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Abstract. Let G be a finite abelian group. We show that D(G) ≤ exp(G) +
|G|

exp(G)
−1, provided that exp(G) ≥

p
|G|, and D(G) ≤ 2

p
|G|−1, if exp(G) <p

|G|. This proves a conjecture by Balasubramanian and the first named
author.

1. Introduction and results

For an abelian group G denote by D(G) the least integer k, such that every
sequence g1, . . . , gk of elements in G contains a subsequence gi1 , . . . , gi` with gi1 +
· · ·+gi` = 0, and D≤n(G) be the least integer k′, such that every sequence of length
k′ contains a subsequence of length ` ≤ n adding up to 0.

Write G = Z/n1Z ⊕ · · · ⊕ Z/nrZ with n1| . . . |nr, where Zn = Z/nZ. Put
M(G) =

∑
ni− r+ 1. In several cases, including 2-generated groups and p-groups, explained Z

the value of D(G) matches the obvious lower bound M(G), however, in general we
have only rather crude upper bounds. One such bound, which is appealing for its
simple structure, is the estimate D(G) ≤ exp(G)

(
1 + log |G|

exp(G)

)
, due to van Emde

Boas and Kruyswijk[1]. If |G|
exp(G) is small, this result is superseded by the bound

D(G) ≤ |G|k +k−1, where k is an integer ≤ min( |G|
exp(G) , 7), which is due to Bhowmik replaced n by |G|

and Balasubramanian. They conjectured that one may replace the constant 7 by√
|G|. Here we prove this conjecture. It turns out that the hypothesis that k be

integral creates some technical difficulties, therefore we prove the following, slightly
sharper result.

Theorem 1.1. For an abelian group G with exp(G) ≥
√
|G| we have D(G) ≤

exp(G) + |G|
exp(G) − 1, while for exp(G) <

√
|G| we have D(G) ≤ 2

√
|G| − 1.

We use what is by now standard notation in the theory of zero-sums. For a
finite abelian group G denote by η(G) the least integer n, such that any sequence
of length n in G contains a zero-sum of length ≤ exp(G), and by s(G) the least
integer n such that any sequence of length n in G contains a zero-sum of length
equal to exp(G). For the proof we need the following bounds on η and s.
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Theorem 1.2. (1) We have s(Z3
3) = 19, s(Z4

3) = 41, s(Z5
3) = 91, and

s(Z6
3) ≤ 225.

(2) We have s(Z4
5) ≤ 157, s(Z5

5) ≤ 690, and s(Z6
5) ≤ 3091.

(3) We have s(Z4
7) ≤ 333.

(4) If p > 7 is prime and d ≥ 3, then η(Zdp) ≤
pd−p
p2−p (3p− 7) + 4.inserted prime

The first result is due to Bose[3], Pelegrino[6], Edel, Ferret, Landjev and
Storme[4], and Potechin[7], respectively. The second and third will be proven
in section 3 using the density increment method, the last statement will be proven
by combinatorial means in section 4.

We further need some information on the existence of zero-sums not much
larger then exp(G).

Theorem 1.3. Let p be a prime, d ≥ 3 an integer. Then a sequence of length
(6p − 4)pd−3 + 1 in Zdp contains a zero-sum of length ≤ 3p−1

2 . If d ≥ 4, then a
sequence of length (6p− 4)pd−4 + 1 in Zdp contains a zero-sum of length ≤ 2p.

The proof of Theorem 1.1 uses the inductive method. To deal with the inductive
step we require the following.

Theorem 1.4. Let p be a prime, d ≥ 2 an integer. Then there exist integers
N,M , such that M ≥ η(Zdp), every sequence of length M contains at least N disjoint
zero-sums, and M ≤ pd−1 + pN .

Note that the statement is trivial if η(Zdp) ≤ pd−1. We believe that this bound
is true for all pairs (p, d), p > 2, with very few exceptions, in fact, from the Alon-typo
Dubiner-theorem and Roth-type estimates one can deduce that this bound holds for
all but finitely many pairs. However, dealing with the exceptional pairs by direct
computation is way beyond current computational means. Moreover, this bound is
false for p = 2 and all d, as well as the pairs (3, 3), (3, 4), (3, 5) and (5, 3), which is
why we have to introduce the additional parameter N .

2. Proof of Theorem 1.1

In this section we show that Theorem 1.4 implies Theorem 1.1.

Lemma 2.1. Let G be an abelian group of rank r ≥ 3. Assume that Theorem 1.1
holds true for all proper subgroups of G. Then it holds true for G itself.shifted unnecessary

definitions into the
proof
Replaced η by M .
Becomes more cor-
rect and easier to
read this way.

Proof. Let p be a prime divisor of |G|. Choose an elementary abelian sub-
group U ∼= Zdp of G, such that d ≥ 3, exp(G) = p exp(G/U), and |U | is min-
imal under these assumptions. Put H = G/U . Let A be a set consisting of
exp(G)+ |G|

exp(G)−1 or 2b
√
|G|c−1 elements, depending on whether exp(G) >

√
|G|

or not. Denote by A the image of A in H. Then we obtain a zero-sum, by choosing
a large system of disjoint zero-sums in Zdp, and then choosing a zero-sum among
the elements in H defined by these sums, provided that

D(H) ≤≤ |A| −M
p

+N,

where M ≥ η(Zdp) and N = N(p, d,M) is defined as in Theorem 1.4. The left hand
side can be estimated using the inductive hypothesis. We have exp(H) = exp(G)

p ,
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|H| = |G|
pd , hence, if exp(G) ≥

√
|G| and exp(H) ≥

√
|H|, our claim follows,

provided that
exp(G)
p

+
|G|

exp(G)pd
− 1 ≤ |A| −M

p
+N,

inserting the choice of A and rearranging terms this becomes

exp(G) +
|G|

exp(G)pd−1
− p ≤ exp(G) +

|G|
exp(G)

− 1−M − δ + pN.

The quotient of G by its largest cyclic subgroup contains at least Zd−1
p , hence,

|G|
exp(G) ≥ p

d−1. Clearly, by replacing |G|
exp(|G| with a lower bound we lose something,

hence, it suffice to establish the relation

1− p ≤ pd−1 − 1−M − δ + pN.

However, this relation is implied by Theorem 1.4.
If exp(G) ≥

√
|G| and exp(H) <

√
|H|, then added explanation√

|G|/pd =
√
|H| > exp(H) = exp(G)/p ≥

√
|G|/p2,

thus d < 2, but this case was excluded from the outset.
If exp(H) <

√
|H|, the same argument as in the first case yields D(G) ≤

2
√
G− 1, provided that

2p
√
|H| − p ≤ 2

√
|G| − 1−M − δ + pN.

Since |H| = |G|
pd and M − pN ≤ pd−1 this becomes

(2− 2p−(d−2)/2)
√
|G| ≥ pd−1 − p+ 1.

As exp(H) <
√
H we have that H is of rank at least 3, which by our assumption

on the size of H implies that |G| ≥ p2d. This implies

(2− 2p−(d−2)/2)
√
|G| ≥ (2− 2p−(d−2)/2)pd >

1
2
pd > pd−1 − p+ 1,

and our claim is proven. �

Note that we proved D(G) ≤ 2
√
|G| − 1 even in some cases that exp(G) >√

|G|, that is, in some cases our proof gives a stronger result than formulated
in Theorem 1.1. However, formulating a general theorem along these lines would
require one to impose rather technical conditions on the sequence n1, . . . , nr. In other words: Let

Thangadurai do itWe know that D(Zn1⊕Zn2) = n1 +n2−1, hence Theorem 1.1 holds true for all
groups of rank ≤ 2. Hence Theorem 1.1 follows by induction over the group order. No need to repeat

everything
3. Proof of Theorem 1.4: The case p ≤ 7

Lemma 3.1. Let d ≥ 2 be an integer, p a prime number. Then every sequence
of length (d+ 1)p− d in Zdp contains a zero-sum of length ≤ (d− 1)p.

Proof. Let g1, . . . , g(d+1)p−d be elements in Zdp. Define the sequence g′1, . . . ,
g′(d+1)p−d over Zd+1

p by putting g′j = (gj , 1). Since D(Zd+1
p ) = (d + 1)p − d, there

exists a zero-sum g′i1 + . . . g′ik = 0. Looking only at the last coordinate we see that k
is divisible by p, while looking at the first d coordinates we see that gi1 + . . . gik = 0
is a zero-sum in Zdp. We have k ≤ (d+1)p−d < (d+1)p, while at the same time k is
divisible by p, thus either k ≤ (d− 1)p or k = dp. In the former case we have found
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our zero-sum. If k = dp, then k− 1 > D(Zdp), hence, the sequence of gi1 , . . . , gipd−1

contains a zero-sum subsequence gj1 , . . . , gj` . Then the complement of gj1 , . . . , gj`
within gi1 , . . . , gipd

is also a zero-sum, and one of `, pd − ` must be smaller than
(d− 1)p. Hence, in this case we also found a zero-sum of length ≤ (d− 1)p. �

3.1. The primes 2 and 3.

Lemma 3.2. Every sequence of length 2d−1 + 1 in Zd2 contains a zero-sum of
length ≤ 3, and this bound is best possible. Every sequence of length 2(d+1)/2 + 1 in
Zd2 contains a zero-sum of length ≤ 4.proved a better

bound
Proof. Taking all vectors which have an odd number of entries 1 shows that

the first bound is best possible. Now let A ⊆ Zd2 be a set without zero-sums of
length ≤ 3. Choose some element a ∈ A. Then if A intersects some pair {x, x+ a}
in two points, we obtain a zero-sum of length ≤ 3, hence, |A| ≤ 2d−1.

Now let A be a set without zero-sums of length ≤ 4. Consider the set A+̇A =
{a + b, a, b ∈ A, a 6= b}. We claim that if A contains no zero-sum of length ≤ 4,
then |A+̇A| ≥ |A|(|A|−1)

2 . Suppose that a + b = c + d with a, b, c, d ∈ A. Then
a + b + c + d = 0, hence, two of the four elements must be equal. The equal
elements cannot be a and b, for otherwise we would obtain a zero-sum of length 2.
Hence we may assume that a = c, and substracting a we obtain b = d. We conclude
that if A contains no zero-sum of length ≤ 4 then |A|(|A| − 1) < 2d+1. Solving for
|A| now implies our claim. �

To prove Theorem 1.4 for p = 2, we want to show that in a set of 2d points we
can find a system consisting of many disjoint zero-sums. We first remove one zero-
sum of length ≤ 2, then zero-sums of length ≤ 3, until this is not possible anymore,
and then we switch to zero-sums of length 4. Finally we remove zero-sums of length
≤ d+ 1, which is possible in view of D(Zd2) = d+ 1. In this way we obtain at leastchanged order of ar-

gument
2d − 2

3
+

2d−1 + 2− 2(d+1)/2 − 1
4

+
2(d+1)/2 − d− 2

d+ 1
+ 1 =

2d

4
+

2d + 2
24

− 2(d−3)/2 +
2(d+1)/2 − 1

d+ 1
zero-sums. Disregarding the last fraction we see that this quantity is ≥ 2d−2,
provided that d ≥ 7. For 3 ≤ d ≤ 6 we obtain our claim by explicitly computing
this bound.

Next we consider p = 3. For d ≥ 6 we have

η(Zd3) ≤ s(Zd3) ≤ 3d−6s(Z6
3) < 3d−1,

hence, Theorem 1.4 holds true with N = 0, M = 3d−1. For d = 5 it follows
from Lemma 3.1 that a sequence of length η(Z5

3) − 3 contains a system of N =
dη(Z

5
3)−2d−6
3d−3 e disjoint zero-sums, hence, our claim follows provided that

η(Z5
3) ≤ 3dη(Z5

3)− 16
12

e+ 34,

that is, 89 ≤ 21 + 81. In the same way we see that for d = 4 a sequence of length
39 in Z4

3 contains a system of 4 disjoint zero-sums, thus our claim follows from
39 ≤ 12 + 27. Finally it is shown in [2, Proposition 1], that a sequence of length
15 in Z3

3 contains a system of 3 disjoint zero-sums. Together with η(Z3
3) = 17 our

claim follows in this case as well.
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3.2. The primes 5 and 7. We begin by proving the second and third state-
ment of Theorem 1.2. We do so by using a density increment argument together
with explicit calculations. Define the Fourier bias ‖A‖u of a sequence A over Fdp as

‖A‖u :=
1
|A|

max
ξ∈Fd

p\{0}

∑
α∈A

e(〈ξ, α〉).

Then we have the following.

Lemma 3.3. Let p ≥ 3 be a prime number, A be a sequence over Fdp. Then A
contains a zero-sum of length p, provided that

|A|p−1

p(p−1)d
> ‖A‖p−3

u

(
‖A‖u +

p− 1
2pd−1

)
+
(
p

2

)
|A|p−2

p(p−1)d

Proof. Let N be the number of solutions of the equation a1 + · · · + ap = 0
with ai ∈ A. From [10, Lemma 4.13] we have

N ≥ |A|
p

pd
− ‖A‖p−2

u |A|p(p−2)d.

A solution a1 + · · ·+ap = 0 corresponds to a zero-sum of A, if a1, . . . , ap are distinct
elements in A. Using Möbius inversion over the lattice of set partitions one could
compute the overcount exactly, however, it turns out that the resulting terms are
of negligible order, which is why we bound the error rather crudely. The number of
solutions M in which not all elements are different is at most

(
p
2

)
times the number

of solutions of the equation 2a1 + a2 + · · ·+ ap−1 = 0. Since multiplication by 2 is
a linear map in Fdp we have that ‖2A‖u = ‖A‖, using [10, Lemma 4.13] again we
obtain

M ≤ |A|
p−1

pd
+ ‖A‖p−3

u |A|p(p−3)d.

Hence the number of zero-sums is at least

N −M ≥ |A|
p

pd
− ‖A‖p−2

u |A|p(p−2)d − |A|
p−1

pd
− ‖A‖p−3

u |A|p(p−3)d,

and our claim follows. �

We now use this lemma recursively to obtain bounds for s(Zdp), p = 5, 7, starting
from s(Z3

p) = 9p− 8.
We begin with the case p = 5. Consider a 3-dimensional subgroup U , and let

ξ ∈ Z4
5 be a vector such that v⊥U . Let n1, . . . , n5 be the number of elements of A

in each of the 5 cosets of U , ζ be a fifth root of unity. If max(ni) ≥ 37, we have a
zero-sum of length p in one of the hyperplanes. Hence

‖A‖u ≤
1
|A|

max
n1+···+n5=|A|

0≤ni≤36

|n1 + n2ζ + · · ·+ n5ζ
4|.

Since 1 + ζ + · · ·+ ζ4 = 0, we have

n1 + n2ζ + · · ·+ n5ζ
4 = (36− n1) + (36− n2)ζ + · · ·+ (36− n5)ζ4,

that is,

max
n1+···+n5=|A|

0≤ni≤36

|n1 + n2ζ + · · ·+ n5ζ
4| = max

n1+···+n5=180−|A|
0≤ni≤36

|n1 + n2ζ + · · ·+ n5ζ
4|.
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Fir |A| ≥ 144 the right hand side equals 180 − |A|, and we obtain a zero-sum,
provided that(

|A|
625

)4

>

(
180− |A|
|A|

)2(180− |A|
|A|

+
2

125

)
+

2
125

(
|A|
625

)3

.

One easily finds that this is the case for |A| = 157, and we deduce s(Z4
5) ≤ 157.

The same argument yields for d = 5 the inequality(
|A|

3125

)4

>

(
780− |A|
|A|

)2(780− |A|
|A|

+
2

625

)
+

2
625

(
|A|

3125

)3

,

which is satisfied for |A| ≥ 690, that is, we obtain s(Z5
5) ≤ 690. Finally for Z6

p we
obtain(

|A|
15625

)4

>

(
3445− |A|
|A|

)2(3445− |A|
|A|

+
2

3125

)
+

2
3125

(
|A|

3125

)3

,

which is satisfied for |A| ≥ 3091, thus the last inequality follows as well.
Hence, Theorem 1.2(2) is proven.
We now turn to the case p = 7. We have s(Z3

7) = 55. The same argument
as used for the case p = 5 shows that a sequence A over F4

7 contains a zero-sum,
provided that(

|A|
2401

)6

>

(
378− |A|
|A|

)5(378− |A|
|A|

+
3

343

)
+

3
343

(
|A|

2401

)5

.

The latter inequality is true for |A| ≥ 333, and our claim follows.
For p = 5 and 7 we have η(Z3

p) = 8p−7, and among 8p−7 elements we can find
one zero-sum of length ≤ p, one of length ≤ 2p, and one more among the remaining
5p − 7 ≥ 3p − 2 points. Hence we can take M = 8p − 7, N = 3, and Theorem 1.4
follows. Moreover we have η(Z4

p) ≤ s(Z4
p)−(p−1) ≤ ps(Z3

p)−(p−1) = 9p2−9p+1,
and among 9p2 − 9p + 1 elements we can find one zero-sum of length ≤ p, 3p − 5
zero-sums of length ≤ 2p, and one more zero-sum, that is, we can take N = 3p− 3,
and Theorem 1.4 follows for d = 4 as well.

For (p, d) = (5, 5) we have η(Z5
5) ≤ s(Z5

5) − 4 ≤ 686, and among 686 points in
Z5 we find 24 disjoint zero-sums of length ≤ 20, thus taking M = 686, N = 24, our
claim follows since M ≤ 625 + 120. For p = 5, d ≥ 6 we have

s(Zdp) ≤ 5d−6s(Z6
p) ≤ 30915d−6 < 5d−1,

and our claim becomes trivial.
Simlarly, for p = 7, d ≥ 5 we have

s(Zdp) ≤ 7d−4s(Z4
p) ≤ 3337d−4 < 7d−1,

and our claim holds true for p = 7 as well.

4. Proof of Theorem 1.4: The case p ≥ 11

We begin by proving the last statement of Theorem 1.2.

Lemma 4.1. Let A be a sequence of length 3p− 3 in Z2
p without a zero-sum of

length ≤ p. Then A = {ap−1, bp−1, cp−1} for suitable elements a, b, c ∈ Z2
p.

Proof. Gao and Geroldinger[5] have shown that this holds true, if p has prop-
erty B, and Reiher[8] has shown that every prime has property B. �
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Now suppose that p ≥ 11 is a prime number, and A is a sequence in Zdp with

|A| = n = pd−p
p2−p (3p − 7) + 4 without zero-sums of length ≤ p. Let ` be a one-

dimensional subgroup of Zdp, such that m = |` ∩ A| is maximal. Now consider all
2-dimensional subgroups containing `. Each such subgroup contains p2 − p points
outside `. Each point of A is either contained in ` or occurs in p2−p

pd−p of all such

subgroups. Hence among all subgroups there is one which contains d p
2−p
pd−p (n−m)e

points outside `. Call this subgroup U . Therefore U contains at least⌈
p2 − p
pd − p

(n−m)
⌉

+m ≥
⌈

3p− 7 +m− m− 4
p+ 1

⌉
elements of A. Since η(Z2

p) = 3p−2, this quantity is ≤ 3p−3, which implies m ≤ 4.
Since every prime has property B, it also has property C, that is, if |A∩U | = 3p−3,
then m = p− 1, which is impossible in view of > 7 and m ≤ 4. Hence m ≤ 3, and
we find that U contains 3p− 6 +m ≤ 3p− 4 points, that is, m ≤ 2. However, this
implies that each of the p + 1 one-dimensional subgroups of U contain at most 2
elements of A, thus 3p − 6 < |A ∩ U | ≤ 2p − 2, which implies p < 8, which was
excluded.

Next we consider zerosums of length not much beyond p.

Lemma 4.2. Every sequence of length 6p−3 in Z3
p contains a zero-sum of length

≤ 3p−1
2 , and every sequence of length 6p − 3 in Z4

p contains a zero-sum of length
≤ 2p.

Proof. It follows by an application of Reiher’s method[9] that a sequence of
length 6p− 3 in Z3

p contains a zero-sum of length p or 3p. In the first case we are
done immediatelly, while in the second we find a zero-sum subsequence B of length
3p. Since D(Z3

p) = 3p − 2 < 3p we can find a nontrvial zero-sum subsequence Z
of B. Now B \ Z and Z are both non-empty zero-sums, one of which has length
≤ 3p−1

2 .
The second claim follows similarly starting from the fact that every sequence

of lenght 6p− 3 in Z4
p contains a zero-sum subsequence of length p, 2p or 4p. �

We now lift this result to higher dimension.

Lemma 4.3. A sequence of length (6p−4)pd−3 +1 in Zdp contains a zero-sum of
length ≤ 3p−1

2 . If d ≥ 4, then a sequence of length (6p− 4)pd−4 + 1 in Zdp contains
a zero-sum of length ≤ 2p.

Proof. Let A be a sequence of length (6p − 4)pd−3 + 1. Let U be a 3-
dimensional subgroup of Zdp chosen at random. Then the expected value of |A ∩ U
is > 6p− 4, hence there exists a subgroup U with |A∩U | ≥ 6p− 3. But then A∩U
contains a zero-sum of length ≤ 3p−1

2 , and our first claim follows. The proof of the
second claim is similar. � Forgot the second

claim
We can now prove Theorem 1.4 for p ≥ 11. We begin with a sequence of

length pd−p
p2−p (3p − 7) + 4, remove one zero-sum of length ≤ p, then zero-sums of

length ≤ 3p−1
2 , until we have less then (6p− 4)pd−3 + 1 points left. If d = 3, then

we obtain at least one more zero-sum in the remainder. If d ≥ 4, we continue
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removing zero-sums of length ≤ 2p until we have less than (6p− 4)pd−4 + 1 points
left. Let N be the number of zero-sums obtained in this way. If d = 3, then

N ≥
⌈

(p+ 1)(3p− 7) + 4− p− (6p− 3)
(3p− 1)/2

⌉
+ 2

=
⌈

6p2 − 21p
3p− 1

⌉
+ 2 = 2p− 4,

that is, the required condition M ≤ pd−1 + pN becomes

(p+ 1)(3p− 7) + 4 ≤ p2 + (2p− 4)p,

which is 2p2 − 4p− 3 ≤ 3p2 − 4p, which is certainly true. Hence our claim follows
for d = 3.

For d ≥ 4 we get

N ≥


pd−p
p2−p (3p− 7) + 4− p− (6p− 4)pd−3 − 1

(3p− 1)/2


+
⌈

(6p− 4)(p− 1)pd−4 − (3p− 1)/2
2p

⌉
+ 2

≥
⌈

6pd − 26pd−1 + 20pd−2 − 8pd−3

3p2 − 4p+ 1

⌉
+ (3p− 2)(p− 1)pd−5

≥ 2pd−2 − 3pd−3 − 3pd−4 +
4pd−3 − 8pd−4 + 2pd−5

3p2 − 4p+ 1
≥ 2pd−2 − 3pd−3 − 3pd−4

Now the required condition M ≤ pd−1 + pN becomes

pd − p
p2 − p

(3p− 7) + 4 ≤ pd−1 + 2pd−1 − 3pd−2 − 3pd−3,

that is
3pd − 7pd−1 − 3p+ 11 ≤ 3pd − 6pd−1 + 3pd−3,

which becomes pd−1 + 3pd−3 + 3p ≥ 11, which is certainly true. Hence our claim
follows in this case as well.
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