(q)
χλ converges

to some real number, but as m
(q)
χλ is integral, it has to become constant for n sufficiently

large.

We now consider the cases µ = (1), (2) and (1, 1). If λ = (n− 1, 1), we have

m(q)
χλ

=
1

n!

∑
π∈Sn

χλ(π
q) =

1

n!

∑
π∈Sn

c1(πq)− 1 =
1

n!

∑
π∈Sn

∑
d|q

dcd(π)− 1.

By Lemma 13, the expected number of d-cycles is 1
d
; hence, m

(q)
χλ = τ(q)− 1. Next, for

λ = (n− 2, 2), Lemma 7 yields

χλ =
c2

1

2
− 3c1

2
+ c2.

Inserting (31), we deduce

m(q)
χλ

=
1

n!

∑
π∈Sn

(
1

2

(∑
d|q

dcd(π)
)2

− 3

2

∑
d|q

dcd(π) +
∑
d|q

(2d,q)=d

dcd(π)

)

=
1

2

∑
d1,d2|q

1

n!

∑
π∈Sn

(
d1d2cd1(π)cd2(π)

)
− 3

2

∑
d|q

1

n!

∑
π∈Sn

dcs(π)

+
∑
d|q

(2d,q)=d

1

n!

∑
π∈Sn

dcd(π).

If d1 6= d2 then, by Lemma 13, sd1(π) and sd2(π) are asymptotically independent for
π ∈ Sn chosen at random, and have mean values 1

d1
and 1

d2
, respectively, while (cd(π))2

has mean value 1
d

+ 1
d2 . Hence, the first sum is asymptotically equal to σ(q) + τ(q)2.

The second sum equals τ(q), whereas the last sum yields |{d|q : (2d, q) = d}|, which
equals τodd(q). We deduce that, as n→∞,

m(q)
χλ
→ 1

2

(
σ(q) + τ(q)2 − 3τ(q) + τodd(q)

)
,

which implies our claim, since m
(q)
χλ is always integral. A similar computation leads to

the value of m
(q)
χλ for λ = (n− 2, 1, 1).
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(iii) For q odd, we have

m(q)
χλ′

=
∑
π∈Sn

χλ′(π
q) =

∑
π∈Sn

χλ(π
q)ε(πq) =

∑
π∈Sn

χλ(π
q)ε(π),

where ε is the sign character. As in the proof of part (ii), we can write mq
χλ′

as a linear
combination of sums of the form

1

n!

∑
π∈Sn

ε(π)

lq∏
j=1

(
cj(π)

)ej .
Observe first that the contribution coming from permutations π with

∑ql
j=1 jcj(π) > n/2

is o(1) by Lemma 13. The sum over permutations π with
∑ql

j=1 jcj(π) ≤ n/2 vanishes,
since it can be expressed as a linear combination of sums of the form∑

π∈Sn
ci(π)≥ci (i≤lq)

ε(π) = ±
∑

π∈Sn−C

ε(π) = 0,

where C =
∑lq

j=1 cj. Hence, for q odd and n large, m
(q)
χλ′ < 1 and, being an integer,

vanishes. The argument for q even is trivial. �

4.2. Proof of Proposition 3. We compute the scalar product 〈rq, χλ〉, and evaluate
χλ using Lemma 7, to obtain

m(q)
χλ

=
χµ(1)

n!

∑
π∈Sn

(
c1(πq)

∆

)
+O

(
∆χµ(1)

n!

∑
i≤∆−1

∑
π∈Sn

(
c1(πq) + . . .+ c∆(πq)

i

))
. (32)

By Lemma 13, we have as n→∞
1

n!

∣∣{π ∈ Sn : cl(π) = a
}∣∣ ∼ e−1/l

laa!
,

and the events “cl(π) = a” and “cl′(π) = b” are asymptotically independent. From this
together with Equation (31) we deduce

1

n!

∑
π∈Sn

(
c1(πq)

)∆
=

1

n!

∑
π∈Sn

∑
t|q

tct(π)

∆

∼
∑
dt,t|q∑
t dt=∆

∏
t|q

(
1

n!

∑
π∈Sn

tct(π)

)dt

∼
∑
dt,t|q∑
t dt=∆

∏
t|q

∞∑
a=1

e−1/t(ta)dt

taa!

=
∑
dt,t|q∑
t dt=∆

∏
t|q

tdt
dt∑
ν=1

S(dt, ν)t−ν .
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The last quantity can be written as ∑
dt,t|q∑
t dt=∆

∏
t|q

Qdt(t), (33)

where

Qn(t) =
n−1∑
ν=0

S(n, n− ν)tν .

For fixed n, the sequence S(n,m) is unimodal in m; define m0 to be the least m with
S(n,m0) = maxm S(n,m). Kanold [16] has shown that

m0 ∼
n

log n
;

moreover, it can be deduced from his proof that

(1+ε)m0∑
m=(1−ε)m0

S(n,m) ∼
n∑

m=1

S(n,m), n→∞. (34)

This estimate implies Qdt(t) ≤ (t/q)dt(1−ε)Qdt(q) for all t|q and dt ≥ d0(ε).

Next, we establish the inequality Qn(x)Qn′(x) ≤ Qn+n′(x) for all real positive x and
n,m ≥ 1. More precisely, we show that each single coefficient of Qn(x)Qn′(x) is less
than or equal to the corresponding coefficient of Qn+n′(x), which implies our claim.
Computing the m-th coefficient explicitly, we have to show that∑

i+j=m

S(n, n′ − i)S(n′, n′ − j) ≤ S(n+ n′, n+ n′ −m),

which is true since the right-hand side is the number of partitions of a set with n + n′

elements into n+n′−m parts, while the left-hand side is the number of these partitions
that respect some fixed partition of the large set into two sets with n and n′ elements.
Together with (34), we deduce that, for d sufficiently large, and a fixed tuple d1, . . . , dq
with d1 + · · ·+ dq = ∆,∏

t|q

Qdt(t) ≤
∏
t|q

(t/q)2dt/3Qdt(q) ≤ (2/3)∆−dq
∏
t|q

Qdt(q) ≤ (2/3)∆−dqQ∆(q).

We now split the sum (33) into three ranges, according to whether dq = ∆, ∆−Cτ(q) ≤
dq ≤ ∆− 1, or dq < ∆−Cτ(q), and we want to show that the sum over the latter two
ranges is negligible compared to the first term. From the last estimate we find that, for
ε > 0 and ∆ > ∆0(q, ε), there is some C = C(ε), such that8

∑
dt,t|q∑
t dt=∆

dq≤∆−Cτ(q)

∏
t|q

Qdt(t) ≤ Q∆(q)
∑

ν≥Cτ(q)

(2/3)ν
(
ν + τ(q)− 1

τ(q)− 1

)
≤ εQ∆(q).

8Complex integration shows that we may take C(ε) = 10 + 7 log ε−1.
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In the range ∆−Cτ(q) ≤ dq ≤ ∆− 1, the number of summands is bounded, and their
sum can be estimated by CQ∆−1(q), and we obtain∑

dt,t|q∑
t dt=∆

dq 6=∆

∏
t|q

Qdt(t) ≤ εQ∆(q) + CQ∆−1(q).

Now we use the inequalities (cf. [16, Satz 1])

(m+ 1)n

m!

(
1− m

(1− 1/m)n

)
≤ S(n,m) ≤ (m+ 1)n

m!
,

to see that S(n, n−µ)qµ in monotonically decreasing with µ for n sufficiently large and
µ > n− n

2 logn
; in particular, we have∑

µ>n−n/(2 logn)

S(n, n− µ)qµ <
1

n
Qn(q).

Since S(∆ + 1,∆− µ) ≥ (∆− µ)S(∆,∆− µ), the latter inequality implies

Q∆(q) ≥
∑

µ≤∆−∆/(2 log ∆)

S(∆,∆− µ)qµ

≥ ∆

2 log ∆

∑
µ≤∆−∆/(2 log ∆)

S(∆− 1,∆− µ)qµ

≥ ∆

2 log ∆

(
1− 1

∆− 1

)
Q∆−1(q),

and we deduce that

Q∆(q) ≤ 1

n!

∑
π∈Sn

(
c1(πq)

)∆ ≤ (1 + ε)Q∆(q),

provided that ∆ ≥ ∆0(q, ε) and n ≥ n0(∆, q, ε). Estimating the error term in (32) in a
way similar to our treatment of the main term, and using the fact that(

c1(πq)

∆

)
=

1

∆!

(
c1(πq)

)∆
+O

(
c1(πq)∆−1

)
,

Proposition 3 follows.

5. Subgroup growth of Fuchsian groups

5.1. The generic case. Let r, s, t ≥ 0 be integers, a1, . . . , ar ≥ 2 in N ∪ {∞}, and let
e1, . . . , es ≥ 2 be integral. Define the group Γ = Γ(t; a1, . . . , ar; e1, . . . , es) associated
with these data by

Γ =
〈
x1, . . . , xr, y1, . . . , ys, u1, v1, . . . , ut, vt

∣∣
xa1

1 = xa2
2 = · · · = xarr = x1x2 · · ·xrye11 y

e2
2 · · · yess [u1, v1][u2, v2] · · · [ut, vt] = 1

〉
. (35)
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Define

µ(Γ) =
r∑
i=1

(
1− 1

ai

)
+ s+ 2(t− 1),

α(Γ) = µ(Γ)−
s∑
j=1

(
1− 2

ej

)
,

mΓ = [a1, . . . , ar].

The main result of this section provides an asymptotic expansion for the number of
index n subgroups of these groups.

Theorem 3. Let Γ be given as in (35), and suppose that α(Γ) > 0. Then the number
sn(Γ) of index n subgroups in Γ satisfies an asymptotic expansion

sn(Γ) ≈ δLΓ(n!)µ(Γ)ΦΓ(n)

{
1 +

∑
ν≥1

aν(Γ)n−ν/mΓ

}
, (n→∞).

Here,

δ =

{
2, ∀i : ai finite and odd,∀j : ej even

1, otherwise,

LΓ = (2π)−1/2−
∑
i(1−1/ai)

( ∏
i:ai 6=∞

a
−1/2
i

)
exp

(
−
∑
i

2|ai

1

2ai

)
,

ΦΓ(n) = n3/2−
∑
i(1−1/ai) exp

(
r∑
i=1

∑
t|ai
t<ai

nt/ai

t

)
,

and the aν(Γ) are explicitly computable constants depending only on Γ.

Corollary 1. Let Γ be as in (35), and suppose that α(Γ) > 0. Then we have

sn+1(Γ)

sn(Γ)
∼ (n+ 1)µ(Γ), (n→∞);

in particular, sn(Γ) is strictly increasing for sufficiently large n.

Proof of Theorem 3. The proof proceeds in three steps: first we express hn(Γ) :=
|Hom(Γ, Sn)|/n! in character theoretic terms; next, we use results from Sections 3 and
4 to obtain an asymptotic estimate for hn(Γ). The assertions of the theorem are then
deduced by means of an asymptotic method for divergent power series due to Bender
[2].

Set

R = x1x2 · · ·xrye11 y
e2
2 · · · yess [u1, v1][u2, v2] · · · [ut, vt],

and define NR(π) to be the number of solutions of the equation R = π, subject to the
conditions xaii = 1 for those i for which xi occurs in w. We now represent Nw as a
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convolution product. Define functions

αi(π) =

{
1, πai = id

0 otherwise
, 1 ≤ i ≤ r;

βi(π) = #{σ ∈ Sn : σei = π}, 1 ≤ i ≤ s

γ(π) = #{σ, τ ∈ Sn : [σ, τ ] = π}.

Then we have NR = α1 ∗ · · · ∗ αr ∗ β1 ∗ . . . βs ∗ γ∗t, and Lemma 1 yields the Fourier
coefficients of NR. In fact, we have

〈αi, χ〉 =
1

n!

∑
π:πai=1

χ(π),

〈βi, χ〉 =
1

n!

∑
π∈Sn

χ(πai) = m(ei)
χ ,

〈γ, χ〉 =
n!

χ(1)
;

thus,

NR(π) =
∑
χ

n!s+2t−1

χ(1)r+s+2t−1

r∏
i=1

( ∑
π:πai=1

χ(π)

)
s∏
j=1

m(ej)
χ χ(π).

In view of (17) it is convenient to rewrite this formula as

NR(π) =
∑
χ

n!s+2t−1

χ(1)r+s+2t−1

r∏
i=1

|Hom(Cai , Sn)|
r∏
i=1

αaiχ

s∏
j=1

m(ej)
χ χ(π),

where

αaiχ :=
1

|Hom(Cai , Sn)|
∑
πq=1

χ(π)

satisfies |αaiχ | ≤ χ(1)
1
ai

+ε
. Noting that hn(Γ) = 1

n!
NR(1), we finally obtain

hn(Γ) = (n!)s+2t−2

r∏
i=1

|Hom(Cai , Sn)|
∑
λ`n

∏r
i=1 α

(ai)
χλ

∏s
j=1m

(ej)
χλ

(χλ(1))r+s+2t−2
. (36)

We now concentrate on the sum over characters. Let A > 0 be given, and split the
sum into three parts

∑
1,
∑

2,
∑

3, according to whether λ1 ≥ n − A, ‖λ‖ ≥ n − A, or
λ1, ‖λ‖ < n − A. Note that the first two cases are mutually exclusive for n > 2A + 1.
For ε > 0 and n sufficiently large, we have by Propositions 1 and 2 (i)∑

3
<

∑
λ`n

‖λ‖,λ1<n−A

(
χλ(1)

)∑
i 1/ai+

∑
j(1−2/ej)−r−s−2t+2+ε

≤ 2
∑
λ`n

‖λ‖≤λ1<n−A

(
χλ(1)

)−α(Γ)+ε
.
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If λ1 > 3n/4, Lemma 8 (ii) gives χλ(1) >
(

λ1

n−λ1

)
, thus∑

λ`n
3n/4<λ1<n−A

(
χλ(1)

)−α(Γ)+ε
<

∑
3n/4<ν<n−A

(
ν

n− ν

)−α(Γ)+ε

p(n− ν)�
(
n− A
A

)−α(Γ)+ε

;

whereas for λ1 ≤ 3n/4, Lemma 8 (i) implies χλ(1) > 2n/8, hence∑
λ`n

‖λ‖≤λ1≤3n/4

(
χλ(1)

)−α(Γ)+ε
< 2−n/8p(n) < 2−n/9.

We conclude that
∑

3 � n−α(Γ)A+ε.

Next, we consider
∑

2. Suppose that δ = 2. Then every permutation of order ai, every
ej-th power of a permutation and every commutator is even, hence χλ(π) = χλ′(π) for

π with πai = 1, and m
(ej)
χλ = m

(ej)
χλ′ , and we obtain

∑
2 =

∑
1 in this case. If, on the

other hand, δ = 1, then either there is some i such that ai is even, or there is some j
such that ej is odd. In the first case, write

α(ai)
χλ

=
1

|Hom(Cai , Sn)|
∑
πai=1

χλ(π)

=
1

|Hom(Cai , Sn)|
∑
πai=1

∑
∑
t≤∆ tet=∆

γe1,...,e∆
∏
t|ai

(−1)(t−1)ct(π)
(
ct(π)

)et
,

where ∆ = n − ‖λ‖, and the coefficients γe1,...,e∆ are determined via Lemma 7. Inter-

changing summations and applying Lemma 15 (ii), we see that α
(ai)
χλ < e−cn

1/ai , and
∑

2

is negligible. In the second case, we have m
(ei)
χλ = 0 for some i and n sufficiently large

by Proposition 2 (iii), hence
∑

3 vanishes. By what we have shown so far,∑
1

+
∑

2
+
∑

3
= δ

∑
1

+O(n−Aα(Γ)+ε).

To deal with
∑

1, we fix a partition λ ` n with λ1 ≥ n − A. Then
∏s

j=1 m
(ej)
χλ is

ultimately constant, and χλ(1) is a polynomial in n of degree n− λ1. Using Lemmas 7
and 15 (i), we compute

α(ai)
χλ

=
1

|Hom(Cai , Sn)|
∑
πai=1

χλ(π)

=
1

|Hom(Cai , Sn)|
∑
πai=1

∑
∑
t|ai

tet≤∆

γe1,...,eai

∏
t|ai

(
ct(π)

)et
=

∑
∑
t|ai

tet≤∆

γe1,...,eai

∑
k≤

∑
t|ai

tet

α(k)
e1,...,eai

n!

(n− k)!

|Hom(Cai , Sn−k)|
Hom(Cai , Sn)|

.

By [25, Eq. (22)] we have, for every finite group G and each fixed k, an asymptotic
expansion

|Hom(G,Sn)|
|Hom(G,Sn−k)|

≈ nk(1−1/m) exp

( ∞∑
ν=1

Q(k)
ν n−ν/m

)
, (n→∞), (37)
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where the coefficients Q
(k)
ν are given in [25] after Equation (22). Putting G = Cai , we

find that

α(ai)
χλ
≈ n∆/ai

( ∞∑
ν=0

Aλ,aiν n−ν/ai
)
, n→∞.

Inserting these results into (36), we obtain an asymptotic formula

β(R)
χλ

= (n!)s+2tn(1−l(r+s+2t)+
∑
i 1/ai)∆

( ∞∑
ν=0

Bλ,R
ν n−ν/mΓ

)
, n→∞.

For fixed A, there are only finitely many partitions λ ` n with ∆ ≤ A, hence, we obtain
an asymptotic expansion for

∑
1 with leading term given by the partition λ = (n). In

this case, α
(ai)
χ(n) = m

(ei)
χ(n) = 1, thus, β

(R)
χ(n) = (n!)s+2t, and therefore, as n→∞,

|Hom(Γ, Sn)| = NR(1) ≈ δ(n!)s+2t−1

r∏
i=1

|Hom(Cai , Sn)|
(

1 +
∞∑
ν=1

Cν(Γ)n−ν/mΓ

)
.

Using the asymptotic expansion [24, Theorem 5] for |Hom(G,Sn)|, the main term of
the last expression is found to be

δLΓ(n!)µ(Γ)+1n−1ΦΓ(n),

with µ(Γ), LΓ,ΦΓ and δ as defined above. Mimicking the proof of [25, Prop. 1] and
using our assumption that µ(Γ) ≥ α(Γ) > 0, we find that, for each fixed K ≥ 1,

n−K∑
k=K

hk(Γ)hn−k(Γ)

hn(Γ)
� n−Kµ(Γ).

Combining the latter estimate with the Lemma from [25, Sec. 3] (cf. also [2]) and the
transformation formula9

sn(Γ) = nhn(Γ)−
n−1∑
k=1

hn−k(Γ)sk(Γ), (38)

now gives

sn(Γ)

nhn(Γ)
≈ 1 +

∞∑
k=1

dk(Γ)
hn−k(Γ)

hn(Γ)
, (n→∞), (39)

where dk(Γ) is the coefficient of zk in the formal power series
(∑

n≥0 hn(Γ)zn
)−1

. Ex-

panding hn−k(Γ)

hn(Γ)
by means of the asymptotic formula for hn(Γ) and the Taylor-series of

ΦΓ(n), the theorem follows. �

The condition α(Γ) > 0 in Theorem 3 is essentially necessary. It can be violated in
one of two ways: either µ(Γ) ≤ 0, or µ(Γ) > 0, but there are sufficiently many large
values among the ej to keep α(Γ) small. Here, we deal with the first possibility; cf.
Subsection 5.3 for the second case.

The groups Γ with a presentation of the form (35) and µ(Γ) ≤ 0 naturally fall into
three classes, according to whether µ(Γ) = 0, and either s = 0, or ej = 2 for all j ≤ s;

9Cf. [9, Prop. 1] or [23, Prop. 1]. A far reaching generalisation of this counting principle is found in
[26].
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or µ(Γ) = 0 and ej > 2 for some j; or µ(Γ) < 0. We will show that in each of these
cases the assertion of Theorem 3 fails to hold.

(i) µ(Γ) = 0, and either s = 0 or ej = 2 for all j ≤ s. Then Γ is virtually abelian
of rank 2, hence, sn(Γ) � nc; cf. [20, Chapter III, Prop. 7.10]. This would
certainly contradict the assertion of Theorem 3, provided that r 6= 0. If r = 0,
we have Γ = 〈x, y | [x, y] = 1〉 or Γ = 〈x, y |x2y2 = 1〉, and sn(Γ) = σ(n) in both
cases, whereas Theorem 3 would predict sn(Γ) ∼ n3/2.

(ii) µ(Γ) = 0, and e1 > 2, say. Then either r = 2, a1 = a2 = 2, or r = 0, s = 2, t = 0.
In the first case, Γ maps homomorphically onto C2 ∗ Ce1 , whereas in the sec-
ond case, Γ maps homomorphically onto Ce1 ∗ Ce2 ; that is, in both cases Γ
maps onto a free product with negative Euler characteristic, and therefore
sn(Γ) � sn(C2 ∗ C3) � (n!)1/6, while Theorem 3 would predict that Γ is of
subexponential growth.

(iii) µ(Γ) < 0. In this case, Γ is finite, and sn(Γ) is ultimately 0, which contradicts
the assertion of Theorem 3 as well.

5.2. Computation of the coefficients aν(Γ). In this section we describe how the
coefficients aν(Γ) can be computed explicitly. We begin by giving explicit values to
some of the quantities shown to exist in the previous sections.

Combining Lemmas 7, 15, and 16, we evaluate the constants α
(q)
χλ for partitions λ ` n

with ∆ ≤ 2.

Lemma 21. Let q ≥ 2 be an integer. Then we have

α(q)
χ(n−1,1)

= |Hom(Cq, Sn)|−1
∑
πq=1

χ(n−1,1)(π) = n
|Hom(Cq, Sn−1)|
|Hom(Cq, Sn)|

,

and for q even

α(q)
χ(n−2,2)

= |Hom(Cq, Sn)|−1
∑
πq=1

χ(n−2,2)(π) =
n2

2

|Hom(Cq, Sn−2)|
|Hom(Cq, Sn)|

α(q)
χ(n−2,1,1)

= |Hom(Cq, Sn)|−1
∑
πq=1

χ(n−2,1,1)(π) = 1 +
n2

2

|Hom(Cq, Sn−2)|
|Hom(Cq, Sn)|

whereas for q odd

α(q)
χ(n−2,2)

= |Hom(Cq, Sn)|−1
∑
πq=1

χ(n−2,2)(π) = − 1 +
n(n− 1)

2

|Hom(Cq, Sn−2)|
|Hom(Cq, Sn)|

,

α(q)
χ(n−2,1,1)

= |Hom(Cq, Sn)|−1
∑
πq=1

χ(n−2,1,1)(π) =
n(n− 1)

2

|Hom(Cq, Sn−2)|
|Hom(Cq, Sn)|

.
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We now use (37) and [24, Theorem 6] to compute the first terms of the asymptotic

series for α
(q)
χ(n−2,2) . We obtain

α(q)
χ(n−2,2)

= n2/q
(
1 +Rq(n

−1/q)
)(

1− 2

q+3∑
ν=1

Q̃(q)
ν n−ν/q + Sq(n

−1/q)

)
+O(n−

q+2
q ),

where the polynomials Rq, Sq are given as follows.

q Rq(z) Sq(z)

2 1
2
z2 − 1

4
z3 + 1

8
z4 + 1

32
z5 3

4
z2 − 7

8
z3 + 23

64
z4 + 5

128
z5

3 1
3
z3 − 2

9
z5 + 5

36
z6 1

3
z4 − 1

3
z5 + 17

108
z6

4 1
4
z4 − 1

8
z6 3

16
z4 + 3

8
z5 + 25

64
z6 + 33

64
z7

5 1
5
z5 3

25
z8

6 1
6
z6 − 1

12
z9 1

12
z6 + 1

6
z7 + 1

4
z8 − 55

216
z9

7 1
7
z7 0

8, 12 1
q
zq 3

q2 (zq + zq+2 + zq+3)

9 1
9
z9 1

27
z12

10, 18 1
q
zq 3

q2 (zq + zq+3)

14, 16 1
q
zq 3

q2 z
q

q ≥ 20, even 1
q
zq 3

q2 z
q

q ≥ 11, odd 1
q
zq 0

Note that by Lemma 21, we have α
(q)
χ(n−2,1,1) = 1+α

(q)
χ(n−2,2) , that is, the asymptotic series

above contains all necessary information for both characters.

As an example, consider the triangle group

Γ =
〈
x, y, z

∣∣x2 = y3 = z7 = xyz = 1
〉
.

Here, µ(Γ) = α(Γ) = 1
42

and mΓ = 42. We first show how to determine the contribution
of characters χλ with ∆ > 2. By Lemmas 7 and 15 (ii), we see that, for fixed ∆ and q
prime,

α(q)
χλ

=
(

1 +O(n−1/q)
)
χλ\λ1(1)

n∆/q

∆!
.

Hence, for the triangle group Γ we obtain

β(R)
χλ

=
(

1 +O(n−1/7)
)(χλ\λ1(1))3n41∆/42

(∆!)3(χλ(1))2
.
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Thus, from (36), we obtain

|Hom(Γ, Sn)| = |Hom(C2, Sn)||Hom(C3, Sn)||Hom(C7, Sn)|
n!

×

(∑
λ

∆≤2

χλ(1)β(R)
χλ

+
∑
λ

3≤∆≤22

(χλ\λ1(1))3n41∆/42

(∆!)3χλ(1)
+ O(n−23/42)

)
.

Given our previous work in this section, the sum over ∆ can be computed to whatever
length is required. We have cut the sum after the term ∆ = 22, since this is the smallest
precision bringing to bear all phenomena occurring in such computations at arbitrary

scale. For ∆ = 0, we have β
(R)
χλ = 1, whereas for 1 ≤ ∆ ≤ 2, we use the asymptotic for

α
(q)
χλ computed above, to obtain∑

λ
∆≤2

χλ(1)β(R)
χλ

= 1 + n−1/42 +
1

2
n−1/21 +

1

2
n−11/21 + O(n−23/42).

From Lemma 7, we obtain, for ∆ fixed and n→∞, the asymptotic estimate

χλ(1) =
(

1 +O(n−1)
)χλ\λ1(1)n∆

∆!
,

which implies∑
λ

3≤∆≤22

(χλ\λ1(1))3n41∆/42

(∆!)3χλ(1)
=

(
1 +O(n−1)

) ∑
λ

3≤∆≤22

(χλ\λ1(1))2n−∆/42

(∆!)2

=
(

1 +O(n−1)
) ∑

3≤∆≤22

n−∆/42

∆!
;

and combining these estimates we obtain

|Hom(Γ, Sn)| = 1

n!
|Hom(C2, Sn)||Hom(C3, Sn)||Hom(C7, Sn)|

×
(

1 +
22∑

∆=1

n−∆/42

∆!
+

1

2
n−11/21 +O(n−23/42)

)
.

For 1 ≤ k ≤ 22, we compute sk(Γ) using the software package GAP [12], and obtain

sk(Γ) =



1, k = 1, 8, 9

2, k = 7

3, k = 15

9, k = 14, 21

13, k = 22

0, otherwise,

1 ≤ k ≤ 22.

From these values, hk(Γ) and hence dk(Γ) are easily computed for 1 ≤ k ≤ 22. The
first three coefficients of the asymptotic series for |Hom(Cq, Sn)| are given in [24], after
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Corollary 2. Putting together the various expansions, our final result is that

sn(Γ) =
(2π)−

53
21 e−

1
4

√
42

(n!)
1
42n−

11
21 exp

(
n1/2 + n1/3 + n1/7

)
×
{

1− 2

7
n−1/6 − 1

8
n−4/21 − 1

9
n−3/14 − 113

147
n−1/3 − 23

140
n−5/14 +

319

8064
n8/21

+
1

72
n−17/42 +

1

162
n−3/7 +

745

8232
n−1/2 − 28309

64680
n11/21 + O(n−23/42)

}
.

5.3. One-relator groups. The result of this subsection, apart from its inherent inter-
est, also demonstrates that certain Fuchsian groups Γ with µ(Γ) > 0 and α(Γ) < 0 have
a much faster growth than would be predicted by Theorem 3. Consider a one-relator
group

Γ =
〈
y1, y2, . . . , ys

∣∣ ye11 y
e2
2 · · · yess = 1

〉
, (40)

and let Γ̄ := Ce1 ∗ Ce2 ∗ · · · ∗ Ces .

Theorem 4. Let Γ be as in (40), and suppose that s ≥ 2 and

α(Γ) = −2 +
∑

1≤j≤s

2

ej
< 0.

Then, as n tends to infinity, we have

sn(Γ) ∼ sn(Γ̄) ∼ K(n!)µ(Γ)−α(Γ)/2 exp

(
s∑
j=1

∑
ν|ej
ν<ej

nν/ej

ν
+

α(Γ)− 2µ(Γ) + 2

4
log n

)
,

where

K =

exp

(
−
∑
j

2|ej

(2ej)
−1

)

(2π)
2+2µ(Γ)−α(Γ)

4
√
e1e2 · · · es

.

Proof. We have

|Hom(Γ, Sn)| =
∣∣∣{(π1, . . . , πs) ∈ Ssn : πe11 π

e2
2 · · · πess = 1

}∣∣∣
=

∑
c1,...,cs

re1(c1)re2(c2) · · · res(cs)N(c1, . . . , cs), (41)

where

N(c1, . . . , cs) :=
∣∣{(π1, . . . , πs) ∈ Ssn : π1π2 · · · πs = 1, πi ∈ ci (1 ≤ i ≤ s)

}∣∣∣.
The contribution in (41) of the term corresponding to c1 = c2 = · · · = cs = 1 is

|Hom(Ce1 , Sn)| · |Hom(Ce2 , Sn)| · · · |Hom(Ces , Sn)| = |Hom(Γ̄, Sn)|.
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We shall show that the sum over the remaining terms is of lesser order of magnitude.
Since N(c1, . . . , cs) is invariant under permutation of its arguments, we may assume
that |c1| ≥ |cj| for all j. Hence,

N(c1, . . . , cs) =
∣∣∣{(π2, . . . , πs) ∈ Ss−1

n : π2π3 · · · πs ∈ c1, πj ∈ cj (2 ≤ j ≤ s)
}∣∣∣

≤ |c2| · |c3| · · · |cs|

≤
∏

1≤j≤s

|cj|1−δj

for any choice of non-negative real numbers δ1, δ2 . . . , δs such that
∑

j δj = 1. For a

non-empty set J ⊆ [s], define SJ :=
∑

j∈J 1/ej. By our assumption, SJ < 1, and,

by definition,
∑

j∈J 1/(SJej) = 1. Using the above estimate for N(c1, . . . , cs) with

δj = 1/(SJej), dividing Equation (41) by |Hom(Γ̄, Sn)|, and interchanging product and
sum, we find that

0 ≤ |Hom(Γ, Sn)|
|Hom(Γ̄, Sn)|

− 1 ≤
∑
J

∅6=J⊆[s]

∑
c1,...,cs

cj 6=1⇔j∈J

∏
j∈J

rej(cj)|cj|1−1/(SJej)

|Hom(Cej , Sn)|

=
∑
J

∅6=J⊆[s]

∏
j∈J

∑
c 6=1

rej(c)|c|1−1/(SJej)

|Hom(Cej , Sn)|
.

Consider the factor in the last expression corresponding to j ∈ J for a given set J .
Classifying the conjugacy classes according to the number ` of points moved by each of
its elements, this factor can be written as

∑
2≤`≤n

∑
c

c moves ` points

rej(c)|c|1−1/(SJej)

|Hom(Cej , Sn)|
=

∑
2≤`≤n

(
n

`

)1−1/(SJej) |Hom(Cej , Sn−`)|
|Hom(Cej , Sn)|

∑
c

∗
rej(c)|c|1−1/(SJej), (42)

where the innermost sum extends over all fixed-point free conjugacy classes of S`. From
[24, Corollary 2] we deduce that

|Hom(Cej , Sn−`)|
|Hom(Cej , Sn)|

�
[(
n

`

)
`!

]−(1−1/ej)

.

Applying the Cauchy-Schwarz inequality, we find for the innermost sum in (42) that∑
c

∗
rej(c)|c|1−1/(SJej) ≤

(∑
c

(
rej(c)

)2|c|
)1/2(∑

c

|c|1−2/(SJej)

)1/2

≤
( ∑
χ∈Irr(S`)

(
χ(1)

)2− 4
ej

+ε
)1/2(∑

c

|c|1−2/(SJej)

)1/2

,
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where we have used Proposition 2 (i) to estimate the first factor. If SJej > 2, then we
bound the second factor by (`!)1−2/(SJej)+ε; otherwise, each summand is ≤ 1, and∑

c

|c|1−2/(SJej) � (`!)ε.

In both cases,∑
c

rej(c)|c|1−1/(SJej) ≤ max
((
`!
)1− 1

ej
− 1
SJej

+ε
,
(
`!
) 1

2
− 1
ej

+ε
)
. (43)

Putting (43) back into (42), we find that the left-hand side of (42) is bounded above by∑
2≤`≤n

(
n

`

)1−1/(SJej)
[(
n

`

)
`!

]−(1−1/ej)

max
((
`!
)1− 1

ej
− 1
SJej

+ε
,
(
`!
) 1

2
− 1
ej

+ε
)

=

∑
2≤`≤n

(
n

`

) 1
ej
− 1
SJej

max
((
`!
)− 1

SJej
+ε
,
(
`!
)− 1

2
+ε
)
.

For sufficiently large n, increasing ` by 1 decreases a summand by at least a factor 1
2
;

hence, as n→∞, ∑
2≤`≤n

∑
c

c moves ` points

rej(c)|c|1−1/(SJej)

|Hom(Cej , Sn)|
� n

−2( 1
SJej

− 1
ej

)
,

and, therefore,
|Hom(Γ, Sn)| ∼ |Hom(Γ̄, Sn)|, n→∞.

Since χ(Γ̄) =
∑

j 1/ej − s + 1 < 0, and since the proof of [25, Proposition 1] only
depends on an asymptotic estimate, we infer in particular that∑

0<k<n

(
n

k

)
|Hom(Γ, Sk)||Hom(Γ, Sn−k)|

|Hom(Γ, Sn)|
→ 0 as n→∞.

Combining this fact with the transformation formula (38) and [32, Theorem 3], we find
that

sn(Γ) ∼ |Hom(Γ, Sn)|/(n− 1)! ∼ |Hom(Γ̄, Sn)|/(n− 1)! ∼ sn(Γ̄).

The explicit asymptotic formula given for sn(Γ̄) results from [25, Theorem 1]. �

Remark. Theorem 4 was proved in [28, Example 1(ii)] for α(Γ) < −1 (note that the

invariant α(Γ) defined in [28, Sec. 2] is α(Γ)+2
2

in our present notation).

5.4. Demuškin groups. Let p be a prime. A pro-p-group Γ is termed a Poincaré
group of dimension n, if Γ has cohomological dimension n, and the algebra H∗(Γ) is
finite dimensional and satisfies Poincaré duality. A Poincaré group of dimension 2 is
called a Demuškin group. These are one-relator groups

Γ =
〈
x1, . . . , xm |R(x1, . . . , xm) = 1

〉
, m = dimH1(Γ),

and, for p 6= 2, the defining relation may be taken to be

R = xp
h

1 [x1, x2][x3, x4] · · · [xm−1, xm], h ∈ N ∪ {∞},
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with the understanding that xp
h

1 = 1 if h =∞; cf [4]–[6] and [19]. With the convention
p∞ = 0, the occurring relations are ordinary relations, although the group defined is
to be understood as a pro-p-group. Hence, the same relator defines a discrete one-
relator group having the Demuškin group as pro-p-completion. For this reason, it is
interesting to study the subgroup growth of these discrete groups. For m = 2, these
groups are metacyclic, and their subgroup growth can be computed using the methods
of [13]. The similarity of R to a surface group relation would allow us to estimate sn(Γ)
asymptotically for m ≥ 6, using only tools from [27]. The case m = 4 however needs a
more careful analysis. As another application of our estimates for multiplicities of root
number functions, we prove the following result.

Theorem 5. For integers q ≥ 1 and d ≥ 2, let

Γq,d =
〈
x1, y1, . . . , xd, yd

∣∣xq−1
1 [x1, y1][x2, y2] · · · [xd, yd] = 1

〉
.

Then there exist explicitly computable constants γν(Γq,d), such that

sn(Γq,d) ≈ δn(n!)2d−2

{
1 +

∞∑
ν=1

γν(Γq,d)n
−ν

}
, (n→∞),

where

δ =

{
1, q even

2, q odd.

The proof runs parallel to the proof of Theorem 3, once we have established the follow-
ing.

Lemma 22. Let q ≥ 2 an integer. For a partition λ ` n, define the coefficient l
(q)
χλ by

means of the equation∣∣{(σ, τ) ∈ S2
n : σq−1[σ, τ ] = π

}∣∣ = n!
∑
λ`n

l(q)χλ
χλ(π).

Then we have |l(q)χλ | ≤
√

m
(q)
χλ

χλ(1)
. Moreover, for a partition µ ` l, and a partition λ ` n

with λ \ λ1 = µ, the quantity χλ(1)l
(q)
χλ is a constant depending only on µ, provided n is

sufficiently large.

Proof. Writing the equation xk−1[x, y] = π as xk(x−1)y = π, we see that the number of
solutions can be computed as

∑
c

|CSn(c)| ·
∣∣{σ, τ ∈ c : σnτ = π

}∣∣ =
∑
c

|c|
∑
λ`n

χλ(c)χλ(c
k)χλ(π)

χλ(1)
,
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that is,

l(q)χλ
=

1

n!

∑
c

|c|χλ(c)χλ(c
q)

χλ(1)

≤ 1

n!χλ(1)

(∑
c

|c|(χλ(c))2

)1/2(∑
c

|c|(χλ(cq))2

)1/2

≤ 1√
χλ(1)

(
1

n!

∑
c

|c|χλ(cq)

)1/2

=

√
m

(q)
χλ

χλ(1)
.

For the second claim we have to compute

1

n!

∑
π∈Sn

χλ(π)χλ(π
k)

χλ(1)
.

We express χλ(π) as a polynomial in the functions si(π). Then χλ(π)χλ(π
k) is also a

polynomial in these functions, and our claim follows from Lemma 13. �

As an example, consider λ = (n− 1, 1). Then

χλ(π)χλ(π
k) = (c1(π)− 1)

(∑
t|q

tct(π)− 1

)
.

The expected value of the first factor is 0, and it is stochastically independent of
c2, . . . , cq. Hence, we have

l(q)χλ
=

1

χλ(1)n!

∑
π∈Sn

(
(c1(π))2 − c1(π)

)
,

and the computations leading to the second assertion in Proposition 2 (ii) give l
(q)
χλ =

1
χλ(1)

= 1
n−1

.

For λ = (n− 2, 2), we find in the case q even

χλ(π)χλ(π
q) =

1

4
(c1(π))4 − 3

2
(c1(π))3 +

13

4
(c1(π))2 − 3c1(π) + 1

+ c2(π)
(
− 2(c1(π))2 + 6c1(π)− 4

)
+ (c2(π))2

(
(c1(π))2 − 3c1(π) + 5

)
− 2(c2(π))3

+
(1

2
(c1(π))2 − 3

2
c1(π)− c2(π) + 1

)
︸ ︷︷ ︸

=:A

(
1

2

∑
t|q
t≥3

t2(ct(π))2 − 3

2

∑
t|q
t≥3

tct(π) +
∑
t|2q

t=2(t,q)

t≥3

tct(π)

)
.

Note that the expected value of A is 0, hence, since the second factor contains only
terms ct(π) with t ≥ 3, it is stochastically independent of the first factor, and the
expectation of the last summand vanishes; using Lemma 13, we find that the remaining
terms vanish as well. Dealing in a similar way with the other cases, we obtain
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q even q odd

l
(q)
χ(n−2,2) 0

1

n2 − 3n

l
(q)
χ(n−2,1,1)

13

2(n2 − 3n+ 2)

9

2(n2 − 3n+ 2)

As an example for the computation of the coefficients γν(Γq,d), we consider the case
d = 2 and q ≥ 2. From the values given above we deduce the estimate

hn(Γ)

(n!)2
= 1 +

1

(n− 1)3
+

{
26

(n2−3n+2)3 , q even
4

(n2−3n)3 + 18
(n2−3n+2)3 , q odd.

}
+ O(n−9).

For small values of k, we compute hk(Γq,2) as follows:

h1(Γq,2) = 1, h2(Γq,2) =

{
8, (q, 2) = 1

4, (q, 2) = 2,
h3(Γq,2) =


72, (q, 6) = 1

45, (q, 6) = 2

63, (q, 6) = 3

36, (q, 6) = 6,

h4(Γq,2) =


1424, (q, 6) = 1

720, (q, 6) = 2

1280, (q, 6) = 3

576, (q, 6) = 6,

h5(Γq,2) =



37192, (q, 30) = 1

21092, (q, 30) = 2

36040, (q, 30) = 3

35792, (q, 30) = 5

20840, (q, 30) = 6

19692, (q, 30) = 10

34640, (q, 30) = 15

19440, (q, 30) = 30.

Proceeding as in Subsection 5.1, we obtain

sn(Γq,2) = δn(n!)2R(n),

where δ is as in Theorem 5, and

R(n) =



1− n−1 − 7n−2 − 56n−3 − 1237n−4 − 33573n−5 +O(n−6), (q, 30) = 1

1− n−1 − 3n−2 − 37n−3 − 623n−4 − 19460n−5 +O(n−6), (q, 30) = 2

1− n−1 − 7n−2 − 47n−3 − 1111n−4 − 32826n−5 +O(n−6), (q, 30) = 3

1− n−1 − 7n−2 − 56n−3 − 1237n−4 − 32173n−5 +O(n−6), (q, 30) = 5

1− n−1 − 3n−2 − 28n−3 − 497n−4 − 19541n−5 +O(n−6), (q, 30) = 6

1− n−1 − 3n−2 − 37n−3 − 623n−4 − 18060n−5 +O(n−6), (q, 30) = 10

1− n−1 − 7n−2 − 47n−3 − 1111n−4 − 31426n−5 +O(n−6), (q, 30) = 15

1− n−1 − 3n−2 − 28n−3 − 497n−4 − 18141n−5 +O(n−6), (q, 30) = 30.

Note that the series for sn(Γq,2) is far more dependent on q – and therefore on Γq,2 itself
– than the series for hn(Γq,2).
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6. Finiteness Results

Call two finitely generated groups Γ and ∆ equivalent, denoted Γ ∼ ∆, if

sn(Γ) = (1 + o(1))sn(∆), (n→∞).

In [25, Theorem 3] a characterisation in terms of structural invariants is given for the
equivalence relation ∼ on the class of groups Γ of the form

Γ = G1 ∗G2 ∗ · · · ∗Gs ∗ Fr
with r, s ≥ 0 and finite groups Gσ, and it is shown that each ∼-class decomposes into
finitely many isomorphism classes. Here we are concerned with the analogous problems
for Fuchsian groups.

Theorem 6. (i) Let Γ = Ca1 ∗ · · · ∗ Cak ∗ Fr and ∆ = Cb1 ∗ · · · ∗ Cbl ∗ Fr′ be
free products of cyclic groups such that sn(Γ) � sn(∆). Then r = r′ and
{a1, . . . , ak} = {b1, . . . , bl} as multi-sets.

(ii) Let

Γ =
〈
x1, . . . , xr, y1, . . . , ys, u1, v1, . . . , ut, vt

∣∣
xa1

1 = · · · = xarr = x1 · · ·xrye11 · · · yess [u1, v1] · · · [ut, vt] = 1
〉

and

∆ =
〈
x1, . . . , xr′ , y1, . . . , ys′ , u1, v1, . . . , ut′ , vt′

∣∣
x
a′1
1 = · · · = x

a′
r′
r′ = x1 · · ·xr′y

e′1
1 · · · y

e′
s′
s′ [u1, v1] · · · [ut′ , vt′ ] = 1

〉
be Fuchsian groups, such that α(Γ), α(∆) > 0. Then Γ ∼ ∆ if and only if

(a) The multi-sets {ai : 1 ≤ i ≤ r} and {a′i : 1 ≤ i ≤ r′} coincide,

(b) µ(Γ) = µ(∆),

(c) δ = δ′.
(iii) Let

Γ =
〈
y1, . . . , ys

∣∣ ye11 y
e2
2 · · · yess = 1

〉
and

∆ =
〈
y1, . . . , ys′

∣∣ ye′11 y
e′2
2 · · · y

e′
s′
s′ = 1

〉
be two one-relator groups with α(Γ), α(∆) < 0. Then the following assertions
are equivalent:

(a) Γ ∼ ∆.

(b) s = s′ and {e1, . . . , es} = {e′1, . . . , e′s′} as multi-sets.

(c) Γ̂ ∼= ∆̂, where the hat denotes pro-finite completion.

The proof of Theorem 6 requires the following two auxiliary results.
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Lemma 23. Let A = {a1, . . . , ak} and B = {b1, . . . , bl} be multi-sets of integers, such
that ∑

d|ai

1

ai
=
∑
d|bi

1

bi

for all d ≥ 2. Then A = B.

Proof. We argue by induction on n = k + l. For n ≤ 1, there is nothing to show.
Assume that our claim holds for all multi-sets A′, B′ with |A′| + |B′| ≤ n − 1, and let
A,B be multi-sets as above. Let d be the greatest integer, such that

∑
d|ai 1/ai > 0.

Then d = maxA, and the value of the sum is |{i : ai = maxA}|/maxA. The same
holds for B, hence the greatest element of both multi-sets as well as the multiplicity
of this maximum coincide. Deleting these elements in both multi-sets yields a pair of
multi-sets A′, B′ of smaller cardinality, which are equal by the induction hypothesis.
Hence we deduce A = B. �

Lemma 24. Given positive integers k and l, disjoint tuples of variables ~xi = (xi1, . . . , xiai)
for 1 ≤ i ≤ k, words w1(~x1), . . . , wk(~xk), and (possibly empty) words vij(~xi) for 1 ≤ i ≤ k
and 1 ≤ j ≤ l, and a permutation σ ∈ Sk, define

Γ =
〈
~x1, . . . , ~xk

∣∣w1(~x1) · · ·wk(~xk) = vij(~xi) = 1 (1 ≤ i ≤ k, 1 ≤ j ≤ l)
〉

and

Γσ =
〈
~x1, . . . , ~xk

∣∣wσ(1)(~xσ(1)) · · ·wσ(k)(~xσ(k)) = vij(~xi) = 1 (1 ≤ i ≤ k, 1 ≤ j ≤ l)
〉
.

Then Γ and Γσ have isomorphic pro-finite completions.

Proof. For 1 ≤ i ≤ k and a finite group G, let

N
(G)
i (g) :=

∣∣∣{~xi ∈ Gai : wi(~xi) = g, vi1(~xi) = · · · = vil(~xi) = 1
}∣∣∣, g ∈ G.

Since N
(G)
i is a class function, we can introduce Fourier coefficients αχ,i via

N
(G)
i (g) =

∑
χ∈Irr(G)

αχ,iχ(g), g ∈ G.

Then, using orthogonality, we have

|Hom(Γ, G)| =
∑

g1,...,gk
g1g2···gk=1

∏
1≤i≤k

N
(G)
i (gi)

=
∑

c1,...,ck⊆G

|c1| · · · |ck|
|G|

∑
χ

∑
χ1,...,χk

χ(c1) · · ·χ(ck)

(χ(1))k−2
χ1(c1)αχ1,1 · · ·χk(ck)αχk,k

= |G|k−1
∑
χ

αχ,1 · · ·αχ,k
(χ(1))k−2

.

Since this computation leads to the same character formula when replacing Γ by Γσ,
we deduce that, for each finite group G,

|Hom(Γ, G)| = |Hom(Γσ, G)|;
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in particular, sn(Γ) = sn(Γσ) for all n. Writing

|Hom(Γ, G)| =
∑
U≤G

|Epi(Γ, U)|

and using Möbius inversion in the subgroup lattice of G, this gives

|Epi(Γ, G)| =
∑
U≤G

µ(U,G)|Hom(Γ, U)|,

thus also
|Epi(Γ, G)| = |Epi(Γσ, G)|. (44)

For n ∈ N, define finite groups Gn and Gσ
n via

Gn = Γ
/ ⋂

(Γ:∆)≤n

∆, Gσ
n = Γσ

/ ⋂
(Γσ :∆)≤n

∆.

From (44) we know in particular, that Gn is a homomorphic image of Γσ. Let N be
the kernel of such a projection map φ : Γσ → Gn. Since sν(Γσ) = sν(Gn) for ν ≤ n, we
have

N ≤
⋂

(Γσ :∆)≤n

∆,

hence, Gσ
n is a homomorphic image of Gn. By symmetry, Gn and Gσ

n are isomorphic.
By the universal properties of Gn and Gσ

n,

Γ̂ ∼= lim
←
Gn
∼= lim
←
Gσ
n
∼= Γ̂σ,

as claimed. �

Proof of Theorem 6. (i) By [25, Theorem 1], the assumption sn(Γ) � sn(∆) is equivalent
to the assertion that

(n!)−χ(Γ) exp

 k∑
i=1

∑
d|ai

nd/ai

d
+
r + χ(Γ) + 1

2
log n

 �
(n!)−χ(∆) exp

 l∑
i=1

∑
d|bi

nd/bi

d
+
r′ + χ(∆) + 1

2
log n

 .

Comparing orders of magnitude as in the proof of [25, Theorem 3], we find first that
χ(Γ) = χ(∆), then, successively, that∑

t|ai

t

ai
=
∑
t|bi

t

bi
, t ≥ 2,

and, finally, that r = r′. Our claim follows now from Lemma 23.

(ii) By Theorem 3,for groups Γ, ∆ satisfying α(Γ), α(∆) > 0, the assertion that Γ ∼ ∆
is equivalent to

δsn(Ca1 ∗ · · · ∗ Car ∗ Fs+2t) ∼ δ′sn(Ca′1 ∗ · · · ∗ Ca′r′ ∗ Fs′+2t′), (n→∞).

By part (i), the latter assertion is equivalent to the conjunction of

Ca1 ∗ · · · ∗ Car ∗ Fs+2t
∼= Ca′1 ∗ · · · ∗ Ca′r′ ∗ Fs′+2t′
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and δ = δ′, whence our claim.

(iii) The equivalence of (a) and (b) follows from Theorem 4 and part (i). Since (c) ob-
viously implies (a), it suffices to show that (b) implies (c); but this follows immediately
from Lemma 24 upon setting l = 0 and wi(~xi) = xeii . �

Denote by F the class of all groups Γ having a presentation of the form (35) with
α(Γ) > 0, and by FP the class of all Fuchsian presentations in the sense of (1). We
re-interpret ∼ as an equivalence relation on FP in the obvious way, and introduce
three refinements of this equivalence relation ∼ on FP : (i) the relation ≈ of strong
equivalence defined via

Γ ≈ ∆ :⇔ sn(Γ) = sn(∆)(1 +O(n−A)) for every A > 0,

(ii) isomorphy, and (iii) equality of the system of parameters

(r, s, t; a1, a2 . . . , ar, e1, e2, . . . , es)

in the Fuchsian presentation (35), denoted Γ = ∆. Of course, ≈ and isomorphism are to
be interpreted as equivalence relations on FP in the sense that two such presentations
are isomorphic or ≈-equivalent if and only if their corresponding groups satisfy the
respective relation. Clearly,

Γ = ∆⇒ Γ ∼= ∆⇒ Γ ≈ ∆⇒ Γ ∼ ∆. (45)

All these implications are in fact strict. To see this, define

Γj =
〈
x, y, z, u

∣∣Rj(x, y, z, u) = 1
〉
, 1 ≤ j ≤ 3,

where

Rj :=


[x, y][z, u], j = 1

[x, y]z2u2, j = 2

x2y2z2u2, j = 3.

Then Γ1 and Γ2 are isospectral, that is, sn(Γ1) = sn(Γ2) for all n (in particular, Γ1 ≈ Γ2),
but Γ1 6∼= Γ2; and Γ2

∼= Γ3 but Γ2 6= Γ3. Our next result implies that ≈ is a much finer
equivalence relation than ∼. It appears that the asymptotic series carries most of the
structural information on Fuchsian groups which can be detected via subgroup growth.

Theorem 7. Each ≈-equivalence class of FP decomposes into finitely many classes
with respect to =; that is, each group Γ ∈ F has only finitely many presentations of the
form (35), and is ≈-equivalent to at most finitely many non-isomorphic F-groups.

Corollary 2. Let Γ ∈ F be given by a representation as in (35) satisfying α(Γ) > 0.
(i) The set {∆ ∈ F : ∆ ∼ Γ}/ ∼= is finite if and only if one of the following holds:

(a) s = t = 0,

(b) s = 1, t = 0,
∑r

i=1

(
1− 1

ai

)
< 2,

(c) s+ 2t = 2, r = 1.

(ii) The set {∆ ∈ F : ∆ ∼ Γ}/ ∼= is infinite, but {∆ ∈ F : sn(∆) = (1 +
O(n−2µ(Γ)))sn(Γ)}/ ∼= is finite, if and only if the following three conditions hold:

(a) s+ 2t+
∑r

i=1

(
1− 1

ai

)
≥ 3,
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(b) ai is odd for 1 ≤ i ≤ r,

(c) ej = 2 for 1 ≤ j ≤ s with at most one exception, and for the exceptional
index j0 (if it occurs) we have ej0 = 2p−1 for some prime p.

Proof of Theorem 7. Let (r, s, t; a1, a2 . . . , ar, e1, e2, . . . , es) be a given set of parameters,
let Γ be the corresponding group and assume that α(Γ) > 0. We have to show that
there are only finitely many tuples (r′, s′, t′; a′1, a

′
2 . . . , a

′
r, e
′
1, e
′
2, . . . , e

′
s), such that for

the corresponding group ∆ we have Γ ≈ ∆. Before computing the coefficients of the
asymptotic series for sn(Γ) and sn(∆), we show that we may assume without loss that
hν(Γ) = hν(∆) for ν = 2, 3. In fact, from Theorem 6 (ii) we infer that r + s + 2t =
r′+s′+2t′, hence, |Hom(∆, Sν)| ≤ (ν!)r+s+2t, that is, there are only finitely many choices
for hν(∆) for each fixed ν. Hence, in the sequel we may assume that dν(Γ) = dν(∆) for
ν = 2, 3, where the dν are given as in (39), and that hn(Γ) =

(
1 + O(n−3µ(Γ))

)
hn(∆).

Theorem 6 (ii) already implies that the multi-sets {ai : 1 ≤ i ≤ r} and {a′i : 1 ≤ i ≤ r′}
coincide. From Propositions 1 and 2 (i), and Equation (36), we see that

hn(Γ) = (n!)s+2t−2

r∏
i=1

|Hom(Cai , Sn)|


∑
λ`n

∆<3µ(Γ)/α(Γ)

∏r
i=1 α

(ai)
χλ

∏s
j=1 m

(ej)
χλ

(χλ(1))r+s+2t−2
+O(n−3µ(Γ))

 .

(46)
In view of Proposition 2 (ii), the contribution of partitions λ with 3 ≤ ∆ ≤ 3µ(Γ)/α(Γ)
is of lesser order than the error term, hence, we can compute hn(Γ) up to a relative
error of order n−3µ(Γ) using only coefficients already computed in the previous sections.

Inserting the values for α
(q)
χλ computed in Subsection 5.2, and the multiplicities as given

in Proposition 2 (ii) into the right-hand side of (46), we obtain

hn(Γ) = δ(n!)s+2t−2

r∏
i=1

|Hom(Cai , Sn)|

{
1 + (n− 1)−(r+s+2t−2)

r∏
i=1

H1,ai(n)
s∏
j=1

(
τ(ej)− 1

)
+

(
n2 − 3n+ 2

2

)−(r+s+2t) ∏
1≤i≤r

2|ai

n

n− 1
H2,ai(n)

∏
1≤i≤r

2-ai

(H2,ai(n)− 1)

×
s∏
j=1

1

2

(
σ(ej) + (τ(ej))

2 − 3τ(ej) + τodd(ej)
)

(47)

+

(
n2 − 3n

2

)−(r+s+2t) ∏
1≤i≤r

2|ai

(
n

n− 1
H2,ai(n) + 1

) ∏
1≤i≤r

2-ai

H2,ai(n)

×
s∏
j=1

1

2

(
σ(ej) + (τ(ej))

2 − 3τ(ej)− τodd(ej) + 2
)

+ O(n−3µ(Γ))

}
,

where

Hi,q(n) :=

(
n

i

)
|Hom(Cq, Sn−i)|
|Hom(Cq, Sn)|

.
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From [24, Theorem 6], we see that

(n− 1)−(r+s+2t−2)

r∏
i=1

H1,ai(n) � n−µ(Γ),

and all other contributions to the asymptotic series in (47) are of lesser order, hence,
expanding hn(∆) in the same way, we find that Γ ≈ ∆ implies

s∏
j=1

(
τ(ej)− 1

)
=

s′∏
j=1

(
τ(e′j)− 1

)
. (48)

Moreover, the contribution of the character χ(n−1,1) to hn(Γ) and hn(∆) are identical.

Next we consider terms of order n−2µ(Γ). Arguing as for terms of order n−µ(Γ), we find
that hn(Γ) = (1 + o(n−2µ(Γ)))hn(∆) is equivalent to (48) and

s∏
j=1

(
σ(ej) + (τ(ej))

2 − 3τ(ej) + τodd(ej)
)

+
s∏
j=1

(
σ(ej) + (τ(ej))

2 − 3τ(ej)− τodd(ej) + 2
)

=
s′∏
j=1

(
σ(e′j) + (τ(e′j))

2 − 3τ(e′j) + τodd(e′j)
)

(49)

+
s′∏
j=1

(
σ(e′j) + (τ(e′j))

2 − 3τ(e′j)− τodd(e′j) + 2
)
.

For a fixed tuple (e1, . . . , es), there are only finitely many tuples (e′1, . . . , e
′
s′) with s′ ≤

s + 2t, solving (49). Indeed, the left-hand side is bounded by some constant, whereas
the right-hand side is bounded below by its greatest factor, as all factors occurring in
the last equation are ≥ 1; thus e′j is bounded for all j. �

Proof of Corollary 2. (i) Using Theorem 3, one checks in each of these cases that
{∆ : ∆ ∼ Γ} is indeed finite. On the other hand, if none of the conditions (a)–(c) is
satisfied, one easily computes that the groups

∆e :=
〈
x1, . . . , xr, y1, . . . , ys+2t

∣∣xa1
1 = · · · = xarr = x1 · · ·xrye1y2

2 · · · y2
s = 1

〉
satisfy α(∆e) ≥ 2

e
, and, if necessary, adjusting the parity of e, we have ∆e ∼ Γ for

infinitely many e. By Theorem 7, there is an infinite sequence (eν)ν≥1, such that
∆eν ∼ Γ, while ∆eν 6≈ ∆eµ for ν 6= µ, which implies our claim.

(ii) In the proof of Theorem 7, we have seen that sn(∆) = (1 + O(n−2µ(Γ)))sn(Γ) is
equivalent to the conjunction of ∆ ∼ Γ and

s∏
j=1

(τ(ej)− 1) =
s′∏
j=1

(τ(e′j)− 1).

From this equation and part (i) it is easy to see that for a group Γ satisfying (a)–(c) the
described sets are of the claimed cardinality. Now assume that Γ is a group such that
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{∆ ∈ F : ∆ ∼ Γ} is infinite, while {∆ ∈ F : sn(∆) = (1 +O(n−2µ(Γ)))sn(Γ)} is finite.
If δ(Γ) = 1, and {∆ : ∆ ∼ Γ} is infinite, there are infinitely many integers e′, such that
(e′, 2, 2, . . . , 2) solves this equation, and δ(∆e′) = δ(Γ). Define the integer q = q(Γ) via

q :=

(
s∏
j=1

(
τ(ej)− 1

))
+ 1.

If q is not 1 or prime, say q = a · b with a, b ≥ 2, then sn(∆2apb) = (1+O(n−2µ(Γ)))sn(Γ)
for all odd primes p, and, by Theorem 7, there are infinitely many non-isomorphic
groups among the groups ∆ defined in this way. Hence, we may assume that all ej are
even, τ(ej) = 2 for all j with at most one exception, and for the exceptional index j0,
we have that τ(ej0) is either 2 or p+ 1 for some prime p. This implies our claim. �
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