Sonderdruck aus

Archiv der Mathematik

On additive decompositions of the set of primes

By

JAN-CHRISTOPH PUCHTA

Abstract. We show that there is no set \mathscr{A} of integers, such that $(\mathscr{P} - 1) \subseteq \mathscr{A} + \mathscr{A} \subseteq \mathscr{P} \cup (\mathscr{P} - 1)$, where \mathscr{P} denotes the set of primes.

Let \mathscr{N} be a set of integers. Following Wirsing[2], \mathscr{N} is called additively decomposable, if there are sets \mathscr{A} , \mathscr{B} , such that $\mathscr{A} + \mathscr{B} = \{a + b | a \in \mathscr{A}, b \in \mathscr{B}\} = \mathscr{N}$ and both \mathscr{A} and \mathscr{B} have at least two elements. He showed that if \mathscr{N} is probabilistically constructed with $P(n \in \mathscr{N}) = \frac{1}{2}$, we have with probability 1 that \mathscr{N}' is indecomposable, where \mathscr{N}' is any set which equals \mathscr{N} up to finitely many elements. Let \mathscr{P} be the set of primes. It is still unknown, whether \mathscr{P} is decomposable. For any set \mathscr{A} , we will use $\mathscr{A}(x)$ to denote the number of elements of \mathscr{A} which are $\leq x$. With this notation A. Hofmann and D. Wolke [1] showed that if \mathscr{A} is a set such that $\mathscr{A} + (\mathscr{A} + 1) = \mathscr{P}'$, then $\left(\frac{x}{\log x}\right)^{1/2} \ll \mathscr{A}(x) \ll x^{1/2}$. In this note we will show that no such \mathscr{A} exists.

Theorem 1. There is no set \mathscr{A} , such that $(\mathscr{P} - 1)' \subseteq \mathscr{A} + \mathscr{A} \subseteq \mathscr{P}' \cup (\mathscr{P}' - 1)$.

Especially, if we had $\mathscr{A} + (\mathscr{A} + 1) = \mathscr{P}$, the set \mathscr{A} would contradict our theorem.

Proof. Define A to be the set of residue classes (mod 30), such that \mathscr{A} contains infinitely many elements from this class, B be the corresponding set for $\mathscr{A} + \mathscr{A}$ and P for \mathscr{P} . Then by the prime number theorem for arithmetic progressions and our assumption we get

 $P - 1 = \{0, 6, 10, 12, 16, 18, 22, 28\} \subseteq B$ $\subseteq \{0, 1, 6, 7, 10, 11, 12, 13, 16, 17, 18, 19, 22, 23, 28, 29\}$ $= P \cup (P - 1).$

For every $a \in A$ we have $2a \in B$, thus

 $A \subseteq \{0, 3, 5, 6, 8, 9, 11, 14, 15, 18, 20, 21, 23, 24, 26, 29\}.$

Since $0 \in B$, there are elements $a_1, a_2 \in A$, such that $a_1 + a_2 \equiv 0$. One easily checks that the only possibilities are 0 + 0, 15 + 15, 6 + 24 and 9 + 21. If 0 was in A, we would have $A \subseteq B$, thus $0 \in A \subseteq \{0, 6, 11, 18, 23, 29\}$. The only way to obtain 12 is 6 + 6, and the only way to obtain 18 is 0 + 18, thus $\{0, 6, 18\} \subseteq A$. However, 6 + 18 is not in B, which gives a contradiction. If 15 was in A, we would have $A + 15 \subseteq B$, thus $A \subseteq \{3, 8, 14, 15, 21, 26\}$.

Mathematics Subject Classification (2000): 11P32.

Vol. 78, 2002

The only way to obtain 28 is 14 + 14, the only way to obtain 12 is 21 + 21. However, $14 + 21 \equiv 15$ is not contained in *B*. If $\{6, 24\} \subseteq A$, we get $A \subseteq \{5, 6, 23, 24\}$, and there is no possibility to represent 6. If $\{9, 21\} \subseteq A$, we get $A \subseteq \{8, 9, 20, 21\}$, and again there is no possibility to represent 6.

With the same method used (mod 210) one can show that there is no \mathscr{A} , such that $\mathscr{P}' \subseteq \mathscr{A} + \mathscr{A} \subseteq \mathscr{P}' \cup (\mathscr{P}' + 1) \cup (\mathscr{P}' + 2)$, and using higher moduli one might be able to prove far more general statements. Moreover, one can replace \mathscr{P} by any set \mathscr{Q} , such that $((\mathscr{P} \cup \mathscr{Q}) \setminus (\mathscr{P} \cap \mathscr{Q}))(x) = o\left(\sqrt{\frac{x}{\log x}}\right)$, however, this will not help deciding whether \mathscr{P} is additively decomposable.

A c k n o w l e d g e m e n t. I would like to thank the referee for pointing out a critical error in a former version of this note.

References

[1] A. HOFMANN and D. WOLKE, On additive decompositions of the set of primes. Arch. Math. 67, 379–382 (1996).

[2] E. WIRSING, Ein metrischer Satz über Mengen ganzer Zahlen. Arch. Math. 4, 392–398 (1953).

Eingegangen am 14. 1. 1999 *)

Anschrift des Autors: Jan-Christoph Puchta Albert-Ludwigs-Universität Freiburg Mathematisches Institut Eckerstr. 1 79104 Freiburg Germany jcp@arcade.mathematik.uni-freiburg.de

^{*)} Eine überarbeitete Fassung ging am 28. 8. 2000 ein.