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Abstract Denote by σk(n) the sum of the k-th powers of the divisors of n, and let

Sk = ∑
n≥1

σk (n)

n!
. We prove that Schinzel’s conjecture H implies that Sk is irrational,

and give an unconditional proof for the case k = 3.

Keywords Irrationality . Generalized exponential functions . Conjecture H . Sieve

estimates
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Let σk(n) = ∑
d|n dk , and set Sk = ∑

n≥1
σk (n)

n!
. For k = 0, 1 it follows from a general

result by Erdős and Straus [3], that Sk is irrational, whereas for k = 2 the same was

shown by Erdős and Kac [2]. In [1], Erdős posed the question whether Sk is irrational

for all k. We will prove the following theorem.

Theorem. Define Sk as above.

(1) If Schinzel’s conjecture H is true, then Sk is irrational for all k ∈ N.
(2) S3 is irrational.

Here, Schinzel’s conjecture H is the following generalization of the prime twin

conjecture (cf. [8]):

Let P1, . . . , Pk be integral polynomials with positive leading coeficients, such that
for each prime number p there exists some integer a such that P1(a) · · · Pk(a) �≡ 0

(mod p). Then there exist infinitely many integers n such that Pi (n) is prime for
1 ≤ i ≤ k.
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Proof: Assume that Sk was rational, say, Sk = a
b , (a, b) = 1. Then for every n > b,

(n − 1)!Sk is an integer, and we deduce that

∑
ν≥n

σk(ν)

(ν)ν−n+1

∈ N,

where (x)m = x(x − 1) · · · (x − m + 1). Noting that for all ε > 0 and n sufficiently

large, we have σk(n) < nk+ε , we deduce that∥∥∥∥∥ n+k−1∑
ν=n

σk(ν)

(ν)ν−n+1

∥∥∥∥∥ < n−1+ε .

Here and in the sequel, ‖x‖ denotes the distance of x to the nearest integer. Now

assume Schinzel’s conjecture H, and fix some prime p > k. Then there are infinitely

many prime numbers q ≡ 1 (mod k!k), such that
q+i
i+1

is prime for all i ≤ k. For such

a prime number q and i ≤ k we have

σk(q + i) =
((

q + i

i + 1

)k

+ 1

)
σk(i + 1) = qkσ−k(i + 1) + O(1),

hence,

q+k−1∑
ν=q

σk(ν)

(ν)ν−q+1

=
k∑

i=1

σ−k(i)
(q + i − 1)k

(q + i − 1)i
+ O(q−1).

The fraction
(q+i−1)k

(q+i−1)i
can be written as Pk,i (q) + O(q−1) for some polynomial

Pk,i ∈ Q[x], combining our estimates we obtain that for all prime numbers q ≡ 1

(mod k!k) with
q+i
i+1

prime for all i ≤ k, we have

∥∥∥∥∥ k∑
i=1

σ−k(i)Pk,i (q)}
∥∥∥∥∥ < q−1+ε . (1)

Now we repeat our argument, this time choosing an integer q = pr , q ≡ 1

(mod k!k), with r prime, such that
q+i
i+1

is prime for all i ≤ k. Arguing as above we

deduce that ∥∥∥∥∥σ−k(p)Pk,1(q) +
k∑

i=2

σ−k(i)Pk,i (q)}
∥∥∥∥∥ < q−1+ε . (2)

Since q is fixed (mod k!k), the fractional part of σ−k(i)Pk,i (q) does not depend on q,

hence, comparing (1) and (2), we deduce that

‖σ−k(p)Pk,1(q1) − σ−k(1)Pk,1(q2)‖ < q−1+ε
1
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holds true for all integers q1 < q2, such that q1 is p times a prime, q2 is prime,

q1 ≡ q2 ≡ 1 (mod k!k), and
q j +i

i is prime for j = 1, 2 and i ≤ k. Using the fact that

Pk,1(x) = xk−1 and σ−k(1) = 1, we obtain∥∥∥∥qk−1
1

pk

∥∥∥∥ < q−1+ε
1 .

For q1 > p2, the left hand side cannot vanish, since then p2 � q1. Hence, the left hand

side is a nonzero rational number with denominator dividing pk , and therefore bounded

below by p−k . However, p is fixed, whereas q1 may be chosen arbitrary large, which

yields a contradiction.

The proof of the second statement is similar, however, due to the fact that we do not

even know whether there is an infinitude of Sophie Germain primes, it becomes more

technical. As a substitute for conjecture H we will use the following result. Denote by

P−(n) the least prime factor of n.

Lemma. The number of primes p ≤ x such that P−(
p+1

2
) and P−(

p+2

3
) are both

greater then x1/9 is 	 x
log3 x

.

Proof: This follows from [6, Theorem 7.4]. �

Note that the exponent 1/9 is not optimal, however, it is sufficient for our purpose.

In the sequel, let q be a prime number satisfying P−(
q+1

2
) > q1/9 and P−(

q+2

3
) > q1/9,

and suppose that q is sufficiently large. As in the proof of the first part of our theorem,

we deduce that ∥∥∥∥σ3(q)

q
+ σ3(q + 1)

q(q + 1)
+ σ3(q + 2)

q(q + 1)(q + 2)

∥∥∥∥ < q−1+ε .

By assumption we have σ3(q + 2) = q3 + q3

27
+ O(q8/3), that is,

σ3(q+2)

q(q+1)(q+2)
= 28

27
+

O(q−1/3). Moreover, denoting by {x} the fractional part of the real number x , we have

{ σ3(q)

q } = 1
q , and we have

{
σ3(q + 1)

q(q + 1)
− σ3(q + 1)

(q + 1)2

}
=1 − 1

8
+ O

(∥∥∥∥ (q + 1)2

q

∥∥∥∥)
+O(q−1/3)= 7

8
+ O(q−1/3).

Hence, setting n = q+1

2
, we find that there are 	 x

log3 x
integers n ≤ x with the fol-

lowing properties:

(i) We have ∥∥∥∥9σ3(n)

4n2
+ 19

216

∥∥∥∥ 
 n−1/3,

(ii) P−(n) > n−1/9,

(iii) 2n − 1 is prime, and P−( 2n+1
3

) > n−1/9.
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We will obtain a contradiction by estimating the number of integers n with these

properties from above. If there were as many integers n with these properties, there

has to be some k ≤ 9, such that there are 	 x
log3 x

integers n with these properties which

have precisely k prime factors. We may assume that n is squarefree, for otherwise n was

divisible by the square of an integer k ≥ n1/9, and the number of integers n ∈ [x, 2x]

with this property is bounded above by

∑
k≥x1/9

[
2x

k2

]

 x8/9,

which is of negligible size. Let p1 < p2 < · · · < pk be the prime factors of n. Set

[k] = {1, . . . , k}. Then divisors of n correspond to subsets I of [k], and inserting the

definition of σ3, we see that condition (i) is equivalent to∥∥∥∥∥ ∑
I⊆[k]

9
∏

i∈I pi

4
∏

i �∈I p2
i

+ 19

216

∥∥∥∥∥ 
 n−1/3.

The summand I = [k] corresponds to the trivial divisor n, which contributes 9n
4

.

Since for n sufficiently large, n has to be odd by condition (ii), the contribution is ± 1
4

(mod 1). Hence, all integers satisfying (i) and (ii) also satisfy∥∥∥∥∥ ∑
I⊂[k]

9
∏

i∈I pi

4
∏

i �∈I p2
i

+ 19

216
± 1

4

∥∥∥∥∥ 
 n−1/3, (3)

If k = 1, then n = p1, and (3) becomes ‖ 9

4p2
1

+ 19
216

± 1
4
‖ 
 p1/3

1 , which is impossible

for n sufficiently large. If k = 2, (3) is equivalent to∥∥∥∥9p2

4p2
1

+ 19

216
± 1

4

∥∥∥∥ 
 (p1 p2)−1/9

since p2 > p1 > n1/9. For fixed p1, all admissible p2 < x are contained in 
 x
p3

1

+ 1

intervals of length 
 p2−2/9

1 each, hence, the number of admissible p2 is 
 xp−1−2/9

1 .

Summing over all p1 > x1/9, we find that the number of integers n ≤ x with two

prime factors satisfying (3) is bounded above by x1−2/81. Hence, we may assume

that k ≥ 3, in particular, we have p1 < x1/3. We divide the interval [x1/9, x1/3] into


 log x intervals of the form [y, 2y] and will now estimate the number of integers

n ≤ x satisfying conditions (i)–(iii) together with p1 ∈ [y, 2y]. Set

α =
∑

1�∈I⊂[k]

9
∏

i∈I pi

4
∏

i �∈I p2
i

.

Note that our assumption implies p2
1 < α < x . We now distinguish two cases, depend-

ing on the relative size of α and y. Let C be a constant to be determined later, and
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assume first that for each integer 2 ≤ � ≤ 9 we have

α �∈ [y� log−C x, y� logC x]. (4)

Then we rewrite (3) as ∥∥∥∥αp1 + α

p2
1

+ 19

216
± 1

4

∥∥∥∥ 
 n−1/3.

It suffices to show that the number of integers n1 ∈ [y, 2y] satisfying∥∥∥∥αn1 + α

n2
1

+ 19

216

∥∥∥∥ 
 x−1/4 (5)

is bounded above by
y

log6 y
. This quantity is at most yx−1/4 + D, where D = D(α, y) is

the discrepancy of the sequence (αn1 + α

n2
1

)n1∈[y,2y]. Bounding the discrepancy using

the Erdős-Turán-inequality (see e.g. [7, Corollary 1.1]) we obtain

D 
 y

H
+

∑
h≤H

1

h

∣∣∣∣∣ 2y∑
n=y

e(h f (n))

∣∣∣∣∣ .
for any parameter H ≥ 1, where we have set f (n) = αn + α

n2 . To bound the expo-

nential sum on the right hand side, it suffices to use the simplest van der Corput-type

estimates (see e.g. [4, Theorem 2.9]). If the integer 2 ≤ � ≤ 8 is determined by means

of the inequality y� logC x < α < y�+1 log−C x , we have

logC

y

 f (�+1)(x) 
 1

logC x
, ∀x ∈ [y, 2y].

For � ≥ 3 we deduce

2y∑
n=y

e(h f (n)) 
 y
(
hα f (�+1)(y)

)1/(4Q−2) + h−1 f (�+1)(y)−1


 hy log−C/Q x + y log−C x,

where Q = 2�+1, and therefore

D 
 y

H
+

∑
h≤H

1

h

∣∣∣∣∣ 2y∑
n=y

e(h f (n))

∣∣∣∣∣

 y

H
+ H y log−C/Q x .

Setting H = log7 x and C = 14Q ≤ 213, we obtain D 
 y
log7 x

, and therefore, for x
sufficiently large, D ≤ y

log6 y
. Note that, apart from (4), this estimate is independent
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of α, which shows that there are 
 x
log5 x

integers n ≤ x satisfying conditions (i)–(iii)

together with (4).

Now we consider the case

α ∈ [y� log−C x, y� logC x] (6)

for some integer 2 ≤ � ≤ 9. Fix prime numbers x1/9 < p2 < · · · < pk , and a real

number y such that yp2 . . . pk < x , such that (6) is satisfied. The prime numbers

p2, . . . , pk can be chosen in 
 x
y log x ways, and there are 
 log log x intervals of

the form [y, 2y] to be considered. For each fixed p2, . . . , pk , the number of primes

p1 ∈ [y, 2y] such that p1 . . . pk satisfies condition (iii) is 
 y
log3 x

, thus, the total

number of integers n satisfying conditions (ii) and (iii) as well as

p�
1 log−C x ≤ α ≤ 2p�

1 logC x

for some integer � is 
 x log log x
log4 x

. Hence, the total number of integers n ≤ x satisfying

conditions (i)–(iii) is bounded above by O(
x log log x

log4 x
), which contradicts our lower

bound x
log3 x

, proving our theorem. �
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