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Abstract

We consider generalized surjective codes, together with their connection to covering
codes and covering arrays. We prove new bounds on σq(n, s; r), the minimal cardinality of
a q-ary code of length n, which is s-surjective with radius r. For covering codes we deduce
the new records K6(10, 7) ≦ 18 and K6(9, 6) ≦ 24.

1. Introduction

Let Q be a q-set, e.g. Zq = {0, 1, . . . , q − 1}, and consider the n-dimen-
sional q-ary Hamming space, i.e. Qn equipped with the Hamming metric dH .
We say that a word y ∈ Qn is R-covered by x ∈ Qn if dH(x, y) ≦ R.

Definition 1. A word y ∈ Qn is said to be R-covered by a q-ary code
C ⊂ Qn of length n if there is a codeword c ∈ C that R-covers y. The code
C is called R-covering if any word y ∈ Qn is R-covered by C. Let Kq(n, R)
denote the minimal cardinality of a q-ary R-covering code of length n.

For a monograph on covering codes see [6]. An updated table of bounds
on Kq(n, R) is published online by Kéri [14].

Definition 2. A covering array CAλ(N ; t, k, v) is an N × k array with
entries from Zv such that in every N × t subarray, each t-tuple of Z

t
v occurs

at least λ times. Let CAN(t, k, v) denote the minimum possible number of
rows N of a CA1(N ; t, k, v).
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Covering arrays with λ = 1 are also known as surjective codes, see [4]
and its references as well as [15]. An updated table of upper bounds on
CAN(t, k, v) is published online by Colbourn [5]. If in a CA1(N ; t, k, v) each
t-tuple occurs exactly once then it is called an orthogonal array of index 1,
see [9], and the corresponding code is called a v-ary (k, t) MDS code. A com-
mon generalization of R-covering codes and covering arrays with λ = 1 is the
following notion of a generalized surjective code.

Definition 3 (Kéri, Östergård [15]). A q-ary code C ⊂ Qn of length n
is called s-surjective with radius r if for any s-tuple (k1, . . . , ks) ∈ Z

s
n of pair-

wise distinct coordinates and any s-tuple (x1, . . . , xs) ∈ Qs there is a code-
word c = (c0, . . . , cn−1) ∈ C such that |

{
i ∈ {1, . . . , s} | cki

= xi

}

| ≧ s − r.
Let σq(n, s; r) denote the minimal cardinality of a q-ary code of length n,
which is s-surjective with radius r.

Clearly, σq(n, n; r) = Kq(n, r) and σq(n, s; 0) = CAN(s, n, q). The gen-
eralized surjective codes turned out to be a valuable tool in the theory of
covering codes, see [15, 17, 7].

Whenever we want to prove that a code C ⊂ Qn is s-surjective with ra-
dius r we will consider arbitrary s coordinates k1 < · · · < ks from Zn and an
arbitrary x = (x1, . . . , xs) ∈ Qs. Then we shall show that there is a code-
word c = (c0, . . . , cn−1) ∈ C such that x is r-covered by c∗ := (ck1

, . . . , cks
).

Sometimes, it will be convenient to label the elements of Zn \ {k1, . . . , ks} by
l1, . . . , ln−s.

This paper is organized as follows. Section 2 discusses recursive bounds.
In Section 3, 4 and 5, exact values, lower and upper bounds are presented,
respectively. We collect the results for small parameters in the tables of
Section 6.

We would like to thank the referee for greatly improving this paper, in
particular for making us aware of several possible improvements in these ta-
bles.

2. Recursive bounds

The following recursive bounds are well-known and quite powerful in
some situations:

Kq(n1 + n2, R1 + R2 + 1) ≧ min
{

Kq(n1, R1), Kq(n2, R2)
}

(1)

Kq1·q2
(n, R) ≦ σq1

(n, n − R; 0) · Kq2
(n, R)(2)

Kq(n + s, R + r + 1) ≧ min
{

σq(n + s, s; r), Kq(n, R)
}

(3)

σq(n + 1, s; r) ≧ σq(n, s; r)(4)
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σq1+q2
(n, s1 + s2 − 1; s1 + s2 − 1 − r)(5)

≦ σq1
(n, s1, s1 − r) + σq2

(n, s2; s2 − r)

σq(n, s; R + s − n) ≧ Kq+1(n, R) − 1 if R + 1 ≧ s(6)

σq+1(n + 1, s + 1; r + 1) ≧ min
{

2(q + 1), σq(n, s; r) + 1
}

if r < s(7)

Inequality (1) is from [1], (2) is from [6], (3) and (4) and (5) are from
[15], (6) and (7) are from [7].

Theorem 4.

(8) σq(n + 1, s + 1; r + 1) ≦ σq(n, s; r) ≦ σq(n, s + 1; r).

Proof. Let C ⊂ Z
n
q be a code of cardinality σq(n, s; r) which is s-

surjective with radius r. Obtain C̄ from C by repeating the last compo-
nent. We shall show that C̄ is (s + 1)-surjective with radius r + 1. Since
k1, . . . , ks ∈ Zn there is a c = (c0, . . . , cn−1) ∈ C such that (x1, . . . , xs) ∈ Z

s
q

is r-covered by c∗. Set c̄ = (c0, . . . , cn−1, cn−1) ∈ C̄ then x is (r + 1)-covered
by c̄∗. This proves the first inequality. The second one is trivial. �

The bounds (4) and (8) imply

(9) σq(n, s + 1; r + 1) ≦ σq(n, s; r)

and

(10) σq(n, s; r) ≧ Kq(s, r).

A common generalization of (1) and (3) is the following new result.

Theorem 5.

σq(n1 + n2, s1 + s2; r1 + r2 + 1)

≧ min
{

σq(n1 + n2, s1; r1), σq(n1 + n2 − s1, s2; r2)
}

≧ min
{

σq(n1, s1, r1), σq(n2, s2; r2)
}

.

Proof. The first inequality can be shown analogously to the proof of [15,
Theorem 2]: Set M1 = σq(n1 + n2, s1; r1) and M2 = σq(n1 + n2 − s1, s2; r2).
Let C ⊂ Z

n1+n2

q be a code of cardinality M < min {M1,M2}. Since M < M1

there is a set of s1 coordinates that disprove s1-surjectivity of C with ra-
dius r1. Form a new code C ′ by projecting C on the set of the other
n1 + n2 − s1 coordinates. Since M < M2 it holds that C ′ is not s2-surjective
with radius r2, i.e. that C is (s1 + s2)-surjective only with radius ≧ (r1 +
1) + (r2 + 1) > r1 + r2 + 1. The second inequality follows from (4). �
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Example: σ4(7, 6; 3) ≧ min
{

σ4(7, 3; 1), σ4(4, 3; 1)
}

= σ4(4, 3; 1) = 10.
The following is a simple yet extremely lower bound, confer e.g. [3,

eq. (2)].

Theorem 6. We have σq(n, s, 0) ≧ q · σq(n − 1, s − 1, 0).

Proof. Let C ⊂ Z
n
q be an (s,0)-surjective code of cardinality q ·σq(n − 1,

s − 1, 0)− 1. Suppose without loss that there are < σq(n− 1, s− 1, 0) words
in C with last digit 0, and let C ′ ⊂ Z

n−1
q be the code obtained by taking all

words of C with last digit 0 and then deleting this last digit. If C was (s, 0)-
surjective, then C ′ would be (s − 1, 0)-surjective, contradicting the fact that
|C| < σq(n − 1, s − 1, 0). �

The proof of [21, Theorem 4] gives σ3(n, 2; 0) ≦ 3σ2(n, 2; 0), another re-
cursive bound.

We finish this section with an unconventional new insight.

Theorem 7. Let C ′ ⊂ Z
n
q be a code of length n ≧ 4 and

C =

{(

c′0, . . . , c
′
n−1, c

′
n−1, . . . , c

′
n−1

︸ ︷︷ ︸

q times

)

∈ Z
n+q
q | (c′0, . . . , c

′
n−1) ∈ C ′

}

another code obtained from the first by repeating the last component q ≧ 2
times. If C ′ is both, 2-surjective with radius 0 and 4-surjective with radius 1,
then C is (q + 2)-surjective with radius q − 1.

Proof. Let k1 < · · · < kq+2 be coordinates from Zn+q and (x1, . . . , xq+2)

∈ Z
q+2
q . We shall show that there is a codeword c = (c0, . . . , cn+q−1) ∈ C such

that x is (q−1)-covered by c∗. Set b = max
{

i ∈ {1, . . . , q+2} | ki ∈ Zn−1

}
≧

1. If there are distinct i, j ∈ {b + 1, . . . , q + 2} such that xi = xj then there is
a c′ ∈ C ′ satisfying c′k1

= x1 and c′n−1 = xi = xj since C ′ is 2-surjective with
radius 0, and the claim follows. Consider now the opposite, which yields
b ≧ 2. If b = 2 then there is a c′ ∈ C ′ satisfying c′k1

= x1, c′k2
= x2. Further-

more there is a j ≧ 3 with c′n−1 = xj , since {xi ∈ Zq | i ≧ 3} = Zq, and the
claim follows again. If b = q + 2 or 3 ≦ b ≦ q + 1 then there is a c′ ∈ C ′ sat-
isfying at least three of the four conditions c′k1

= x1, c′k2
= x2, c′k3

= x3 and
c′k4

= x4 or c′n−1 = xq+2, respectively, since C ′ is 4-surjective with radius 1.
This completes the proof. �
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3. Exact results

Trivially, σ1(n, s; r) = 1 = σq(n, s; s) and Kq(n, 0) = qn.

Theorem 8. If there exists a q-ary (n, k) MDS code then σq(n, k; 0) = qk,

otherwise σq(n, k; 0) > qk.

Proof. σq(n, k; 0) ≧ qk is trivial. By definition, an (n, k) MDS code is k-
surjective with radius 0. If C ⊂ Qn is k-surjective with radius 0 and |C| = qk

then C is an (n, k) MDS code. �

The existence problem for MDS codes, i.e. orthogonal arrays of index 1,
is discussed for example in [9, Section 2.4].

Corollary 9. σq(n, n − 1; 0) = qn−1.

The next result is a slight generalization of [6, Theorem 3.7.1].

Theorem 10. Let q ≧ 2 and t ≧ 1. Then σq(n, s; s − t) = q if s ≧
(t − 1)q + 1 and σq(n, s; s − t) > q if s ≦ (t − 1)q.

Proof. Analogously to the proof of [6, Theorem 3.7.1] it is easy to
see that σq(n, s; s − t) ≧ q and that for s ≧ (t − 1)q + 1 the repetition code
{

(a, . . . , a) ∈ Z
n
q | a ∈ Zq

}
is s-surjective with radius s − ⌈s/q⌉ ≦ s − t, i.e.

σq(n, s; s− t) = q. For s ≦ (t−1)q it holds that σq(n, s; s− t) ≧ Kq(s, s− t) >
t by (10) and [6, Theorem 3.7.1]. �

Non-trivial results are the following.

Theorem 11 (Brace, Daykin [2]; Katona [13] and Rényi [22]; Kleitman,
Spencer [18]). σ2(n, 2; 0) equals the least integer M satisfying

n ≦

(
M − 1

⌊M/2⌋ − 1

)

=

(
M − 1

⌈M/2⌉

)

.

Theorem 12 (Johnson, Entringer [11]; Honkala [10]). σ2(n, n − 2; 0) =
⌊2n/3⌋.

Sporadic results like σ3(4, 3; 1) = 6 and σ4(4, 3; 1) = 10 can be found in
[15, 16, 7, 8].
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4. Lower bounds

Recall the approach for lower bounds on σq(n, s; s − 2) by partition ma-
trices.

Definition 13 (see [7]). A q × n-matrix P = (Pik) of subsets of ZM

is called an (n, M, q)-partition matrix if the sets of every column of P form
a partition of ZM . A sequence of s pairwise disjoint subsets from pairwise
distinct columns of P is called an s-transversal.

Theorem 14 (see [7]). Every (n,M, q)-partition matrix has an s-trans-
versal if and only if σq(n, s; s − 2) > M .

Theorem 15. σ4(5, 3; 1) ≧ 11.

Proof. Let P be a (5, 10, 4)-partition matrix. We shall prove that it
contains a 3-transversal. If P contains the empty set or every column of P
contains the same 1-set then the claim follows from σ4(4, 2; 0) = 16, see [16].
If P contains a 1-set in one column and a disjoint 1- or 2-set in another
column then it is easy to extend them to the desired 3-transversal. Hence,
we may assume that every column contains at least two 2-sets.

Consider now the case that there are sets Q, Q̄ in distinct columns of P
satisfying |Q| = 2 and Q ⊂ Q̄, say Q = {0, 1} in column 4 and Q̄ in column
3. If on the one hand there is a 2-set P in column k ∈ Z3 disjoint to Q then
we can extend P, Q to a 3-transversal by using column 3. If on the other
hand every 2-set of every column of Z3 intersects Q then it is easy to see
that there are two disjoint 2-sets {0, a0} and {1, a1} in two distinct columns
of Z3 which can be extended to a 3-transversal using column 4.

Consider finally the case that there are no such sets Q, Q̄ in P. Call a
set big if it contains at least three elements. We will frequently use the fol-
lowing argument: If there is a 2-transversal {a0, a1}, {a2, a3} in column k0,
k1 then we may assume that every set of every column of Z5 \ {k0, k1} con-
tains exactly one ai since otherwise it is easy to extend the 2-transversal to a
3-transversal. Without loss let {0, 1} and {x, y} occur in column 4. Clearly,
there is a column k ∈ Z4 containing a 2-set disjoint to {0, 1} or {x, y}. As-
sume without loss that {2, 3} occurs in column 3. Hence, every set of every
column of Z3 contains exactly one element of Z4. Without loss, {3, 4} oc-
curs in column 2. Every set of every column of {0, 1, 3} contains exactly one
element of {0, 1, 3, 4}. Hence, 2 and 4 are contained together in a big set
of column 0 and in a big set of column 1. Without loss, {a, 5} occurs in
column 2.

(i) Let a ∈ {0, 1}, say a = 0. The 2-transversal {2, 3}, {0, 5} implies that
1 and 5 are contained together in a big set of column 0 and in a big set of
column 1. Thus 0 is in a 2-set of column 0 and column 1. The same holds
for 3. Without loss, {0, 6} and {0, 7} occur in column 0 and 1, respectively.



ON GENERALIZED SURJECTIVE CODES 7

Then 1, 6, 7 are contained together in a big set of column 2 and 3. If column
0 contains {3, 7} or column 1 contains {3, 6} then there is a 3-transversal
consisting of this set, {0, 1} and a set of column 2. Otherwise we may assume
that {3, 8} and {3, 9} are in column 0 and 1, respectively. Now column 3
contains {4, 8, 9} and thus also {0, 5}, a contradiction since column 2 also
contains {0, 5}.

(ii) Let a = 2. The 2-transversal {0, 1}, {2, 5} implies that 3 and 5 are
contained together in a big set of column 0 and in a big set of column 1. Thus
0 is in a 2-set of column 0 and column 1. The same holds for 1. Without
loss, {0, 6} and {0, 7} occur in column 0 and 1, respectively. Then 1, 6, 7
are contained together in a big set of column 2 and 3. If column 0 contains
{1, 7} or column 1 contains {1, 6} then there is a 3-transversal consisting of
this set, {2, 3} and a set of column 2. Otherwise we may assume that {1, 8}
is in column 0. Now {1, 8}, {0, 7} can be extended to a 3-transversal using
column 4. �

Inequalities (3) and (4) now lead to

K4(8, 4) ≧ min
{

σ4(8, 3; 1), K4(5, 2)
}

≧ min
{

σ4(5, 3; 1), 14
}

≧ 11.

Recently, Kéri (confer [14]) proved K4(8, 4) ≧ 13 using a computer, here, we
got a decent bound by hand.

Research problem: Improve the lower bound of 11 ≦ σ5(5, 4; 2) ≦ 13.
This would also improve the lower bound of 11 ≦ K5(7, 4) ≦ 21.

Theorem 16. We have σ5(4, 3, 1) ≧ 14.

Proof. Kéri proved that the covering code realizing K5(3, 1) is unique.
The code constructed by Kalbfleisch and Stanton[12] is the union of an MDS-
code over {0, 1} and an MDS-code over {2, 3, 4}. Hence, if there was a 3-
surjective code of radius 1 and length 4 over Z5, this code would also be
the union of two MDS-codes, however, there does not exist an MDS-code of
length 4 over Z2, and our claim follows. �

The bound

(11) σ2

(

r − 1 +

(
⌊M · 22−r⌋ − 1
⌈
⌊M · 22−r⌋/2

⌉

)

, r; 0

)

> M

was given in [20, inequality (2)].
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5. Upper bounds

Östergård [19] showed that MDS codes can be used to obtain good cov-
ering codes. We start with two constructions which are based on the ternary
[4, 2] Hamming code H with generator matrix

[
0 1 1 1
1 0 1 2

]

.

H is well-known to be 1-perfect, especially 1-covering, and (4, 2) MDS, espe-
cially 2-surjective with radius 0. Furthermore, the following statement holds
true.

Lemma 17. Let C ⊂ Z
n
3 be an (n, 2) MDS code and k1, k2, k3 ∈ Zn dis-

joint coordinates. Let X, Y be two 2-subsets of Z3 and z ∈ Z3. Then there
is a c ∈ C with ck1

∈ X and ck2
∈ Y as well as ck3

= z.

Proof. For every x ∈ X there is exactly one c(x) ∈ C with c
(x)
k1

= x and

c
(x)
k3

= z. Thus

Y ′ := {c
(x)
k2

∈ Z3 | x ∈ X}

is a 2-set, implying Y ′ ∩ Y 6= ∅. �

Set Q = Z3 × Z2. Let p1 : Q → Z3 and p2 : Q → Z2 be projections to
the first and second component, respectively.

Theorem 18. K6(10, 7) ≦ 18.

Proof. Consider the ternary linear code C ′ with generator matrix

[
0 0 0 0 1 1 1 1 1 1
1 1 1 1 0 0 1 1 2 2

]

.

and set

C := C ′ ⊗ Z2 := {
(
(c′0, e), . . . , (c

′
9, e)

)
∈ Q10 | c′ ∈ C ′ and e ∈ Z2}.

We will show that C ⊂ Q10 is a 7-covering code. Let y ∈ Q10. Set I0 = Z4,
I1 = {4,5}, I2 = {6,7}, I3 = {8,9} as well as Ij,e =

{
i ∈ Ij | p2(yi) = e

}
⊂ Ij

and Pj,e =
{

p1(yi) ∈ Z3 | i ∈ Ij,e

}
⊂ Z3. Let Z4 = {j1, . . . , j4} and choose

e ∈ Z2 such that |I0,e| + |I1,e| + |I2,e| + |I3,e| ≧ 5.
(i) If |Ij1,e|, |Ij2,e|, |Ij3,e|, |Ij4,e| ≧ 1 then y is 7-covered by C since H ⊂ Z

4
3

is 1-covering.
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(ii) If |Ij1,e| > |Pj1,e| then choose distinct i1, i2 ∈ Ij1,e with yi1 = yi2 and
choose i3 ∈ Ij2,e. Since H is 2-surjective with radius 0, there is a codeword
in C which coincides with y in position i1, i2, i3. Assume from now that
|Ij1,e| = |Pj1,e| and, hence, |Ij1,e| ≦ 3.

(iii) If |Ij1,e| = 3 and |Ij2,e| = |Ij3,e| = 1 then Pj1,e = Z3 and y is 7-covered
by C since H is 2-surjective with radius 0.

(iv) If |Ij1,e|, |Ij2,e| ≧ 2 and |Ij3,e| ≧ 1 then apply Lemma 17 to H to show
that y is 7-covered by C.

(v) If |Ij1,e| = 3 and |Ij2,e| = 2 and Ij3,e = Ij4,e = ∅ then (iv) holds for
Ij,1−e. �

Theorem 19. K6(9, 6) ≦ 24.

Proof. Consider the ternary linear code C ′ with generator matrix

[
0 0 0 1 1 1 1 1 1
1 1 1 0 0 1 1 2 2

]

.

Set

C0 := C ′ ⊗ {0} and C1 := {
(
(c′8, 1), . . . , (c′0, 1)

)
∈ Q9 | c′ ∈ C ′}

as well as

C2 :=
{

(
(
γ(0), 0

)
,
(
γ(1), 0

)
,
(
γ(2), 0

)
, •, •, •,

(
γ(2), 1

)
,
(
γ(1), 1

)
,
(
γ(0), 1

)

) ∈ Q9 | γ ∈ S3

}

where each bullet (•) represents an arbitrary element of Q and S3 denotes the
symmetric group on Z3. We will show that C0 ∪C1 ∪C2 ⊂ Q9 is a 6-covering
code. Let y ∈ Q9. Set I0 = Z3, I1 = {3, 4}, I2 = {5, 6}, I3 = {7, 8} as well
as Ij,0 =

{
i ∈ Ij | p2(yi) = 0

}
⊂ Ij and Pj,0 =

{
p1(yi) ∈ Z3 | i ∈ Ij,0

}
⊂ Z3.

Let Z4 = {j1, . . . , j4}. W.l.o.g. let |I0,0| + |I1,0| + |I2,0| + |I3,0| ≧ 5.
If |P0,0| = 3 then y is 6-covered by C2. Otherwise |Ij1,0|, |Ij2,0|, |Ij3,0|,

|Ij4,0| ≧ 1 or |Ij1,0| > |Pj1,0| or |Ij1,0|, |Ij2,0| ≧ 2, |Ij3,0| ≧ 1 and we can argue
like in the proof of Theorem 18 to show that y is 6-covered by C0 ∪ C1. �

Soriano has improved this to K6(9, 6) ≦ 22, confer [14].

Theorem 20. If q ≧ 2 and s ≧ 1 then σq(q + s + 1, q + s; q − 1) ≦ qs.

Proof. Consider the code C obtained from a q-ary (s + 1, s) MDS code
by repeating the first component q times. We will show that C is (q + s)-
surjective with radius q − 1.
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(i) Assume l1 ≧ q +1, then there are two distinct i, j ∈ Zq+1 with xi = xj .
Thus there is a c∗ which coincides with x in position i, j and in s−1 positions
of {q + 1, . . . , q + s} \ {l1}.

(ii) Assume l1 ≦ q. If there are two distinct i, j ∈ Zq+1 with xi = xj then
the situation is analog to (i). Otherwise, {x1, . . . , xq} = Q. Then there is a
c∗ which coincides with x in the s position q +1, . . . , q + s and in one position
of Zq+1. �

Theorem 21. If there is a q-ary (n, 2) MDS code C ′ then σq(qn + n,

qn + 2; qn − n) ≦ q2.

Proof. Consider the code C obtained from C ′ by repeating every com-
ponent (q + 1)-times. We will show that C is (qn + 2)-surjective with ra-
dius qn − n. Without loss, we may assume that l1 ≧ q + 1. Choose dis-
tinct i1, i2 ∈ {1, . . . , q + 1} with xi1 = xi2 . Consider the (n− 1, 1) MDS code
C ′′ =

{
(c′1, . . . , c

′
n−1) ∈ Qn−1 | (xi1 , c

′
1, . . . , c

′
n−1) ∈ C ′

}
. No two words of C ′′

agree in any position. Hence, there is a c ∈ C such that c∗ coincides with x
in at least 2 + ⌈

(
(qn + 2) − (q + 1)

)
/q⌉ = 2 + n positions. �

Theorem 22.

(i) σ2(7, 5; 1) ≦ 8.

(ii) σ2(8, 6; 2), σ2(8, 4; 1) ≦ 8.

(iii) σ3(7, 6; 3) ≦ 6

(iv) σ3(8, 5; 2) ≦ 9.

(v) σ4(7, 4; 2) ≦ 8.

Proof. (i) Consider the dual code C of the binary [7, 4] Hamming code,
generated by

G =

[
1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

]

.

We will show that C is 5-surjective with radius 1. Clearly, the columns l1
and l2 of G contain a row with a zero and a one. Without loss, let this be
the upper row. Delete both columns from G to obtain G′, consisting of the
rows g0, g1, g2. By construction, g0 contains exactly two zeros, say in column
l′1 and l′2. Thus there is a codeword c′ ∈ Z

5
2 generated by g1 and g2 such that

both c′ and c′ + g0 coincide with x in position l′1 and l′2. Hence, either c′ or
c′ + g0 coincides with x in at least 2 +

⌈
(5 − 2)/2

⌉
= 4 positions.

(ii) Consider the binary linear code C generated by

G =

[
1 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

]

.
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We will first show that C is 6-surjective with radius 2. Delete column
l1 and l2 from G to obtain G′, consisting of g0, g1, g2. If {l1, l2} /∈
{
{2, 4}, {3, 5}, {6, 7}

}
then G′ contains a row with exactly three zeros, say in

column l′1, l′2, l′3. Thus there is a codeword c′ ∈ Z
6
2 generated by g1 and g2 such

that both c′ and c′ + g0 coincide with x in at least two of the three positions
l′1, l′2, l′3. Hence, c′ or c′ + g0 coincides with x in at least 2 +

⌈
(6− 3)/2

⌉
= 4

positions. Otherwise g0 contains exactly two zeros, say in column l′1, l′2, and
there is a codeword c′ ∈ Z

6
2 generated by g1 and g2 such that both c′ and

c′ + g0 coincide with x in position l′1 and l′2. Now the claim follows since
2 +

⌈
(6 − 2)/2

⌉
= 4.

We will now show that C is 4-surjective with radius 1. Delete the columns
with labels in Z8 \ {k1, . . . , k4} from G to obtain G′, consisting of g0, g1, g2. If
k2 > 1 then the claim follows from (i), so assume k2 = 1 and let a ∈ {2, 3, 4}
be the number of ones in g0. If a = 2 then the claim follows easily. If a = 3
then there is a codeword c′ ∈ Z

4
2 generated by g1 and g2 such that both c′ and

c′ + g0 coincide with x in the unique position containing a zero in g0. Hence,
either c′ or c′ + g0 coincides with x in at least 1 +

⌈
(4− 1)/2

⌉
= 3 positions.

If a = 4 then there is a word of {x2 · g0 + y1 · g1 + y2 · g2 ∈ Z
4
2 | y1, y2 ∈ Z2}

which coincides with x in position 2, 3 and 4.
(iii) Consider the code

C :=
{
(0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1, 1), (0, 0, 0, 0, 0, 2, 2),

(1, 1, 1, 1, 1, 0, 1), (1, 1, 1, 1, 1, 1, 0), (2, 2, 2, 2, 2, 2, 2)
}

= { c1, c2, c3, c4, c5, c6},

say. By symmetry it suffices to consider the case where the first or the last
column is deleted, we begin with the latter. If a word w does not contain
every letter precisely twice among the first 6 positions, then w contains some
letter three times, which means that this word coincides with some codeword
in 3 of the first 6 positions. If the 6th digit is not 0, then w coincides in the
6th digit with a codeword having only 0 entries at positions 1 to 5, and we
also obtain 3 coincidences. If the 6th digit is 0, then w coincides with c4 in
the 6th and two of the first 5 positions, and our claim follows.

Now consider the case that the first column is deleted. If the letter 0 or
2 occurs three times, we are immediatelly done. If 1 occurs three times, we
are done using c4 or c5, unless 1 occurs precisely three times, and the last
two digits are 1. Then we are done using c2, unless w does not contain 0, but
then 2 has to occur three times, which we already excluded. Hence, every
digit occurs precisely twice among the last 6 positions. If none of the last
two digits is 0, then one of c2, c3 coincides with w at three positions, if one of
them is 0, then one of c4, c5 does. Hence, in any case w coincides with some
codeword at 3 positions outside the first column, and our claim follows.
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(iv) Consider the ternary linear code generated by

[
0 0 1 1 1 1 1 1
1 1 0 0 1 1 2 2

]

.

Use the ideas of part (i), (ii) and (iv) of the proof of Theorem 18.
(v) Consider

C :=
{

(0, 0, 0, 3, 3, 3, 3), (0, 0, 0, 0, 0, 0, 0), (1, 1, 1, 0, 0, 0, 2), (1, 1, 1, 1, 1, 1, 1),

(2, 2, 2, 1, 1, 1, 2), (2, 2, 2, 2, 2, 2, 1), (3, 3, 3, 2, 2, 2, 3), (3, 3, 3, 3, 3, 3, 0)
}

.

We will show that C is 4-surjective with radius 2. If k4 < 6 then it is easy
to see that x is 2-covered, so assume k4 = 6. Set A0 = A3 = {0, 3}, A1 =

A2 = {1, 2}, B0 = {0, 3}, B1 = {1, 2}, B2 = {0, 1}, B3 = {2, 3}. Set I =
{

i ∈

{1, 2, 3} | ki ∈ Z3 and xi ∈ Ax4
or ki ∈ Z6 \ Z3 and xi ∈ Bx4

}
. If i ∈ I then

there is a c∗ which coincides with x in position ki and 6. If I = ∅ then it
turns out by inspection that there is a c∗ which coincides with x in at least
two positions of {k1, k2, k3}. �

Theorem 23. σ4(6, 5; 2) ≦ 48.

Proof. For c ∈ Z
6
4 let γ(c) := (c1, c0, c3, c2, c5, c4). Let

C0 :=
{

(a, a, b, b, a + b, a + b) ∈ Z
6
4 | a, b ∈ Z4

}

=
{

(a, a, 3a + b, 3a + b, b, b) ∈ Z
6
4 | a, b ∈ Z4

}

=
{

(3a + b, 3a + b, a, a, b, b) ∈ Z
6
4 | a, b ∈ Z4

}

and

C1 :=
{

(a, a, b, b, a + 3b, a + 3b) ∈ Z
6
4 | a, b ∈ Z4

}
.

Let C ′
2 :=

{
(0, 2, 0, 2, 1, 3), (0, 2, 1, 3, 0, 2), (1, 3, 0, 2, 0, 2), (1, 3, 1, 3, 1, 3)

}
and

C2 =
{

c, γ(c) ∈ Z
6
4 | c ∈ C ′

2

}
. Let A :=

{
(0, 1), (2, 3)

}
and B :=

{
(0, 3),

(1, 2)
}

as well as C ′
3 := (A×

{
(0, 2)

}
×A) ∪ (B ×

{
(0, 2)

}
×B) and C3 =

{
c, γ(c) ∈ Z

6
4 | c ∈ C ′

3

}
. The code C = C0 ∪ C1 ∪ C2 ∪ C3 has cardinality

|C| = 42 +42 − 2 · 4+2 · 4+2 · 2 · 22 = 48. We will show that C is 5-surjective
with radius 2. Set ykj

= xj as well as yl1 = −1. If z :=
∣
∣{y0, y1}

∣
∣ +

∣
∣{y2, y3}

∣
∣ +

∣
∣{y4, y5}

∣
∣ ≦ 5 then x is 2-covered by a c∗ with c ∈ C0 (and by

one with c ∈ C1). Assume z = 6.
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(i) Let 4 ≦ l1 ≦ 5. If {y0, y1} /∈
{
{0, 2}, {1, 3}

}
or {y2, y3} /∈

{
{0, 2},

{1, 3}
}

then
(
{y0, y1} + {y2, y3}

)
∪

(
{y0, y1} + 3 · {y2, y3}

)
= Z4 and x is

consequently 2-covered by a c∗ with c ∈ C0 ∪ C1. Otherwise |
(
{y0, y1} +

{y2, y3}
)
∪

(
{y0, y1} + 3 · {y2, y3}

)

| = 2 and it turns out that x is 2-covered
by a c∗ with c ∈ C0 ∪ C1 or c ∈ C2.

(ii) Let 0 ≦ l1 ≦ 1. Analog to (i).
(iii) Let 2 ≦ l1 ≦ 3. If

∣
∣{y0, y1, y4, y5}

∣
∣ = 3 then

(
3 · {y0, y1}+ {y4, y5}

)
∪

(
{y0, y1}+3 · {y4, y5}

)
= Z4 and x is consequently 2-covered by a c∗ with c ∈

C0 ∪ C1. If {y0, y1}, {y4, y5} ∈
{
{0, 2}, {1, 3}

}
then |

(
{y0, y1} + {y4, y5}

)
∪

(
{y0, y1}+ 3 · {y4, y5}

)

| = 2 and it turns out that x is 2-covered by a c∗ with

c ∈ C0 ∪ C1 or c ∈ C2. If {y0, y1}, {y4, y5} ∈
{
{0, 1}, {2, 3}

}
or ∈

{
{0, 3},

{1,2}
}

then |
(
{y0, y1}+ {y4, y5}

)
∪

(
{y0, y1}+3 · {y4, y5}

)

| = 3 and it turns
out that x is 2-covered by a c∗ with c ∈ C0 ∪ C1 or c ∈ C3. �

The bound [21, Theorem 5] is incorrect for small parameters. An ade-
quate use of the method leads to the implication

(
n

s

)

< q−s(1 − q−s)
−M

⇒ σq(n, s; 0) ≦ M,

a weak bound for small parameters, proving e.g. only σ2(6, 3; 0), σ3(5, 2; 0) ≦
39 and σ3(5, 3; 0) ≦ 148.

6. Tables

We restrict our tables for σq(n, s; r) on q + n ≦ 11. Furthermore, we only
give entries with q < σq(n, s; r) < qn, confer Section 3.

Key to the tables: Unmarked – [5], Theorem 8, 11 and 12, [14];
a – (4); b – (5); c – [15]; d – [17]; e – (6); f – [7]; g – (8); h – Theorem 5;
i – Theorem 15 and 16; j – (11); k – Theorem 20; m – Theorem 21;
n – Theorem 22 and 23; o – [8]; p – [16]; q – Theorem 6.



14 J. QUISTORFF and J.-C. SCHLAGE-PUCHTA

n, s\r 0 1 2 3
3, 2 4
4, 2 5
4, 3 8
4, 4 4
5, 2 6
5, 3 10
5, 4 16 a4k
5, 5 7
6, 2 6
6, 3 j12
6, 4 21 a5o
6, 5 32 a7o
6, 6 12 4
7, 2 6
7, 3 j12
7, 4 j24 o6o
7, 5 42 o8n
7, 6 64 a12 − 16g a4 − 7g
7, 7 16 7
8, 2 6
8, 3 j12
8, 4 j24 a6 − 8n
8, 5 j48 − 56 a8 − 24g
8, 6 85 a12 − 32g a4 − 8n
8, 7 128 a16 − 32g a7 − 12g
8, 8 32 12 4
9, 2 6
9, 3 j12
9, 4 j24 o7 − 8o
9, 5 j48 − 62 a8 − 24g
9, 6 j96 − 120 a12 − 62g a4 − 16g
9, 7 170 a16 − 62g a7 − 16g
9, 8 256 a32 − 62g a12 − 16g a4m
9, 9 62 16 7

Table 1. Bounds on σ2(n, s; r)
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n, s\r 0 1 2 3 4
3, 2 9
3, 3 5
4, 2 9
4, 3 27 c6c
4, 4 9
5, 2 p11
5, 3 28 − 33 d7d
5, 4 81 a9 − 27g
5, 5 27 8
6, 2 p12
6, 3 q33 d7d
6, 4 q84 − 111 a9 − 33g
6, 5 243 a27 − 73g a8 − 9k
6, 6 71 − 73 15 − 17 6
7, 2 a12
7, 3 q36 − 40 d7d
7, 4 a84 − 126 a9 − 33g
7, 5 q252 − 377 a27 − 111g a8 − 9a
7, 6 729 a71 − 186g a15 − 27k a6n
7, 7 156 − 186 26 − 34 11 − 12
8, 2 a12 − 13
8, 3 a36 − 42 d7d
8, 4 a84 − 153 a9 − 40g
8, 5 a252 − 457 a27 − 126g a8 − 9n
8, 6 q756 − 1391 a71 − 377g a15 − 81g e7 − 9g
8, 7 2187 a156 − 486g a26 − 81g a10 − 27g
8, 8 402 − 486 54 − 81 14 − 27 9

Table 2. Bounds on σ3(n, s; r)
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n, s\r 0 1 2 3 4
3, 2 16
3, 3 8
4, 2 16
4, 3 64 f10f
4, 4 24 7
5, 2 16
5, 3 64 i11o
5, 4 256 a24 − 64g c8c
5, 5 64 15 − 16
6, 2 p19
6, 3 64 o12b
6, 4 257 − 375 a24 − 64g a8b
6, 5 1024 a64 − 256g a14 − 48n
6, 6 228 − 256 32 − 52 10 − 14
7, 2 a19 − 21
7, 3 q76 − 88 a12b
7, 4 257 − 482 a24 − 64g a8n
7, 5 q1028 − 1764 a64 − 375g a14 − 64g
7, 6 4096 a228 − 992g a32 − 128g h10 − 16k
7, 7 762 − 992 80 − 128 16 − 32 8 − 10

Table 3. Bounds on σ4(n, s; r)

n, s\r 0 1 2 3
3, 2 25
3, 3 13
4, 2 25
4, 3 125 14b
4, 4 46 − 51 11
5, 2 25
5, 3 125 a14 − 17b
5, 4 625 a46 − 125g a11 − 13b
5, 5 160 − 184 21 − 35 9
6, 2 25
6, 3 125 a14 − 18b
6, 4 625 a46 − 125g a11 − 13b
6, 5 3125 a160 − 625g a21 − 125g a9b
6, 6 625 65 − 125 13 − 25

Table 4. Bounds on σ5(n, s; r)
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n, s\r 0 1 2 3
3, 2 36
3, 3 18
4, 2 37
4, 3 216 a18b
4, 4 72 13 − 15
5, 2 37 − 39
5, 3 217 − 240 a18 − 22b
5, 4 1296 a72 − 216g a13 − 18b
5, 5 330 − 414 33 − 66 12

Table 5. Bounds on σ6(n, s; r)

n, s\r 0 1 2
3, 2 49
3, 3 25
4, 2 49
4, 3 343 a25b
4, 4 115 − 123 17 − 19

n, s\r 0 1 2
3, 2 64
3, 3 32
4, 2 64
4, 3 512 a32b
4, 4 171 − 192 22 − 23

Table 6. Bounds on σ7(n, s; r) and on σ8(n, s; r)
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