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Abstract
Let A = (a1, . . . , an) be elements in a vector space Fd

p. We first show that for n ≥ (d+ `)p
there exists a zero sum subsequence of length ≤ (d − `)p, provided that ` ≤ d/3. We
then show how the sunflower lemma can be used to prove the existence of much shorter
zero sum subsequences. As an application we show e.g. that every sequence of length
2(p− 1)pd/2 + 2 contains a zero sum subsequence of length p or 2p. Finally we show that
the existence of short zero-sums becomes much easier to prove when the exponent of the
group is composite. For example we show that every sequence of length (p + 1)pd+1 in
Zd
p2 contains a zero-sum of length ≤ p2.

1. Introduction and results

LetA = (a1, . . . , an) be a sequence of elements in an abelian groupG. A zero-sum subsequence
is a sequence 1 ≤ i1 < i2 < · · · < ik ≤ n, such that ai1 + · · · + aik = 0, here k will be
called the length of the zero-sum. Among the basic problems in additive combinatorics is the
determination of Davenport’s constant D(G) of a group G, that is, the least integer n, such that
each sequence of length n contains a non-empty zero-sum subsequence. If G is 2-generated, or
a p-group, then the precise value of D(G) is known. However, in general we only have upper
and lower bounds, the general believe seams to be that the upper bounds are far worse than the
lower ones. Therefore obtaining improved upper bounds for D(G) seems to be an interesting
problem.

One method of obtaining upper bounds is by induction over subgroups. LetH be a subgroup
of G, and assume we can show for some parameter k that D(H) ≤ k, and that among every
sequence of length n in G/H we can find a system of k pairwise disjoint zero-sums. Then we
have D(G) ≤ n. In fact, a sequence A of length n in G maps to a sequence A of length n in
G/H . Every zero-sum in A corresponds to a subsequence of A adding up to an element in H ,
hence, by grouping elements in A according to the system of zero-sums in G/H we obtain a
sequence of length k in H , and since D(H) ≤ k we can choose a zero-sum subsequence here.

Hence one is naturally lead to consider systems of disjoint zero-sums. Halter-Koch[7] in-
troduced Dk(G) as the least integer n, such that every sequence of length n over G contains
a system of k disjoint zero-sums. While studying this function has given a variety of new in-
formation about D(G) itself (confer e.g. [3], [1], [5]), this method suffers from the fact that
the only obvious way to find large disjoint systems of zero-sums is to prove the existence of
short zero-sums. Suppose one can show that in a group G every sequence of length n0 contains
a zero-sum of length `. Then every sequence of length n > n0 contains a system of bn/`c
disjoint zero-sums. Hence one is interested in the existence of short zero-sums.
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In this article we will use two different methods to prove the existence of short zero-sums.
The first method is an application of the polynomial method and generalizes [2, Lemma 6]. We
will prove the following.

Theorem 1.1 Let p be a prime, d, k be integers, such that k ≤ d/3 and p > d+ k. Then every
sequence A of length (k + d)p in Fd

p contains a zero-sum subsequence of length ≤ (d− k)p.

For the related problem of finding zero-sums of prescribed length close to dp we refer the
reader to the work of Gao and Thangadurai[6] and Kubertin[8]. The obvious drawback of this
theorem is the fact that it gives no information for really short zero-sums. On the other hand
the required length of A is not much bigger than the trivial lower bound D(Fd

p) = d(p− 1) + 1,
hence this and similar results are useful rather in the endgame than in the initial stages of a
proof.

Our second method is purely combinatorial and handles zero-sums of length e.g. 2p. We
postpone the statement of the somewhat technical result, and mention only the following.

Theorem 1.2 Let p be a prime number, k, d be integers. Then every sequence A of length
k!2/k(p− 1)pd/k + k in Fd

p contains a zero-sum subsequence Z with |Z| ∈ {p, 2p, . . . , kp}.

This result is interesting only if k and p are small and d is large. In this case the usual approach
is the density increment method, as introduced by Roth[10], and bounds obtained in this way
are usually of the form pd−ω(d), where ω is slowly tending to infinity.

This approach cannot prove any results for zero-sums of length p, however, a similar method
works in the case that exp(G) is not prime. We prove the following.

Theorem 1.3 LetG be a finite abelian group,H a subgroup such that exp(G) = exp(H) exp(G/H).
Put m = min(η(H), |G/H|). Then we have

η(G) ≤ exp(G/H)|G/H|+ exp(G) exp(G/H)
(
|G/H|exp(G/H)−1|H|

)1/ exp(G/H)

Corollary 1.4 Let p be a prime number. Then we have η(Zd
2p) ≤ 2d+1 + 2(d+1)/2p(d+2)/2,

η(Zd
3p) ≤ 3d+1 + 22/33(d+1)/2p(d+2)/2, η(Zd

p2) ≤ (p + 1)pd+1, and η(Zd
2 ⊕ Zt

2p) ≤ pt+1 +

2pt+2−t/p2(d+t)/p.

2. Proof of Theorem 1.2

The proof uses the polynomial method in a similar manner as in Reiher’s proof of Kemnitz’
conjecture (see [9]).

Theorem 2.1 (Chevalley-Warning) Let P1, . . . , Pk ∈ Fp[X1, . . . , Xn] be polynomials, and as-
sume that

∑
degPi < n. Then |V (P1, . . . , Pk)| ≡ 0 (mod p).

For a sequence A, denote by (A|k) the number of zero-sum sequences of length k in A.
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Lemma 2.2 Let A be a sequence of length ≥ (d+ 1)(p− 1) + 1 in Fd
p. Then we have

(A|0)− (A|p) + (A|2p)− · · ·+ (−1)k(A|kp) ≡ 0 (mod p),

where k = b|A|/pc.

Proof: Put A = (a1, . . . , an), and write ai = (ai1, . . . , aid) with aij ∈ Fp. Then define the
d + 1 polynomials P1, . . . , Pd+1 ∈ Fp[X1, . . . , Xn] as Pj(X1, . . . , Xn) =

∑n
i=1 aijX

p−1
i for

1 ≤ j ≤ d, and Pd+1(X1, . . . , Xn) =
∑n

i=1X
p−1
i .

Suppose that (X1, . . . , Xn) is a solution of the system Pj = 0. The vanishing of the first
d polynomials implies that (ai)Xi 6=0 is a zero-sum in Fd

p, and the last equation implies that the
number of non-vanishing variables is divisible by p.

Vice versa a zero-sum sequence of length ` with ` ≡ 0 (mod p) gives rise to (p − 1)`

solutions, hence we obtain

(A|0) + (p− 1)p(A|p) + (p− 1)2p(A|2p) + · · · = |V (P1, . . . , Pd+1)|,

and our claim now follows from Theorem 2.1. 2

Lemma 2.3 Let p be a prime number, n, k < p be integers. Then we have(
np

kp

)
≡
(
n

k

)
(mod p).

Proof: We have(
np

kp

)
≡ (p− 1)!n

(p− 1)!k(p− 1)!n−k
· np · (n− 1)p · · · p
kp · (k − 1)p · · · p · (n− k)p(n− k − 1)p · · · p

≡
(
n

k

)
(mod p).

2

Lemma 2.4 Let A be a sequence of length≥ (d+ k)p in Fd
p, and suppose that d+ k < p. Then

we have for 1 ≤ ` ≤ k(
d+ k

d+ `

)
(A|0)−

(
d+ k − 1

d+ `− 1

)
(A|p) + · · ·+ (−1)d+`(A|(d+ `)p) ≡ 0 (mod p).

Proof: Let B ⊆ A be a subsequence of length `p. Then we have

(B|0) + (p− 1)p(B|p) + (p− 1)2p(B|2p) + · · ·+ (−1)d+`(B|(d+ `)p) ≡ 0 (mod p).

If we sum this congruence over all subsets of size `p, then a zero-sum of length mp occurs with
multiplicity

(
(d+k−m)p
(`−m)p

)
≡
(
d+k−m
`−m

)
(mod p), and our claim follows. 2

Now let A be a sequence of length (d + k)p in Fd
p. Suppose that A contains a zero-sum

subsequence Z of length ∈ [d(p−1)+1, (d+k)p]. Then this subsequence contains a zero-sum
subsequence Y of strictly smaller size, hence one of Y and Z \ Y is a zero-sum subsequence
of A of length ≤ n+k

2
. Hence, if k ≤ n/3, and A does not contain a zero-sum subsequence of
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length≤ (n−k)p, then we have (A|`p) = 0 for ` ≤ n−k and n+1 ≤ ` ≤ n+k. We therefore
obtain from the lemma that(

d+k
d+1

)
+ (−1)d−k+1

(
2k−1
k

)
(A|(d− k + 1)p) + · · ·+ (−1)d−1

(
k+1
2

)
(A|(d− 1)p) ≡ 0 (mod p)(

d+k
d+2

)
+ (−1)d−k+1

(
2k−1
k+1

)
(A|(d− k + 1)p) + · · ·+ (−1)d−1

(
k+1
3

)
(A|(d− 1)p) ≡ 0 (mod p)

...
...

...
1 + (−1)d−k+1(A|(d− k + 1)p) + · · ·+ (−1)d−1(A|(d− 1)p) ≡ 0 (mod p)

Hence we conclude that if A does not contain a zero-sum of length≤ min(d+k
2
, d−k+1), then

the system 
(
2k−1
k

) (
2k−2
k−1

)
. . .

(
k+1
2

)(
2k−1
k+1

) (
2k−2
k

)
. . .

(
k+1
3

)
...

...
...

1 1 . . . 1

 ~x ≡


(
d+k
d+1

)(
d+k
d+2

)
...
1

 (mod p) (1)

is solvable. Note that this system consists of k equations and k − 1 variables, hence we have
a real chance of proving non-solvability. We now transform the matrix by invertible column
operation. The advantage of column transformation is that we do not have to keep track of
the right hand side, since column operation correspond to substitutions of variables. We write
A ∼ B, if A can be transformed into B by column operations, which are invertible modulo
every prime number. We have

(
2k−1
k

) (
2k−2
k−1

)
. . .

(
k+1
2

)(
2k−1
k+1

) (
2k−2
k

)
. . .

(
k+1
3

)
...

...
...

1 1 . . . 1

 ∼


(
2k−2
k

) (
2k−2
k−1

) (
2k−3
k−2

)
. . .

(
k+1
2

)(
2k−2
k+1

) (
2k−2
k

) (
2k−3
k−2

)
. . .

(
k+1
3

)
...

...
...

0 1 1 . . . 1



∼



(
2k−2
k

) (
2k−3
k−1

)
. . .

(
k+1
3

) (
k+1
2

)(
2k−2
k+1

) (
2k−3
k

)
. . .

(
k+1
4

) (
k+1
3

)
...

...
...

1 1 . . . 1
(
k+1
k

)
0 0 . . . 0 1



∼



(
2k−2
k

) (
2k−3
k−1

)
. . .

(
k+1
3

) (
k+1
2

)(
2k−2
k+1

) (
2k−3
k

)
. . .

(
k+1
4

) (
k+1
3

)
...

...
...

1 1 . . . 1
(
k+1
k

)
0 0 . . . 0 1



∼



(
k+1
k

) (
k+1
k−1

)
. . .

(
k+1
3

) (
k+1
2

)
1

(
k+1
k

)
. . .

(
k+1
4

) (
k+1
3

)
0 1 . . .

(
k+1
5

) (
k+1
4

)
...

...
...

0 0 . . . 1
(
k+1
k

)
0 0 . . . 0 1
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Hence solvability of the system (1) is equivalent to the solvability of the system

(
k+1
k

) (
k+1
k−1

)
. . .

(
k+1
3

) (
k+1
2

)
1

(
k+1
k

)
. . .

(
k+1
4

) (
k+1
3

)
0 1 . . .

(
k+1
5

) (
k+1
4

)
...

...
...

0 0 . . . 1
(
k+1
k

)
0 0 . . . 0 1


~y ≡



(
d+k
d+1

)(
d+k
d+2

)(
d+k
d+3

)
...(

d+k
d+k−1

)
1


(mod p) (2)

It is clear that solving the last k − 1 equations gives for xj a polynomial in d of degree
k − 1 − j. However, it is not so obvious that we can give the solution of this system in closed
form. We show the following.

Lemma 2.5 Let ~y be the unique solution of the system (2) with the first row deleted. Then we
have yj =

(
d−1

k−1−j

)
.

Proof: For j = k − 1 we obviously have yk−1 = 1, and our claim is true. Now assume it is
already proven for j + 1, j + 1, . . . , k − 1. Then the last equation containing yj becomes

yj =

(
d+ k

d+ j + 1

)
−
(
k + 1

k

)(
d− 1

k − j − 2

)
−
(
k + 1

k − 1

)(
d− 1

k − j − 3

)
− · · · −

(
k + 1

j + 2

)(
d− 1

0

)
=

(
d+ k

k − j − 1

)
−
(
k + 1

1

)(
d− 1

k − j − 2

)
−
(
k + 1

2

)(
d− 1

k − j − 3

)
− · · · −

(
k + 1

k − j − 1

)(
d− 1

0

)
.

Now
(

d+k
k−j−1

)
counts the (k− j−1)-element subsets of a (d+k)-set. If we write the (d+k)-set

as the union of a set of d − 1 elements and a set of k + 1 elements, and distinguish for the
number of elements of the subset contained in the (d − 1)-set, we find that the right hand side
of the last equation equals

(
d−1
k−j

)
, and our claim follows by induction. 2

Putting these values into the first equation we obtain(
k + 1

k

)(
d− 1

k − 2

)
+

(
k + 1

k − 1

)(
d− 1

k − 3

)
+ · · ·+

(
k + 1

2

)(
d− 1

0

)
≡
(
d+ k

d+ 1

)
(mod p),

and repeating the argument in the proof of the lemma we find that this is equivalent to
(
d−1
k−1

)
≡ 0

(mod p), which can only happen for p < d. Hence, if p > d + k we find that the system
(1) is unsolvable, and therefore the assumption about A is wrong. This contradiction proves
Theorem 1.2.

3. Short zero-sums via the sunflower lemma

Suppose that a1, . . . , an is a sequence over Fd
2. If

(
n
2

)
> 2d, then there exist indices i1, i2, i3, i4

with i1 6= i2, i3 6= i4, {i1, i2} 6= {i3, i4}, such that ai1 + ai2 = ai3 + ai4 . If i1, . . . , i4 are all
different, then ai1 + ai2 + ai3 + ai4 is a zero-sum subsequence of length 4. If they are not all
different, say i1 = i3, then ai2 = ai4 , and ai2 + ai4 is a zero-sum of length 2. In any case
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(
n
2

)
> 2d implies the existence of a zero sum of length ≤ 4. Freeze and Schmid[5] showed

that this argument can be applied with surprising success to groups containing a large F2-vector
space as a subgroup.

Here we generalize this approach to arbitrary primes. The problem for p > 2 is that two
equal terms in the sequence do not immediately give a zero-sum, hence, one has to consider
the case of intersections between sums in more detail. We do so with the help of the sunflower
lemma, introduced by Erdős and Rado[4].

Lemma 3.1 (Sunflower lemma) Let s, ` be integers, and putN = s!(`−1)s+1. LetX1, . . . , XN

be sets satisfying |Xi| = s. Then there exist indices i1, . . . , i` and a set Y , such thatXij ∩Xik =
Y for all j < k ≤ `.

The bound s!(` − 1)s + 1 is not best possible, however, it is unclear what the correct mag-
nitude of N is. Erdős and Rado conjectured that the correct magnitude should be Cs(` − 1)s
for some constant C, however, in our context such an improvement would only influence the
exponent of exp(G/H), which is of small order anyway. We define S(s, `) as the smallest N
for which the statement of the lemma holds true for a particular choice of s and `. Using this
function we can state our first main theorem. For a set I of integers and a group G we denote by
SI(G) the least n, such that every sequence A of length n of elements in G contains a zero-sum
of length ` for some integer ` ∈ I . We write s(G) in place of sexp(G)}(G), η(G) in place of
s{1,...,exp(G)}(G), and η`(G) in place of s{1,...,`}(G)

Theorem 3.2 Let p be a prime number, k, d, d′, N be integers, and assume that
(
N
k

)
≥ pd−d

′
S(k, s(Zd′

p )).
Then we have s{p,2p,...,kp} ≤ N .

Proof: Let A be a sequence of length N . Fix a subgroup U ∼= Zd′
p , denote by π : Zd

p → Zd−d′
p

the projection mapping U to 0, and put A = π(A). Consider all k-subsets X1, . . . , X(Nk)
of

A. From the definition of S(k, e) and the assumption on the size of
(
N
k

)
we find that there are

indices i1, . . . , is(Zd′
p ) and a set Y such that

∑
x∈Xij

x is independent of j, and Xij ∩Xik = Y .
Put Zj = Xij \ Y . Then

∑
z∈Zi

z is independent of j, and all Zj have the same length ` ≤ k.
Taking pre-images under π we obtain a sequence of length s(Zd′

p ) contained in one coset of U ,
within this sequence we can choose a zero-sum of length p. Hence there are indicies j1, . . . , jp,
such that

∑
z∈Z1∪···∪Zp

z = 0, and Z1 ∪ · · · ∪Zp is a zero sum subsequence of A of length `p. 2

Corollary 3.3 Let p be a prime number, and k, d be integers. Then we have

s{p,2p,...,kp}(Zd
p) ≤ k!2/k(p− 1)pd/k + k,

s{p,2p,...,kp}(Zd
p) ≤ k!2/k(2p− 2)p(d−1)/k + k

s{p,2p,...,kp}(Zd
p) ≤ k!2/k(4p− 4)p(d−2)/k + k.

If s(Z3
p) = 9p− 8, then

s{p,2p,...,kp}(Zd
p) ≤ k!2/k(9p− 9)p(d−3)/k + k.

In particular the last inequality holds true for p = 3 and p = 5.
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Proof: We have
(
N
k

)
> (N−k+1)k

k!
, hence

(
N
k

)
≥ pd−d

′
S(k, s(Zd′

p )) holds true, provided that
(N − k+1)k ≥ k!2pd−d

′
(s(Zd′

p )− 1)k +1. Our claim now follows from the results s{p}(1) = p,
s(Zp) = 2p− 1, and s(Z2

p) = 4p− 3. 2

Clearly our method can only handle zero-sums of length 2p or longer, however, this is not
a deficit of the method but a real phenomenon. In fact, we have η2p−1(Fd

p) ≥ s(Fd−1
p ). To see

this take a sequence A over Fd−1
p without zero sums of length p, and append a digit 1 to each

element of A to obtain a sequence A′ over Fd
p with |A| = |A′|. Considering the last coordinate

we find that every zero-sum of A′ has length divisible by p, while considering the first d − 1
coordinates we find that A′ has no zero-sum of length equal to p. Hence A′ has no zero-sums of
length ≤ 2p − 1, and since this construction works for all A, we obtain η2p−1(Fd

p) ≥ s(Fd−1
p ).

Since it may well be that s(Fd
p) is not much smaller than pd, we see that we cannot expect a

good bound for zero sums of length 2p− 1 or less.
We now turn to the proof of Theorem 1.3. Let A be π : G → G/H be the canonical

projection. For g ∈ G/H let Ag be the subsequence consisting of elements A of A with
π(a) = g, and put ng = |Ag|. If we pick exp(G/H) elements of A which map to the same
element under π, their sum is an element of H . In this way we obtain

∑
g∈G/H

(
ng

exp(G/H)

)
elements in H . If this quantity supersedes (S(exp(G/H), exp(H)) − 1)|H|, then there exists
some h ∈ H , such that there are S(exp(G/H), exp(H)) different exp(G/H)-tuple with sum h.
Among these tuples we find a sunflower with exp(H) petals, which gives a zero-sum of length
dividing exp(G/H) exp(H) = exp(G). The function x 7→

(
x
k

)
is convex for every integral

k ≥ 1, hence

∑
g∈G/H

(
ng

exp(G/H)

)
≥
(
|A|/|G/H|
exp(G/H)

)
|G/H| ≥ (|A| − exp(G/H)|G/H|)exp(G/H)

exp(G/H)!|G/H|exp(G/H)−1 .

Hence A contains a zero-sum of length dividing exp(G), provided that

(|A| − exp(G/H)|G/H|)exp(G/H) ≥ exp(G/H)!|G/H|exp(G/H)−1S(exp(G/H), exp(H))|H|.

From this we obtain

η(G) ≤ exp(G/H)|G/H|+
(
exp(G/H)!2 exp(H)exp(G/H)|G/H|exp(G/H)−1|H|

)1/ exp(G/H)

≤ exp(G/H)|G/H|+ exp(G) exp(G/H)
(
|G/H|exp(G/H)−1|H|

)1/ exp(G/H)
.

Since we are most interested in the case of groups of large rank, the dependence on the exponent
of the groups does not really matter. Ignoring these terms for the moment we find that the most
important contribution is |G/H|, while |H plays a minor rôle. This is surprising, since from an
algebraic point of view |H| and |G/H| are symmetric.

The corollary follows from Theorem 1.3, in the case of Z2p and Z3p we took H = Zd
p, and

used the better formula in which n! is not replaces by nn.
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